The application claims priority to Taiwan Application Serial Number 98119552, filed Jun. 11, 2009, which is herein incorporated by reference.
1. Technical Field
The present disclosure relates to exercise devices. More particularly, the present disclosure relates to a bicycle trainer.
2. Description of Related Art
Living in the highly competitive society for 21st century, people often busy at work and then overlook the importance of health. In order to do some exercises in their daily life, some people place a bicycle trainer indoors. The bicycle trainer can hold a bicycle securely, and makes it possible to ride a bicycle without moving forward. Therefore, people can exercise by riding the bicycle at home without spatial restriction.
In general, the bicycle trainer includes a resistance system. One kind of the resistance system includes a fan, which includes a plurality of vanes. Each vane is fixed to each other. The vane can increase the resistance by the rotation speed of the fan so that it has less reality of the simulation. The other kind of resistance system uses an external magnetism to change the resistance. But, the apparatus of the magnetic resistance system is still complicated.
According to one embodiment of the present disclosure, a bicycle trainer is disclosed. The bicycle trainer includes a supporting frame, a roller, a runner and at least one vane. The supporting frame suspends at least one bicycle wheel. The roller is connected to the supporting frame via a shaft member. The roller is driven by the bicycle wheel. The runner is coaxially connected to the roller via the shaft. The vane is pivotally connected to an edge of the runner.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the disclosure as claimed.
The disclosure can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
Reference will now be made in detail to the present embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The supporting frame 100 includes a couple of clamps 101. The clamps 101 can clamp a bicycle wheel 150 of a bicycle, so that the bicycle wheel 150 is suspendly held securely. The clamp 101 links up with a quick-release member 102. A user can set up or take apart the bicycle wheel 150 from the bicycle trainer by the quick-release member 102 easily.
The roller 110 is connected to a linking frame 112 via a shaft member 111, wherein the linking frame 112 is connected to the supporting frame 100. Therefore, the roller 110 is connected to the supporting frame 100 via the shaft member 111 and the linking frame 112. After the user has set up the bicycle wheel 150 onto the supporting frame 100, the bicycle wheel 150 touches and against the roller 110. Thereafter, when the user starts pedaling the bicycle, the roller 110 will be driven by the bicycle wheel 150.
The runner 120 is coaxially connected to the roller 110 via the shaft member 111. When the roller 110 is driven by the bicycle wheel 150, the runner 120 is in fact being driven simultaneously.
The plurality of vanes 130 are pivotally connected to edges of the runner 120. When the runner 120 is coaxially linked up to the roller 110 to synchronously rotate, the vanes 130 also synchronously rotate with them. When the rotation speed of the runner 120 is increased, the pivotal end of the vanes 130 pivotally fixed to the runner 120 swings outward from the shaft member 111, so the straight-line distance between the opposite end of the vanes 130 and the center of the runner 120 increases when the runner 120 rotates faster. Thus the resistance from the medium is increased, and the user has to exert hardly to drive the bicycle, so that the runner 120 can coaxially link up to the roller 110 to synchronously rotate.
The housing 140 contains the runner 120 and the vanes 130. When the vanes 130 are linked up to the runner 120 to rotate, the medium in the housing 140 gives a resistance to the vanes 130, wherein the direction of the resistance is opposite to the direction of angular motion of the vanes 130. Therefore, it needs more motive power to drive the roller 110 and the runner 120.
Referring to
The housing 140 contains the runner 120 and the vanes 130. The housing 140 is filled with the damping liquid 200. The runner 120 is plate-shaped. The runner 120 includes a plurality of pivot parts 210. The pivot parts 210 are located on the edge of the runner 120 and the vanes 130 are pivotally connected thereon. When the runner 120 is at rest, the vanes 130 are at normal positions.
In
The perpendicular distance between the housing 140 and the edge of the runner 120 is longer than the length of the vanes 130. Then, the vanes 130 don't touch the housing when the vanes 130 swing outward to a maximum range. Furthermore, in one preferred embodiment of the present disclosure, the pivot parts 210 can be preset within a range, so that the vanes 130 swing within the preset range.
When the plurality of the vanes 130 swing outward from the center of the runner 120, the elastic member 300 provides a restoring force, which is opposite to the angular motion of the vanes 130. An elastic limit of the elastic member 300 can restrict the maximum swinging range of the vanes 130. Therefore, the resistance the user has to overcome is increased by the elasticity Of the elastic member 300. Besides, when the length of the vanes 130 are shorter than the distance between the housing 140 and the runner 120, the pivot part 210 of the runner 120 can restrict the swinging angle of the vanes 130. If the angle is greater than 90°, the resistance which provides from the medium in the housing 140 is decreased. Therefore, in another preferred embodiment of the present disclosure, the pivot part 210 and the elastic member 300 can be chosen to restrict the swinging angle to a value smaller than 90°.
Referring to
The runner 120 includes a plurality of prominent parts 500 and a plurality of pivot parts 510. The vanes 520 are pivotally connected to the pivot parts 510 via a rotating shaft 521 respectively. The vanes 520 can rotated with the runner 120. The angle the vane 520 swinging outward from the center of the runner 120 is restricted by the medium in the housing 140 (in
According to the embodiments of the prevent disclosure, there are some advantages.
1. When the user pedals the bicycle, the bicycle wheel 150 drives the roller 110. The roller 110 links up with the runner 120 to rotate. There is a centrifugal force, which is an outward force away from the center of rotation. The vane 130 and 530 were driven to swing outward from the center of the runner 120 by the centrifugal force, thus increasing the resistance when the user pedaling the bicycle trainer. The variation of the resistance can be illustrated as a smooth parabola. Therefore, it not only improves the sense of reality, but also induces the user to pedal the bicycle trainer with gradually increased resistance. It can prevent the user from injury resulted from pedaling the bicycle too hard.
2. The elastic member 300 can make each of the vanes 130 swings outward from the center of the runner evenly and equally, thus improving the stability of the bicycle trainer when it is pedaled by the user. Due to the foregoing mechanism, the unevenness between each of the vanes 130 has been eliminated. Therefore, the mechanism according to the present disclosure can remarkably decrease the failure rate of the vanes 130, the runner 120 and the roller 110, thus increasing the stability when pedaling the bicycle trainer.
Number | Date | Country | Kind |
---|---|---|---|
98119552 A | Jun 2009 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
584989 | Davis | Jun 1897 | A |
4666386 | Winkler et al. | May 1987 | A |
4789153 | Brown | Dec 1988 | A |
5346234 | Kadaja | Sep 1994 | A |
5795270 | Woods et al. | Aug 1998 | A |
6561955 | Dreissigacker et al. | May 2003 | B1 |
7628739 | Gearon | Dec 2009 | B2 |
20070179025 | Tsai | Aug 2007 | A1 |
20080305934 | Medina | Dec 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100317493 A1 | Dec 2010 | US |