1. Field of the Invention
The present invention relates to electromechanical toys, and more particularly to a gear assembly for an electromechanical toy employing a shuttle lock device for simple yet unique controlling of back and forth movements of a plurality of auxiliary elements as well as driving whole toy actions such as locomotion off a single motor. The invention also relates to a method for driving auxiliary movements and whole toy actions in an electromechanical toy employing a single motor.
2. Background of the Invention
There are many known electromechanical toys which employ gear mechanisms powered by one or more reversible motors for activating and controlling the movements of the toy. Some of the gear mechanisms are employed to propel the toy forward and/or backward and some of the gear mechanisms additionally actuate accessory features of the electromechanical toy. It is well known to employ a gear mechanism to translate alternately the rotational motion from a reversible motor to first and second drivetrains. Driving a reversible motor in a first direction powering a first drivetrain with a first spur gear, and then reversing the motor to a second direction activating a swing mechanism or the like for switching power to a second gear/spur that engages the second drivetrain, is known to drive forward and backward motion and/or movement of accessory features in a toy.
Additionally, employing two or more reversible motors in conjunction with a cam assembly to power and coordinate various body parts linked to the cam assembly is also known as a mechanism for producing animated responses in an electromechanical toy according to a cyclical pattern and corresponding to external stimuli. None of the known mechanisms however, employ a bidirectional motor/cam follower feature facilitated with a shuttle lock mechanism for controlling (noncyclical) back and forth movement of a plurality of auxiliary elements as well as driving whole toy actions such as locomotion off a single motor.
There are several known devices which employ a swing mechanism or the like to alternatively translate rotational motion from the motor to the first drivetrain adapted to drive a wheel and a second drive train adapted to actuate an accessory feature. A gear box for a toy vehicle adapted to alternately transmit power from a motor to a first and a second drive train is exemplified and disclosed in U.S. Pat. No. 8,231,426 B2, issued Jul. 31, 2012 for “Gearbox assembly for toy vehicles” to Miller. Miller employs a generally known “swing mechanism” concept with a gearbox for a toy vehicle adapted to alternately drive power between a first drivetrain, to drive a wheel, and a second drivetrain system adapted to actuate an accessory feature.
Additionally, known mechanisms for controlling a movable gear on a transmission shaft of a toy car which shifts between a first transmission gear wheel and a second transmission gear wheel to control forward/backward movement of the toy car, is exemplified and disclosed in U.S. Pat. No. 6,386,058 B1 issued May 14, 2002 for “Forward/backward steering control mechanism for a remote-controlled toy car” to Lu, and U.S. Pat. No. 6,505,527 B2 issued Jan. 14, 2003 for “Remote-controlled toy car forward/backward steering control mechanism to Lu. In the Lu U.S. Pat. No. 6,386,058, a forward/backward steering control mechanism is coupled to the power drive to move a gear on the transmission shaft between first and second positions to control the direction of rotation of the transmission shaft to further control forward/backward movement of the toy car. In the Lu U.S. Pat. No. 6,505,527, a gear on a transmission shaft of a toy car is moved between a first transmission gear wheel, coupled to a power drive, and a second transmission gear wheel, coupled to the first transmission gear wheel through idle gears, to control the direction of rotation of the transmission shaft thereby controlling forward/backward movement of the toy car.
The Lu patents improves upon a system employing two separately controlled transmission mechanisms for forward and backward movements, and the Lu B2 patent uses a simple gear clutch structure to control switching between forward mode and backward mode. Additionally, U.S. Pat. No. 6,732,602 B2 issued May 11, 2004 for “Dual-gearshift forward backward control mechanism for remote control toy car” to Lu discloses a dual-gearshift mechanism to control forward/backward motion and high/low speed gearshift by means of power transmission, through a two-step gearshift control mechanism and a forward backward control mechanism.
Employing a simple gear system with a direction control element for steering a toy vehicle is exemplified and disclosed in U.S. Pat. No. 5,503,586, for “Steering Apparatus” issued Apr. 2, 1996 to Suto. A gear system employs a pair of output gears which are controlled to rotate in the same or opposite direction for steering a toy vehicle. A reversible motor drives a pair of steering gears in opposite directions on the same axis and a direction control element is disposed on the same axis and moved from first to second positions by a cam mechanism driven by the motor. The direction control element engages one steering gear at a time, controlling the rotational direction of the motor such that the vehicle moves ahead or makes a turn.
Additionally, another simple mechanism employed to provide an automatic reversal of toy vehicle movement in the opposite direction is exemplified and disclosed in U.S. Pat. No. 2,149,180, issued May 21, 1937 for “Mechanically Propelled Toy with Automatic Reversal in the Opposite Direction” to Muller. A gear mechanism employing a switch spur-gear is slidably keyed to an axle which mounts drive wheels. The switch spur-gear directs a spur wheel to slide along the axle into engagement with one of two toothed wheels to produce a powerful slow running backward travel of the toy vehicle and then switch to rapid forward movement.
Additionally, employing more than one reversible motor in conjunction with a cam assembly to power and coordinate various body parts linked to the cam assembly for producing smile expressions and simulating emotional states is exemplified and disclosed in US Patent Application Publication No. 2006/0270312 A1 issued Nov. 30, 2006 for “Interactive Animated Characters” to Maddocks et al. An animated character having a variety of moving body parts including a smile/emotion assembly are coordinated to exhibit life-like emotional states by controlling and synchronizing their movements in response to external sensors. A drive system utilizes first and second reversible motors in conjunction with a cam operating mechanism linked to various body parts to coordinate cyclical movements which mimic life-like emotions and respond to external sensor coupled to the electromechanical toy.
Another electromechanical toy disclosed in U.S. Pat. No. 6,579,143 B1, issued Jun. 17, 2003 for “Twisting and Dancing Figure” to Rehkemper et at. describes a twisting figure that includes a head, body, arms and lower leg sections. A housing formed in the body contains a motor secured between a pair of horizontal plates pivotally secured to the lower leg section. A gear assembly is arranged to reciprocate against a bumper that is secured to the lower leg section causing twisting movements of the figure.
