The application claims priority to Taiwan Application Serial Number 99220386, filed Oct. 21, 2010, which is herein incorporated by reference.
1. Technical Field
The present disclosure relates to a connection between a seat and a bicycle frame. More particularly, the present disclosure relates to a seat post.
2. Description of Related Art
A seat post is a tube for fixing a seat on a bicycle. More specifically, the seat post is telescopic for changing the height of the seat to fit users. Furthermore, the seat post can use threads, clamp, or pneumatic cylinder to fix the height of the seat.
As to the pneumatic cylinder, the seat post has a control lever for actuating the pneumatic cylinder. The seat post will be extended when the pneumatic cylinder is actuated and the user does not sit on the seat yet. The seat post will be contracted when the pneumatic cylinder is actuated and the user is sitting on the seat. The height of the seat is fixed when the pneumatic cylinder is shut down. Obviously, the adjusting speed of the pneumatic cylinder is better than threads and clamp.
However, the drawback of the pneumatic cylinder is that the pneumatic cylinder is easily to be compressed when the pneumatic cylinder is shut down and under a force. In other words, the height of the seat is changed when the user is sitting on the seat and compresses the pneumatic cylinder, even if the height of the seat is fixed. Therefore, some strength of the user for pedaling will transmit to the pneumatic cylinder and compress the pneumatic cylinder. It wastes the work of the user for pedaling. As above, it is difficult to increase the fixing stiffness of the seat post.
The present disclosure provides a seat post for a bicycle. The seat post uses hydraulic pressure and gas pressure for resisting the compression and maintaining the adjusting speed.
According to one embodiment of the present disclosure, a seat post includes a first piston set, a second piston set, a valve, a liquid, and a gas. The first piston set includes a first cylinder, a first hollow piston, a gap, and a seal. The first cylinder connects to a frame of a bicycle. One end of the first hollow piston is inserted into the first cylinder and has a through hole. The other end of the first hollow piston connects to a seat of the bicycle. The gap exists between the inside of the first cylinder and the outside of the first hollow piston and communicates with the inside of the first hollow piston. The seal is disposed at the first cylinder for sealing the gap. The second piston set includes a second cylinder and a second hollow piston. The second cylinder is disposed in the first hollow piston and communicates with the inside of the first hollow piston. The cross-sectional area of the inside of the second cylinder is the same as the cross-sectional area of the gap. The gap, the inside of the first hollow piston, and the second cylinder composes a first chamber. One end of the second hollow piston passes through the through hole and is inserted into the second cylinder. The other end of the second hollow piston is disposed in the first cylinder. The inside of the second hollow piston communicates with the inside of the first cylinder. The inside of the first cylinder and the second hollow piston composes a second chamber. The valve connects the first hollow piston and the second cylinder for opening or closing the communication between the first hollow piston and the second cylinder. The liquid is stored in the first chamber. The gas is stored in the second chamber.
According to another embodiment of the present disclosure, a seat post includes a pneumatic cylinder, a hollow pneumatic piston, a gap, a seal, a hydraulic cylinder, a hollow hydraulic piston, a valve, and a locking hub. The pneumatic cylinder connects to a frame of a bicycle. The hollow pneumatic piston is received in the pneumatic cylinder and includes a through hole. One end of the hollow pneumatic piston connects to a seat of the bicycle. A gap exists between the outside of the hollow pneumatic piston and the inside of the pneumatic cylinder and communicates with the inside of the hollow pneumatic piston. The seal is disposed at the pneumatic cylinder for sealing the gap. The hydraulic cylinder is disposed in the hollow pneumatic piston and communicates with the inside of the hollow pneumatic piston. The cross-sectional area of the inside of the hydraulic cylinder is the same as the cross-sectional area of the gap. One end of the hollow hydraulic piston passes through the through hole and is in the hydraulic cylinder. The other end of the hollow hydraulic piston is disposed in the pneumatic cylinder. The inside of the hollow hydraulic piston communicates with the inside of the pneumatic cylinder. The valve connects the hollow pneumatic piston and the hydraulic cylinder for opening or closing the communication between the hollow pneumatic piston and the hydraulic cylinder. The locking hub includes two planes. The two planes are respectively disposed at the inside of the hollow pneumatic piston and the outside of the hollow hydraulic piston, wherein the two planes resist against each other.
