The present invention relates generally to self-retaining systems for surgical procedures, methods of manufacturing self-retaining systems for surgical procedures, and uses thereof.
Wound closure devices such as sutures, staples and tacks have been widely used in superficial and deep surgical procedures in humans and animals for closing wounds, repairing traumatic injuries or defects, joining tissues together (bringing severed tissues into approximation, closing an anatomical space, affixing single or multiple tissue layers together, creating an anastomosis between two hollow/luminal structures, adjoining tissues, attaching or reattaching tissues to their proper anatomical location), attaching foreign elements to tissues (affixing medical implants, devices, prostheses and other functional or supportive devices), and for repositioning tissues to new anatomical locations (repairs, tissue elevations, tissue grafting and related procedures) to name but a few examples.
Sutures are often used as wound closure devices. Sutures typically consist of a filamentous suture thread attached to a needle with a sharp point. Suture threads can be made from a wide variety of materials including bioabsorbable (i.e., that break down completely in the body over time), or non-absorbable (permanent; non-degradable) materials. Absorbable sutures have been found to be particularly useful in situations where suture removal might jeopardize the repair or where the natural healing process renders the support provided by the suture material unnecessary after wound healing has been completed; as in, for example, completing an uncomplicated skin closure. Non-degradable (non-absorbable) sutures are used in wounds where healing may be expected to be protracted or where the suture material is needed to provide physical support to the wound for long periods of time; as in, for example, deep tissue repairs, high tension wounds, many orthopedic repairs and some types of surgical anastomosis. Also, a wide variety of surgical needles are available; the shape and size of the needle body and the configuration of the needle tip is typically selected based upon the needs of the particular application.
To use an ordinary suture, the suture needle is advanced through the desired tissue on one side of the wound and then through the adjacent side of the wound. The suture is then formed into a “loop” which is completed by tying a knot in the suture to hold the wound closed. Knot tying takes time and causes a range of complications, including, but not limited to (i) spitting (a condition where the suture, usually a knot) pushes through the skin after a subcutaneous closure), (ii) infection (bacteria are often able to attach and grow in the spaces created by a knot), (iii) bulk/mass (a significant amount of suture material left in a wound is the portion that comprises the knot), (iv) slippage (knots can slip or come untied), and (v) irritation (knots serve as a bulk “foreign body” in a wound). Suture loops associated with knot tying may lead to ischemia (knots can create tension points that can strangulate tissue and limit blood flow to the region) and increased risk of dehiscence or rupture at the surgical wound. Knot tying is also labor intensive and can comprise a significant percentage of the time spent closing a surgical wound. Additional operative procedure time is not only bad for the patient (complication rates rise with time spent under anesthesia), but it also adds to the overall cost of the operation (many surgical procedures are estimated to cost between $15 and $30 per minute of operating time).
Self-retaining sutures (including barbed sutures) differ from conventional sutures in that self-retaining sutures possess numerous tissue retainers (such as barbs) which anchor the self-retaining suture into the tissue following deployment and resist movement of the suture in a direction opposite to that in which the retainers face, thereby eliminating the need to tie knots to affix adjacent tissues together (a “knotless” closure). Knotless tissue-approximating devices having barbs have been previously described in, for example, U.S. Pat. No. 5,374,268, disclosing armed anchors having barb-like projections, while suture assemblies having barbed lateral members have been described in U.S. Pat. Nos. 5,584,859 and 6,264,675. Sutures having a plurality of barbs positioned along a greater portion of the suture are described in U.S. Pat. No. 5,931,855, which discloses a unidirectional barbed suture, and U.S. Pat. No. 6,241,747, which discloses a bidirectional barbed suture. Methods and apparatus for forming barbs on sutures have been described in, for example, U.S. Pat. No. 6,848,152. Self-retaining systems for wound closure also result in better approximation of the wound edges, evenly distribute the tension along the length of the wound (reducing areas of tension that can break or lead to ischemia), decrease the bulk of suture material remaining in the wound (by eliminating knots) and reduce spitting (the extrusion of suture material—typically knots—through the surface of the skin All of these features are thought to reduce scarring, improve cosmesis, and increase wound strength relative to wound closures using plain sutures or staples. Thus, self-retaining sutures, because such sutures avoid knot tying, allow patients to experience an improved clinical outcome, and also save time and costs associated with extended surgeries and follow-up treatments. It is noted that all patents, patent applications and patent publications identified throughout are incorporated herein by reference in their entirety.
The ability of self-retaining sutures to anchor and hold tissues in place even in the absence of tension applied to the suture by a knot is a feature that also provides superiority over plain sutures. When closing a wound that is under tension, this advantage manifests itself in several ways: (i) self-retaining sutures have a multiplicity of retainers which can dissipate tension along the entire length of the suture (providing hundreds of “anchor” points this produces a superior cosmetic result and lessens the chance that the suture will “slip” or pull through) as opposed to knotted interrupted sutures which concentrate the tension at discrete points; (ii) complicated wound geometries can be closed (circles, arcs, jagged edges) in a uniform manner with more precision and accuracy than can be achieved with interrupted sutures; (iii) self-retaining sutures eliminate the need for a “third hand” which is often required for maintaining tension across the wound during traditional suturing and knot tying (to prevent “slippage” when tension is momentarily released during tying); (iv) self-retaining sutures are superior in procedures where knot tying is technically difficult, such as in deep wounds or laparoscopic/endoscopic procedures; and (v) self-retaining sutures can be used to approximate and hold the wound prior to definitive closure. As a result, self-retaining sutures provide easier handling in anatomically tight or deep places (such as the pelvis, abdomen and thorax) and make it easier to approximate tissues in laparoscopic/endoscopic and minimally invasive procedures; all without having to secure the closure via a knot. Greater accuracy allows self-retaining sutures to be used for more complex closures (such as those with diameter mismatches, larger defects or purse string suturing) than can be accomplished with plain sutures.
A self-retaining suture may be unidirectional, having one or more retainers oriented in one direction along the length of the suture thread; or bidirectional, typically having one or more retainers oriented in one direction along a portion of the thread, followed by one or more retainers oriented in another (often opposite) direction over a different portion of the thread (as described with barbed retainers in U.S. Pat. Nos. 5,931,855 and 6,241,747). Although any number of sequential or intermittent configurations of retainers are possible, a common form of bidirectional self-retaining suture involves a needle at one end of a suture thread which has barbs having tips projecting “away” from the needle until the transition point (often the midpoint) of the suture is reached; at the transition point the configuration of barbs reverses itself about 180° (such that the barbs are now facing in the opposite direction) along the remaining length of the suture thread before attaching to a second needle at the opposite end (with the result that the barbs on this portion of the suture also have tips projecting “away” from the nearest needle). Projecting “away” from the needle means that the tip of the barb is further away from the needle and the portion of suture comprising the barb may be pulled more easily through tissue in the direction of the needle than in the opposite direction. Put another way, the barbs on both “halves” of a typical bidirectional self-retaining suture have tips that point towards the middle, with a transition segment (lacking barbs) interspersed between them, and with a needle attached to either end.
Given the variety and characteristics of sutures, there is a need for a physician to be able to identify such variety and characteristics during a procedure.
Despite the multitude of advantages of unidirectional and bidirectional self-retaining sutures, there remains a need to improve upon the design of the suture such that a variety of limitations can be eliminated and enhanced and/or additional functionality is provided.
In accordance with one aspect, the present invention provides heterofunctional sutures and self-retaining sutures having sections of suture filament with different features.
In accordance with another aspect, the present invention provides self-retaining sutures having visible/recognizable indicia associated therewith to facilitate the identification and differentiation of sections of suture filament having different features.
In accordance with another aspect, the present invention provides methods and devices for providing one or more visible/recognizable indicia on a section of a self-retaining suture.
In accordance with particular embodiments the self-retaining sutures are bidirectional self-retaining sutures.
In accordance with particular embodiments, the present invention provides methods and devices for providing one or more visible/recognizable indicia on a section of a self-retaining suture.
In accordance with particular embodiments, the present invention provides for systems and methods that can use sutures with indicia during the performance of surgical procedures.
In accordance with particular embodiments, the present invention provides for systems and methods that can use sutures with indicia during the performance of endoscopic and robotically assisted surgical procedures.
The details of one or more embodiments are set forth in the description below. Other features, objects and advantages will be apparent from the description, the drawings, and the claims. In addition, the disclosures of all patents and patent applications referenced herein are incorporated by reference in their entirety.
Features of the invention, its nature and various advantages will be apparent from the accompanying drawings and the following detailed description of various embodiments.
Definitions
Definitions of certain terms that may be used hereinafter include the following.
“Self-retaining system” refers to a self-retaining suture together with devices for deploying the suture into tissue. Such deployment devices include, without limitation, suture needles and other deployment devices as well as sufficiently rigid and sharp ends on the suture itself to penetrate tissue.
“Self-retaining suture” refers to a suture that comprises features on the suture filament for engaging tissue without the need for a knot or suture anchor.
“Tissue retainer” (or simply “retainer”) or “barb” refers to a physical feature of a suture filament which is adapted to mechanically engage tissue and resist movement of the suture in at least one axial directions. By way of example only, tissue retainer or retainers can include hooks, projections, barbs, darts, extensions, bulges, anchors, protuberances, spurs, bumps, points, cogs, tissue engagers, traction devices, surface roughness, surface irregularities, surface defects, edges, facets and the like. In certain configurations, tissue retainers are adapted to engage tissue to resist movement of the suture in a direction other than the direction in which the suture is deployed into the tissue by the physician, by being oriented to substantially face the deployment direction. In some embodiments the retainers lie flat when pulled in the deployment direction and open or “fan out” when pulled in a direction contrary to the deployment direction. As the tissue-penetrating end of each retainer faces away from the deployment direction when moving through tissue during deployment, the tissue retainers should not catch or grab tissue during this phase. Once the self-retaining suture has been deployed, a force exerted in another direction (often substantially opposite to the deployment direction) causes the retainers to be displaced from the deployment position (i.e. resting substantially along the suture body), forces the retainer ends to open (or “fan out”) from the suture body in a manner that catches and penetrates into the surrounding tissue, and results in tissue being caught between the retainer and the suture body; thereby “anchoring” or affixing the self-retaining suture in place. In certain other embodiments, the tissue retainers may be configured to permit motion of the suture in one direction and resist movement of the suture in another direction without fanning out or deploying. In certain other configurations, the tissue retainer may be configured or combined with other tissue retainers to resist motion of the suture filament in both directions. Typically a suture having such retainers is deployed through a device such as a cannula which prevents contact between the retainers and the tissue until the suture is in the desired location.
