Bidirectional light emitting diode light sheet

Information

  • Patent Grant
  • 9945534
  • Patent Number
    9,945,534
  • Date Filed
    Monday, March 16, 2015
    9 years ago
  • Date Issued
    Tuesday, April 17, 2018
    6 years ago
Abstract
A bidirectional light sheet including at least first and second arrays of bare LED chips having top and bottom electrodes, where the arrays of LEDs are sandwiched between at least two transparent substrates having conductors bonded to the electrodes without wires, forming light sheets to emit light from opposite surfaces of the light sheet to create a bidirectional light sheet. The light sheet may be suspended from a ceiling to be non-parallel to the ceiling A reflector or a plurality of lenses may be included in the light sheet to emit light at any peak intensity angle to achieve a predetermined light emission pattern.
Description
FIELD OF INVENTION

This invention relates to solid state illumination and, in particular, to a substantially flat bidirectional light sheet containing light emitting dies, such as light emitting diodes (LEDs), where the light sheet is orientated at a non-parallel angle, such as vertically, with respect to a ceiling.


BACKGROUND

High power LEDs are the conventional choice for general solid state lighting applications. Such high power white LEDs are extremely bright and can have luminous efficacies between 100 and 200 lumens/watt. The input power of a single high-power LED is typically greater than 0.5 watt and may be greater than 10 watts. Such LEDs generate considerable heat since they are only about 1 mm2 in area, so the required packaging is fairly complex and expensive. Although a bare high-power LED chip typically costs well under $1.00 (e.g., $0.10), the packaged LED typically costs around $1.50-$3.00. This makes a high output (e.g., 3000+ lumens) solid state luminaire relatively expensive and not a commercially feasible alternative for a fluorescent light fixture, commonly used for general illumination. Further, the optics required to convert the high brightness point sources into a substantially homogeneous, broad angle emission for an office environment (where glare control is important) is extremely challenging.


To greatly reduce the cost of a large area, high lumen output light source, it is known to sandwich an array of bare LED dice between a reflective bottom sheet having conductors and a top transparent sheet having conductors. The LEDs have top and bottom electrodes that contact a set of conductors. When the conductors on the sheets are energized, the LEDs emit light through only the transparent sheet. The light sheet may be flexible.


Such prior art light sheets are not bidirectional.


It is also well known to provide a light emitting panel as a luminaire for general illumination, where the panel is oriented so that its light emitting surface is parallel to a floor.


It may be desirable in certain environments to provide a cost-effective luminaire that generates lighting effects other than those of the above-described prior art luminaires.


SUMMARY

Bidirectional light sheets and novel orientations of the light sheets are described. The light sheets can be formed to have any dimensions, including narrow strips.


In one embodiment, an array of bare light emitting diode (LED) chips, having top electrodes and bottom electrodes, are sandwiched between two or more substrates having conductors formed on their surfaces. LEDs with top and bottom electrodes are typically referred to as vertical LEDs. The bottom electrode of commercially available vertical LEDs is reflective and covers the entire bottom surface of the LED. Therefore, the typical vertical LED emits light only from its top surface and sides. The top electrode is intended by the LED manufacturer to be bonded to a thin wire using ultrasonic bonding or other bonding technique.


The light sheets used in embodiments of the present invention employ conductors on the substrates that electrically contact the LED electrodes without using wires. The conductors may connect any number of LEDs in series and are ultimately connected to a power source. In another embodiment, wires may be used for the connections, adding considerable cost and complexity to the light sheet.


In one embodiment, the orientations of the vertical LEDs are alternated so that the conductors on the substrates connect an anode of one LED to the cathode of the adjacent LED for a series connection. In this way, the LEDs having one orientation emit light in one general direction, and LEDs having the opposite orientation emit light in the opposite direction. Therefore, the light sheet emits bidirectional light. Reflectors (e.g., prisms) in the substrates may be used to direct any side light toward the desired light output surface of the sheet.


In other embodiments, two light sheets are effectively affixed back-to-back, where the light sheets emit light in opposite directions to form a bidirectional light sheet. A reflective sheet may be used as an intermediate layer between the opposing light sheets.


