This application claims priority to Japanese Patent Application No. 2004-141347. The entire disclosure of Japanese Patent Application No. 2004-141347 is hereby incorporated herein by reference.
1. Field of the Invention
The present invention generally relates to a bicycle rim. More specifically, the present invention relates to a bicycle rim including aluminum, scandium and optionally zirconium.
2. Background Information
Bicycle riding is becoming increasingly popular as both a means of transportation and a form of recreation. It is also quite popular as a competitive sport on both the professional and amateur levels. Regardless of the purpose for which the bicycle is ridden, the bicycle industry is continually making improvements to the frame for such bicycles and to the component parts used. One of the bicycle parts that has undergone substantial design revision is the wheel of the bicycle. Bicycle wheels are continually undergoing design modifications to make them easier to manufacture and assemble, as well as stronger, lighter and more aerodynamic.
Various types of bicycle wheels are being sold on the market at present. Many bicycle wheels include a hub, multiple spokes and an annular rim. The hub is rotatably mounted to a part of the bicycle frame. The inner end of each spoke is connected to the hub and the spokes extend outward from the hub. The annular rim is connected to the outer ends of the spokes and includes an outer circumferential part that supports a pneumatic tire. In general, the spokes of a bicycle wheel are thin wire spokes. A flange that connects the spokes to the hub is normally formed at both ends of the hub. Specifically, holes are formed in the hub flanges. The inner ends of the wire spokes are normally bent, and a toe-shaped flange is formed in the area of such ends. The interior end of each spoke is supported in a hole formed in one hub flange. In general, the outer end of each spoke is threaded such that the outer end can engage with a spoke nipple that secures the outer end of the wire spoke to the rim hole.
In order to make it lightweight, the rim used in this type of bicycle wheel is usually made of aluminum alloy, and is sought to be made as thin as possible. However, making the rim thin results in a reduction in strength, particularly in the relatively high-stress areas around each spoke hole.
Accordingly, as disclosed in Published U.S. Patent Application 2001-0005099 for example, the spoke hole areas have been processed via burring while heat is applied thereto. Alternatively, bicycle rims have been provided with separate reinforcement members that are removably mounted at the spoke openings to increase the strength of the rim at these areas (e.g. such as disclosed in Japanese Patent Laid-Open Nos. 2003-182302 and 2003-019901.
While these rims work relatively well, they do suffer from some deficiencies. For example, when applying a method to make the areas around spoke holes thicker via burring during the application of heat as disclosed in the patent document referred to above, the aluminum crystal grains can become coarse when the aluminum crystals re-form during the heat application stage, potentially making the aluminum prone to cracking when stress is applied thereto. Therefore, the temperature must be strictly monitored when heat is applied, making manufacturing relatively difficult and increasing the cost thereof.
In view of the above, it will be apparent to those skilled in the bicycle art from this disclosure that there exists a need for an improved rim that overcomes the problems in the prior art. This invention addresses this need in the bicycle art as well as other needs, which will become apparent to those skilled in the bicycle art from this disclosure.
One object of the present invention is to provide a bicycle rim that is relatively lightweight while maintaining strength, especially in the areas around the spoke holes.
Another object of the present invention is to provide a bicycle rim that is relatively simple and inexpensive to manufacture (i.e. easier to manufacture) and assemble.
The foregoing objects can basically be attained by providing a bicycle rim in accordance with a first aspect of the present invention. The bicycle rim in accordance with the first aspect of the present invention includes an annular tire mounting part and an annular spoke mounting part. The annular tire mounting part is configured to have a tire mounted thereto. The annular spoke mounting part includes multiple mounting openings disposed at predetermined intervals along a circumferential direction thereof. The tire mounting part and the spoke mounting part include aluminum and scandium.
With this configuration, the spoke mounting areas, including the mounting holes in particular, are formed from an alloy comprising aluminum to which scandium is added (i.e. Al3Sc). This Al3Sc serves the function of creating a pinning effect regarding aluminum grain boundaries (recrystallization inhibition effect), whereby cracking can be minimized even when heat is applied to the spoke hole areas.
In accordance with a second aspect of the present invention, the tire mounting part and the spoke mounting part of the bicycle rim include scandium within a range from 0.05% to 1.0% by weight.