“Retainer configurations” refers to configurations of tissue retainers and can include features such as size, shape, flexibility, surface characteristics, and so forth. These are sometimes also referred to as “barb configurations”.
“Bidirectional suture” refers to a self-retaining suture having retainers oriented in one direction at one end and retainers oriented in the other direction at the other end. A bidirectional suture is typically armed with a needle at each end of the suture thread. Many bidirectional sutures have a transition segment located between the two barb orientations.
“Transition segment” refers to a retainer-free (barb-free) portion of a bidirectional suture located between a first set of retainers (barbs) oriented in one direction and a second set of retainers (barbs) oriented in another direction. The transition segment can be at about the midpoint of the self-retaining suture, or closer to one end of the self-retaining suture to form an asymmetrical self-retaining suture system.
“Suture thread” refers to the filamentary body component of the suture. The suture thread may be a monofilament, or comprise multiple filaments as in a braided suture. The suture thread may be made of any suitable biocompatible material, and may be further treated with any suitable biocompatible material, whether to enhance the sutures' strength, resilience, longevity, or other qualities, or to equip the sutures to fulfill additional functions besides joining tissues together, repositioning tissues, or attaching foreign elements to tissues.
“Monofilament suture” refers to a suture comprising a monofilamentary suture thread.
“Braided suture” refers to a suture comprising a multifilamentary suture thread. The filaments in such suture threads are typically braided, twisted, or woven together.
“Degradable suture” (also referred to as “biodegradable suture” or “absorbable suture”) refers to a suture which, after introduction into a tissue is broken down and absorbed by the body. Typically, the degradation process is at least partially mediated by, or performed in, a biological system. “Degradation” refers to a chain scission process by which a polymer chain is cleaved into oligomers and monomers. Chain scission may occur through various mechanisms, including, for example, by chemical reaction (e.g., hydrolysis, oxidation/reduction, enzymatic mechanisms or a combination of these) or by a thermal or photolytic process. Polymer degradation may be characterized, for example, using gel permeation chromatography (GPC), which monitors the polymer molecular mass changes during erosion and breakdown. Degradable suture material may include polymers such as polyglycolic acid, copolymers of glycolide and lactide, copolymers of trimethylene carbonate and glycolide with diethylene glycol (e.g., MAXON™, Covidien), terpolymer composed of glycolide, trimethylene carbonate, and dioxanone (e.g., BIOSYN™ [glycolide (60%), trimethylene carbonate (26%), and dioxanone (14%)], Covidien), copolymers of glycolide, caprolactone, trimethylene carbonate, and lactide (e.g., CAPROSYN™, Covidien). A dissolvable suture can also include partially deacetylated polyvinyl alcohol. Polymers suitable for use in degradable sutures can be linear polymers, branched polymers or multi-axial polymers. Examples of multi-axial polymers used in sutures are described in U.S. Patent Application Publication Nos. 20020161168, 20040024169, and 20040116620. Sutures made from degradable suture material lose tensile strength as the material degrades. Degradable sutures can be in either a braided multifilament form or a monofilament form.
“Non-degradable suture” (also referred to as “non-absorbable suture”) refers to a suture comprising material that is not degraded by chain scission such as chemical reaction processes (e.g., hydrolysis, oxidation/reduction, enzymatic mechanisms or a combination of these) or by a thermal or photolytic process. Non-degradable suture material includes polyamide (also known as nylon, such as nylon 6 and nylon 6,6), polyester (e.g., polyethylene terephthlate), polytetrafluoroethylene (e.g., expanded polytetrafluoroethylene), polyether-ester such as polybutester (block copolymer of butylene terephthalate and polytetra methylene ether glycol), polyurethane, metal alloys, metal (e.g., stainless steel wire), polypropylene, polyethelene, silk, and cotton. Sutures made of non-degradable suture material are suitable for applications in which the suture is meant to remain permanently or is meant to be physically removed from the body.
“Suture diameter” refers to the diameter of the body of the suture. It is to be understood that a variety of suture lengths may be used with the sutures described herein and that while the term “diameter” is often associated with a circular periphery, it is to be understood herein to indicate a cross-sectional dimension associated with a periphery of any shape. Suture sizing is based upon diameter. United States Pharmacopeia (“USP”) designation of suture size runs from 0 to 7 in the larger range and 1-0 to 11-0 in the smaller range; in the smaller range, the higher the value preceding the hyphenated zero, the smaller the suture diameter. The actual diameter of a suture will depend on the suture material, so that, by way of example, a suture of size 5-0 and made of collagen will have a diameter of 0.15 mm, while sutures having the same USP size designation but made of a synthetic absorbable material or a non-absorbable material will each have a diameter of 0.1 mm. The selection of suture size for a particular purpose depends upon factors such as the nature of the tissue to be sutured and the importance of cosmetic concerns; while smaller sutures may be more easily manipulated through tight surgical sites and are associated with less scarring, the tensile strength of a suture manufactured from a given material tends to decrease with decreasing size. It is to be understood that the sutures and methods of manufacturing sutures disclosed herein are suited to a variety of diameters, including without limitation 7, 6, 5, 4, 3, 2, 1, 0, 1-0, 2-0, 3-0, 4-0, 5-0, 6-0, 7-0, 8-0, 9-0, 10-0 and 11-0.
“Needle attachment” refers to the attachment of a needle to a suture requiring same for deployment into tissue, and can include methods such as crimping, swaging, using adhesives, and so forth. The suture thread is attached to the suture needle using methods such as crimping, swaging and adhesives. Attachment of sutures and surgical needles is described in U.S. Pat. Nos. 3,981,307, 5,084,063, 5,102,418, 5,123,911, 5,500,991, 5,722,991, 6,012,216, and 6,163,948, and U.S. Patent Application Publication No. US 2004/0088003). The point of attachment of the suture to the needle is known as the swage.
“Suture needle” refers to needles used to deploy sutures into tissue, which come in many different shapes, forms and compositions. There are two main types of needles, traumatic needles and atraumatic needles. Traumatic needles have channels or drilled ends (that is, holes or eyes) and are supplied separate from the suture thread and are threaded on site. Atraumatic needles are eyeless and are attached to the suture at the factory by swaging or other methods whereby the suture material is inserted into a channel at the blunt end of the needle which is then deformed to a final shape to hold the suture and needle together. As such, atraumatic needles do not require extra time on site for threading and the suture end at the needle attachment site is generally smaller than the needle body. In the traumatic needle, the thread comes out of the needle's hole on both sides and often the suture rips the tissues to a certain extent as it passes through. Most modern sutures are swaged atraumatic needles. Atraumatic needles may be permanently swaged to the suture or may be designed to come off the suture with a sharp straight tug. These “pop-offs” are commonly used for interrupted sutures, where each suture is only passed once and then tied. For barbed sutures that are uninterrupted, these atraumatic needles are preferred.
Suture needles may also be classified according to the geometry of the tip or point of the needle. For example, needles may be (i) “tapered” whereby the needle body is round and tapers smoothly to a point; (ii) “cutting” whereby the needle body is triangular and has a sharpened cutting edge on the inside; (iii) “reverse cutting” whereby the cutting edge is on the outside; (iv) “trocar point” or “taper cut” whereby the needle body is round and tapered, but ends in a small triangular cutting point; (v) “blunt” points for sewing friable tissues; (vi) “side cutting” or “spatula points” whereby the needle is flat on top and bottom with a cutting edge along the front to one side (these are typically used for eye surgery).
Suture needles may also be of several shapes including, (i) straight, (ii) half curved or ski, (iii) ¼ circle, (iv) ⅜ circle, (v) ½ circle, (vi) ⅝ circle, (v) and compound curve.
Suturing needles are described, for example, in U.S. Pat. Nos. 6,322,581 and 6,214,030; and 5,464,422; and 5,941,899; 5,425,746; 5,306,288 and 5,156,615; and 5,312,422; and 7,063,716. Other suturing needles are described, for example, in U.S. Pat. Nos. 6,129,741; 5,897,572; 5,676,675; and 5,693,072. The sutures described herein may be deployed with a variety of needle types (including without limitation curved, straight, long, short, micro, and so forth), needle cutting surfaces (including without limitation, cutting, tapered, and so forth), and needle attachment techniques (including without limitation, drilled end, crimped, and so forth). Moreover, the sutures described herein may themselves include sufficiently rigid and sharp ends so as to dispense with the requirement for deployment needles altogether.
“Needle diameter” refers to the diameter of a suture deployment needle at the widest point of that needle. While the term “diameter” is often associated with a circular periphery, it is to be understood herein to indicate a cross-sectional dimension associated with a periphery of any shape.
“Armed suture” refers to a suture having a suture needle on at least one suture deployment end. “Suture deployment end” refers to an end of the suture to be deployed into tissue; one or both ends of the suture may be suture deployment ends. The suture deployment end may be attached to a deployment device such as a suture needle, or may be sufficiently sharp and rigid to penetrate tissue on its own.
