1. Field of the Invention
The present invention relates generally to the field of exercise equipment, and more specifically to exercise apparatus for aerobic, strength, and cardio vascular conditioning that permits a user to perform an upper body spinning bike exercise.
2. Description of the Related Art
Cardio-pulmonary, cardiovascular, and strength training exercise equipment found in today's exercise and health centers as well as in the home seek to improve and maintain an individual's aerobic and strength fitness. Many types of exercise equipment, including treadmills, rowing machines, stationary bicycles, stair-stepping machines, skiing machines (cross country and alpine), and dry-land swimming machines are available for individuals who desire to maintain and improve their overall fitness and conditioning.
Stationary bicycles provide users a means for exercising certain muscles, generally involving the legs, and to a much lesser extent, if any, the center core, i.e. abdominal and lower torso muscles that help cyclists balance, arms and upper body muscles, i.e. biceps, triceps, lateral oblique muscles and back muscles. The present invention in particular is directed at the spinning segment of the exercise market. A spinning bike is a stationary exercise bike that includes a frame, a seat, handlebars, pedals, and a large flywheel with a large moment of inertia. The large fly wheel is very important because it smoothes out the user's pedaling action and makes the stationary exercise bike feel like a conventional bicycle feels when ridden on the road. Spinning bikes prior to the present invention have been directed exclusively at the rider's lower body. Some stationary bicycles combine pedaling features that allow the rider to exercise both the legs and arms but these bikes are not suited for a spinning class setting and are never used in such a setting. The present invention is directed at spinning and spinning class settings and is specifically configured for upper body spinning. Some combined leg and upper body cycles allow for pedaling by the arms in a reciprocating manner where the hands engage pedals and turn both cranks in a reciprocating manner where the respective crank arms are locked in a fixed orientation such that as one crank arm is coming up and over the rotation the other side crank arm is rotating under and back toward the rider in a reciprocating motion. Other combined cycles have long lever arms attached to the wheel that the operator moves back and forth as in the Schwinn “Aerodyne”. In the Schwinn Aerodyne the lever arms are directly connected to the foot pedals such that the rider may either rotate the foot pedals to rotate the wheel or lever the cranks or both efforts combined. These devices provide resistance to the arms and cardiovascular conditioning to the rider but the fixed orientation of the cranks in a reciprocating rotary motion prohibit the rider from establishing a spinning rhythm with the upper body. These combined devices also involve the use of the rider's legs as well as arms and result in an unpleasant and awkward motion or movement of the entire body. This combination of upper and lower body movement is not desirable to participants in a spinning class or in a spinning situation. The rider is confined to a sometimes boring left right, left right motion of the hands, arms and upper body.
The present invention allows the rider to use each hand and arm independently of the other; the rider can pedal with only one hand, both hands in tandem orientation, both hands in opposed or reciprocating orientation as in the Miller design or any combination or orientation. The rider can rotate one crank rapidly while letting the other pause similar to a boxer who jabs with his left hand quickly and repeatedly while his right hand is held back waiting; or the rider, using the present invention in an upper body “spinning class”, who can move his arms and upper body in a dancing or rhythmic motion to music or instruction. The combined foot and arm powered design of Miller allows the rider to exercise at his discretion either the rider's legs or the rider's arms but does not allow the rider to alternately and independently exercise each arm irrespective of the other arm while maintaining contact with the hand pedals. The present invention is specifically addressed to allow the user to comfortably exercise his upper body in a spinning class setting without involving his legs.
There exists devices used for rehabilitation that utilize hand cranks and these devices are generally referred to as “UBE”'s for upper body exercisers. These devices are often mounted on stands or attached to walls and people, sometimes in wheelchairs, approach the “UBE” and pedal the cranks for exercise or rehabilitation. These machines use very small fly wheels weighing ten or twelve pounds of small moment of inertia and use a magnetic resistance to resist the user's pedaling motion. These machines also have both cranks in a locked or fixed orientation relative to each other such that the operator uses one arm or both but the operator cannot use both pedals independently of each other; that is the operator either pedals with both arms in a reciprocating manner or only with one arm at a time if it is desirable not to move the other arm. The crank arms could be mounted in either a tandem or side by side orientation or in an opposed or reciprocation orientation and each arm is locked in position relative to the other, but the present state of the art among “UBE's” does not provide a machine with the crank arms such that they can be moved independently of each other in an infinite array of orientations. This is because no one has yet to recognize the need for this type of motion except for the present invention and in the environment of a health club setting and in a spinning class where the operation of the machine is done to instruction or to music and the user needs free movement of both arms and the upper body.