If the added scandium amount added is less than 0.05% by weight, the recrystallization inhibition effect is insufficient. On the other hand, the recrystallization inhibition effect is fully achieved if such amount reaches 1.0% by weight. Thus, the recrystallization inhibition effect is already completed if such amount is more than 1.0% by weight. Accordingly, more than 1.0% by weight of scandium added to the aluminum is not needed. In other words, the amount of scandium added by weight is sufficient to achieve the recrystallization inhibition effect. Al3Sc is not highly soluble into aluminum even at a high temperature. Therefore, where 0.05% to 1.0% by weight of scandium is added, even if a reinforcing member is brazed to a spoke mounting opening, the brazing temperature does not cause the Al3Sc to dissolve such that it continues to exist as Al3Sc within alpha aluminum. Accordingly the recrystallization inhibition effect is exhibited.
In accordance with a third aspect of the present invention, the tire mounting part and the spoke mounting part of the bicycle rim include zirconium in addition to scandium.
Where zirconium and scandium are both added to aluminum, grain boundary migration is further minimized, and a superior recrystallization inhibition effect can be achieved. As a result, the occurrence of cracking can be further minimized.
In accordance with a fourth aspect of the present invention, the bicycle rim further includes multiple reinforcing members that are secured to the spoke mounting part at the areas of the mounting openings in order to increase the thickness of the spoke mounting part at the areas of the mounting openings, each of the reinforcing members having a hole configured to receive a spoke therein.
As described above, in an aluminum rim, the strength of the spoke mounting openings diminishes when the rim is made thinner. However, because a reinforcing member is mounted at each mounting opening according to this aspect, this reduction in strength can be minimized and/or prevented.
In accordance with a fifth aspect of the present invention, each of the reinforcing members includes a base that has a rim side surface that contacts an outer surface of the spoke mounting part and an outer surface that faces in an opposite direction from the rim side surface.
In accordance with a sixth aspect of the present invention, the reinforcing members are joined to the spoke mounting part of the bicycle rim via metal fusion. Preferably, the reinforcing members are joined to the outer surface of the spoke mounting part via metal fusion.
When the reinforcing members are joined to the outer surface of the spoke mounting part via metal fusion, heat is applied to the rim. When this occurs with prior rims, the aluminum crystal grains become coarse, and cracking may occur when stress is applied. However, when scandium is added to the aluminum, the recrystallization inhibition effect is exhibited and the occurrence of cracking can be minimized.
In accordance with a seventh aspect of the present invention, the reinforcing members are joined to the spoke mounting part of the rim via brazing. Preferably, the reinforcing members are joined to the outer surface of the spoke mounting part via brazing.
In this case as well, even though heat is applied to the rim as described in connection with the previous aspect, because scandium is added to the aluminum, the recrystallization inhibition effect is exhibited and the occurrence of cracking can be minimized.
As mentioned above, when zirconium is added to the aluminum in addition to the scandium in accordance with the present invention, grain boundary migration is further minimized, and a superior recrystallization inhibition effect can be achieved. As a result, the occurrence of cracking can be further minimized.
Using the invention described above, the bicycle rim can be made lightweight, the strength of the rim (especially at the spoke hole areas) can be maintained, and manufacturing can be made easier.
These and other objects, features, aspects and advantages of the present invention will become apparent to those skilled in the bicycle art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.
Referring now to the attached drawings which form a part of this original disclosure:
Selected embodiments of the present invention will now be explained with reference to the drawings. It will be apparent to those skilled in the bicycle art from this disclosure that the following descriptions of the embodiments of the present invention are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Referring initially to
In the embodiment illustrated in the drawings, the spokes 16 are radial spokes that connect the hub 20 to the rim 12. In the embodiment illustrated in the drawings, the hub 20 is a front hub. Thus, the hub 20 does not have any sprockets mounted thereto. Sixteen radial spokes 16 are connected to the rim 12. The spokes 16 are aligned along the circumferential direction at equal intervals along the rim 12. Naturally, it will be apparent to those skilled in the bicycle art from this disclosure that the bicycle wheel 10 may include a different type of rim and/or hub utilizing a different spoking arrangement (for example, such as that in which all spokes are tangential spokes, or in which some spokes are tangential spokes and some are radial spokes). Moreover, where necessary and/or desired, it will be apparent to those skilled in the bicycle art from this disclosure that a bicycle wheel 10 having a different type of hub and/or rim involving the mounting of one or more sprockets may also be used. In either case, it is preferred that the spokes 16 be disposed at predetermined intervals (preferably equal intervals) along the annular rim 12 in the circumferential direction and connected to the rim 12 via reinforcing members 14.