“Wound closure” refers to a surgical procedure for closing of a wound. An injury, especially one in which the skin or another external or internal surface is cut, torn, pierced, or otherwise broken is known as a wound. A wound commonly occurs when the integrity of any tissue is compromised (e.g., skin breaks or burns, muscle tears, or bone fractures). A wound may be caused by an act, such as a puncture, fall, or surgical procedure; by an infectious disease; or by an underlying medical condition. Surgical wound closure facilitates the biological event of healing by joining, or closely approximating, the edges of those wounds where the tissue has been torn, cut, or otherwise separated. Surgical wound closure directly apposes or approximates the tissue layers, which serves to minimize the volume new tissue formation required to bridge the gap between the two edges of the wound. Closure can serve both functional and aesthetic purposes. These purposes include elimination of dead space by approximating the subcutaneous tissues, minimization of scar formation by careful epidermal alignment, and avoidance of a depressed scar by precise eversion of skin edges.
“Tissue elevation procedure” refers to a surgical procedure for repositioning tissue from a lower elevation to a higher elevation (i.e. moving the tissue in a direction opposite to the direction of gravity). The retaining ligaments of the face support facial soft tissue in the normal anatomic position. However, with age, gravitational effects and loss of tissue volume effect downward migration of tissue, and fat descends into the plane between the superficial and deep facial fascia, thus causing facial tissue to sag. Face-lift procedures are designed to lift these sagging tissues, and are one example of a more general class of medical procedure known as a tissue elevation procedure. More generally, a tissue elevation procedure reverses the appearance change that results from effects of aging and gravity over time, and other temporal effects that cause tissue to sag, such as genetic effects. It should be noted that tissue can also be repositioned without elevation; in some procedures tissues are repositioned laterally (away from the midline), medially (towards the midline) or inferiorly (lowered) in order to restore symmetry (i.e. repositioned such that the left and right sides of the body “match”).
“Medical device” or “implant” refers to any object placed in the body for the purpose of restoring physiological function, reducing/alleviating symptoms associated with disease, and/or repairing and/or replacing damaged or diseased organs and tissues. While normally composed of biologically compatible synthetic materials (e.g., medical-grade stainless steel, titanium and other metals or polymers such as polyurethane, silicon, PLA, PLGA and other materials) that are exogenous, some medical devices and implants include materials derived from animals (e.g., “xenografts” such as whole animal organs; animal tissues such as heart valves; naturally occurring or chemically-modified molecules such as collagen, hyaluronic acid, proteins, carbohydrates and others), human donors (e.g., “allografts” such as whole organs; tissues such as bone grafts, skin grafts and others), or from the patients themselves (e.g., “autografts” such as saphenous vein grafts, skin grafts, tendon/ligament/muscle transplants). Medical devices that can be used in procedures in conjunction with the present invention include, but are not restricted to, orthopedic implants (artificial joints, ligaments and tendons; screws, plates, and other implantable hardware), dental implants, intravascular implants (arterial and venous vascular bypass grafts, hemodialysis access grafts; both autologous and synthetic), skin grafts (autologous, synthetic), tubes, drains, implantable tissue bulking agents, pumps, shunts, sealants, surgical meshes (e.g., hernia repair meshes, tissue scaffolds), fistula treatments, spinal implants (e.g., artificial intervertebral discs, spinal fusion devices, etc.) and the like.
Marked Heterofunctional Sutures
As discussed above, the present invention provides compositions, configurations, methods of manufacturing and methods of using sutures, heterofunctional sutures and self-retaining sutures in surgical procedures which eliminate a variety of limitations and provide enhanced and/or additional functionality. As used herein, a heterofunctional suture is a suture having two or more functionally distinct sections of suture filament where the sections of filament have different features. A heterofunctional suture may also encompass sutures having two or more sections of filament where devices associated with the sections of filament, such as a needle by way of example only, have different features. As used herein the term “feature” is used to refer to a fixed property of a suture, such as material, retainer orientation, nominal diameter, needle configuration etc. The term “condition” is used to refer to variable properties of a suture filament such as tension, temperature etc. The term property is used to encompass both features (fixed properties) and conditions (variable properties) of sutures. The two or more sections of suture filament in a heterofunctional suture need not be of any particular length, but a section should be long enough for its difference in property to have an effect on the functionality of the section. This typically requires a length of suture long enough for at least one pass or bite through tissue under the conditions of use. Typically “a section of suture” will be a portion of suture having a length at least two orders of magnitude larger than the diameter and more typically, three or four orders of magnitude larger than the diameter of the suture.
In accordance with particular embodiments, the present invention provides sutures and self-retaining sutures which are dual-armed sutures; triple-armed sutures; multiple-armed sutures; heterofunctional sutures having two or more sections of suture having different features; dual-arm sutures having different types (or sizes) of needles on each end; single or dual-armed sutures for use with different layers/depth and types of tissue; single or dual armed sutures with sections of filament having different diameters for use with different layers/depth and types of tissue; dual-armed sutures having asymmetrically placed transition sections; and sutures having a combination of two or more of these features. According to particular embodiments of the present invention, these sutures, self-retaining sutures and/or sections thereof may be unmarked, marked or differentially-marked by one or more types of markers or combination of markers. Marked sutures include by way of example, dual-armed sutures having different markers on each end of the suture; heterofunctional sutures having different markers on different sections of suture; self-retaining sutures having markers indicative of the presence, absence and/or orientation of retainers in a section of suture; dual-armed sutures having different markers on each needle; dual-armed sutures having markers to identify orientation or direction of an end of a dual armed suture; sutures having markers utilized in robotically assisted surgical tools and with endoscopic surgical tools; sutures having markers that identify types and characteristics of sutures and call up such data from tables in computer devices (computer-assisted surgery devices) which display that information for the doctor or limit what the doctor can do as far as tensioning the suture as deployed; and sutures having markers in combination with sound or variable sound generators or light or variable light generators or haptic devices that vary a stimulus provided to a physician depending on the stress, strain and/or tension on the sutures.
The markers may be provided on the suture or on a needle or on another device associated with a suture or section of suture for example a pledget or the like. The markers include, but are not limited to: markers which identify features of the suture such as materials and/or other fixed properties; markers which identify conditions of the suture such as tension and/or other variable properties; markers visible in the visible light frequency range; markers invisible to the naked eye but which are visualized under the conditions of surgical use; markers recognizable in the non-visible radiation frequency range; markers detectable with ultrasound; markers which are machine readable; markers which may be read remotely; markers which are active markers; markers which are passive markers (passive RFID); markers which include an LED and an accelerometer or strain sensor; markers which include a light source and a sensor responsive to conditions of the suture; markers which identify the presence, absence and/or orientation of retainers; markers which identify different sections of a suture having different features; markers which change color due to suture stress, strain and/or tension; markers with alternating colors where the colors blend and produce a different color in response to suture stress, strain and/or tension; strain and/or tension; markers with different colors placed at different depths or side by side where the colors blend and produce a different color in response to suture stress, strain and/or tension; markers having one or more patterns where the patterns interfere with each to produce a visible or recognizable change in pattern in response to suture stress, strain and/or tension; markers which span a stretchable suture body and a relatively not stretchable retainer (somewhat isolated from the body) such that there is a noticeable misalignment when the suture body is under stress and stretched; and markers which deform or change configuration when the suture is under stress; markers which extend from housings or sleeves or cavities in the needle or suture when the suture is under stress; markers useful with stereo/3D imaging devices.
Marked Heterofunctional Self-Retaining Suture Systems
A break is shown in each of sections 140, 142, 144, 146 and 148 to indicate that the length of each section may be varied and selected depending upon the application for which the suture is intended to be used. For example, transition section 144 can be asymmetrically located closer to needle 110 or needle 112, if desired. A self-retaining suture having an asymmetrically located transition section 144 may be favored by a physician that prefers to use his dominant hand in techniques that require suturing in opposite directions along a wound. The physician may start further from one end of the wound than the other and stitch the longer portion of the wound with the needle that is located further from the transition section 144. This allows a physician to use his dominant hand to stitch the majority of the wound with the longer arm of the suture. The longer arm of the suture is that section of suture between the transition section and the needle which is located further from the transition section.
Heterofunctional self-retaining suture system 100 is composed of two arms having different functions. Each arm may be considered to be a section of self-retaining suture system 100. The first arm comprising sections 142 and section 140 of self-retaining suture thread 102 and a curved needle 110 has relatively small retainer suitable for engaging harder/denser tissue. The second arm comprising sections 146 and 148 and needle 112 of self-retaining suture thread 102 has relatively larger retainers suitable for engaging softer/less dense tissue. Self-retaining suture thread 102 of
The physician wishes to move the transition section 144 so that it is approximately centered upon opening 160 and then pick up needle 112 and take another bite through the tissue on each side of opening 160 moving from right to left. However, the retainers 130 along are not sufficiently visible to the physician via the endoscope. Also, endoscopic instruments 166 and 168 do not provide enough tactile sensation to the physician for the physician to be able to feel where the retainers 130 are located.
The first task for the physician is how to identify section 144, differentiate it from sections 142 and 146 and then center section 144 upon opening 160. If section 144 is provided with markers 154, as shown in
The next task for the physician is finding and identifying the needle associated with the suture exiting on the right side of the opening 160. Note that section 142 of the suture which is located on the right of opening 160 leaves visual field 164. Everything outside the dashed circle is invisible to the physician without moving the endoscope. Unless needle 112 is marked in some way, the physician may assume, incorrectly that needle 112 is associated with section 142 of self-retaining suture system 100. However, if needle 112 is marked as shown in
The next task for the physician is to find and grasp needle 110. One way for the physician to acquire needle 110 is to follow section 142 of the suture all the way from opening 160 to the end. This is time consuming and the physician maybe come confused if sections 142 and 146 cross or move at some point. A faster technique would be for the physician to start from the visible segment 170 of section 142 of the suture within the visual field 164. However, unless section 142 of the suture thread is marked in some way there is no way for the physician to be sure that visible segment 170 of the suture is part of section 142. Likewise the physician cannot tell whether visible segment 172 of the suture is part of section 142 or part of section 146. If section 142 is marked in some way, the physician may acquire section 142 at visible portion 170. If section 142 is marked in a way that indicates orientation of the suture the physician will be able also to know in what direction needle 110 lies from the visible portion 170 allowing the physician to acquire the needle 110 in the most expedient and accurate way. If needle 110 is also marked in some way, the physician may confirm that the physician has acquired the correct needle for the next step in the procedure. Thus, marking the suture, suture sections and/or needles reduces error and saves time.