The current state of stationary bicycle designs have typically been limited to designs that affix a pair of handlebars, pedals, and seat to a single rigid platform, e.g. bolted in place and resting on a floor, configured to replicate only the spinning dynamic associated with pedaling a bicycle. In this arrangement, current designs are able to exercise only the legs and hips and to a very small extent the upper body. These bikes are often used in class settings where an instructor with the accompaniment of music directs the riders for a period of time for the purpose of cardio conditioning through the use of mostly the operator's legs and hips. This is know as “spinning” and is now a world wide activity that involves hundreds of thousands of devotees. The present invention is intended to address this vast audience and allow them to have the same experience with their upper bodies and arms that they have heretofore only been able to experience with their legs and hips. The present invention would often times be used in a class setting adjacent to “conventional” “spinning bikes” that exercise only the legs and hips. The present design is not intended to be limited to only this type of setting but would be a tremendously appreciated addition to spinning classes and would allow the participants to develop their upper bodies to the same level of conditioning as their lower bodies.
The inability of today's stationary, leg actuated, “spinning bike” designs to involve the upper body, also limits the number and type of muscle groups involved. These designs do not engage many of the muscles in the upper body such as the back, arms, shoulders, nor do such stationary bikes address certain core muscles in the rider's trunk and oblique muscles. Such stationary bicycles can be considered undesirable and generally inadequate for training by cycling enthusiasts that want to develop their core and upper body while receiving cardio vascular conditioning.
Historically, cycling has not been thought of as a means of exercising the upper body. The development of the handcycle, although mostly thought of as a cycle for the disabled, has increased awareness in the cycling community of the benefits of cycling with the arms to develop the upper body and there has been significant cross over from disabled hand cyclists to able bodied hand cyclists. This awareness of hand cycling among the able bodied is creating a desire for upper body spinning bikes just as bicycling has caused an interest in stationary “spinning bikes” that condition and develop the lower body. These “spinning bikes” are generally but not exclusively used in a class setting. The present invention is ideally suited to be an adjunct to this “spinning class” setting.
UBE's as mentioned above are generally intended for disabled individuals seated in wheelchairs and lack a seat associated with the drive unit and wheel. Because the operator is seated in a wheelchair there is neither need for the exercise apparatus to have provisions structured to support the operator's feet not a seat to support the operator.
A major reason for the lack of popularity of this type of exercise apparatus is the lack of accommodation for an able-bodied operator and the perception because of the lack of seat and foot supports that this type of apparatus is designed to be used by the disabled. These machines also lack a large enough flywheel to provide the feeling of riding a handcycle on the road the way a large flywheel provides the feeling or riding a conventional spinning bike on the road. Also, because this type of device is not designed to be used by able-bodied operators, UBE's do not appear in a “spinning class” setting but are often limited to an obscure location in a fitness facility if at all; or in a rehab facility.
Current stationary bicycle designs tend to be relatively limited in that the user can only exercise his legs and only incidentally any of the muscle groups of the upper body and arms. The only significant dynamic interaction with the apparatus occurs at the pedals, limiting the exercise stimulation to the lower body during the pedaling action of the riding experience. Such designs are limited in the muscle groups involved and the quality of the upper body exercise that the spinning action may be produce. Users of such devices would likely be interested in an apparatus that stimulates the upper body during the cycling experience and users would likely desire to obtain the benefits of engaging a broader range of the muscle groups of the upper body as produced when using an upper body spinning device as opposed to a conventional stationary exercise spinning bike.
It would therefore be beneficial to provide an exercise apparatus that more accurately simulates the operation of a hand cycle and provides an opportunity to exercise the upper body while in a “spinning class” situation and overcome the limitations found in current stationary “spinning bike” designs which only provide an opportunity to exercise the legs.
According to one aspect of the present design there is provided an apparatus that allows the user to perform an upper body spinning exercise. The design includes a frame with a wheel mounted to the frame configured to be rotatably connected to a drive unit and the drive unit is configured to include crank arms enabling the operator to impart rotation of the wheel by pedaling the hand pedals. The drive unit may be further configured to allow pedaling of each crank arm independently of the other to enhance the upper body spinning experience. Wider or narrower crank arms may be provided to enable the rider to vary the muscle groups used during the spinning activity and further enhance the muscle development associated with the spinning experience. A foot platform may be added to support the user's feet providing an anchor point for the user's body to further enhance the upper body spinning experience.