The rim 12 is an annular member designed to rotate around a central axis X. The rim 12 is preferably formed from 6061 aluminum alloy with scandium (Sc) and zirconium (Zr) added thereto. The zirconium may be omitted. In other words, the zirconium is an optional material that is optionally added to the 6061 aluminum alloy with scandium (Sc) added thereto of the rim 12.
Referring to
As is clearly seen in
The outer annular part 24 and the inner annular part 26 are integrally formed as a single unit using a method known in the prior art, such that they have an identical cross-sectional configuration over the entire circumference, except for the absence of material at the openings formed therein. For example, the outer and inner annular parts 24 and 26 can be formed by extruding a long piece of aluminum alloy (preferably including one or both of the additives mentioned above) having the cross-sectional configuration illustrated in
The reinforcing members 14 are preferably formed as aluminum alloy members separate from the outer and inner annular parts 24 and 26 via casting, mechanical processing and/or some other appropriate manufacturing method, such that they have the initial configuration illustrated in
In any case, the reinforcing members 14 are secured to the inner annular part 26 of the rim 12. It is preferred that the reinforcing members 14 be joined to the inner annular part 26 of the rim 12 via brazing or soldering, as described in detail below, in order to strengthen the rim 12. The outer and inner annular parts 24 and 26 each have cross-sections that are symmetrical relative to a plane of symmetry P perpendicular to the center axis X of the wheel 10. However, as described in detail below, due to the placement and angular orientation of the reinforcing members 14, the rim 12 is not completely symmetrical with respect to the plane of symmetry P. Therefore, when the reinforcing members 14 are connected to the inner annular part 26, the rim 12 preferably has a substantially symmetrical configuration relative to the plane of symmetry P of the wheel 10. In other words, the rim 12 is symmetrical prior to the securing of the reinforcing members 14 to the inner annular part 26.
As best seen in
The tire support surfaces of the annular side sections 30 are annular surfaces that face each other on either side of the plane of symmetry P. As in the prior art, the tire support surfaces each include an annular rib R formed at the free end of the annular side sections 30 that serve to secure the beads of the tire 18. The annular ribs R protrude toward each other from the tire support surfaces in the axial direction. The annular braking surfaces of the annular side sections 30 are annular opposing surfaces that face axially away from the plane of symmetry P and are configured to come into contact with a conventional rim brake (i.e. brake pads). The radially inner ends of the annular side sections 30 are connected to the inner annular part 26.
The annular connecting section 32 is a cylindrical (tubular-shaped) member having a uniform thickness of approximately 0.9 mm. As seen in
Naturally, it should be apparent to a person skilled in the bicycle art from this disclosure that the tire 18 may also comprise a tube-equipped tire (not shown) and that the valve hole 34 can house the valve for a conventional tube (not shown). Accordingly, the valve hole 34 and/or the valve 36 may be designed to accommodate a conventional tubeless tire and/or a conventional tube-equipped tire. In either case, because the valve 36 is identical to that used in the prior art, the valve 36 will not be described or explained in detail herein.
Furthermore, as illustrated in
The multiple mounting openings 28 are formed in the inner annular section 42 and are configured (constructed) so as to permit mounting of the spokes 16 thereto via the reinforcing members 14. The outer radial ends of the slanted sections 40 are connected to the inner radial ends of the annular side sections 30 of the outer annular part 24. The inner radial ends of the slanted sections 40 are connected to the outer ends of the inner annular section 42. It is preferred that the mounting openings 28 of the inner annular section 42 comprise uniform round openings each having a central axis C that extends along the plane of symmetry P in the radial direction. The inner annular section 42 preferably includes sixteen of the mounting openings 28 disposed at equal intervals around the entire circumference of the rim 12.
As seen in
The inner annular section 42 and the annular slanted sections 40 together form an annular curved inner surface 46 and an annular curved outer surface 48 of the inner annular part 26. Each reinforcing member 14 is preferably joined to the outer surface 48 of the inner annular part 26 by being secured thereto via brazing or soldering. Each mounting opening 28 extends between the inner surface 46 and the outer surface 48 of the inner annular part 26. The mounting openings 28 are preferably identical to each other. Furthermore, each mounting opening 28 is constructed so that adjacent reinforcing members 14 can be angled in opposing directions in series about the rim 12, such that the corresponding spokes 16 extend toward opposite ends (sides) of the hub 20.