Heterofunctional Self-Retaining Suture Systems
As discussed above, it is particularly desirable to mark and identify portions of a self-retaining system when there is a difference in the features/utility of different sections of the self-retaining suture. In the case of self-retaining sutures the difference in features between sections of the suture may be the presence, absence and orientation of retainers associated with the section. In
As shown in
As shown in
The difference in function between the arms in a bidirectional self-retaining suture system may be due to differences in the needles (or other devices attached to the filament) rather than the suture filament itself. For example, as shown in
Heterofunctional self-retaining suture systems are not limited to two arms (dual-armed suture). A heterofunctional self-retaining suture system may have more than two arms. Other multiple-arm sutures may include two, three, four, five or more arms. As shown in
Referring now to
Referring now to
Visible Indicia for Self-Retaining Sutures
As discussed above, it is particularly desirable to mark and identify portions of a heterofunctional suture system where different sections of the suture have different features such as in dual-arm self-retaining suture systems. In heterofunctional self-retaining suture systems the difference in function between sections of the suture may be the presence, absence and/or orientation of retainers. To serve the purpose of allowing a physician to identify and differentiate suture sections, the suture markers should be readily recognized and distinguished by the physician under the conditions in which the suture is to be used. For example, in microsurgery applications, markers may be used that are visible under the microscope, but not necessarily visible to the naked eye. Likewise in endoscopic applications, markers should be used that are visible through the endoscope and associated display system. If the suture will be used with fluoroscopic visualization then the markers may include radiopaque markers. If the suture will be used with ultrasound visualization then the markers may include echogenic markers. Thus, different markers and different types of markers may be appropriate under different circumstances depending upon the circumstances of the procedure and the scanning/imaging/visualization technology utilized in the procedure.
The markers can be provided in various forms that may be identified and distinguished from one another. The markers may comprise distinguishable, patterns, shapes, lengths, colors sizes, directions and arrangements. The markers can include different colors such as red, green, orange, yellow, green, blue etc. Such colors may be used in a uniform density or varying density in which case the graduation of color density may be used to designate e.g. an orientation. The markers may be included along the entire length of the self-retaining suture system, at a number of discrete points, or only at the ends or transition section of the self-retaining suture. In some cases it may be desirable to use a color for markers that is uncommon in the operative environment. For example, it may be desirable to use green markers because green is not common in the human body. In endoscopic applications using green is advantageous because the video system can be programmed to emphasize green and enhance marker visualization without interfering with the remainder of the image.
The markers can be formed by various conventional methods. For example, the markers can be coated, sprayed, glued, dyed, stained, or otherwise affixed to the self-retaining suture systems or components thereof. Alternatively, markers can be made by treating a surface of the suture system to make an observable change in surface characteristics such as by branding, texturing, embossing, stamping and the like. Alternatively, the markers may be an integral part of the material from which the self-retaining suture system is formed—such as by forming a self-retaining suture system by joining different sections of suture filament of different colors. The markers may be provided on one or more of the suture filament, the needles, or another item, such as a pledget, associated with the self-retaining suture system or section of the filament. In some case markers may be formed as an integral part of the retainers of a self-retaining suture, such as by creating retainers of a particular color of material or by exposing a particular color of material—different retainer patterns may be used to differentiate different sections of the self-retaining suture.
The shapes of
Visible/Recognizable Indicia for Needles and/or Pledgets
As described above, the needle or another object associated with a section of a heterofunctional suture filament may be marked to enable that section to be identified and distinguished from other sections instead of, or in addition to, marking the suture filament itself.
Variable Indicia of a Suture Condition
Visual/recognizable markers may be used for other functions instead of, or in addition to, identifying and differentiating sections of a heterofunctional suture and indicating the orientation of the suture. Markers may also be utilized to indicate other features or conditions of the suture. A marker indicative of a fixed feature such as the material from which the suture is made could be in the form of a color code or the like that provides a visual/recognizable clue to the physician regarding the suture he is using without having to check the packaging. Non-sterile portions of the suture packaging may be removed by a physician's assistant, for example, with the physician observing or not observing the labeling. Thus, a fixed marker associated with the suture may be useful for the physician to confirm that they are using the suture they requested. Again, the marker can provide an image in the visible and/or non-visible light range.
A marker that is indicative of a condition of the suture must undergo a discernible change in appearance or other recognizable characteristic in response to a change in the condition. For example, in endoscopic applications where long instruments are used through ports or even operated remotely, it can be difficult or impossible for the physician to feel the tension applied to the suture by the instruments or by the suture to tissue. To replace the reduced or missing haptic feedback, it is advantageous to provide a variable marker indicative of the tension in the suture. The variable marker provides a visual or recognizable cue that can be observed by the physician through the endoscope (or recognized by other means).
In a simple case, as shown in
An alternative self-retaining suture filament 510 is shown in
For example, markers can be made of two colors that under stress blend and present a third color or various intensities of shades of a different color depending upon the degree of stress. The two different colors can be placed at different depths of a suture and when the suture is stressed the colors blend or overlap each other to present different colors. The different depths of the suture can be made of different materials that stretch to different degrees when the suture is stressed and thus the different colors at different depths would blend or overlap each other to present a different color. The different levels can be co-extruded to provide, as desired, each layer with different types of suture material and different colored markers. Further the different colored markers can be placed side by side on the surface of the suture and when the suture is under stress the colors blend or overlap or become differently oriented relative to each other such that they present a different color or shade and the color or shade may be dependent upon the degree of stress that the suture is under. Instead of different colors, different patterns can be used and then the patterns overlap or otherwise combine due to stress being placed on the suture, a different pattern such as an interference or interfering pattern can be presented.
An alternative self-retaining suture filament 520 is shown in
As shown in
Other passive mechanical sensors may indicate suture properties through means other than displaying a visible marker or optically detectable marker. For example, a wireless passive strain sensor may be incorporated into a suture or a needle or another device associated with the suture to allow remote sensing of the tension using a non-optical sensor. One such sensor is disclosed in Tan et al., “A wireless, passive strain sensor based on the harmonic response of magnetically soft materials” Smart Materials And Structures 17:1-6 (2008) which is incorporated herein by reference. Tan et al. disclose a sensor made of a ferromagnetic sensing element separated by a deformable elastic material from a permanent magnetic strip. Adjusting the strain applied to the sensor changed the distance between the sensor and the permanent magnet by deforming the elastic material. This change in distance created a detectable change in the harmonic response of the sensor to an alternating magnetic field. Thus a simple passive sensor provides a strain signal that can be detected remotely using an external magnetic field. Similarly passive strain sensors associated with the suture or needle can be read using other remote sensing technologies, such as ultrasound, fluoroscopy, and the like.
Active Indicia for Self-Retaining Sutures
Fixed or variable markers for suture filaments may also be provided by active systems instead of, or in addition to, other marking methods. Such active visible markers may be utilized to indicate features or conditions of the suture.
Light source 618 is controlled by light controller 617 which takes power from power source 616. Light controller 617 determines the characteristics of the light signal provided by light source 618. The light signal may be varied over time such as by turning it on, turning it off and/or flashing at different speeds. The light signal may also be varied in color if light source 618 is capable of producing light of different wavelengths. If power source 616 is a battery, the available power will limit the time that light source 618 may be operated. Thus, it will be desirable that light source 618 be activated by light controller 617 only at the beginning of the procedure utilizing suture filament 610. The activation may be achieved using a magnetic switch, mechanical switch, electromagnetic sensor or the like. In one embodiment, the light source can be an LED and the controller a sensor that measures stress, strain or tension. The LED and sensor can be made in a semiconductor chip. The power supply can be passive, such as in a passive RFID tag. Then a source of radiation may activate the RF power source to power the sensor and the LED light source. In some embodiments the sensor may comprise an accelerometer.
In a dual-armed suture system, another active marker system 614 may be provided in another needle swaged to the opposite end of suture filament 610. Where two active marker systems 614 are used, they may be differentiated based upon the characteristics of the light signals provided by the light source 618. For example, each light source may be controlled to provide light of a different wavelength than the other. Alternatively, one light source may provide a constant light signal whereas the other light source may provide a flashed light signal. If light signals from both light sources overlap in the suture filament, then the light signals may be attenuated by adjusting the power of the light signals, reducing the light transmission of the suture filament or placing a barrier such as an opaque section to block light transmission between one section of suture filament 610 and another section of suture filament 610.
An active marker indicative of a feature, such as the material of which a section of a heterofunctional suture is made, or the orientation of retainers in a particular section of a self-retaining suture, can be in the form of a color code or the like that provides a visual cue to the physician regarding the suture he is using without having to check the packaging. Non sterile portions of the suture packaging may be removed by a physician's assistant for example with the physician observing the labeling. Thus an active visible marker associated with the suture may be useful for the physician to confirm they are using the suture they requested.
Active visual markers may also be utilized to indicate conditions of the suture. An active visual marker that is indicative of a condition of the suture undergoes an observable change in appearance in response to the condition. Thus, in one example a light signal may be modulated in response to tension in a suture providing a visual cue that can be observed by the physician.
The light signal provided by light source 628 is modulated by controller 627 in response to the output of sensor 625. Thus the light signal provided by light source 628 is modulated in response to the condition monitored by sensor 625. For example, sensor 625 may be a force sensor, such as an accelerometer, and controller 627 (also part of the accelerometer, for example, in this embodiment) may control light source 628 so that no light signal is provided to suture filament 620 until the sensor indicates that a threshold tension in filament 620 has been achieved. When the tension passes the threshold then controller 627 turns on light source 628 providing a cue to the physician. Alternatively, the light source may be on initially and then flashed when the tension reaches the threshold.
