The present application relates to a bicycle tire maintenance system, and more particularly to a system for storing, monitoring, and maintaining proper air pressure in bicycle tires.
This section introduces aspects that may help facilitate a better understanding of the disclosure. Accordingly, these statements are to be read in this light and are not to be understood as admissions about what is or is not prior art.
The field of bicycle storage systems has many variations of mounts that will hold a bicycle in a convenient location to maximize the use of available space in a garage or other storage area. Various methods of inflating tires ranging from a traditional hand pump, CO2 cartridges, or air compressors are also known in the art. One thing that is not available is a method of regulating the pressure of a bicycle tire that does not require the dust cap to be removed. The purpose of the dust cap is to prevent dirt and other debris from entering the valve stem causing the valve to fail due to being jammed open or closed. Sometimes the threads on the valve stem can see corrosion, making it difficult to get the dust cap off if the bicycle has not been serviced in some time. When this happens, it is possible to crack the plastic dust caps and lose the protection that they provide to the valve stem. Furthermore, the extra steps of having to remove the dust cap to insert air into the valve and remember to put the dust cap back onto the valve after insertion places inconvenience on the user.
Current bicycle mounts provide a good method of storing said bicycle out of the way when not in use. However, when a bicycle is stored for long periods of time, the tires can leak. This is especially true when a bicycle is stored under variable climate conditions. When a person wants to go and use their bicycle, especially for the purpose of transportation, it is frustrating to realize that the user has to go and find a method to inflate the flat tires before safely riding.
There is, therefore an unmet need for a novel system for storing a bicycle that can ensure that the bicycle tires are properly pressurized and ready for use each and every day, which does not require the plastic dust cap to be removed in order to access the valve stem.
A system for regulating pressure in one or more vessels by adapting a fluid input to receive a fluid from a fluid source such as an air compressor at a constant pressure. At least one fluid outlet assembly is used to attach the system to a vessel such as a bike tire, ball, or car tire. At least one controllable valve is used to couple the fluid outlet assembly to the fluid input, the valve is controllable to pulsate air going through it, check the new pressure in the vessel, and either continue to increase pressure in the vessel, decrease pressure, or stop inflating. A pressure sensor corresponding to a fluid outlet assembly adaptable to provide pressure values from each vessel to a controller. The controller receives at least one desired pressure input, compares that value to the pressure value from the at least one pressure sensor, and selectively energizes the controllable valve to adjust the pressure in the corresponding vessel until the pressure within the vessel is equal to the desired pressure.
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.
In the present disclosure the term “about” can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.
In the present disclosure the term “substantially” can allow for a degree of variability in a value or range, for example, within 90%, within 95%, or within 99% of a stated value or of a stated limit of a range.
The embodiment in
The at least one controllable valve 606 is arranged to accept a signal from the controller 602 that energizes a solenoid (not shown). When the solenoid (not shown) is energized, magnetic forces open the controllable valve 606 and allow fluid to pass through. The system can consist of many controllable valves 606 to increase the number of fluid outlets being controlled by the system.
An at least one pressure sensor 310 is coupled to the fluid outlet assembly 300 and sends the pressure value to the controller 602. In one embodiment the pressure sensor 310 can be housed within the fluid outlet assembly 300. In a second embodiment the pressure sensor 310 can be housed approximately adjacent to the controllable valve 606.
The fluid outlet assembly 300 is coupled to the controllable valve 606 by means of a flexible hose 110, hard fluid line, or other means known to a person having ordinary skill in the art. The fluid outlet assembly 300 is adaptable to couple the fluid source 604 to a variety of vessels 506. The vessels 506 could be any of bike tires, automobile tires, athletic balls, or other pressurized vessels that may lose pressure over time.
The valve cap 418 is essentially cylindrical having a threaded inner diameter 426 for about 50% to about 90% of the length. On the opposite end from the threads, the valve cap 418 has a circular opening 428. The circular opening has a diameter less than the inner diameter of the valve cap 418 such that a shelf 424 is formed. On the outer perimeter of the valve cap 418 there is a lip 414 to provide an engagement point for attachment to the fluid output assembly 300.
The inflation tool housing 322 is mechanically coupled to the valve cap assembly 400 in this embodiment by means of a snap feature 312. The snap feature 312 has an interference fit with the lip feature 414 on the valve cap 418. In another embodiment, the snap feature could be replaced by a magnet, and the lip feature 414 be replaced by a magnetic flange to couple the inflation tool housing 322 to the valve cap assembly 400.
In alternative embodiments a user could remove the standard valve cap (not shown) and connect the air hose using standard methods known to a person having ordinary skill in the art. The fluid outlet assembly 300 has been shown in one embodiment regarding the maintenance of bicycle tires. Many other embodiments are possible by modifications to the inflation tool housing 322. One example of this would be to adapt the inflation tool housing 322 to have a needle commonly used by a person having ordinary skill in the art to inflate athletic balls such as basketballs, footballs, etc. Various other modifications could be made to the inflation tool housing 322 to couple the fluid outlet assembly 300 to other styles of valves or vessels known to a person having ordinary skill in the art.
Those skilled in the art will recognize that numerous modifications can be made to the specific implementations described above. The implementations should not be limited to the particular limitations described. Other implementations may be possible.