The reinforcing members 14 will now be described in more detail with reference to
When the reinforcing members 14 are brazed or soldered to the inner annular part 26, a brazing metal or solder that is known in the field of bicycle technology and that is preferably different from the material of the reinforcing members 14 and the inner annular part 26 is used. It is preferred that the brazing metal or solder compound comprise a metal having a lower melting point than the metal used for the reinforcing members 14 and the inner annular part 26. For example, it is preferred that a brazing or soldering metal having a melting point of approximately 400° C.-600° C. be used when mounting the reinforcing members 14 to the inner annular part 26. This temperature is lower than the temperature typically required for welding when two rigid metals are to be fused together.
It is preferred that brazing or soldering using a brazing or soldering metal be employed as the method for mounting the reinforcing members 14 to the rim 12 of this invention, but where necessary and/or desirable, it will be apparent to those skilled in the bicycle art from this disclosure that a different technology for fusing and joining metal components, or a different method of joining entirely, may be used. For example, the reinforcing members 14 may be joined to the inner annular part 26 of the rim 12 using adhesive or cement (a material other than metal, for example) rather than brazing or soldering metal. Alternatively, the reinforcing members 14 may be welded (i.e. joined via metal fusion) onto the inner annular part 26 of the rim 12.
In this embodiment, each reinforcing member 14 has an essentially inverted mushroom configuration, as best seen in
More specifically, each reinforcing member 14 basically includes a base 50, a cylindrical part 52 that extends from the base 50, and a through-hole 54 that passes through both the base 50 and the cylindrical part 52, as illustrated in
The base 50 is a bowl-shaped plate having a rim side surface 56a and an outer surface 56b. As seen in
Specifically, it is preferred that the base 50 include a tapered surface 56c that is formed around the outer periphery of the base 50 and is tapered toward an outer peripheral edge surface 56d. As can be determined from
When each reinforcing member 14 is to be mounted to the inner annular part 26, brazing metal or soldering metal (not shown) is melted in order to join the rim side surface 56a of the reinforcing member 14 to the outer surface 48 of the inner annular part 26. After the brazing metal or soldering metal is melted, an extremely thin joining layer (not shown) secures the reinforcing member 14 to the inner annular part 26.
The cylindrical part 52 of each reinforcing member 14 extends from the base 50 into one of the mounting openings 28. The cylindrical parts 52 of reinforcing members 14 preferably form angles of 6° in opposing directions in an alternating manner relative to the plane of symmetry P and the longitudinal plane L such that the spokes 16 extend toward the appropriate ends of the hub 20. In other words, it is preferred that the cylindrical part 52 of each reinforcing member 14 have a diameter T1 that is slightly smaller than that of the mounting opening 28 (i.e., a preferred diameter of about 4.3 mm) to enable adjacent (alternating) spokes 16, and therefore, the cylindrical parts 52 of adjacent (alternating) reinforcing members 14 to be mounted such that they are angled relative to the above mentioned planes P and L in alternating opposite directions. It is further preferred that the mounting openings 28 have a minimum diameter T2 of approximately 5.0 mm in order to enable them to house the cylindrical parts 52 of the reinforcing members 14 at alternating opposing angles relative to the above mentioned planes P and L. As can be easily seen from
However, when the cylindrical part 52 is housed in the mounting opening 28, it is preferred that the two ends of the base 50 that face each other across the axial direction (i.e., the opposing sides of the base 50 as viewed circumferentially) have the same radial position, as best seen in
Naturally, from this discussion, it will be apparent to those skilled in the bicycle art from this disclosure that the reinforcing members 14 could be constructed to be completely symmetrical if needed and/or desired. With this modification, the mounting openings 28, the outer surface 48 and the rim side surfaces 56a should be configured such that the bases 50 of the reinforcing members 14 are disposed at slight angles such that the cylindrical parts 52 are disposed at slight angles within the mounting openings 28 relative to the rim's plane of symmetry P (i.e., such that adjacent alternating reinforcing members 14 are inclined and/or offset slightly in opposite directions relative to the plane of symmetry) such that as a result the spokes 16 extend to opposite ends of the hub 20. This placement will mean that a small amount of play should be provided in the mounting openings 28 of the rim 12.