In one embodiment, control electronics may be located on or in an intermediate layer between the light sheets.


In an application of a bidirectional light sheet, the sheet (e.g., a strip) may be suspended from a ceiling so that it is orientated vertically (i.e., perpendicular to the ceiling and floor). Optics may be molded into the light emitting surfaces to angle the peak light intensity downward (e.g., at 55 degrees relative to vertical) to avoid glare and to merge the light of one fixture with light from adjacent fixtures. Other ways of directing the light may also be used, such as locating the LED chips in reflective cups or deep wells that emit a collimated beam of light at any selected angle. Portions of the light sheet, or another light sheet in the same fixture, may also be designed to direct light upward to reflect off the ceiling to achieve broad illumination. Any combinations of peak intensity angles may be achieved.


In one embodiment, a luminaire is created with a plurality of pivotable bidirectional light sheets so the user can customize the light emission pattern. In another embodiment, the flexible light sheet may be formed as a cylinder and suspended from the ceiling to provide uniform illumination of the floor and ceiling. In another embodiment, the light sheet may be formed as a truncated pyramid and suspended from the ceiling.


Light emitting dies other than LEDs may also be used.


Other variations are described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The below described drawings are presented to illustrate some possible examples of the invention.



FIG. 1 is a simplified perspective view of a portion of a bidirectional light sheet, in accordance with one embodiment of the invention, showing some light emitting areas.



FIG. 2 illustrates a series connection of LEDs in the light sheet of FIG. 1.



FIG. 3 is a cross-sectional view along line 3-3 in FIG. 1 showing LEDs in opposite orientations being connected in series.



FIG. 4 is a cross-sectional view along line 3-3 in FIG. 1 showing back-to-back light sheets containing flip-chip LEDs connected in series.



FIG. 5 is a cross-sectional view along line 3-3 in FIG. 1 showing back-to-back light sheets containing vertical LEDs connected in series.



FIG. 6 illustrates a conductor connection in the light sheet of FIG. 5 showing the series connection between adjacent LEDs.



FIG. 7 is a perspective view of any of the bidirectional light sheets being orientated approximately perpendicular to a ceiling and emitting light at a variety of peak intensity angles.



FIG. 8 is a bottom up view of a luminaire containing a plurality of the bidirectional light sheets and adjustable to emit light at a variety of peak intensity angles.



FIG. 9 is a side view of the luminaire of FIG. 8.



FIG. 10 is a perspective view of a bidirectional light sheet that is bent to form a cylinder, where the cylinder is suspended from a ceiling.



FIG. 11 illustrates two curved bidirectional light sheets that may be angled in any direction and curved to have any radius. The light sheets may be suspended from a ceiling.



FIG. 12A is a side view of bidirectional light sheets forming a truncated pyramid, shown suspended from a ceiling.



FIG. 12B is a bottom up view of the luminaire of FIG. 12A.





Elements that are the same or similar are labeled with the same numerals.


DETAILED DESCRIPTION


FIG. 1 is a perspective view of a portion of a light sheet 10, showing a simplified pseudo-random pattern of LED areas 12. The LED areas 12 may instead be in an ordered pattern. There may be 500 or more low power LEDs in the light sheet 10 to generate the approximately 3700 lumens (per the DOE CALiPER benchmark test) needed to replace a standard fluorescent fixture typically found in offices.


The pseudo-random pattern may repeat around the light sheet 10 (only the portion within the dashed outline is shown). A pseudo-random pattern is preferred over an ordered pattern since, if one or more LEDs fail or have a poor electrical connection, its absence will be significantly harder to notice.


In one embodiment, the light sheet 10 is generally formed of three main layers: a transparent bottom substrate 14 having an electrode and conductor pattern; an intermediate sheet 16 acting as a spacer and optional reflector; and a transparent top substrate 18 having an electrode and conductor pattern. In one embodiment, the LED chips are electrically connected between electrodes on the bottom substrate 14 and electrodes on the top substrate 18. The light sheet 10 is very thin, such as a few millimeters, and is flexible.