As shown in
Where an active marker system is provided other than at the end of a suture filament as shown in
Machine-Readable Indicia for Self-Retaining Sutures
As described above, a suture filament may be provided with visible markers indicative of features or conditions of the suture filament and/or indicative of particular sections of a suture filament having different features. Such markers are observed by the physician under the operative conditions—which may include e.g. magnification in microsurgical procedures and video display—including wavelength translation/enhancement in endoscopic procedures. However, where machines are available to read, scan and decode suture markers, such markers need not be visible markers or markers that may be visually decoded. The markers may be designed to be machine-readable instead of, or in addition to, being directly visualizable by the physician. While visible markers may be identified and decoded utilizing a video tracking and analyzing system, different visible markers may be more suitable for machine recognition. Moreover, non-visible suture markers or coding may also be used by a computer system to identify sections and conditions of sutures. When the suture sections and/or conditions have been recognized and assessed by the system, information about the sections and conditions of the suture may be provided to the physician by the system. The information may be provided to the physician over any available display system, including a visual, aural or haptic display.
As shown in
As shown in
As shown in
In the embodiments of
As shown in
Referring again to
Display processing system 748 of
Laser-Marked Indicia for Self-Retaining Sutures
As discussed above, it is particularly desirable to mark and identify portions of a heterofunctional suture system where different sections of the suture have different features such as in bidirectional self-retaining suture systems. In self-retaining suture systems the difference in function between sections of the suture may be the presence, absence and/or orientation of retainers. In one aspect it may be desirable to mark the transition section of a bidirectional suture. In one embodiment of the present invention electromagnetic radiation is used to create recognizable indicia on the transition section of a self-retaining suture in a manner that allows a physician to identify and differentiate the transition section. In one embodiment, a laser is used to create laser-marked indicia which are readily recognized and distinguished by the physician under the conditions in which the suture is to be used thereby allowing the surgeon to locate the transition region and/or other section of the self-retaining suture. The laser radiation can impart denaturation or discoloration to the suture dye or pigment, or bleach an area of the suture.
In preferred embodiments, the suture thread includes a colorant which changes color in response to laser exposure. Colorants include both dyes (water soluble) and pigments (not water soluble). Preferred colorants are non-reactive and biologically inert. Colorants are available in a variety of colors including black and white. In addition, colorants include dyes and pigments which can be visualized using alternate sources of energy such as using a “black light” which makes the colorant fluoresce or otherwise become visible. The colorant is, in preferred embodiments, a colorant approved for use in sutures in the relevant jurisdiction. The colorants that may be used in sutures are regulated in the United States by the Food and Drug Administration (FDA). Thus, in preferred embodiments, the colorant is a color additive identified in 21 C.F.R. 73(D) as exempt from certification for the specified suture application; and/or a color additives identified in 21 C.F.R. 74(D) as subject to certification for the specified suture application. Suitable colorants for sutures include, for example, titanium dioxide, D&C Violet No. 2; D&C Blue #6; D&C Blue #9; D&C Green #5; FD&C Blue #2; Logwood extract; [Phthalocyaninato(2-)]copper; and Chromium-cobalt-aluminum oxide.
The suture colorant selected for a particular internal suturing application is preferably selected to enhance the visibility of the suture. A light/bright colorant (including white) is preferred in embodiments where the suture will be used in dark tissue—for example the liver. A dark colorant (including black) is preferred in embodiment where the suture will be used in light tissue, for example fatty tissue. In some cases it may be desirable to use a color for the suture that is uncommon in the operative environment. For example, it may be desirable to use green suture because green is not common in the human body. In endoscopic applications using green is advantageous because the video system can be programmed to emphasize green and enhance marker visualization without interfering with the remainder of the image. However, if a superficial of cosmetic suture will not be removed the colorant is, in some embodiments selected so that the suture will not be visible through the skin of the patient. Moreover, for absorbable superficial sutures, the colorant should be selected so that coloration will not be visible through the skin of the patient after the suture degrades.
The suture colorant is also selected for its ability to change color in response to laser exposure that does not damage the suture. In preferred embodiments treatment of the suture with laser causes a color change in the treated region(s) which has high contrast with the untreated region(s). This enhances the visibility of the laser-marked indicia. The change in color is in particular embodiments from colored to uncolored, from uncolored to colored, from a first color to a second color different than the first color, and/or from a color at a first density to the same color at a different density.
In one embodiment, titanium dioxide (TiO2) is incorporated into the material of the self-retaining suture prior to extrusion. The titanium dioxide is an inert pigment that colors the suture thread white. Titanium dioxide is in some embodiments 2%, 1% or less by weight of the suture/pigment blend. UV laser energy directed at the suture can be used to generate high contrast black marks against the white background. The UV laser radiation does not penetrate far into the suture—in preferred embodiments the penetration is less than 2 μm. The small penetration of the UV laser energy into the suture minimizes the extent and degree of disruption to the suture thread.
In an alternative embodiment, [Phthalocyaninato(2-)]copper is incorporated in the material of a polypropylene suture. [Phthalocyaninato(2-)]copper is a biocompatible colorant which colors the suture thread blue. Visible laser energy directed at the suture can be used to denature the [Phthalocyaninato(2-)]copper so that it is no longer blue. The laser energy changes the color of [Phthalocyaninato(2-)]copper by eliminating the blue color. Essentially, the color is bleached generating a high contrast between the area of laser exposure where the blue color is absent and the blue areas which were not treated with the laser. In preferred embodiments, the laser penetrates to the center of the suture to denature the [Phthalocyaninato(2-)]copper through the section of the suture targeted for creation of the indicia.
In a preferred embodiment, the colorant is dispersed into the bulk form of the thermoplastic resin prior to extrusion of the suture thread. For example, a dry colorant is in some embodiments blended and uniformly dispersed into the thermoplastic resin in pellet, granule or chip form and dry. The amount of colorant employed in the blend is selected to produce the desired coloration in the suture thread. For example, colorants are in some embodiments employed in amounts up to about 0.2% by weight, based on the total weight of colorant and resin, more preferably from about 0.01 to about 0.2% by weight, more preferably from about 0.05 to 0.1% by weight and, most preferably, at about 0.075% by weight. In alternative embodiments higher or lower amounts of colorant can be utilized. The dry blend of resin and colorant is then extruded using conventional techniques to create the suture thread. Laser-marked indicia may be usefully placed on suture threads including: monofilament suture thread, extruded multi-material suture thread, braided suture thread, coated/sheathed braided suture thread; natural suture thread and combinations thereof.
In general, a laser head is used to apply a laser beam to the surface of the suture thread. The laser energy is absorbed by the suture thread. In preferred embodiments the laser energy is preferentially absorbed by the colorant which changes in appearance. The laser energy changes the appearance of the laser-reactive constituent in the selected area by increasing, decreasing or changing a color, contrast, reflectivity, transparency or other visualizable property within the selected area relative to non-selected areas of the suture. The change in color of the colorant can be achieved by one or more of: breaking bonds in the colorant; changing bonds in the colorant; realigning bonds in the colorant; and/or changing the stereochemistry of the pigment. The laser reactive constituent is in embodiments of the invention a polymer incorporated or colorant into the suture thread before, during or after manufacture of the suture thread.
The laser light is provided at power, wavelength, and pulse duration selected to change the appearance of the laser reactive constituent of the self-retaining suture in the selected area without damaging the self-retaining suture. The wavelength of the laser is typically in the range of UV to visible to infrared light. Light as used herein is not limited to the visible spectrum. The ideal wavelength for causing color change in a colorant will often be different for each colorant. The exposure required to cause the desired color change may be accomplished in one continuous exposure or a plurality of pulses. Exposure to a plurality of laser pulses allows the energy of each laser pulse to dissipate and therefore induces a lower temperature rise in the suture thread than one continuous pulse of the same total length. The power of the laser beam and/or pulse duration are controlled to change the color of the suture thread while delivering insufficient total energy to adversely affect the bulk material properties of the suture thread. For example, in a preferred embodiment a femtosecond laser is used which provides high power for very short duration laser pulses. The wavelength, power, focus and/or pulse duration are also controlled to achieve the desired penetration of the laser into the suture thread.
A variety of different lasers and control system can be used to direct the laser to the selected locations of a suture and generate the selected laser marked-indicia. In some embodiments, a steered beam laser marking system is used to create the laser-marked indicia. In a steered beam system a pulsed laser is directed at a moving point on the suture thread. Mirrors mounted on computer-controlled galvanometers to draw lines, patterns and characters on the surface of the suture thread. In alternative embodiments, an imaged-mask laser system is used to create the laser-marked indicia. A metal stencil mask is created with an aperture in the shape of the desired laser-marked indicia. The metal stencil is illuminated by the laser which is imaged onto the suture thread using a lens. The image of the entire stencil is marked on the suture with a single pulse of laser light. In alternative embodiments, a dot-matrix laser system is used to create the laser marked indicia. Dots are produced on the suture thread by modulating a laser on or off and controlling the location using a rotating polygonal mirror in stepwise fashion.
In embodiments of the present invention, laser-marked indicia are provided on one or more of the suture thread, regions of the suture thread, the retainers, the needles, or another item, such as a pledget, associated with a bidirectional self-retaining suture system or section of the suture thread. The laser-marked indicia can, in some embodiments, be provided in various forms that are distinguishable from one another. The laser-marked indicia can, in some embodiments, comprise one or more distinguishable, patterns, shapes, lengths, colors sizes, directions and arrangements. The laser-marked indicia are used in a uniform density or varying density in which case the graduation of density may be used to designate e.g. an orientation. The markers may be included along the entire length of the self-retaining suture system, at a number of discrete points, or only at the ends or transition section of the self-retaining suture.
