1. Field of the Invention
The present invention relates generally to tires. In particular, the present invention relates to bicycle tires that reduce the probability of flat tires.
2. Background Information
Pinch flatting of tires, such as bicycle tires, occurs when an under-inflated tire makes forceful impact with sharp objects (e.g., rocks, ledges, etc.) causing the tire to quickly compress. During the compression, the inner-tube is pinched between the hard edge of the wheel rim and the object causing the impact, ultimately puncturing the inner-tube and creating a flat tire.
Increasing rigidity of the tire sidewall by increasing thickness of the entire sidewall can reduce tire compression, but problems associated with this include greater overall tire weight and the tire becoming too stiff and losing ability to conform to the terrain/surface, which is necessary for better traction, and also increases cost of production and/or material.
Liners can be applied to the inside of the tire to disperse force from the concentrated area, but have a disadvantage of large cost increase. Tubeless tire systems do not have inner-tubes to pinch, but converting a tube type of tire to a tubeless system requires the expense of new rims designed specifically for tubeless tires, and purchasing tires exclusively designed to work with tubeless rims. The rim lip can be shaped differently to disperse force from a concentrated area, but this has a major disadvantage of increasing cost for replacing an entire rim.
Clincher tires may unintentionally “pop” off the rim, which is known as roll-off.
Tubular clincher tires claim to eliminate tire roll-off when properly installed, but one problem is that tubular tires (having the tube sewn directly into the tire) are difficult to repair if punctured and likely require replacement of the complete tire. Also, manufacturing tubular tires is more labor intensive and thus more costly.
Another problem that can arise with bicycle tires is when a tire spins independently from the rim, which is known as “slipping.” For bicycle braking systems designed to stop a wheel, above certain speed thresholds, applying brakes (which are designed to stop the rim/wheel) does not stop the momentum of the tire. Therefore, the tire continues to spin independently from the rim. When this “slip” occurs, it causes less control and safety for a rider. This “slipping” condition may occur in tube and tubeless tires as well. Because of the friction between the tire and inner-tube in a tube tire system, “slipping” ultimately causes movement of the inner-tube thereby ripping the inner-tube valve stem that is inserted through the rim, which causes a flat.
Converting to a tubeless tire system, where tire slipping does not cause flats, has the drawbacks noted above in that converting tire systems from a tube to a tubeless system requires the expense of new rims designed specifically for tubeless tires, and purchasing tires exclusively designed to work with tubeless rims.
In a first aspect the present invention provides a bicycle tire including a first sidewall and a second sidewall each including an interior portion and an exterior portion. A rim attaching portion is connected to an inner circumference of each of the first sidewall and the second sidewall. A tire tread portion is connected to an outer circumference of the first sidewall and the second sidewall. A portion of the first sidewall and the second sidewall proximate to the inner circumference of the first sidewall and the second sidewall has a varying thickness.
In a second aspect the present invention provides a bicycle tire and rim assembly including a rim and a tire. The tire comprising: a first sidewall and a second sidewall each including an interior portion and an exterior portion, a rim attaching portion coupled to an inner circumference of each of the first sidewall and the second sidewall; and cushioning means adjacent the rim attaching portion for preventing pinching a tube against the rim during compression.
In a third aspect the present invention provides a bicycle tire and rim assembly including a rim and a tire. The tire comprising: a first sidewall and a second sidewall each including an interior portion and an exterior portion, a rim attaching portion coupled to an inner circumference of each of the first sidewall and the second sidewall; and means adjacent the rim attaching portion for preventing the tire from rolling off the rim during lateral twisting forces between the rim and tire.
In a fourth aspect the present invention provides a bicycle tire and rim assembly including a rim and a tire. The tire comprising: a first sidewall and a second sidewall each including an interior portion and an exterior portion, a rim attaching portion coupled to an inner circumference of each of the first sidewall and the second sidewall; and means adjacent the rim attaching portion for preventing pinching a tube against the rim during compression and means for preventing the tire from rolling off the rim during lateral twisting forces between the rim and tire.
Other aspects and advantages of the present invention will become apparent from the following detailed description, which, when taken in conjunction with the drawings, illustrate, by way of example, the principles of the invention.