Significantly, known electromechanical toys do not include a gear assembly employing a shuttle lock device for simple yet unique controlling of back and forth movements of a plurality of auxiliary elements as well as driving whole toy actions such as locomotion off a single motor.
It would be desirable to provide a motor driven gear mechanism including a shuttle gear adjacent both an action gear and an auxiliary gear with a cam plate linked to auxiliary elements driven by the auxiliary gear. A shuttle lock is positioned at the shuttle gear maintaining the shuttle gear and auxiliary gear together to rotate both in a forward and reverse direction for rotating the cam plate back and forth for operating the auxiliary elements.
An actuating mechanism is employed to position the shuttle lock to maintain the shuttle gear and auxiliary gear together for operating the auxiliary elements, with the shuttle gear engaging the action gear for movement of the action elements when the actuating mechanism no longer has the shuttle lock positioned at the shuttle gear. Additionally it is also desirable to provide motor driven actuation of the shuttle lock including a shuttle lock cam follower riding along a first follower pathway in the cam plate, with rotation of the motor in a first direction driving the shuttle gear into engagement with the auxiliary gear and actuating the shuttle lock to maintain the shuttle gear and auxiliary gear together for controlling back and forth movement of the auxiliary elements throughout a predetermined rotational range of the cam plate. Rotation of the motor in a second direction releases the shuttle lock as the cam rotates outside the predetermined rotational range driving the shuttle gear into engagement with the action gear for driving action movement such as locomotion of the toy.
The present invention addresses shortcomings of the prior art to provide a gear mechanism for an electromechanical toy employing a shuttle lock device for simple yet unique controlling of back and forth movement of a plurality of auxiliary elements as well as driving whole toy actions such as locomotion off a single motor.
In one embodiment of the invention, a gear mechanism for an electromechanical toy includes a shuttle gear having a first and second working surface, an auxiliary gear disposed adjacent the shuttle gear and having a receiving surface for engaging the first working surface of the shuttle gear, a rotating cam plate having a cam surface and one or more follower pathways at the cam surface, the cam plate being driven by the auxiliary gear, one or more auxiliary elements operating with the cam plate, each auxiliary element including a cam follower riding back and forth along one of said follower pathways, a shuttle lock disposed adjacent the shuttle gear, an action gear disposed adjacent the shuttle gear opposite the auxiliary gear having a receiving surface for engaging the second working surface of the shuttle gear, an action element moving with the action gear, and a motor driving rotation of the shuttle gear with rotation of the motor in a first and second direction driving rotation of the shuttle gear in a forward and reverse direction. An actuating mechanism is further in mechanical communication with the shuttle lock positioning the shuttle lock to maintain the first working surface of the shuttle gear with the receiving surface of the auxiliary gear when the shuttle lock is positioned at the shuttle gear maintaining the shuttle gear and the auxiliary gear together to rotate both in a forward and a reverse direction for rotating the cam plate back and forth for operating the auxiliary elements, the second working surface of the shuttle gear engaging with the receiving surface of the action gear when the actuating mechanism no longer has the shuttle lock positioned at the shuttle gear.
In another embodiment the first working surface further includes one or more curved sloping projections arranged in a circular path along the shuttle gear and the receiving surface of the auxiliary gear further includes one or more curved sloping projections arranged in a circular path along the auxiliary gear, the working surface projections and the receiving surface projections are keyed to mate with one another and tightly engage the shuttle gear and auxiliary gear to rotate together in a forward and reverse direction. In another embodiment, the actuating mechanism further includes a solenoid system including a solenoid to extend and position the shuttle lock at the shuttle gear, and in another embodiment the auxiliary gear is driven to perform a first auxiliary function and the action gear is driven to perform a second auxiliary function.
In yet another embodiment, a second shuttle lock is further included and disposed adjacent the shuttle gear for maintaining the second working surface of the shuttle gear together in engagement with the receiving surface of the action gear, and in another embodiment, a second actuating mechanism is further included and in mechanical communication with the second shuttle lock positioning the second shuttle lock to maintain the shuttle gear and the action gear together to rotate both in a forward and reverse direction. In yet another embodiment, the actuating mechanism further includes a first follower pathway at the cam plate and a cam follower at the shuttle lock for riding back and forth along the first follower pathway positioning the shuttle lock at the shuttle gear throughout a predetermined rotational range of the cam plate, and the second actuating mechanism further includes a second cam plate having a second follower pathway and a second cam follower at the second shuttle lock for riding back and forth along the second pathway when the first cam follower has moved beyond the predetermined rotational range positioning the second shuttle lock at the shuttle gear throughout a predetermined rotational range of the second cam plate.
In one embodiment of the invention, a gear mechanism for an electromechanical toy includes a shuttle gear having a first and second engaging surface and including teeth disposed at each of the first and second engaging surface, an auxiliary gear disposed adjacent the shuttle gear having a receiving surface and including teeth at the receiving surface to engage teeth of the shuttle gear, a rotating cam plate having a cam surface and one or more follower pathways at the cam surface, the cam plate is in rotatable mechanical communication with the auxiliary gear. One or more auxiliary elements are further included and in mechanical communication with the cam plate, each auxiliary element including a cam follower riding back and forth along a follower pathway, a shuttle lock disposed adjacent the shuttle gear and including a cam follower riding back and forth along a first cam pathway, an action gear disposed adjacent the shuttle gear opposite the auxiliary gear having a receiving surface and including teeth at the receiving surface, and an action element in mechanical communication with the action gear.
A motor is further included and in mechanical communication with the shuttle gear with rotation of the motor in a first direction rotating the shuttle gear into engagement with the auxiliary gear engaging shuttle and auxiliary gear teeth and activating the shuttle lock to maintain the shuttle and auxiliary gear engagement throughout a predetermined rotational range of the cam plate and rotating the cam plate back and forth driving controlled back and forth movement of the auxiliary elements. Rotation of the motor in a second direction rotating the cam plate beyond the predetermined range releasing the shuttle lock and rotating the shuttle gear into engagement with the action gear engaging shuttle and action gear teeth and driving action movement of the toy.