The shape and/or distribution of the laser-marked indicia are, in preferred embodiments, selected so as to enhance the visibility of the indicia during use. A variety of patterns including: concentric rings of uniform and/or variable thickness, dot patterns, dash patterns, random patterns, longitudinal striping, alphanumerics and/or combinations thereof may be applied to mark the suture for optimal visualization by the clinician. This also includes patterns made from a variety of different shades of pigment discoloration. For example, a suture could be manufactured with a mixture of two pigments where light energy is used to change the suture color by changing the color of the one pigment more than the second pigment thus causing a change in the suture color. The pattern of the marking can be varied, i.e. single/multiple rings, rings of equal or different width, longitudinal patterns and combinations of the foregoing. The intensity of the blanching can be varied individually or in a pattern to focus attention at the center. A wide variety of different shapes and distributions of laser-marked indicia can be used so long as they are distinguishable by the physician under the conditions of use. Laser-marked indicia can be formed in all of the shapes and distributions described herein. (See, e.g.
In a preferred embodiment, the laser-marked indicia are bands visible from all sides of the suture thread. Different sections of the suture are provided with different configurations or densities of bands (including no bands) in order that the different sections of the self-retaining suture may be recognized and identified by a surgeon.
As shown in
As shown in
As shown in
As shown in
Laser-marked bands 854a, 856b, 854c, 856c, 854d and 856d are illustrated in
As shown in
As shown in
As shown in
In some embodiments, treatment with a laser causes a suture to change color from a first color to a second color. For example, a suture including both a yellow and blue colorant is uniformly colored green during manufacture. A laser treatment is selected which preferentially denatures the blue colorant and not the yellow colorant. In areas treated with the laser, the suture thus changes to a yellow color from a green color when the blue colorant is denatured. Bleached portions 854e, 852f, 852g, and 854g are illustrated in
As shown in
Laser-marked indicia may also be used on self-retaining sutures which are not bidirectional and also on non-self-retaining sutures.
As shown in
As shown in
As shown in
As shown in
In other embodiments, laser-marked indicia are created on other self-retaining or non-self-retaining implantable polymer implants. For example, a surgical mesh can be formed from a polymer which includes a colorant. Exposure of regions of the mesh to a laser can be used to change the color of the colorant in the exposed regions thereby generating laser-marked indicia on the mesh. The laser-marked-indicia can be used to identify portions of the mesh having particular functionality. The laser-marked indicia can also be used to assist the surgeon in placement/or orientation of the mesh. A range of medical devices can be marked by techniques described herein including, for example, orthopedic implants (artificial joints, ligaments and tendons; and other implantable hardware), dental implants, intravascular implants (arterial and venous vascular bypass grafts, hemodialysis access grafts; both autologous and synthetic), skin grafts (autologous, synthetic), tubes, drains, pumps, shunts, sealants, surgical meshes (e.g., hernia repair meshes, tissue scaffolds), fistula treatments, spinal implants (e.g., artificial intervertebral discs, spinal fusion devices, etc.) and the like.
Laser System for Marking Sutures
The laser-marked indicia of a self-retaining or ordinary suture should be located appropriately to identify particular sections/features of the self-retaining suture as described above. Thus, it is important that the laser-marking system be configured to align the laser marking head with the appropriate locations of the suture. This can be achieved, for example, by incorporating the laser marking head into the retainer-forming machine which creates the retainers. After the suture thread is mounted in the machine, the retainer-forming machine indexes the suture longitudinally from position to position relative to a retainer-forming head to form retainers. The same machine, with information about the relative positions of the retainer-forming head and laser-marking head can also index the suture correctly relative to the laser-marking head and activate the laser marking-head to create the laser-marked indicia at the appropriate position or positions on the self-retaining suture.
Laser-marking head 914 may include an imaging device 918 for verifying the laser-marked indicia. Imaging device 918, if present, feeds verification information to computer system 916. The imaging device is in some embodiments a digital still or video camera with suitable magnification for imaging the suture and distinguishing the contrast of the laser-marked indicia. The imaging device in preferred embodiments has an adjustable light for illuminating the suture thread in a manner which is optimal for the retainer or laser-marked indicia being imaged. Laser marking head 914 includes standard laser optic components including: collimators, masks, lenses, galvanometers and mirrors. The laser optic components are arranged to direct the laser light to a particular region of the suture thread and not other regions of the suture thread in order to create the desired indicia. The laser marking head, in some embodiments, also includes component for correctly aiming the laser suture thread with the laser to ensure the marking is correctly positioned. The aiming device can incorporate an optical device such as imaging device 918. The use of a laser-marking head is advantageous in a retainer-forming machine because the laser marking head can operate without contacting the suture thread.
After suture thread 902 is mounted to chucks 904, 906, under control of computer system 916, the chucks 904, 906 translate and rotate suture thread 902 stepwise relative to retainer-forming head 912. At selected positions of suture thread 902, computer system 916, activates retainer-forming head 912 to form a retainer on suture thread 902. The process is repeated stepwise until, for example, suture thread 902 is a bidirectional self-retaining suture having a first section 942 having a plurality of retainers oriented in a first direction; a second section 946 having a plurality of retainers oriented in a second direction; and a transition section 944 having no retainers and positioned between the first section 942 and the second section 946.
Before, during, or after creation of the retainers, under control of computer system 916, the chucks 904, 906 translate and rotate suture thread 902 relative to laser-marking head 914. At selected positions of suture thread 902 relative to laser-marking head 914, computer system 916, activates laser marking head 914 to create a laser marked indicia on suture thread 902. The process is repeated stepwise until, for example suture thread 902 has laser marked indicia at all the desired positions. At selected positions of suture thread 902 relative to imaging device 918, computer system 916, may also activate imaging device 918 to validate correct creation and/or location of laser-marked indicia on suture thread 902.
In step 926, the chucks index the suture thread to a desired position by translating and/or rotating the suture thread relative to the retainer-forming head and/or laser-marking head. The retainer-forming machine has a linear transport mechanism which includes the chucks for moving the self-retaining suture through the retainer-forming head and laser-marking head.
In step 928, the retainer forming head is actuated if the suture is correctly positioned for forming a retainer. The controller of the retainer-forming head records the position of the retainers on the self-retaining suture.
In step 930, the laser-marking head is actuated to create a laser-marked indicia if the suture is correctly positioned for creating a laser-marked indicia. The retainer-forming machine indexes the targeted sections of the self-retaining suture to be aligned with the laser-marking head without requiring re-indexing and identification of the section of the self-retaining suture thread. The self-retaining suture thread is exposed to laser light from the laser-marking head to create the desired laser-marked indicia. The laser-marking head may expose all of the selected area at one time or may selected sub-portions of the selected area in a sequential process to create the desired laser-marked indicia.
In step 932, the imaging device is actuated to imaging device is actuated if the suture is correctly positioned for verification of e.g. a laser-marked indicia. In a preferred embodiment, the laser-marking head has an optical sensor for imaging the selected area of the suture thread and verifying that the visual property of the suture thread in the selected area has changed to the desired value after exposure to the laser light. If the laser-marked indicia are not verified the sensor indicates a fault to the operator who can check the machine and the self-retaining suture.
In step 934 the step-wise process repeats, returning to step 926 until all of the desired retainers have been formed and all the desired laser-marked indicia created. If all of the desired retainers have been formed and all the desired laser-marked indicia created, then, at step 938, the bidirectional self-retaining suture thread is complete. The suture thread may be unloaded from the chucks, have the retainer-less lead-in sections trimmed and have needles swaged on each end.
In alternative embodiments, a marking head other than a laser-marking head is incorporated in the retainer-forming machine. The retainer forming machine controls the retainer formation and marking as previously discussed, however, the marking head uses another technology to create the indicia. For example, embodiments of the marking head include a spray head, painting head, printing head, coating head and the like for applying a colorant to the suture or removing a colorant from the suture thread in a controllable manner to create indicia. The marking head can in some embodiments be contacting or contactless. The marking head can also be a head that coins a feature in the suture thread. The marking head can create a marking feature on the suture thread by one of creating a deformation, a discontinuity, an indentation, a loop, a protrusion, a ridge and a reduced diameter. Additionally, the marking head can be a head that dispenses one of a fluid, a supercritical fluid and a dye extraction agent to expose the suture thread to one of said fluid, said supercritical fluid and said dye extraction agent in order to change, reduce or extract the color of the suture or in order to change, reduce or extract the color of a colorant of the suture.
In alternative embodiments, the indicia, laser-marked or otherwise, are created on the suture thread in a process prior to loading the suture thread on the retainer-forming machine. In such case a retainer forming machine may be used similar to retainer-forming machine 900 of
In step 966 the chucks translate and/or rotating the suture thread relative to the imaging device 918 until the pre-marked indicia is located. The computer system records the location of the pre-marked indicia.
In step 968, the chucks index the suture thread to a desired position by translating and/or rotating the suture thread relative to the retainer-forming head. The retainer-forming machine has a linear transport mechanism which includes the chucks for moving the self-retaining suture through the retainer-forming head and laser-marking head.
In step 970, the retainer forming head is actuated if the suture is correctly positioned relative to the pre-marked indicia for forming a retainer. The retainer-forming machine indexes the targeted sections of the self-retaining suture correctly with respect to the pre-marked without requiring additional re-indexing and identification of the section of the self-retaining suture thread.
In step 972 the step-wise process repeats, returning 974 to step 968 until all of the desired retainers have been formed. If all of the desired retainers have been formed, then, at step 976, the bidirectional self-retaining suture thread is complete. The suture thread may be unloaded from the chucks, have the retainer-less lead-in sections trimmed and have needles swaged on each end.