For a fuller understanding of the nature and advantages of the invention, as well as a preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings, in which:
The following description is made for the purpose of illustrating the general principles of the invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations. Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
The description may disclose several preferred embodiments for tires, as well as operation and/or component parts thereof. While the following description will be described in terms of bicycle tires for clarity and to place the invention in context, it should be kept in mind that the teachings herein may have broad application to all types of tire systems, devices and applications.
In some embodiments of the invention the additional material 210 allows the tire to compress normally during use (e.g., with a bicycle, a motorized bicycle, carts, etc.), but beyond a particular threshold or range of compression, the additional material 210 performs as a “bumper” to control further compression of the tire. It should be noted that with additional weight, such as from a motor driven bicycle (see, e.g.,
In one embodiment of the invention the additional material 210 incorporated onto the exterior of the sidewall of the tire sets a limit that the tire is able to deform under riding conditions that cause additional twisting of the tire relative to the rim due to torque or other twisting forces between the tire and rim, and asymmetric tire compression, such as cornering with additional weight, striking a sharp object, running over a pot hole, etc. The additional material 210 acts as structural reinforcement on the sidewall of the tire close to the edge of the rim 130, which allows tire deformity as intended and only becomes active when tire deformity reaches the threshold, in which case the reinforcement restricts further tire deformity to prevent roll-off.
In some embodiments of the invention the additional material 210 is only incorporated at the inner circumference of the external tire sidewall before the bead portion and next to the rim 130 edge. Therefore, the embodiments of the invention reduce overall tire weight in comparison to adding additional thickness to the whole exterior tire sidewall or complete tire. The embodiments of the invention still allow for similar level of tire compression to the sidewall portion 110 as a typical tire tread, such as tire sidewall portion 105, for better tire traction and are less expensive to produce as compared to reinforcing the entire sidewall of the tire.
Table I provides ranges of length for distance A 230 and distance B 220 for the additional material 210 for different tire sizes. It should be noted that other embodiments of the invention may have different maximum and preferred ranges of length based on the application and desired compression threshold. It should also be noted that the thickness of the additional material 210 may be adjusted for different compression thresholds.
Because the additional material 210 is incorporated into the tire sidewall, time, effort and money can be saved due to not having to purchase and install a liner to the inside of the tire. For consumers that do not already have a tubeless tire system, the embodiments of the invention provide pinch flat protection without having to replace their entire wheel. Additionally, the tire including the additional material 210 is compatible with conventional clincher rims and, therefore, does not require any additional expense of changing rims.
Since tubular clincher tires are difficult to repair if punctured and require tubular specific repair kits, the embodiments of the invention allow for tire repair using conventional clincher tire repair techniques as the tire with additional material 210 is applicable to conventional clincher rims and does not require the added expense of purchasing and replacing the clincher type rim with a tubeless specific rim.
In some embodiments of the invention the tire and additional material may be made out of various compounds of rubber, rubber compounds mixed with additional materials, such as Kevlar® chips, nylon chips, cotton-chips, various fibers, etc. It should be noted that conventional manufacturing techniques may be used to form, mold, extrude, etc. the tire including the additional material 210.
In some embodiments of the invention the additional material 310 allow the tire to compress normally during use (e.g., with a bicycle, a motorized bicycle, carts, etc.), but beyond a particular threshold or range of compression and lateral force, the additional material 310 performs as a “bumper” to control further compression of the tire. It should be noted that with additional weight, such as from a motor driven bicycle, compression of the tire occurs easier than with lighter loads, for example a typical non-motorized bicycle with a rider having an average weight. As the tread portion of the tire compresses (and changes shape due to lateral force) into the rim 130, the additional material 310 on the tire adjacent to the edge of the rim 130 on the interior of the sidewall before the bead portion 120 minimizes further compression, as well as alters the path of tire compression to prevent an inner-tube 102 from being pinched (“pinching”) by the rim edges and the object causing the tire compression.