In another embodiment of the invention, the shuttle gear teeth of the first engaging surface and the auxiliary gear teeth of the receiving surface further comprise stepped squared off teeth keyed to mate with one another when the shuttle gear engages the auxiliary gear. In another embodiment the shuttle lock cam follower comprises a pin disposed on the shuttle lock for riding back and forth in the first follower pathway of the cam maintaining the shuttle lock in an active position and the shuttle gear in locked engagement with the auxiliary gear.
In another embodiment of the invention, a pathway extension in the first follower pathway is further provided and offset from the defined pathway for capturing the pin and shifting the shuttle lock to an inactive position and out of locked engagement with the shuttle gear. In another embodiment, the rotatable cam plate and shuttle lock are mounted on a common shaft and further included are one or more additional cam plates coaxially mounted on the shaft adjacent the rotatable cam plate and in rotatable mechanical communication with the auxiliary gear, each additional cam plate having a cam surface and one or more follower pathways at the cam surface.
In yet another embodiment of the invention, the auxiliary elements further include at least one or more of the following: a head element, mouth element, eye element, snout element, hind legs element, and tail element, and in another embodiment the action element further includes one or more wheel assemblies mechanically engaging the action gear for driving locomotion of the toy. In still yet another embodiment of the invention, the action element further includes a toy torso mechanically engaging the action gear for driving a back and forth wiggling/twisting action and in another embodiment a tension spring is further included and in communication with the shuttle gear urging the shuttle gear to engage the action gear when the shuttle lock is in an inactive position and out of locked engagement with the shuttle gear.
In another embodiment of the invention, a gear mechanism for an electromechanical toy includes a shuttle gear having first and second surfaces and including teeth disposed at each of the first and second surfaces, at least first and second pinion gears disposed adjacent the shuttle gear, each pinion gear having a receiving surface and including teeth disposed at the receiving surface for engaging teeth of the shuttle gear, a shaft, and a rotating cam plate mounted on the shaft and having a cam surface including one or more follower pathways at the cam surface, the rotating cam plate is in mechanical communication with at least the first pinion gear. Further included are one or more auxiliary elements in mechanical communication with the cam plate, each auxiliary element including a cam follower riding back and forth along a follower pathway of the cam, a shuttle lock mounted on the shaft and disposed adjacent the shuttle gear, the shuttle lock including a cam follower riding back and forth along a first follower pathway of the cam, and an action element in mechanical communication with at least the second pinion gear.
A motor is further included and in mechanical communication with the shuttle gear with rotation of the motor in a first direction rotating the shuttle gear into engagement with the first pinion gear engaging the teeth of the shuttle and first pinion gear and activating the shuttle lock to maintain the shuttle and first pinion gear engagement throughout a predetermined rotational range of the cam plate and rotating the cam plate back and forth driving controlled back and forth movement of the auxiliary elements. Rotation of the motor in a second direction rotates the cam plate beyond the predetermined range releasing the shuttle lock and rotating the shuttle gear into engagement with the second pinion gear and driving action movement of the toy.
In another embodiment of the invention, the teeth of shuttle gear at the first surface further include stepped squared off teeth and the teeth of the first pinion gear at the receiving surface further include stepped teeth keyed to mate with the stepped teeth of the shuttle gear. In another embodiment of the invention, a tension spring is further included and in communication with the shuttle gear urging the shuttle gear to engage the second pinion gear when the shuttle lock is in an inactive position and out of locked engagement with the shuttle gear.
In yet another embodiment of the invention, the shuttle lock cam follower includes a pin disposed on the shuttle lock for riding back and forth in the first follower pathway of the cam maintaining the shuttle lock in an active position and the shuttle gear in locked engagement with the first pinion gear. In another embodiment, a pathway extension is further included in the first follower pathway offset from the defined pathway for capturing the pin and shifting the shuttle lock to an inactive position and out of locked engagement with the shuttle gear.
In another embodiment of the invention, a method for generating auxiliary movements with an auxiliary gear and action movements with an action gear from a single motor driving a shuttle gear includes the steps of positioning a first working surface on a first side of the shuttle gear and a second working surface on a second side of the shuttle gear, positioning the auxiliary gear adjacent the first working surface of the shuttle gear, positioning the action gear adjacent the second working surface of the shuttle gear, receiving the first working surface with a receiving surface of the auxiliary gear, rotating a cam plate with the auxiliary gear for generating auxiliary movements with a single motor driving the shuttle gear, the cam plate having a cam surface and including one or more follower pathways at the cam surface, and moving one or more auxiliary elements with one or more auxiliary element cam followers riding back and forth along one of said follower pathways. The steps of actuating a shuttle lock disposed adjacent the shuttle gear is further included to maintain the first working surface of the shuttle gear with the receiving surface of the auxiliary gear when the shuttle lock is positioned at the shuttle gear maintaining the shuttle gear and the auxiliary gear together to rotate both in a forward and a reverse direction for rotating the cam plate back and forth for operating the auxiliary elements, and receiving the second working surface with a receiving surface of the action gear, the second working surface of the shuttle gear engaging with the receiving surface of the action gear when the actuating step no longer has the shuttle lock positioned at the shuttle gear for moving the action gear for generating action movements with the single motor driving the shuttle gear. The motor driving rotation of the shuttle gear with rotation of the motor in a first and second direction driving rotation of the shuttle gear in a forward and reverse direction.
In another embodiment of the invention, a method for driving action and auxiliary movements with a single motor in an electromechanical toy includes the steps of providing a motor, providing a shuttle gear in mechanical communication with the motor and an auxiliary gear adjacent the shuttle gear, the shuttle gear having first and second engaging surfaces and including teeth disposed at each surface, and the auxiliary gear having a receiving surface and including teeth disposed at the receiving surface to engage the teeth of the shuttle gear. Further including the steps of providing a shaft, mounting a rotating cam plate on the shaft in rotatable mechanical communication with the auxiliary gear, the cam plate having a cam surface and including one or more follower pathways at the cam surface, providing one or more auxiliary elements in mechanical communication with the cam plate, each auxiliary element including a cam follower riding back and forth along a follower pathway, mounting a shuttle lock on the shaft, the shuttle lock disposed adjacent the shuttle gear and including a cam follower riding back and forth along a first follower pathway throughout a predetermined rotational range, and providing an action gear disposed adjacent the shuttle gear opposite the auxiliary gear and an action element in mechanical communication with the action gear, the action gear having a receiving surface and including teeth at the receiving surface.