FIG. 2 illustrates a sample pattern of conductors 19 on the top substrate 18 and/or bottom substrate 14 that connect any number of LED chips in series. In the example of FIG. 2, two groups of series-connected LEDs in the LED areas 12 are connected in parallel. The parallel connection may be selected by a customizable interconnector 22 external to the light sheet. The customizable interconnection of the LED chips allows the drive voltage and current to be selected by the customer or be customized for a particular size of light sheet. There may be many strings of LED chips in the light sheet that are connected together in series, parallel, or connected to different power supplies.


A DC or AC power supply 23 is shown connected to the connector 22. An input of the power supply 23 may be connected to the mains voltage. If the voltage drop of an LED series string is sufficiently high, the series string of LEDs may be driven by a rectified mains voltage (e.g., 120 VAC).


As shown in FIG. 3, to achieve a series connection of LED chips using top and bottom conductors, some LEDs chips 26 are mounted on the bottom substrate 14 with their anodes 27 connected to the bottom substrate electrodes 28 and other LED chips 26 are mounted with their cathodes 30 connected to the bottom substrate electrodes 28. Ideally, adjacent LED chips are reversely mounted to simplify the series connection pattern. The conductors 19 between the electrodes then connects the LED chips in series. A similar pattern of conductors 32 on the top substrate 18 connects the cathodes of LED chips 26 to the anodes of adjacent LED chips 26.


In another embodiment, it is also possible to connect the LED chips in two anti-parallel series branches, or derivatives thereof, that will enable the LED chips to be driven directly from AC, such as directly from the mains voltage.


Since the cathodes 30 of the LED chips 26 are typically large reflectors that cover the entire bottom surface of the LED chips, the light emitted from the oppositely orientated LED chips 26 will be in opposite directions. Reflectors 36 molded into the substrates 14/18 or intermediate sheet 16 may be used to reflect side light toward the output surfaces of the light sheet.


If the LED chips 26 emit blue light, phosphor 38 may be deposited over the light path to convert the blue light to white light, as shown by the light rays 40. Phosphor may also be incorporated into an encapsulant that fills the holes in the intermediate sheet 16 surrounding the LED chips 26.


Additional details of the various bidirectional light sheets shown herein may be found in U.S. application Ser. No. 12/870,760, filed on Aug. 27, 2010, entitled, Solid State Light Sheet for General Illumination, by Louis Lerman et al., incorporated herein by reference.



FIG. 4 illustrates another bidirectional light sheet, where the LED chips 44 are flip chips, with anode and cathode electrodes 46 on the bottom surface of the LED chips 44. One set of LED chips 44 are sandwiched between a top substrate 18 and a bottom substrate 14, and another set of LED chips is sandwiched between the same bottom substrate 18 and another substrate 48. Alternately, two light sheets may be separately manufactured and laminated together back-to-back. A reflector layer may be positioned between the two sets of LED chips. The LED chips in each set may be connected in any combination of series and parallel.



FIG. 5 illustrates another embodiment of a bidirectional light sheet, where the top substrate 18 and bottom substrate 14 have conductors 50 and 52 that overlap when the substrates are laminated together to form a series connection between LED chips 26. Two light sheets are laminated together with a reflective layer 53 between them to cause light to be emitted bidirectionally from the back-to-back light sheets.



FIG. 6 is a top down view of the light sheet portion of FIG. 5 showing the overlapping conductors 50 and 52 connecting the LED chips 26 in series.


The substrate electrodes over the LED chip anodes may by transparent conductors, such as ITO (indium-doped tin oxide) or ATO (antimony-doped tin oxide) layers, to avoid blocking light.


The intermediate layer between the sets of LED chips may include control electronics and/or cross-over conductors for interconnecting the LED chips and controlling brightness.



FIG. 7 illustrates any of the bidirectional light sheets being suspended from a ceiling 60 by wires 61 and orientated approximately perpendicular to the ceiling 60. The wires 61 may conduct a low DC voltage (e.g., 24 volts DC) to the LED chips or may supply a mains voltage to a power converter in the luminaire. The light sheets are shown emitting light 62 at a variety of peak intensity angles. Lenses 63 may be molded in the transparent surfaces of any of the light sheets to direct the peak intensity at any angle. The lenses may be Fresnel lenses, elongated grooved lenses, or other lens shapes to achieve the desired light emission angles. Other ways of directing the light may also be used in any of the embodiments, such as locating the LED chips in reflective cups or deep wells that emit a collimated beam of light at any selected angle. This can be done by angling the cups or shaping the cups.