Non-Coherent Electromagnetic Radiation for Marking Sutures
In alternative embodiments, non-coherent light or other electromagnetic radiation is used in place of laser light to create a color change in desired regions of the suture thread to create indicia. The non-coherent light should be of high enough intensity to cause the color change desired. The non-coherent light should be controlled in intensity and/or pulse duration to prevent damage to the suture thread. The frequency spectrum of the non-coherent light can be selected so as to be effective at causing color change of the suture thread without causing damage to the suture thread. The frequency spectrum of the non-coherent light is selected by choice of the light source and/or the use of filters. As described above for laser light, the spectrum of light includes, in embodiments of the invention, wavelengths from ultraviolet to visible light to infrared.
The non-coherent light should also be controlled in location so as to produce the desired indicia in the correct locations along the suture thread. Non-coherent light can with adequate directional control be used to generate any of the shapes and distribution of indicia described above with respect to laser-marked indicia. The non-coherent light can be controlled with standard optical components including: collimators, mask, lenses, filters, and mirrors. The optical components are arranged to direct the non-coherent light to a particular region of the suture thread and not other regions of the suture thread in order to create the desired indicia. In one embodiment, for example, the non-coherent light is directed only to the transition section of a bidirectional self-retaining suture in order to generate indicia which mark the location of the transition section. A non-coherent light marking head may incorporated into a suture-forming machine in the same way as the laser-marking head 912 described with respect to
Alternative Technologies for Marking Sutures
Indicia to allow identification of different sections of a self-retaining suture can be made using a variety of alternative technologies. For example, in one alternative embodiment, a supercritical fluid is used to extract colorant from selected areas of the suture thread in order to create indicia. The supercritical fluid extraction should be sufficient to cause the color change desired without damaging the suture thread. It is not necessary to remove all of the colorant from the transition zone as long as there is a visually distinguishable difference between the treated and non-treated areas. The supercritical fluid can be selected so as to be more effective at causing color change of the suture thread without causing damage to the suture thread.
In a preferred embodiment, carbon dioxide is used as the supercritical fluid. Supercritical carbon dioxide extraction is relatively rapid because of the low viscosity and high diffusivity of the supercritical carbon dioxide. The supercritical carbon dioxide can diffuse through solids like a gas and dissolve the colorants like a liquid. The application of the supercritical fluid should also be controlled in location so as to produce the desired indicia in the correct locations along the suture thread. For example, selective supercritical fluid extraction of colorants can be used to create self-retaining and ordinary sutures having indicia arranged in the patterns shown in
In alternative embodiments, a colorant is added to the suture to make indicia on desired positions along the suture thread. Conventional methods for applying a colorant include: dipping, spraying, painting, printing, applying and/or coating colorants on the selected suction of the suture—for example the transition section of a self-retaining suture. In one example, a layer of plastic such as an absorbable polyglycolide coating and/or a non-absorbable silicon coating which has a colorant is applied to the suture thread to mark the desired section. In another example a natural and/or modified natural material such as collagen or modified collagen and a colorant are used as the colored coating. Multiple colors can be applied in order to distinguish multiple sections. In another example, supercritical carbon dioxide is used to add a colorant to selected portions of a self-retaining suture. Again, the goal is to generate indicia that are visually distinguishable under the conditions of use. Thus, for example, fluorescent dyes and/or pigments are in some embodiments used to mark the center segment where the use of the self-retaining suture is under lighting conditions adapted to cause fluorescence of the pigments. The indicia are positioned to identify particular sections of a suture. For example a colorant application process can be used to create indicia on the transition section of a self-retaining suture. The selective addition of colorants can be used to create self-retaining and ordinary sutures having indicia arranged in the patterns shown, for example, in
In alternative embodiments, the selectable addition of a colorant to the suture thread (for example by dipping, spraying, painting, printing, applying and/or coating colorants on a selected suction of a suture thread) is performed in addition to a technique for selectively removing colorant from the suture thread as described above (for example, laser, non-coherent electromagnetic radiation or supercritical fluid). The selectable addition of colorant is in some embodiments performed before the removal step. In such embodiments, portions of the color selectively added can be selectively removed in the removal step. In alternative embodiments, the removal step is performed first to remove color from a colorant included in the suture thread. The later selectable addition of a colorant to the suture thread can be used to provide additional markings distinguishable from the markings produced by removal of colorant.
In alternative embodiments, indicia are created that are distinguishable not on the basis of a colorant but on another distinguishable characteristic. For example, the indicia can be topological features that are observed visually and/or by touch. In one embodiment for example, an indentation (or multiple indentations) is used to mark the transition section. The indentations appear as “dents”, “grooves”, “ridges” or the like. These indentations can be textured lines, bumps, or other geometric shapes.
Another alternative embodiment is to fold the suture at (or near) the transition section to impart a deformation which can be easily tactilely and/or visually identified. For example, if the suture is folded or creased causing an indentation in the suture, this indentation can be used to mark the center suture segment.
In another alternative embodiment, the self-retaining suture is heat-set into a particular configuration which identifies the transition section. For example, in one embodiment, the transition section is heat-set into a small loop allowing for easy recognition of the transition section. For example, if the suture is folded or creased causing an indentation in the suture, this indentation can be used to mark the center suture segment.
Where a surgical procedure is being performed manually or by sufficiently sensitive robotically-assisted means, tactile markings may be provided; these may be particularly useful in sutures that are not self-retaining and in the retainer-free sections of self-retaining sutures. For example, in the case of self-retaining sutures, the doctor may wish to identify the transition segment; accordingly, the such as the transition segment may be provided with a configuration that is more easily detectably by touch than the simple absence of retainers, thereby obviating the surgeon's need to repeatedly and/or vigorously feel along the suture body to locate the transition segment. Such tactile markings may be provided in any section of interest of a suture, and may include a deformation in the section of interest, such as deformation 1054d of transition segment 1044d in suture 1002d shown in
Easily detectable indentations in the section of interest may also be provided, such as by compression (e.g., stamping) of all or part of the section to deform the suture material therein, and by removal of suture material (e.g., cutting, etching, abrading, laser removal) from all or part of the suture section of interest to create an indentation. Indentations may take any form (such as, without limitation, grooves, wells, dents), as long as the diameter of the suture body at the indentation is less than the diameter of the suture body elsewhere, and as long as the diameter of suture body at the indentation remains sufficient to withstand breakage from forces normally exerted during suture deployment and engagement. For example, an indentation or narrowing of the suture diameter at the transition segment may assist a doctor in locating the transition segment. Referring to
Other examples of tactile suture markings include a tactilely detectable increase in the diameter of the suture body at all or part of the section of interest. For example, protrusions on the surface of the section of interest that are easily detectable and distinguishable from tissue retainers may assist a surgeon in locating the section of interest, such as those protrusions 1204 in transition segment 1202 on suture 1200 in
Other forms of tactile demarcations include texture differences. Providing texture differences to all or part of the transition segment includes providing a plurality of areas of increased and/or decreased suture body diameter in the section of interest. For example, a plurality of indentation, a plurality of relief configurations, and any combinations thereof may be provided in the section of interest, by methods including, without limitation, compression, cutting, coating, application of agents such as abrasive, polymeriser, acid etchants, base etchants, and so forth.
The alternative technologies discussed in this section can be used to create self-retaining and ordinary sutures having indicia arranged in the patterns and distributions previously discussed with respect to laser-marked indicia. For example, the alternative technologies can be used to create self-retaining and ordinary sutures having indicia arranged in the patterns shown in
Materials
Suture threads described herein may be produced by any suitable method, including without limitation, injection molding, stamping, cutting, laser, extrusion, and so forth. The suture threads described herein may use any material conventionally used for the manufacture of sutures including for example, non-degradable polymers, biodegradable polymers and natural materials. With respect to cutting, polymeric suture threads/filaments may be manufactured or purchased for the suture body, and the retainers can be subsequently cut onto the suture body; the retainers may be hand-cut, laser-cut, or mechanically machine-cut using blades, cutting wheels, grinding wheels, and so forth. During cutting, either the cutting device or the suture thread may be moved relative to the other, or both may be moved, to control the size, shape and depth. Particular methods for cutting barbs on a filament are described in U.S. patent application Ser. No. 09/943,733 titled “Method Of Forming Barbs On A Suture And Apparatus For Performing Same” to Genova et al., and U.S. patent application Ser. No. 10/065,280 titled “Barbed Sutures” to Leung et al. both of which are incorporated herein by reference.
Clinical Uses
In addition to the general wound closure and soft tissue repair applications, self-retaining sutures can be used in a variety of other indications.
Self-retaining sutures described herein may be used in various dental procedures, i.e., oral and maxillofacial surgical procedures and thus may be referred to as “self-retaining dental sutures.” The above-mentioned procedures include, but are not limited to, oral surgery (e.g., removal of impacted or broken teeth), surgery to provide bone augmentation, surgery to repair dentofacial deformities, repair following trauma (e.g., facial bone fractures and injuries), surgical treatment of odontogenic and non-odontogenic tumors, reconstructive surgeries, repair of cleft lip or cleft palate, congenital craniofacial deformities, and esthetic facial surgery. Self-retaining dental sutures may be degradable or non-degradable, and may typically range in size from USP 2-0 to USP 6-0.
Self-retaining sutures described herein may also be used in tissue repositioning surgical procedures and thus may be referred to as “self-retaining tissue repositioning sutures”. Such surgical procedures include, without limitation, face lifts, neck lifts, brow lifts, thigh lifts, and breast lifts. Self-retaining sutures used in tissue repositioning procedures may vary depending on the tissue being repositioned; for example, sutures with larger and further spaced-apart retainers may be suitably employed with relatively soft tissues such as fatty tissues.
Self-retaining sutures described herein may also be used in microsurgical procedures that are performed under a surgical microscope (and thus may be referred to as “self-retaining microsutures”). Such surgical procedures include, but are not limited to, reattachment and repair of peripheral nerves, spinal microsurgery, microsurgery of the hand, various plastic microsurgical procedures (e.g., facial reconstruction), microsurgery of the male or female reproductive systems, and various types of reconstructive microsurgery. Microsurgical reconstruction is used for complex reconstructive surgery problems when other options such as primary closure, healing by secondary intention, skin grafting, local flap transfer, and distant flap transfer are not adequate. Self-retaining microsutures have a very small caliber, often as small as USP 9-0 or USP 10-0, and may have an attached needle of corresponding size. The microsutures may be degradable or non-degradable.