Further providing the steps of rotating the motor in a first direction rotating the shuttle gear into engagement with the auxiliary gear engaging the shuttle and auxiliary gear teeth and activating the shuttle lock to maintain the shuttle and auxiliary gear engagement throughout the predetermined rotational range of the cam plate rotating the cam plate back and forth driving controlled back and forth movement of the auxiliary elements, and rotating the motor in a second direction rotating the cam plate beyond the predetermined range releasing the shuttle lock and rotating the shuttle gear into engagement with the action gear, engaging shuttle and action gear teeth, and driving action movement of the toy.
In another embodiment of the invention, providing stepped teeth at the first engaging surface of the shuttle gear and providing stepped teeth at the receiving surface of the auxiliary gear keyed to mate with the stepped teeth of the shuttle gear is further included. In another embodiment the step of providing a pin is further included and disposed at the shuttle lock for riding back and forth in the first follower pathway of the cam maintaining the shuttle lock in an active position and the shuttle gear in locked engagement with the auxiliary gear and in yet another embodiment, the step of providing a follower pathway is further provided in the first follower pathway offset from the defined pathway for capturing the pin and shifting the shuttle lock to an inactive position and out of locked engagement with the shuttle gear.
In yet another embodiment of the invention, the step of providing a tension spring is further included in communication with the shuttle gear urging the shuttle gear to engage the action gear when the shuttle lock is in an inactive position and out of locked engagement with the shuttle gear. In still yet another embodiment of the invention, the step of providing one or more additional cam plates is further included and coaxially mounted on the shaft adjacent the rotatable cam plate and in rotatable mechanical communication with the auxiliary gear, each additional cam plate having a cam surface and one or more follower pathways at the cam surface.
The present inventions include a unique gear mechanism for electromechanical toys employing a shuttle lock for simple yet unique controlling of back and forth movement of a plurality of auxiliary elements as well as driving whole toy actions such as locomotion off a single motor. The gear mechanism includes a shuttle gear adjacent an auxiliary gear and an action gear, and is driven by a single reversible motor. A cam plate is in rotational mechanical communication with the auxiliary gear and a plurality of auxiliary elements, for example a dog tail, ears and head, are linked through cam followers to the cam plate. The action gear is linked to action elements, for example wheels in front paws. Rotation of the motor in a first direction drives the shuttle gear into engagement with the auxiliary gear and further engages the shuttle lock device for controlling back and forth movement of the auxiliary elements throughout a predetermined rotational range of the cam, mimicking real life movements in the toy. Rotation of the motor in a second direction releases the shuttle lock as the cam rotates outside the predetermined rotational range driving the shuttle gear out of engagement with the auxiliary gear and into engagement with the action gear for driving action movement such as locomotion of the toy.
Briefly, the present inventions provide a shuttle gear having first and second working surfaces adjacent an auxiliary gear having a receiving surface for engaging the first working surface and an action gear having a receiving surface for engaging the second working surface. A rotating cam plate is driven by the auxiliary gear and one or more auxiliary elements operate with the cam plate through cam followers. An action element moves with the action gear. A shuttle lock is disposed adjacent the shuttle gear and a motor drives rotation of the shuttle gear in a forward and reverse direction. An actuating mechanism is employed to position the shuttle lock to maintain the shuttle gear and auxiliary gear together for operating the auxiliary elements, with the shuttle gear engaging the action gear for movement of the action elements when the actuating mechanism no longer has the shuttle lock positioned at the shuttle gear. Additionally it is also desirable to provide motor driven actuation of the shuttle lock with a shuttle lock cam follower riding along a first follower pathway of the cam plate, with rotation of the motor in a first direction driving the shuttle gear into engagement with the auxiliary gear and actuating the shuttle lock to maintain the shuttle gear and auxiliary gear together for controlling back and forth movement of the auxiliary elements throughout a predetermined rotational range of the cam plate. Rotation of the motor in a second direction releases the shuttle lock as the cam rotates outside the predetermined rotational range driving the shuttle gear into engagement with the action gear for driving action movement such as locomotion of the toy.
For the purpose of facilitating an understanding of the inventions, the accompanying drawings and description illustrate a preferred embodiment thereof, from which the inventions, structure, construction and operation, and many related advantages may be readily understood and appreciated.
The following description is provided to enable those skilled in the art to make and use the described embodiments set forth in the best modes contemplated for carrying out the invention. Various modifications, however, will remain readily apparent to those skilled in the art. Any and all such modifications, equivalents and alternatives are intended to fall within the spirit and scope of the present invention.
A gear mechanism 10, for an electromechanical toy, as seen in
The gear mechanism 10 is generally seen to include a shuttle gear 12 adjacent both an auxiliary gear 14 and an action gear 16. A rotating cam plate is driven by the auxiliary gear and one or more auxiliary elements operate with the cam plate through cam followers. An action element moves with the action gear. A shuttle lock 18 is disposed adjacent the shuttle gear and positioned at the shuttle gear (active position) to maintain rotatory contact between the shuttle gear and the auxiliary gear for operating a plurality of auxiliary elements. The shuttle gear engages the action gear for movement of the action elements when the shuttle lock is no longer positioned at the shuttle gear (inactive position).
In the present described embodiment, the gears of the gear mechanism 10 are generally manufactured from a heavy duty molded plastic material which is simple and inexpensive to manufacture into any desired shape. Molded plastic is strong and rigid enough to maintain its shape and integrity after many years of use. It is also contemplated that the gears of the gear mechanism 10 can include other materials such as metal, suitable for manufacturing gears which maintain their shape and integrity during use.