In FIG. 7, two, bidirectional light sheets 64 and 66 are mounted together in the same luminaire, where the light sheet 64 has lenses that generally direct light downward, and the light sheet 66 has lenses that generally direct light upward to reflect off the ceiling 60. Light from adjacent, identical luminaires merge across the floor and ceiling to create an overall smooth lighting effect. The luminaires may replace standard fluorescent lamp troffers, yet not require any space above the ceiling. This enables the luminaires to be used where the ceiling is not a drop down ceiling.


The light angles coming from both sides of the light sheet may be mirror images for symmetry or may be asymmetrical.


Instead of a flat light sheet, the light sheet may be bent to form an arc or other shape, depending on the desired emission pattern.


The light sheet may be affixed to the ceiling at non-parallel angles other than a vertical orientation, depending on the particular light effect desired. However, a symmetrical light emission for room illumination will typically be desired.


In another embodiment, there are a variety of lenses in a single light sheet to direct the light at two or more different angles. This may be used to create a very compact luminaire formed of one or more light sheets.


Many other aesthetic light patterns may be generated from the vertical orientation of the bidirectional light sheets and the types of lenses formed in the light sheets.



FIG. 8 is a bottom up view, and FIG. 9 is a side view, of a luminaire containing four bidirectional light sheets 70, which are adjustable to emit light at a variety of peak intensity angles. Each light sheet may output light at a certain downward peak intensity angle, such as 55 degrees relative to the nadir, or each light sheet may emit at a different peak intensity angle. The angles of the physical light sheets 70 may be adjusted by pivoting 71 the light sheet around an axis. For example, one edge of each light sheet may be connected to a pivoting support on the luminaire base 72. The peak intensity light rays 74 from the four light sheets 70 are shown being at different angles. Any number of light sheets 70 at any orientation (e.g., diagonal, parallel, perpendicular) may be used in the luminaire.


The bidirectionality of the flexible light sheet is very useful in hanging luminaires where it is desired to illuminate the ceiling as well as the floor. Illuminating a ceiling creates a pleasant aesthetic effect and provides more uniform lighting throughout the room. FIGS. 10-12B illustrate additional luminaires that reflect light off the ceiling.



FIG. 10 is a perspective view of a bidirectional light sheet 78 that is bent to form a cylinder, where the cylinder is suspended from a ceiling 80. The flexible light sheet 78 may be supported along its edges by a plastic cylindrical frame that is suspended from the ceiling 80 by wires 82. The curvature of the light sheet 78 causes light to be evenly emitted 360 degrees around a central axis. The peak intensity of light may be directed downward to avoid glare by lenses or other optical means. In one embodiment, the peak intensity is at 55 degrees relative to the nadir. The light emitted from the inside surface of the cylinder is both directed upward to reflect off the ceiling 80 and downward to avoid any dark spot under the luminaire. Angled light rays 84 are shown being emitted from the outer surface of the light sheet 78. The outer surface may also emit a percentage of the light toward the ceiling 80 for more uniform illumination of the ceiling 80. An angled light ray 86 is shown being emitted from the inside surface of the light sheet 78 and reflected off the ceiling 80 to avoid a dark spot above the luminaire, and downward light rays 88 are shown being emitted from the inside surface of the light sheet 78 to avoid a dark spot under the luminaire.



FIG. 11 illustrates two curved bidirectional light sheets 90 and 92 that may be angled in any direction and curved to have any radius. The light sheets 90/92 may be suspended from a ceiling as in FIG. 10. The light sheets 90/92 may each be supported by a frame to allow each to be independently tilted and pivoted around a central axis. Since the light 94 emitted by each bidirectional light sheet 90/92 is asymmetrical, virtually any light pattern may be created by changing the angles and directions of the light sheets 90/92.