These and other advantages of the present invention will become apparent to those skilled in the art from the following detailed description of the invention and the accompanying drawings.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which:
The present design is a stationary upper body exercise apparatus, typically comprising a frame and components, i.e. pedals, crank arms, seat, chain drive and flywheel, affixed to a stationary frame typically positioned on a smooth surface, e.g. hardwood or concrete floor enabling a the operator to exercise his upper body in a similar manner to the operator of a stationary “spinning bike” configured to exercise the rider's legs but in the case of this invention configured to exercise the operator's upper body including the arms, upper and lower back and abdominals in a spinning type activity.
In essence, the present design allows the operator to carry out a spinning activity for the upper body by pedaling hand pedals which are attached to the distal end of crank arms resulting in the rotation of a large flywheel in an effort to develop upper body strength and cardiovascular conditioning.
In addition, the present design may include wide or narrow crank arms attached to the drive unit enabling the operator to exercise different muscle groups. The present design may include cranks that are as much as 26 inches wide from pedal to pedal enabling the operator to exercise his outer pectoral muscles and upper back and traps or the bike may include conventional bicycle crank arms that are narrow and place the operator's grip on the pedals approximately seventeen inches apart enabling the operator to exercise his inner pectoral muscles and his biceps, triceps and deltoids. Any configuration of the pedals and crank arm widths enables the operator to exercise his upper body and some configurations of the pedals and crank arms may exercise some muscle groups more directly than other configurations.
The upper body spinning bike apparatus may include a drive unit that enables the operator to pedal each crank arm independently of the other crank arm enabling the operator to participate in a class setting under the direction of a class instructor. In this embodiment of the present design the operator may pedal several revolutions of one crank arm while the other crank arm is at rest and the switch to the other crank arm while the first arm rests. The crank arms may be configured through the drive unit to impart rotation to a flywheel enabling the operator to affect a smooth pedaling motion maintained by the flywheel. The upper body apparatus may include a friction device configured to apply resistance to the flywheel to simulate climbing a hill on the exercise device. The friction device may be configured to be adjustable by the operator and enable the operator to vary the resistance of the friction device being applied to the flywheel by a control device. The control device may be accessible to the operator when seated in the seat of the exercise apparatus.
Apparatus
The upper body spinning exercise apparatus is illustrated in
The bicycling exercise apparatus may include a variety of off-the-shelf parts, i.e. components, elements, devices, and combinations of individual components, to form sub-assemblies and complete assemblies used in constructing the present design. For example, the present design may include, and will be described for purposes of this disclosure, a stationary frame 160, chain 114, and seating assembly 140. Driveline and seating assemblies are generally known, and, for example, the driveline may be chain or belt driven or otherwise designed to effectuate the functionality described herein.
In general, the construction of the upper body exercise apparatus 100 is typically from metals, with other parts and components made from a variety of common materials, including but not limited to, aluminum alloys, carbon fiber, titanium, steel, composite materials, plastic, and wood and any combination thereof, to provide the functionality disclosed herein. Other materials may be employed in order to manufacture the parts and components to form assemblies used to construct the upper body exercise apparatus in accordance with the present design.
From
The seat support structure 150 contains the seat post and supports the seat 140 and connects to the adjustable sliding bracket 159. The bottom bracket shell is connected to the main support tube and the main support tube is connected to main tube 130, the chain stays 121 run parallel to the chain and connects the main tube to the front dropouts 111. The tube terminology used to describe the construction of the present design should be well understood by those skilled in the art.
The present design may attach the driveline assembly to frame 160. The drive-line assembly may support the pedal sub-assembly and provide a place to position the hands. The driveline assembly may comprise a pedal 161 and flywheel 110 arrangement. The pedal sub-assembly may include pedals 161 to provide the user a place to position his hands, a crank-arm 164 to attach the pedals to a chain-ring 163 and a bottom bracket bearing component and may connect a first crank-arm 164 to a second crank-arm component. The flywheel sub-assembly may include a freewheel 112 securely mounted and attached to flywheel. The fixed, i.e. single, gear may optionally be replaced with a cluster of gears (e.g. cassette), with appropriate shifting mechanism components allowing the user to change the amount of spinning resistance experienced while pedaling.
A chain 114 or belt (not shown) component may transmit forces applied by the user spinning pedals from the pedal sub-assembly to the flywheel sub-assembly. The chain or belt component is typically configured to mate or connect a chain-ring component to the front fixed gear component by positioning the chain over the front chain-ring and over the fixed single gear, or optionally a cluster of gears, and affixing a key link (not shown) to form a single continuous chain loop, and such a design is generally known within the art. A cover 116
The present design may attach the drive unit assembly at the top of frame 160 main tube 130 as illustrated in
The present design may attach the seating assembly 140 behind the drive unit assembly located at the bottom frame element of frame 160 as illustrated in
The seating assembly and back rest may be used in combination with the drive unit assembly to assist the user in maintaining power delivery to the flywheel while spinning the pedals to perform the simulated upper body spinning exercise.