The shuttle gear 12, as seen in
The first working surface 12a includes one or more curved sloping projections 20 arranged in a circular path along the first side 12b of the shuttle gear 12 and the receiving surface 14a of the auxiliary gear 14 includes one or more curved sloping projections 20 arranged in a circular path along the auxiliary gear, as seen best seen in
The working surface projections and receiving surface projections 20 can also be called teeth and can include a ramped shape as seen at the second working surface 12c of the shuttle gear in
In the present described embodiment, the working surface projections 20 and receiving surface projections 20 provide a secure yet temporary coupling of the shuttle gear and the auxiliary gear, even as the auxiliary gear is rotating in a reverse direction and exerting a force onto the working surface 12a of the shuttle gear. Additionally, the stepped square shaped projections 25 also provide a secure yet temporary coupling of the shuttle and auxiliary gears and additionally the square shape of the projections can even reduce the friction exerted on the shuttle gear during the reverse rotation of the auxiliary gear 14 when the shuttle lock 18 is engaged. Reducing the friction exerted on the shuttle gear reduces the current draw on the motor and reduces the overall power needed to operate the toy.
The second working surface 12c at the second side 12b of the shuttle gear 12 is received at a receiving surface 16a of the action gear 16 disposed adjacent the shuttle gear opposite the auxiliary gear. The second working surface 12c also includes one or more curved sloping projections 20 arranged in a circular path along the second side 12b of the shuttle gear and the receiving surface 16a of the action gear includes one or more curved sloping projections 20 arranged in a circular path along the action gear, as seen in
A rotating cam plate 22 having a cam surface 22a and one or more follower pathways 32 at the cam surface is driven by the auxiliary gear 14, as seen in
In an alternative described embodiment, as seen in
The shuttle lock 18 is disposed adjacent the shuttle gear 12, as seen in
In the present described embodiment, an actuating mechanism is in mechanical communication with the shuttle lock positioning the shuttle lock to maintain the first working surface of the shuttle gear with the receiving surface of the auxiliary gear when the shuttle lock is positioned at the shuttle gear maintaining the shuttle gear and the auxiliary gear together to rotate both in a forward and a reverse direction for rotating the cam plate back and forth for operating the auxiliary elements, as seen in
In a present described embodiment, the actuating mechanism includes a cam plate 22 and shuttle lock cam follower 46 coupled to the shuttle lock providing motor driven actuation of the shuttle lock with the shuttle lock cam follower 46 riding along a first follower pathway 32 at the cam plate positioning the shuttle lock at the shuttle gear throughout a predetermined rotational range of the cam plate, as seen
In an alternative embodiment the actuating mechanism includes a micro actuator engaging and disengaging the shuttle lock, and in an alternative embodiment, as seen in
In the present described embodiment, the shuttle lock 18 is mounted on the shaft 24, as seen in
The shuttle lock 18 includes an aperture 44 defined in the leg 19 of the shuttle lock through which the shaft 24 penetrates to mount the shuttle lock onto the shaft 24, as seen in
In the present described embodiment, the rotatable cam plate 22 includes at least one follower pathways 32, angularly spaced along the 360 degree rotational range reinforced periphery 38 of the cam plate. The follower pathways are organized to each dwell one or more cam followers 36 within each pathway and actuate an auxiliary element 34 operating with the cam plate through one of the followers upon rotation of the cam plate in both clockwise and counter clockwise directions.
The first follower pathway 32 includes a pathway extension 48 at the first follower pathway for capturing the pin and no longer positioning the shuttle lock at the shuttle gear, as best seen in
Further rotation of the motor in the first direction, after the pin 46 has been captured by the extension 48, rotates the shuttle gear to reengage the auxiliary gear and rotate the cam plate to force the pin 46 from the extension 48 and back into the predetermined rotational range and again positioning the shuttle lock at the shuttle gear to again allow the user to control movements of the auxiliary elements. Alternatively, rotation of the motor in the second direction, after the pin 46 has been captured by the extension 48, will rotate the shuttle gear away from the auxiliary gear and into engagement with the action gear 16 for movement of the action element 42, rather than rotating the cam and dislodging the pin from the extension at that present time.
In use the motor 40 is driven forward advancing the shuttle gear 12 into engagement with the auxiliary gear 14 and rotating the auxiliary gear which in turn rotates the cam plate 22. The pin 46 dwells in the first follower pathway 32 with the shuttle lock positioned to maintain the shuttle gear 12 and auxiliary gear 14 together. The pin 46 rides back and forth along the first follower pathway 32 as the motor is alternately driven in a forward and reverse direction to control the back and forth movements of the auxiliary elements, as desired by a user. The shuttle gear 12 is driven in a clockwise and a counter clockwise direction by a pinion gear 50 driven by a worm gear 52 mounted on the motor 40. The shuttle gear also drives the auxiliary gear in a clockwise and counter clockwise direction when the shuttle lock is positioned to maintain the shuttle gear and the auxiliary gear together.
The user can drive the motor 40 forwards and backwards to achieve the desired movements of the auxiliary elements, as long as the pin 46 dwells within the first cam follower pathway 32. The auxiliary elements can be controlled in more than just a cyclical manner, as is typically seen with a cam driven configuration, with individual auxiliary elements isolated and manipulated in any order desired by the user by rotating the cam a specified number of degrees forwards and backwards.
Additionally, computer circuitry can be utilized to establish desired movements and allows a user to easily manipulate one or more auxiliary elements with the touch of a button on a remote controller, for example, and then switch to action movements of the toy. A controller can precisely control the motor and cam rotations along with the auxiliary element movements driven by the cams. A controller can take over and complete steps to drive the motor in a correct order for engaging correct parts of the cam to complete desired actions, as well as action gears rotations moving action elements of the toy.
In an alternative embodiment, an embedded information processor circuit for the interactive plaything is identified as reference numeral 1000, with schematic block diagram including embedded processor circuitry in accordance with the present invention. An information processor may be provided as a reduced instruction set computer (RISC) controller, typically a CMOS integrated circuit providing the RISC processor with program/data read only memory (ROM). The information processor provides various functional controls facilitated with on board static random access memory (SRAM), a timer/counter, input and output ports (I/O) as well as an audio current mode digital to analog converter (DAC). The current output DACs may also be used as output ports for generating signals for controlling various aspects of the circuitry.