FIG. 12A is a side view of bidirectional light sheets 96 forming a truncated pyramid, shown suspended from a ceiling 80. The light sheets 96 are directed at a downward angle, such as at a 55 degree angle, to direct light 98 downward. This provides 360 degree coverage of the floor. To avoid any dark spot above the luminaire and to illuminate the ceiling well beyond the area of the light sheets 96, the inside surfaces of the light sheets 96 direct light 100 toward the ceiling 80. A light sheet 96 may form the flat bottom surface of the luminaire, or the bottom may be open for increased air circulation.



FIG. 12B is a bottom up view of the luminaire of FIG. 12A. The light sheets 96 may be at any angle, such as to minimize glare. Lenses in the light sheet surfaces may be used to direct the light emission.


Other uses of a non-parallel oriented bidirectional light sheet are also envisioned.


The various features of all embodiments may be combined in any combination.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all changes and modifications that fall within the true spirit and scope of the invention.

Claims
  • 1. A bidirectional lighting device for general illumination comprising: a first plurality of first non-packaged light emitting dies having first electrodes and being arranged to emit light in a first direction;a second plurality of second non-packaged light emitting dies having second electrodes and being arranged to emit light in a second direction different from the first direction;at least a first substrate and a second substrate sandwiching the first and second non-packaged light emitting dies and forming a light emitting structure having (i) a first light emitting surface outputting light from the bidirectional lighting device in the first direction and (ii) an opposing second light emitting surface outputting light from the bidirectional lighting device in the second direction;conductors formed on at least one of the first substrate and second substrate electrically connected to the first and second electrodes of the first and second non-packaged light emitting dies without wires for connecting the first and second non-packaged light emitting dies to a source of power;wherein the first substrate has first connection locations electrically connected to first of the conductors formed on the first substrate,wherein each of the first and second non-packaged light emitting dies has at least a first die electrode and a second die electrode, the first die electrode being formed on a primary light output surface of the first and second non-packaged light emitting dies,wherein the first non-packaged light emitting dies have their first die electrode aligned with and electrically connected to an associated one of the first connection locations on the first substrate without wire bonds,wherein the second substrate has second connection locations electrically connected to second of the conductors formed on the second substrate,wherein the second non-packaged light emitting dies have their first die electrode aligned with and electrically connected to an associated one of the second connection locations on the second substrate without wire bonds,wherein the first substrate and the second substrate have light output surfaces for emitting light in opposing directions from at least the primary light output surfaces of the respective first and second non-packaged light emitting dies,wherein the first substrate and the second substrate form a bidirectional light sheet,wherein the bidirectional light sheet is affixed proximate to a ceiling such that the first and second light emitting surfaces are not parallel to the ceiling, andwherein some light from the bidirectional light sheet is directed towards the ceiling and some light from the bidirectional light sheet is directed towards a floor.
  • 2. The device of claim 1 wherein the bidirectional light sheet is affixed to the ceiling such that the first and second light emitting surfaces are substantially perpendicular to the ceiling.
  • 3. The device of claim 1 wherein the bidirectional light sheet is suspended from the ceiling by wires such that the first and second light emitting surfaces are substantially perpendicular to the ceiling.
  • 4. The device of claim 1 wherein an angle of the bidirectional light sheet relative to the ceiling is adjustable.
  • 5. The device of claim 1 further comprising lenses in the device that direct a peak intensity of light at a certain angle relative to the ceiling.
  • 6. The device of claim 1 wherein the bidirectional light sheet is one of a plurality of bidirectional light sheets in a luminaire, wherein at least two of the bidirectional light sheets emit a peak intensity of light at different angles.
  • 7. The device of claim 1 further comprising two or more different optical elements in the device that direct light at different angles relative to the ceiling.
  • 8. The device of claim 1 further comprising one or more intermediate layers between the first substrate and the second substrate.
  • 9. The device of claim 1 wherein the first substrate and the second substrate directly contact each other with no intermediate layer between them.
  • 10. The device of claim 1 further comprising at least a third substrate sandwiched between the first substrate and the second substrate, the third substrate having a reflective layer for reflecting light out through the first substrate and the second substrate.
  • 11. The device of claim 1 further comprising a reflective layer between the first substrate and the second substrate, wherein the first non-packaged light emitting dies are located between the reflective layer and a light output surface of the first substrate, and the second non-packaged light emitting dies are located between the reflective layer and a light output surface of the second substrate.
  • 12. The device of claim 1 wherein the bidirectional light sheet is one of a plurality of bidirectional light sheets in a luminaire, wherein a first side of the luminaire emits light from a first bidirectional light sheet at a first peak intensity angle and emits light from a second bidirectional light sheet at a second peak intensity angle, different from the first peak intensity angle.
  • 13. The device of claim 12 wherein a second side of the luminaire, opposite the first side of the luminaire, emits light from a third bidirectional light sheet at the first peak intensity angle and emits light from a fourth bidirectional light sheet at a fourth peak intensity angle, different from the third peak intensity angle.
  • 14. The device of claim 1 wherein at least some of the first and second non-packaged light emitting dies are connected in series by the first conductors and the second conductors.
  • 15. The device of claim 14 wherein the at least some of the first and second non-packaged light emitting dies are connected in series by the first conductors and the second conductors interconnecting the first die electrodes to the second die electrodes.
  • 16. The device of claim 1 wherein the bidirectional light sheet is curved and suspended from the ceiling.
  • 17. The device of claim 16 wherein the bidirectional light sheet substantially forms a cylinder having sides substantially perpendicular to the ceiling.
CLAIM OF PRIORITY