The present design may include a flywheel 110 attached to the brake stay tubes 121 in
The present design may include a friction device attached to the brake stays and may be configured to contact the flywheel and exert pressure against the flywheel resisting the rotation of the flywheel and configured to enable the operator to impede the rotation of the flywheel enabling the operator to increase or decrease the amount of exertion necessary to conduct the upper body spinning exercise. The friction device may include a variably adjustable tensioning device 115 configured to be actuated by the operator while using the upper body spinning exercise device. This will be clearly shown in
The present design may include rollers 119 in
The present device may include a bottom bracket assembly attached to the main frame at the top of the main tube above the brake stay tubes. The bottom bracket device may include journaled bearings and matching shaft (not shown) configured to permit rotation of the shaft. In one embodiment of the present design the shaft may further be separated into two shafts (not shown) configured to be rotated independently of each other. In yet another embodiment of the present design the shaft 91 may be continuous
In one embodiment of the present design a magnetic resistance unit 180 may be attached to the frame and configured to contact the flywheel and further configured to resist rotation of the flywheel enabling the operator to increase of decrease the amount effort needed to execute the upper body spinning exercise. The magnetic resistance unit may be configured to enable variable resistance settings. The magnetic trainer may include a remote control device 181 configured to permit variation of the resistance settings by the operator while using the exercise bike enabling the user to match the resistance of the flywheel to the user's desired level of physical effort.
Operation
Thus in operation, a user may employ the present design by first adjusting the seat and seat back to a comfortable position. The user will then make a choice between wide crank arms or narrow crank arms, fixed crank arms or independent crank arms and long or short crank arms. The user will begin spinning the flywheel by engaging the hand pedals with his hands and rotating the crank arms. If the rider has chosen to ride the exercise device with fixed crank arms then he will decide on an orientation; side by side, opposed, or some angular orientation that bests suits the muscle group that the user desires to exercise at the time. The rider spins the flywheel with the respective crank orientation and adjusts the tensioning device to the desired resistance. The spinning flywheel acts to maintain motion of the crank arms and creates a smooth continuity to the spinning experience. The rider will continue to rotate the crank arms either rapidly or slowly depending on the resistance and the desired effect of the exercise; and exercise favoring strength conditioning of the upper body will favor a slow, strong and steady and rotation of the crank arms and a cardiovascular exercise will favor a rapid rotation of the crank arms against minimal resistance depending on the rider's physical condition. Riding with the wide crank arms will exercise the outer pectoral muscles and upper back and traps while riding with the narrower crank arms will exercise the biceps, deltoids and triceps.
The user engaged in the operation of the upper body spinning bike in another embodiment of the present design would select a drive unit with cranks that are independently engaged with the flywheel. The user may use this configuration in a spinning class setting along with stationary bikes configured to be ridden with the user's legs. The user would pedal with one arm and then the other in varying orientations and motions; sometimes rapidly with one arm while slower with the other or both rapidly or with the pedals opposed and then in tandem switching back and forth and sometimes to the accompaniment of music or under the direction of the instructor. The rider then may switch from the upper body spinning device to a stationary spinning bike and continue exercising on the stationary spinning bike configured to exercise the legs in the class setting.
The user will ride the upper body exerciser bike for some period of time depending on his physical condition for twenty minutes to more than an hour with a typical spinning class lasting forty minutes to and hour.
The design presented herein and the specific aspects illustrated are meant not to be limiting, but may include alternate components while still incorporating the teachings and benefits of the invention, namely an upper body spinning exercise apparatus enabling an upper body muscle and cardiovascular exercise involving the rotation of crank arms in varying rotational orientation and varying widths engaged with a flywheel and pedaled against an adjustable resistance to enable an upper body spinning bike experience. While the invention has thus been described in connection with specific embodiments thereof, it will be understood that the invention is capable of further modifications. This application is intended to cover any variations, uses or adaptations of the invention following, in general, the principles of the invention, and including such departures from the present disclosure as come within known and customary practice within the art to which the invention pertains.
This application is a divisional of Ser. No. 10/904,785 filed Nov. 29, 2004, now U.S. Pat. No. 7,530,932.
Number | Name | Date | Kind |
---|---|---|---|
4423863 | Figueroa | Jan 1984 | A |
5338272 | Sweeney, III | Aug 1994 | A |
5580338 | Scelta et al. | Dec 1996 | A |
5860329 | Day | Jan 1999 | A |
6287239 | Hernandez | Sep 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20090253558 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10904785 | Nov 2004 | US |
Child | 12406106 | US |