Additionally, the controller includes sound generating circuitry to make the toy 10 appear to talk in conjunction with the movement of the auxiliary elements 34 so as to enhance the ability of the toy to provide seemingly intelligent and life-like interaction with the user in that the toy 10 can have different physical and emotional states as associated with different coordinated positions of the auxiliary elements 34 and sounds, words and/or exclamations generated by the control circuitry.
A major advantage provided by the present toy 10 is that it is able to achieve highly life-like qualities by the precise coordination of movements of its various auxiliary elements 34 (body parts) in conjunction with its auditory capabilities in response to inputs detected by sensors thereof in a compactly sized toy and in a cost-effective manner. More particularly, the toy 10 includes a main body thereof that has a relatively small and compact form and which contains all the circuitry and various linkages and cams for the moving auxiliary and action elements in the interior thereof.
In a present described embodiment, the auxiliary gear is driven to perform a first auxiliary function and the action gear is driven to perform a second auxiliary function. The auxiliary elements operating with the cam plate 22 are driven by the auxiliary gear 14 to perform a first auxiliary function and additional auxiliary elements can be driven by the action gear 16 to perform a second auxiliary function.
Additionally, in the present described embodiment, one or more additional cam plates 54 and 56 are coaxially mounted on the shaft 24 in which the rotatable cam plate 22 and the shuttle lock 18 are commonly mounted, as seen in
In the present described embodiment, and as seen in
In the present described embodiment, as seen in
In the present described embodiment, the action element 42 further comprises one or more wheel assemblies 74 moving with the action gear for driving locomotion of the toy, as seen in
Additionally, in the present described embodiment, the shuttle gear 12 is further urged toward engagement with the action gear 16 with a tension spring 84, as seen in
In the present described embodiment, the gear mechanism 10 is generally aligned in a vertical arrangement, as best seen in
In another alternative embodiment, a first and second pinion gear are disposed adjacent a shuttle gear having a first and second working surface, with each pinion gear having a receiving surface for engaging the first and second working surfaces, respectively, of the shuttle gear. A rotating cam plate is mounted on a shaft and has a cam surface including one or more follower pathways at the cam surface, the rotating cam plate is driven by the first pinion gear. One or more auxiliary elements operate with the cam plate, and each auxiliary element includes a cam follower riding back and forth along one of the follower pathways of the cam. A shuttle locking cam is mounted on the shaft and a shuttle lock is disposed adjacent the shuttle gear. The shuttle lock includes a cam follower riding back and forth along a surface of the shuttle locking cam and an action element moves with the second pinion gear.
A motor is in mechanical communication with the shuttle gear with rotation of the motor in a first direction rotating the shuttle gear into engagement with the first pinion gear and further engages the shuttle lock device controlled by the shuttle locking cam for controlling back and forth movement of the shuttle lock. This allows auxiliary elements to run in both directions throughout a predetermined rotation of the shuttle locking cam. Further rotation of the motor or rotation of the motor in a second direction releases the shuttle lock as the cam rotates outside the predetermined range allowing the shuttle gear to shuttle to the other side into engagement with the action gear for driving action movement such as locomotion of the toy or other device.
In a first alternative embodiment, as seen in
In an alternative embodiment, as seen in
A single motor 138 drives rotation of the shuttle gear with rotation of the motor in a first direction rotating the shuttle gear into engagement with the auxiliary gear and activating the shuttle lock to maintain the shuttle gear and auxiliary gear together throughout a predetermined rotational range of a cam plate moving with the auxiliary gear and rotating the cam plate back and forth for operating the auxiliary elements linked to the cam plate for moving facial elements (lips, eyes, eye lids, etc.) to exhibit life-like facial animations and emotions. Rotation of the motor in a second direction rotates the cam plate beyond the predetermined rotational range releasing the shuttle lock and rotating the shuttle gear into engagement with the action gear driving wiggling and/or twisting body movements with the accompanying arm swinging movements to mimic life-like baby squirming. Pinion gears 140 are included in a drive gearing actuated and driven by the action gear 116, as seen in
Additionally, in the present described alternative embodiment, the toy baby doll 110 can further include two independent banks of bi-directional cams powered by a single motor, to achieve animated facial features (lip sync/happy/sad/closing eyelids/eyes moving left & right) and also body animations. In an alternative gear mechanism, as seen in
In a second alternative embodiment, as seen in
In the second alternative embodiment, as seen in
In a present described alternative embodiment, the curved sloping projections 220 at the first working surface 212a and second working surface 212c include three spiral surfaces for propelling the shuttle gear into engagement with either the auxiliary gear at the first working surface, or the action gear at the second working surface. The three spiral surfaces of the first working surface are sized and shaped to engage the receiving surface of the auxiliary gear, and the three spiral surfaces of the second working surface are sized and shaped to mate with the receiving surface of the action gear.
In the second alternative embodiment, as seen in
A single motor 230 drives rotation of the shuttle gear through one or more drive pinion gears 232, with rotation of the motor in a first direction and a second direction driving rotation of the shuttle gear in a forward and a reverse direction. An actuating mechanism in mechanical communication with the first shuttle lock positions the shuttle lock to maintain the first working surface of the shuttle gear with the receiving surface of the auxiliary gear when the shuttle lock is positioned at the shuttle gear maintaining the shuttle gear and the auxiliary gear together, as seen in
The first actuating mechanism includes a first shuttle lock cam follower 234 coupled to the first shuttle lock and a first cam follower pathway 223 at the first cam plate 222, as shown in
As the pin 234 travels outside the predetermined rotational range 237 and through a bend 236 in the pathway 223, the pin 234 is drawn toward a center point 238 of the first cam plate and the first shuttle lock is no longer positioned at the shuttle gear. The first shuttle lock will not move into position at the shuttle gear as long as the pin 234 dwells within the bend 236 of the pathway 223 outside the predetermined rotational range 237. Further rotation of the auxiliary gear 214, in either a forward or reverse direction, will move the pin 234 along the pathway 223 and beyond the bend 236 and within the predetermined rotational range 237, to once again position the first shuttle lock at the shuttle gear for as long as the pin 234 dwells within the predetermined rotational range 237 of the first cam shuttle lock pathway 223.