This application is a continuation application and claims priority under 35 U.S.C. § 120 to U.S. application Ser. No. 13/857,789, filed Apr. 5, 2013, which is a continuation of U.S. application Ser. No. 13/484,550, filed May 31, 2012, which is a continuation of U.S. application Ser. No. 12/917,327, filed Nov. 1, 2010, the entire contents of which are incorporated herein by reference.

US Referenced Citations (155)
Number Name Date Kind
2626120 Baker Jan 1953 A
2733367 Gillson, Jr. Jan 1956 A
4358817 Bielemeier Nov 1982 A
4445132 Ichikawa et al. Apr 1984 A
5036442 Brown Jul 1991 A
5868489 Fuller et al. Feb 1999 A
5884994 Herst et al. Mar 1999 A
5925897 Oberman Jul 1999 A
6087680 Gramann et al. Jul 2000 A
6113433 Al-Turki Sep 2000 A
6241369 Mackiewicz Jun 2001 B1
6270236 Brussog Aug 2001 B1
6540373 Bailey Apr 2003 B2
6541908 Cheung et al. Apr 2003 B1
6557393 Gokhfeld et al. May 2003 B1
6614056 Tarsa Sep 2003 B1
6657236 Thibeault Dec 2003 B1
6693551 Pederson Feb 2004 B2
6786621 Sviland Sep 2004 B2
6876143 Daniels Apr 2005 B2
6876149 Miyashita Apr 2005 B2
6880963 Luig et al. Apr 2005 B2
6885036 Tarsa Apr 2005 B2
6936855 Harrah Aug 2005 B1
7052924 Daniels et al. May 2006 B2
7217956 Daniels et al. May 2007 B2
7259030 Daniels et al. Aug 2007 B2
7312474 Emerson Dec 2007 B2
7378124 Daniels May 2008 B2
7427782 Daniels et al. Sep 2008 B2
7434951 Bienick Oct 2008 B2
7476557 Daniels et al. Jan 2009 B2
7604377 Yu et al. Oct 2009 B2
7609006 Gibboney Oct 2009 B2
7745838 Lefevre Jun 2010 B2
7777166 Roberts Aug 2010 B2
7858994 Daniels Dec 2010 B2
7976187 Villard Jul 2011 B2
8006453 Anderson Aug 2011 B2
8044415 Messere et al. Oct 2011 B2
8058659 Bisberg Nov 2011 B2
8066407 Remus Nov 2011 B2
8167677 Huang May 2012 B2
8192051 Dau Jun 2012 B2
8226266 Chiang Jul 2012 B2
8227999 Van Herpen et al. Jul 2012 B2
8231258 Kim Jul 2012 B2
8256151 Stafford Sep 2012 B2
8314566 Steele et al. Nov 2012 B2
8338199 Lerman et al. Dec 2012 B2
8338849 Tischler et al. Dec 2012 B2
8366295 Tanda Feb 2013 B2
8400051 Hakata Mar 2013 B2
8408748 Janik Apr 2013 B2
8410726 Dau et al. Apr 2013 B2
8414154 Dau Apr 2013 B2
8445936 Hwu et al. May 2013 B1
8461602 Lerman et al. Jun 2013 B2
8596819 Negley Dec 2013 B2
8628214 Negley Jan 2014 B2
8632196 Tong Jan 2014 B2
8740407 Kotovsky et al. Jun 2014 B2
8766298 Hussell Jul 2014 B2
8773007 Van Jul 2014 B2
8882284 Tong Nov 2014 B2
8931933 Tong Jan 2015 B2
8960989 Van Feb 2015 B2
9016901 Janik Apr 2015 B2
9024517 Yuan May 2015 B2
9062830 Le Jun 2015 B2
9175811 Van Nov 2015 B2
9222654 Boyer Dec 2015 B2
9243758 Pickard Jan 2016 B2
9275979 Tong Mar 2016 B2