According to yet another embodiment of the present disclosure, a seat post includes a pneumatic cylinder, a hollow pneumatic piston, a gap, a seal, a hydraulic cylinder, a hollow hydraulic piston, a valve, and a locking hub. The pneumatic cylinder connects to a frame of a bicycle. The hollow pneumatic piston is received in the pneumatic cylinder and includes a through hole. One end of the hollow pneumatic piston connects to a seat of the bicycle. A gap exists between the outside of the hollow pneumatic piston and the inside of the pneumatic cylinder and communicates with the inside of the hollow pneumatic piston. The seal is disposed at the pneumatic cylinder for sealing the gap. The hydraulic cylinder is disposed in the hollow pneumatic piston and communicates with the inside of the hollow pneumatic piston. The cross-sectional area of the inside of the hydraulic cylinder is the same as the cross-sectional area of the gap. One end of the hollow hydraulic piston passes through the through hole and is in the hydraulic cylinder. The other end of the hollow hydraulic piston is disposed in the pneumatic cylinder. The inside of the hollow hydraulic piston communicates with the inside of the pneumatic cylinder. The valve connects the hollow pneumatic piston and the hydraulic cylinder for opening or closing the communication between the hollow pneumatic piston and the hydraulic cylinder. The locking hub includes at least one groove and at least one rotating spindle. The groove is located on one of the outside of the hollow hydraulic piston and the inside of the hollow pneumatic piston, and the rotating spindle is located on the other of them.
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawings.
The second cylinder 210 moves toward the second hollow piston 220 and presses the liquid 400 when the valve 300 is closed and the user is sitting on the seat. The liquid 400 in the second cylinder 210 cannot flow into the gap 140 and inside of the first hollow piston 120 because the valve 300 is closed. Furthermore, the first hollow piston 120 and the second cylinder 210 barely move, because the compressibility of the liquid 400 is less than the gas 500. Therefore, the compression resistance of the seat post is improved.
Therefore, the height of the seat is raised when the valve 300 is opened and the user leaves the seat. On the contrary, the height of the seat is lowered when the valve 300 is opened and the user is sitting on the seat. The height of the seat is fixed when the valve 300 is closed. It is obvious that the seat post maintains the adjusting speed of the seat post.
As shown in
The seat post further includes a control lever 600. The control lever 600 is pivoted on the first hollow piston 120 for operating the valve 300. One end 610 of the control lever 600 pushes the restoring rod 320. The other end 620 of the control lever 600 is operated by the user. The valve 300 is opened when the user operates the control lever 600 to push the restoring rod 320. On the contrary, the restoring rod 320 and the control lever 600 are restored and the valve 300 is closed when the user releases the control lever 600.
The two planes 910 are disposed at the inside of the hollow pneumatic piston 720 and the outside of the hollow hydraulic piston 820 directly. Thus, the outside of the hollow hydraulic piston 820 and the inside of the hollow pneumatic piston 720 resist against each other directly. Therefore, the hollow hydraulic piston 820 and the hollow pneumatic piston 720 are only axially moved according to the locking hub 900. Furthermore, the pneumatic cylinder 710 cannot rotate about the hollow pneumatic piston 720, because the hollow pneumatic piston 720 connects to the hydraulic cylinder 810, and the hollow hydraulic piston 820 connects to the pneumatic cylinder 710. Therefore, the operation of the seat post includes extension and contraction except for rotation. Thus, the seat post disposed on the bicycle can fix the horizontal angle of the seat.
As shown in
The seat post further includes a control lever 600, and the control lever 600 is the same as that shown in
In detail, the locking hub 900 includes two grooves 920. The two grooves 920 are respectively located on the outside of the hollow hydraulic piston 820 and the inside of the through hole 721 in the inside of the hollow pneumatic piston 720. The rotating spindle 930 is positioned between the two grooves 920.
As shown in
All the features disclosed in this specification (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. §112, 6th paragraph. In particular, the use of “step of” in the claims is not intended to invoke the provisions of 35 U.S.C. §112, 6th paragraph.
Number | Date | Country | Kind |
---|---|---|---|
99220386 U | Oct 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4747011 | Lissner | May 1988 | A |
5862895 | Ricard | Jan 1999 | A |
6581919 | Barefoot et al. | Jun 2003 | B2 |
7025522 | Sicz et al. | Apr 2006 | B2 |
8398104 | Hsu | Mar 2013 | B2 |
20060066074 | Turner | Mar 2006 | A1 |
20080315552 | Hsu | Dec 2008 | A1 |
20120006949 | Laird et al. | Jan 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20120098175 A1 | Apr 2012 | US |