The second actuating mechanism includes a second shuttle lock cam follower 240 coupled to the second shuttle lock 224 and the second cam follower pathway 228 at the second cam plate 226. The second shuttle lock cam follower 240 includes a pin 240 disposed on the second shuttle lock for riding back and forth along the second cam follower pathway 228. A generally circular portion of the second cam follower pathway 228 includes a predetermined rotational range 242 of the second cam plate 226. As the action gear 212 rotates the second cam plate 226, the pin 240 travels along the generally circular portion of the first cam follower pathway 228 within the predetermined rotational range 242, positioning the second shuttle lock at the shuttle gear 212 maintaining the shuttle gear and the action gear together, as seen in
As the pin 240 travels outside the predetermined rotational range 242 and through a curved bend 244 in the pathway 228, the pin 240 is drawn toward a center point 246 of the second cam plate and the second shuttle lock is no longer positioned at the shuttle gear. The second shuttle lock will not move into position at the shuttle gear as long as the pin 244 dwells within the curved bend 244 of the pathway 228 outside the predetermined rotational range 242. Further rotation of the action gear 216, in either a forward or reverse direction, will move the pin 240 along the pathway 228 and beyond the curved bend 244, back within the predetermined rotational range 242, to once again position the second shuttle lock at the shuttle gear for as long as the pin 240 dwells within the predetermined rotational range 242 of the second cam shuttle lock pathway 228.
In the second alternative embodiment, first and second actuating mechanisms function generally like a mirror image of each other, such that when the first cam follower 234 is within the predetermined rotational range 237 of the first cam plate 222 positioning the first shuttle lock at the shuttle gear, the second cam follower 240 is beyond the predetermined rotational rang of the second cam plate 226 and no longer positioning the second shuttle lock at the shuttle gear. Alternatively, when the first cam follower 235 has moved beyond the predetermined rotational range 237 of the first cam plate 222, the second cam follower 240 dwells within the predetermined rotational range 242 of the second cam plate 226 positioning the second shuttle lock at the shuttle gear throughout the predetermined rotational range 242 of the second cam plate 226.
It is also contemplated that the first and second actuating mechanisms can include first and second eccentric circle pathways on first and second cam arrangements or the like, working together to alternately position the first and second shuttle locks at the shuttle gear. Additionally, it is also contemplated that the first and second actuating mechanisms can include first and second micro-actuators as described above, to alternately position the first and second shuttle locks at the shuttle gear.
Animatronic creatures or figures, robot or mechanical toys requiring one bank of bi-directional cams assemblies along with an independent one directional function powered by a single motor, such as the present described embodiment, employs a single shuttle lock arrangement, while animatronic creatures or figures, robot or mechanical toys requiring two banks of bi-directional cam assemblies powered by a single motor, such as the present described second alternative embodiment, employs a double shuttle lock arrangement.
A method generating auxiliary movements with an auxiliary gear and action movements with an action gear from a single motor driving a shuttle gear, includes the steps of positioning a first working surface on a first side of the shuttle gear and a second working surface on a second side of the shuttle gear, positioning the auxiliary gear adjacent the first working surface of the shuttle gear, positioning the action gear adjacent the second working surface of the shuttle gear, receiving the first working surface with a receiving surface of the auxiliary gear, rotating a cam plate with the auxiliary gear for generating auxiliary movements with a single motor driving the shuttle gear, the cam plate having a cam surface and including one or more follower pathways at the cam surface, moving one or more auxiliary elements with one or more auxiliary element cam followers riding back and forth along one of said follower pathways, and actuating a shuttle lock disposed adjacent the shuttle gear to maintain the first working surface of the shuttle gear with the receiving surface of the auxiliary gear when the shuttle lock is positioned at the shuttle gear maintaining the shuttle gear and the auxiliary gear together to rotate both in a forward and a reverse direction for rotating the cam plate back and forth for operating the auxiliary elements. Also included are the further steps of receiving the second working surface with a receiving surface of the action gear, the second working surface of the shuttle gear engaging with the receiving surface of the action gear when the actuating step no longer has the shuttle lock positioned at the shuttle gear for moving the action gear for generating action movements with the single motor driving the shuttle gear, and the motor driving rotation of the shuttle gear with rotation of the motor in a first and second direction driving rotation of the shuttle gear in a forward and reverse direction.
The method includes the step of actuating the shuttle lock and further including the step of activating a micro actuator disposed adjacent the shuttle lock for positioning the shuttle lock at the shuttle gear to maintain the shuttle gear and the auxiliary gear together, and the method also includes the step of actuating the shuttle lock and further including the step of activating a solenoid to extend and position the shuttle lock at the shuttle gear.
The method includes the step of actuating the shuttle lock and further includes the steps of coupling a shuttle lock cam follower to the shuttle lock and retaining the shuttle lock cam follower to ride back and forth along a first follower pathway at the cam plate positioning the shuttle lock to maintain the shuttle gear and auxiliary gear together throughout a predetermined rotational range of the cam plate with the cam plate rotating back and forth operating the auxiliary elements. Additionally, the method includes the further steps of rotating the cam plate beyond the predetermined rotational range capturing the shuttle lock cam follower in an extension of the first follower pathway no longer positioning the shuttle lock at the shuttle gear and rotating the shuttle gear into engagement with the action gear driving action movements of action elements operating with the action gear.
