The invention relates to bicycles, particularly to bicycle pedals.
Most bicycles are equipped with reflectors for reflecting lights to rear vehicles to warn or show the position of the bicycle. Especially in night or low-light circumstances, reflectors installed on pedals must increase traffic safety for bicycle riders no doubt. However, how to mount a reflector on a pedal is numerous, such as adhesion or riveting. Such installations tend to cause separation after a long-term outdoor use. This will seriously affect riding safety, so it needs to be solved.
An object of the invention is to provide a bicycle pedal structure, which prevents reflectors from separating and enhances the anti-slip effect.
A bicycle pedal structure includes a pedal body, two reflectors, two first anti-slip plates and two second anti-slip plates. The pedal body has a first tread and a second tread. An outer edge of each of two opposite sides of the first tread and the second tread is formed with a recess. A part of each reflector is embedded in one of the recesses. The two first anti-slip plates are separately mounted on the opposite sides of the first tread and the second tread by first screws. Each first anti-slip plate presses one of the reflectors. The two second anti-slip plates are separately mounted on the opposite sides of the first anti-slip plates by second screws.
In view of this, the inventors have devoted themselves to the above-mentioned prior art, researched intensively and cooperated with the application of science to try to solve the above-mentioned problems. Finally, the invention which is reasonable and effective to overcome the above drawbacks is provided.
The technical contents of this disclosure will become apparent with the detailed description of embodiments accompanied with the illustration of related drawings as follows. It is intended that the embodiments and drawings disclosed herein are to be considered illustrative rather than restrictive.
Please refer to
In the embodiment, the reflectors 22 are reflecting plates. A part of each reflector 22 is embedded in one of the recesses 213. The reflector 22 has a T-shaped cross-section and the recess 213 has a corresponding shape. An upper surface of each reflector 22 which has been embedded in the recess 213 is flush with the first tread 211 or the second tread 212 of the pedal body 21.
The two first anti-slip plates 23 are separately mounted on the opposite sides of the first tread 211 and the second tread 212 by first screws 231. The first anti-slip plate 23 slightly protrudes from the recess 213 to press an upper edge of the reflector 22 as shown in
The two second anti-slip plates 24 are separately mounted on the opposite sides of the first anti-slip plates 23 by second screws 241 as shown in
Please refer to
Please refer to
The first anti-slip plates 23 not only provide an anti-slip effect, but also help to fix the reflectors 22 to avoid separation.
While this disclosure has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of this disclosure set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3709058 | Pawsat | Jan 1973 | A |
3796110 | Hagenah | Mar 1974 | A |
4063798 | Pawsat | Dec 1977 | A |
9663185 | Chen | May 2017 | B2 |
20190210679 | Hyeon | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
368389 | Mar 1963 | CH |
104973200 | Oct 2015 | CN |
2437479 | Feb 1976 | DE |
1055984 | Feb 1954 | FR |
782201 | Sep 1957 | GB |
847169 | Sep 1960 | GB |
1143104 | Oct 1986 | IT |
Entry |
---|
Machine translation of CN 104973200 A obtained on Jan. 19, 2022. |