In one embodiment of the invention the additional material 310 incorporated onto the internal sidewall of the tire sets a limit that the tire is able to deform under riding conditions that cause additional compression and lateral force, such as cornering with additional weight, striking a sharp object, running over a pot hole, etc. The additional material 310 acts as structural reinforcement on the sidewall of the tire close to the edge of the rim 130, which allows tire deformity as intended and only becomes active when tire deformity reaches the threshold, in which case the reinforcement restricts further tire deformity to prevent pinching.
In some embodiments of the invention the additional material 310 is only incorporated at the inner circumference of the side wall portion of the internal tire sidewall before the bead portion 120 and next to the rim 130 edge. Therefore, the embodiments of the invention reduce overall tire weight in comparison to adding additional thickness to the whole outer tire sidewall or complete tire. The embodiments of the invention still allow for similar level of tire compression as a typical tire tread portion, such as tire sidewall portion 105, for better tire traction and are less expensive to produce as compared to reinforcing the entire sidewall of the tire.
Table II provides ranges of length for distance C 330 and distance D 320 for the additional material 310 for different tire sizes. It should be noted that other embodiments of the invention may have different maximum and preferred ranges of length based on the application and desired compression threshold. It should also be noted that the thickness of the additional material 310 may be adjusted for different compression thresholds.
Because the additional material 310 is incorporated into the tire, time, effort and money can be saved due to not having to purchase and install a liner to the inside of the tire. For consumers that do not already have a tubeless tire system, the embodiments of the invention provide pinch flat protection without having to replace their entire wheel. Additionally, the tire including the additional material 310 is compatible with conventional clincher rims and, therefore, does not require any additional expense of changing rims.
Since tubular clincher tires are difficult to repair if punctured and require tubular specific repair kits, the embodiments of the invention allow for tire repair using conventional clincher tire repair techniques as the tire with additional material 310 is applicable to conventional clincher rims and does not require the added expense of purchasing and replacing the clincher type rim with a tubeless specific rim.
In some embodiments of the invention the tire and additional material 310 may be made out of various compounds of rubber, rubber compounds mixed with additional materials, such as Kevlar® chips, nylon chips, cotton-chips, various fibers, etc. It should be noted that conventional manufacturing techniques may be used to form, mold, extrude, etc. the tire including the additional material 310.
In one embodiment of the invention, the additional material 510 is only incorporated at the end of bead portion 520 and next to the inner sidewall of the rim 130. Therefore, the embodiments of the invention reduce overall tire weight in comparison to adding additional thickness to the whole outer tire sidewall or complete tire.
Table III provides ranges of length for distance E 330 for the additional material 510 for different tire sizes. It should be noted that other embodiments of the invention may have different maximum and preferred ranges of length based on the application and desired slipping force threshold. It should also be noted that the thickness of the additional material 510 may be adjusted for different compression thresholds.
Because the additional material 510 is incorporated into the tire, the tire including the additional material 510 is compatible with conventional clincher rims and, therefore, does not require any additional expense of changing rims.
Since tubular clincher tires are difficult to repair if punctured and require tubular specific repair kits, the embodiments of the invention allow for tire repair using conventional clincher tire repair techniques as the tire with additional material 510 is applicable to conventional clincher rims and does not require the added expense of purchasing and replacing the clincher type rim with a tubeless specific rim.
In some embodiments of the invention the tire and additional material 510 may be made out of various compounds of rubber, rubber compounds mixed with additional materials, such as Kevlar® chips, nylon chips, cotton-chips, various fibers, etc. It should be noted that conventional manufacturing techniques may be used to form, mold, extrude, etc. the tire including the additional material 510.
Some embodiments may incorporate any combination of embodiments from
In the description above, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. For example, well-known equivalent components and elements may be substituted in place of those described herein, and similarly, well-known equivalent techniques may be substituted in place of the particular techniques disclosed. In other instances, well-known structures and techniques have not been shown in detail to avoid obscuring the understanding of this description.
Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments. The various appearances of “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments. If the specification states a component, feature, structure, or characteristic “may”, “might”, or “could” be included, that particular component, feature, structure, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, that does not mean there is only one of the element. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of, and not restrictive on, the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
This Non-Provisional application claims priority under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/159,279 filed on Mar. 11, 2009, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61159279 | Mar 2009 | US |