An alternative method for driving action and auxiliary movements with a single motor in an electromechanical toy, include the steps of providing a motor, providing a shuttle gear in mechanical communication with the motor and an auxiliary gear adjacent the shuttle gear, the shuttle gear having first and second engaging surfaces and including teeth disposed at each surface, and the auxiliary gear having a receiving surface and including teeth disposed at the receiving surface to engage the teeth of the shuttle gear. Further providing a shaft, mounting a rotating cam plate on the shaft in rotatable mechanical communication with the auxiliary gear, the cam plate having a cam surface and including one or more follower pathways at the cam surface, providing one or more auxiliary elements in mechanical communication with the cam plate, each auxiliary element including a cam follower riding back and forth along a follower pathway, and mounting a shuttle lock on the shaft, the shuttle lock disposed adjacent the shuttle gear and including a cam follower riding back and forth along a first follower pathway throughout a predetermined rotational range.
Further providing an action gear disposed adjacent the shuttle gear opposite the auxiliary gear and an action element in mechanical communication with the action gear, the action gear having a receiving surface and including teeth at the receiving surface, and rotating the motor in a first direction rotating the shuttle gear into engagement with the auxiliary gear engaging the shuttle and auxiliary gear teeth and activating the shuttle lock to maintain the shuttle and auxiliary gear engagement throughout the predetermined rotational range of the cam plate rotating the cam plate back and forth driving controlled back and forth movement of the auxiliary elements. Rotating the motor in a second direction rotates the cam plate beyond the predetermined range releasing the shuttle lock and rotating the shuttle gear into engagement with the action gear, engaging shuttle and action gear teeth, and driving action movement of the toy.
The method further includes the step of providing stepped squared off teeth at the first engaging surface of the shuttle gear and providing stepped squared off teeth at the receiving surface of the auxiliary gear keyed to mate with the stepped teeth of the shuttle gear. The method also includes the step of providing a pin disposed at the shuttle lock for riding back and forth in the first follower pathway of the cam maintaining the shuttle lock in an active position and the shuttle gear in locked engagement with the auxiliary gear.
The method further including the step of providing a dwell in the first follower pathway offset from the defined pathway for capturing the pin and shifting the shuttle lock to an inactive position and out of locked engagement with the shuttle gear, and further including the step of providing a tension spring in communication with the shuttle gear urging the shuttle gear to engage the action gear when the shuttle lock is in an inactive position and out of locked engagement with the shuttle gear. The method also includes the step of providing one or more additional cam plates coaxially mounted on the shaft adjacent the rotatable cam plate and in rotatable mechanical communication with the auxiliary gear, each additional cam plate having a cam surface and one or more follower pathways at the cam surface.
From the foregoing, it can be seen that there has been provided a gear assembly for an electromechanical toy employing a shuttle lock device for simple yet unique controlling of back and forth movement of a plurality of auxiliary elements as well as driving whole toy actions such as locomotion off a single motor. While a particular embodiment of the present invention has been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects. Therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention. The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. The actual scope of the invention is intended to be defined on the following claims when viewed in their proper perspective based on the prior art.
This application claims priority pursuant to 35 U.S.C. 119(e) from U.S. Provisional Patent Application No. 61/842,202 filed on Jul. 2, 2013.
Number | Name | Date | Kind |
---|---|---|---|
453781 | Allen | Jun 1891 | A |
2149180 | Muller | Feb 1939 | A |
2169663 | Shanley | Aug 1939 | A |
2540573 | Evans | Feb 1951 | A |
4135328 | Yamasaki | Jan 1979 | A |
4231182 | Kurita | Nov 1980 | A |
4245515 | Iwaya | Jan 1981 | A |
4290227 | Shimamura | Sep 1981 | A |
4377918 | Zbriger | Mar 1983 | A |
4400698 | Wessels et al. | Aug 1983 | A |
4752272 | Karasawa | Jun 1988 | A |
4795395 | Oishi et al. | Jan 1989 | A |
5090936 | Satoh et al. | Feb 1992 | A |
5503586 | Suto | Apr 1996 | A |
5629923 | Hisatomi | May 1997 | A |
6039626 | Gerold et al. | Mar 2000 | A |
6371826 | Pestonji | Apr 2002 | B1 |
6386058 | Lu | May 2002 | B1 |
6416380 | Li-Wen | Jul 2002 | B1 |
6497607 | Hampton et al. | Dec 2002 | B1 |
6503123 | Chung | Jan 2003 | B2 |
6505527 | Lu | Jan 2003 | B2 |
6514117 | Hampton et al. | Feb 2003 | B1 |
6537127 | Lund et al. | Mar 2003 | B1 |
6537128 | Hampton et al. | Mar 2003 | B1 |
6544098 | Hampton et al. | Apr 2003 | B1 |
6565407 | Woolington et al. | May 2003 | B1 |
6579143 | Rehkemper et al. | Jun 2003 | B1 |
6609440 | Chu | Aug 2003 | B1 |
6732602 | Lu | May 2004 | B2 |
6746301 | Lund et al. | Jun 2004 | B1 |
6991511 | Maggiore et al. | Jan 2006 | B2 |
7066782 | Maddocks et al. | Jun 2006 | B1 |
7115014 | McGrath et al. | Oct 2006 | B2 |
7150671 | Maleika | Dec 2006 | B2 |
7159483 | Yamanaka | Jan 2007 | B2 |
7431629 | Maddocks et al. | Oct 2008 | B1 |
8231426 | Miller | Jul 2012 | B2 |
9067149 | Byers | Jun 2015 | B2 |
20020090883 | Lu | Jul 2002 | A1 |
20040045385 | Lu | Mar 2004 | A1 |
20060270312 | Maddocks et al. | Nov 2006 | A1 |
20090277057 | Nagaoka et al. | Nov 2009 | A1 |
20150017876 | Russo | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1587072 | Mar 1981 | GB |
2288987 | Nov 1995 | GB |
2003164673 | Jun 2003 | JP |
1018659 | May 1985 | SU |
1526713 | Dec 1989 | SU |
0007682 | Feb 2000 | WO |
Entry |
---|
PCT/US2014/044879—International Search Report. dated Oct. 29, 2014. |
PCT/US2014/044879—Written Opinion of the International Searching Authority, dated Oct. 29, 2014. |
PCT/US2014/044879—Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority or the Declaration. Oct. 29, 2014. |
Number | Date | Country | |
---|---|---|---|
20150017876 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61842202 | Jul 2013 | US |