As can be seen from
The maximum lateral dimension of each mounting opening 28 is defined as T2. The first overlap dimension D1 is larger than one-half of the maximum lateral dimension T2, while the second overlap dimension D2 is larger than the maximum lateral dimension, i.e., is larger than the diameter T2. In any case, the second (maximum) overlap dimension D2 is larger than one-half of the maximum lateral dimension T2.
The spokes 16 and the hub 20 will now be explained with reference to
The outer end 60 of each spoke 16 includes a male screw thread that engages with the threaded through-hole formed in the reinforcing member 14. At the same time, the inner end 64 of each spoke 16 includes a male screw thread by which the spoke is screwed into a corresponding spoke nipple 66. Furthermore, the outer end of each spoke includes a square part used to rotate the spoke 16. As in the conventional art, the spoke 16 is disposed such that tension can be applied between the hub 20 and the annular rim 12 by rotating the spoke nipple 66 and/or the spoke 16. The spoke 16 is preferably a conventional wire-type spoke. With the exception of the manner in which it is connected to the rim 12, the spoke 16 is not described and/or illustrated in detail herein.
Next, the connection between the spokes 16 and the hub 20 will be explained in detail with reference to
Furthermore, the connection between the spokes 16 and rim 12 to the hub 20 will be explained in detail with reference to
The hub shell (barrel) 84 includes a cylindrical center part 87 and cylindrical mounting areas 88a and 88b disposed at opposite ends of the center part 87. The mounting areas 88a and 88b are used for mounting of the spokes 16 to the hub 20. Each cylindrical mounting area 88a and 88b includes multiple spoke openings 89a and 89b, respectively, that are used for connecting the spokes 16. It is preferred that eight spoke openings 89a and eight spoke openings 89b be formed in the mounting parts 88a and 88b, respectively.
It is preferred that the second mounting area 88b comprise an offset mirror image of the first mounting area 88a. In other words, it is preferred that the spoke openings 89b be offset from the spoke openings 88a in the circumferential direction such that the outer ends 64 of the spokes 16 are disposed at equal intervals. The annular mounting parts 88a and 88b support the spokes 16 within the spoke openings 89a and 89b in which spoke nipples 66 are fitted.
In the preferred embodiment discussed above, the present invention was applied to a rim 12 in which reinforcing members 14 are secured at spoke mounting openings 28. However, the present invention may also be applied equally to a rim in which the areas around the spoke holes are strengthened via burring during the application of heat. In other words, a rim in which the areas around the spoke holes are strengthened via burring during the application of heat can be constructed with an aluminum alloy (e.g. 6061 aluminum) with scandium (Sc) and optionally zirconium (Zr) added thereto in accordance with the present invention, as explained herein. In such a rim, even though heat is applied to the rim, because scandium is added to the aluminum, the recrystallization inhibition effect is exhibited and the occurrence of cracking can be minimized. Moreover, when zirconium is added to the aluminum in addition to the scandium in accordance with the present invention, grain boundary migration is further minimized, and a superior recrystallization inhibition effect can be achieved. As a result, the occurrence of cracking can be further minimized.
In one preferred example of the present invention, the rim 12 is formed from 6061 aluminum alloy to which 0.2% by weight of scandium is added. In this case, the hardness of the areas surrounding the spoke mounting openings 28 after the reinforcing members 14 are joined to the inner annular part 26 at the spoke mounting openings 28 via brazing is 10% higher than an aluminum alloy rim where no scandium is added, thereby improving hardness (performance).
In another preferred example of the present invention, the rim 12 is formed by adding 0.1% by weight of zirconium to 6061 aluminum alloy that also includes 0.2% by weight of scandium. In this case, the hardness of the areas surrounding the spoke mounting openings 28 after the reinforcing members 14 are joined to the inner annular part 26 at the spoke mounting openings 28 via brazing is 10-20% higher than aluminum alloy rim where no scandium or zirconium is added, thereby further improving hardness (performance).
As used herein, the following directional terms “forward, rearward, above, downward, vertical, horizontal, below and transverse” as well as any other similar directional terms refer to those directions of a bicycle equipped with the present invention. Accordingly, these terms, as utilized to describe the present invention should be interpreted relative to a bicycle equipped with the present invention.
In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms of degree should be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the bicycle art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2004-141347 | May 2004 | JP | national |