9310030 Tong Apr 2016 B2
9316361 Tong Apr 2016 B2
20020149933 Archer et al. Oct 2002 A1
20030031015 Ishibashi Feb 2003 A1
20030137839 Lin Jul 2003 A1
20030160256 Durocher et al. Aug 2003 A1
20040189218 Leong et al. Sep 2004 A1
20040223328 Lee et al. Nov 2004 A1
20040257803 Kermoade Dec 2004 A1
20050174769 Yong et al. Aug 2005 A1
20050207152 Maxik Sep 2005 A1
20050207156 Wang et al. Sep 2005 A1
20050265024 Luk Dec 2005 A1
20060098444 Petruzzi May 2006 A1
20060152931 Holman Jul 2006 A1
20060193130 Ishibashi Aug 2006 A1
20060221606 Dowling Oct 2006 A1
20070090387 Daniels et al. Apr 2007 A1
20070103066 D'Andrade et al. May 2007 A1
20070126354 Chao Jun 2007 A1
20070228999 Kit Oct 2007 A1
20070241355 Chua Oct 2007 A1
20070290217 Daniels Dec 2007 A1
20080079012 Grote et al. Apr 2008 A1
20080080163 Grote, III et al. Apr 2008 A1
20080080200 Robbins et al. Apr 2008 A1
20080089069 Medendorp Apr 2008 A1
20080179602 Negley et al. Jul 2008 A1
20080238338 Latham et al. Oct 2008 A1
20080238649 Arszman et al. Oct 2008 A1
20080259600 Pohlert Oct 2008 A1
20080309257 Hickey Dec 2008 A1
20090046457 Everhart Feb 2009 A1
20090086508 Bierhuizen Apr 2009 A1
20090108268 Sung Apr 2009 A1
20090114928 Messere et al. May 2009 A1
20090195787 Granados et al. Aug 2009 A1
20090237916 Park Sep 2009 A1
20090261357 Daniels Oct 2009 A1
20090261743 Chen et al. Oct 2009 A1
20090302730 Carroll et al. Dec 2009 A1
20100044589 Garcia et al. Feb 2010 A1
20100084665 Daniels et al. Apr 2010 A1
20100096977 Lee Apr 2010 A1
20100097798 Young Apr 2010 A1
20100102729 Katzir et al. Apr 2010 A1
20100128478 Anderson May 2010 A1
20100164344 Boerner et al. Jul 2010 A1
20100220046 Plotz et al. Sep 2010 A1
20100308353 Grabowski et al. Dec 2010 A1
20100317132 Rogers et al. Dec 2010 A1
20110026253 Gill Feb 2011 A1
20110050073 Huang Mar 2011 A1
20110068698 Swoboda Mar 2011 A1
20110069487 Ng et al. Mar 2011 A1
20110089838 Pickard Apr 2011 A1
20110103055 Carroll May 2011 A1
20110103067 Ago et al. May 2011 A1
20110133658 Sauerlaender Jun 2011 A1
20110163681 Dau et al. Jul 2011 A1
20110170288 Kim Jul 2011 A1
20110180818 Lerman et al. Jul 2011 A1
20110215697 Tong Sep 2011 A1
20110234109 Chiu Sep 2011 A1
20110260741 Weaver et al. Oct 2011 A1
20110267560 Usukura Nov 2011 A1
20110298371 Brandes et al. Dec 2011 A1
20120161626 Van Jun 2012 A1
20120217862 Matsuda Aug 2012 A1
20120235181 Matsuda Sep 2012 A1
20130058080 Ge Mar 2013 A1
20130064260 Tanda Mar 2013 A1
20130141892 Okazaki Jun 2013 A1
20130147348 Motoya Jun 2013 A1
20130155683 Matsuda Jun 2013 A1
20130223073 Hayashi Aug 2013 A1
20130328088 Morikawa Dec 2013 A1
20140071671 Tseng Mar 2014 A1
20140211457 Tarsa Jul 2014 A1
20140268698 Zimmerman Sep 2014 A1
20140328052 Hochman Nov 2014 A1
Foreign Referenced Citations (10)
Number Date Country
101968181 Feb 2011 CN
202010005863 Aug 2010 DE
2159780 Mar 2010 EP
61-198690 Sep 1986 JP
08-018105 Jan 1996 JP
WO05090852 Sep 2005 WO
WO05099310 Oct 2005 WO
WO07149362 Dec 2007 WO
WO09063655 May 2009 WO
WO09149263 Dec 2009 WO
Non-Patent Literature Citations (13)
Entry
English translation of Japanese Patent No. JP08-018105. 12 pages.
English translation of Japanese Patent No. JP61-198690, 11 pages.
“A Breakthrought in LED Technology,” Lightsheet™ versus the other LED Manufacturing Technology, Lightsheet, Articulux, Articulated Technologies web page downloaded on Aug. 27, 2010 from http://www.buylightsheet.com/how, html, 1 page.
“Competitive Advantage of LIGHTSHEET™ Technology,” Articulated Technologies white paper, Oct. 2008, 4 pages.
“Why pay for the lamp when you just need the light?,” Lightsheet, Articulux, Articulated Technologies web page downloaded on Aug. 27, 2010 from http://www.buylightsheet.com/, 1 page.
LED Bulb with 5W Power Consumption. product description, downloaded on Nov. 22, 2010 from http://www.best-b2b.com/Products/867/890-2/led-bulb-with-5w-power-consumption_417 . . . pp. 1-2.
James Gourlay et al., “74.2: High Efficiency Hybrid LED Backlight for Large-area LCD TV,” 2010 SID Digest, pp. 1097-1099.
James Gourlay et al., “79.4: Light-Rolls: High Throughput Manufacture for LED Lighting and Displays,” SID 2010 Digest, pp. 1184-1187.
S. W. Rickly Lee et al., “Process Development and Prototyping for the Assembly of LED Arrays on Flexible Printed Circuit Tape for General Solid State Lighting,” 2009 IEEE, 2009 Electronic Components and Technology Conference, pp. 2137-2142.
Konstantinos A. Sierros et al., “59.2: Durable Solid State Flexible LED Devices,” SID 2010 Digest, pp. 882-885.
Vergoosen, Invitation to Pay Additional Fees in PCT/US2011/049233 dated Dec. 22, 2011, 7 pages.
http://www.electronicproducts.com/Optoelectronics/Lamps_and_Bulbs/LED_lamps_mimic_incandescent_filaments.aspx, “LED lamps mimic incandescent filaments”, Ushio America, Electronic Products, May 21, 2010.
http://techon.nikkeibp.co.jp/english/NEWS_EN/20090106/163635, Yousuke Ogasawara, Nikkei Electronics, “Ushio Lighting Releases Light Bulbs with LED Filaments”, Jan. 7, 2009.
Related Publications (1)
Number Date Country
20150362149 A1 Dec 2015 US
Continuations (3)
Number Date Country
Parent 13857789 Apr 2013 US
Child 14659269 US
Parent 13484550 May 2012 US
Child 13857789 US
Parent 12917327 Nov 2010 US
Child 13484550 US