Self-retaining sutures as described herein may be used in similarly small caliber ranges for ophthalmic surgical procedures and thus may be referred to as “ophthalmic self-retaining sutures”. Such procedures include but are not limited to keratoplasty, cataract, and vitreous retinal microsurgical procedures. Ophthalmic self-retaining sutures may be degradable or non-degradable, and have an attached needle of correspondingly-small caliber.
It should be understood that the self-retaining sutures disclosed herein can be used in a variety of both human and veterinary applications for a wide number of surgical and traumatic purposes in human and animal healthcare, provide exemplary, and non-exclusive, statements of various aspects of the present invention, and should be read in conjunction with the optional embodiments of the invention as set forth herein.
A self-retaining suture thread comprising:
a suture thread having a colorant which has a color;
a first section of the suture thread bearing retainers oriented in a first direction;
a second section of the suture thread bearing retainers oriented in a second direction different than the first direction;
a transition section of the suture thread connecting the first section of suture thread and second section of suture thread;
a selected area within the transition region where the suture thread has been exposed to electromagnetic radiation adapted to change the color of the colorant;
wherein the colorant exposed to electromagnetic radiation within said selected area has a changed color which allows the selected area to be distinguished from portions of the suture thread outside the selected area;
whereby the changed color in the selected area is a distinguishable marking which allows the transition section to be recognized by a surgeon.
The self-retaining suture thread, wherein the colorant is a colorant selected from the group consisting of: titanium dioxide, D&C Violet No. 2; D&C Blue #6; D&C Blue #9; D&C Green #5; FD&C Blue #2; Logwood extract; [Phthalocyaninato(2-)]copper; and Chromium-cobalt-aluminum oxide.
The self-retaining suture, wherein the marking identifies at least one property of the suture thread.
The self-retaining suture, wherein the colorant is titanium dioxide, and the color is white and the changed color is black.
The self-retaining suture, wherein the colorant is [Phthalocyaninato(2-)]copper and the color is blue and the changed color is a reduction in blue color.
A heterofunctional suture thread comprising a plurality of sections wherein:
a first section has features different from the features of a second section; and
said first section has optically-marked indicia which allow it to be distinguished from said second section.
The heterofunctional suture thread, wherein the heterofunctional suture thread is a self-retaining suture.
The heterofunctional suture thread, wherein the indicia identify at least one property of the suture thread.
The heterofunctional suture thread, wherein the heterofunctional suture thread is a bidirectional self-retaining suture.
The heterofunctional suture thread, wherein:
the heterofunctional suture thread is a bidirectional self-retaining suture; and
the first section is a transition section positioned between the second section of the suture thread bearing retainers oriented in a first direction and a third section of the suture thread bearing retainers oriented in a second direction different than the first direction.
The heterofunctional suture thread, wherein:
the suture thread includes a colorant which has a first color;
said optically-marked indicia includes a marked area of suture thread wherein the colorant has been exposed to electromagnetic radiation adapted to change the color of the colorant; and
wherein the colorant exposed to electromagnetic radiation within said marked area of said optically-marked indicia has a second color distinguishable from the first color.
The heterofunctional suture thread, wherein the colorant is a colorant selected from the group consisting of: titanium dioxide, D&C Violet No. 2; D&C Blue #6; D&C Blue #9; D&C Green #5; FD&C Blue #2; Logwood extract; [Phthalocyaninato(2-)]copper; and Chromium-cobalt-aluminum oxide.
The heterofunctional suture thread, wherein the colorant is titanium dioxide, and the first color is white and the second color is black.
The heterofunctional suture thread, wherein the colorant is [Phthalocyaninato(2-)]copper and the first color is blue and the second color is a reduction in blue color.
The heterofunctional suture thread, wherein:
the heterofunctional suture thread is a bidirectional self-retaining suture;
the first section is a transition section positioned between the second section of the suture thread bearing retainers oriented in a first direction and a third section of the suture thread bearing retainers oriented in a second direction different than the first direction; and
wherein the optically-marked indicia is created on the suture thread after creation of the retainers of the first section.
The heterofunctional suture thread, wherein:
the heterofunctional suture thread is a bidirectional self-retaining suture;
the first one section is a transition section positioned between the second section of the suture thread bearing retainers oriented in a first direction and a third section of the suture thread bearing retainers oriented in a second direction different than the first direction; and
wherein the optically-marked indicia is created on the suture thread before creation of the retainers of the first section.
A bidirectional self-retaining suture thread having a transition section positioned between a first section of suture thread bearing retainers oriented in a first direction and a second section of suture thread bearing retainers oriented in a second direction different than the first direction wherein:
said transition section has a visible marking which allows the transition section to be recognized by a surgeon.
The bidirectional self-retaining suture thread wherein said visible marking is a deformation in the suture thread.
The bidirectional self-retaining suture thread wherein said visible marking is a discontinuity in the suture thread.
The bidirectional self-retaining suture thread wherein said visible marking is at least one of an indentation, a loop, a protrusion, a ridge, a discontinuity, a deformation and a reduced diameter in the suture thread.
The bidirectional self-retaining suture thread wherein the marking identifies characteristics of the suture thread.
The bidirectional self-retaining suture, wherein:
the suture thread includes a colorant which has a color;
said visible marking of the transition section occurs where the colorant has been exposed to electromagnetic radiation in order to change the color of the colorant; and
wherein the visible marking has a changed color which allows the visible marking to be distinguished from at least one of the first section of the suture thread and the second section of the suture thread.
The bidirectional self-retaining suture, wherein the suture thread is exposed to electromagnetic radiation in order to change the color of the colorant after creation of the retainers of the first section.
The bidirectional self-retaining suture, wherein the suture thread is exposed to electromagnetic radiation in order to change the color of the colorant before creation of the retainers of the first section.
The self-retaining suture thread, wherein the colorant is a colorant selected from the group consisting of: titanium dioxide, D&C Violet No. 2; D&C Blue #6; D&C Blue #9; D&C Green #5; FD&C Blue #2; Logwood extract; [Phthalocyaninato(2-)]copper; and Chromium-cobalt-aluminum oxide.
The self-retaining suture, wherein the colorant is [Phthalocyaninato(2-)]copper and the color is blue and the changed color is a reduction in blue color.
The bidirectional self-retaining suture, wherein:
the suture thread includes a colorant which has a color;
said visible marking of the transition section occurs where the colorant has been selectively exposed to a fluid in order to extract colorant from the suture thread; and
wherein the visible marking has a changed color which allows the visible marking to be distinguished from at least one of the first section of the suture thread and the second section of the suture thread.
The bidirectional self-retaining suture, wherein:
the suture thread includes a colorant which has a color;
said visible marking of the transition section occurs where the colorant has been selectively exposed to supercritical fluid in order to extract colorant from the suture thread; and
wherein the visible marking has a changed color which allows the visible marking to be distinguished from at least one of the first section of the suture thread and the second section of the suture thread.
A method of forming a marked heterofunctional suture thread comprising, in any order, the steps of:
forming a first section of the heterofunctional suture thread and a second section of the heterofunctional suture thread wherein the first section has features that are different from the features of the second section; and
optically-marking indicia on the first section which allows the first section to be distinguished from the second section.
The method including the steps of:
using an electromagnetic radiation source to optically mark the first section.
The method including the step of forming a third section of the heterofunctional suture thread with the first section between the second section and the third section, wherein the third section has features that are different from the first section and the second section.
The method including the step of forming tissue retainers on the second section and on the third section, wherein the tissue retainers on the second section point in a different direction than the tissue retainers on the third section, and wherein no tissue retainers are formed on the first section.
The method including the step of:
using a suture thread that has a colorant; and
causing the colorant to change color in order to provide the indicia.
The method wherein the using step includes using an electromagnetic radiation source to change the color of the colorant.
A method of forming a marked heterofunctional suture thread comprising, in any order, the steps of:
forming a first section of the heterofunctional suture thread and a second section of the heterofunctional suture thread wherein the first section has features that are different from the features of the second section and wherein the first section and the section each comprise a colorant;
selectively exposing a portion of the first section of the heterofunctional suture thread to a dye extraction agent to extract colorant from the portion thereby creating an indicia which allows the first section to be distinguished from the second section.
The method wherein the dye extraction agent is a supercritical fluid.
The method including the step of forming a third section of the heterofunctional suture thread with the first section between the second section and the third section, wherein the third section has features that are different from the first section and the second section.
The method including the step of forming tissue retainers on the second section and on the third section, wherein the tissue retainers on the second section point in a different direction than the tissue retainers on the third section, and wherein no tissue retainers are formed on the first section.
A bidirectional self-retaining suture thread having a transition section positioned between a first section of suture thread bearing retainers oriented in a first direction and a second section of suture thread bearing retainers oriented in a second direction different than the first direction wherein:
said transition section has a transition marking which allows the transition section to be recognized by a surgeon; and
the first section of suture thread has a first marking which allows the first section of suture thread to be distinguished from the second section of suture thread by a surgeon.
The bidirectional self-retaining suture thread wherein at least one of the transition marking and the first marking identifies at least one property of the suture thread.
The bidirectional self-retaining suture, wherein:
the suture thread includes a colorant which has a color;
said first marking and said transition marking comprise portions of the suture thread in which the colorant has been exposed to electromagnetic radiation causing a change in the color of the colorant.
The bidirectional self-retaining suture, wherein the suture thread is exposed to electromagnetic radiation in order to change the color of the colorant after creation of the retainers of the first section.
The bidirectional self-retaining suture, wherein the suture thread is exposed to electromagnetic radiation in order to change the color of the colorant before creation of the retainers of the first section.
The self-retaining suture thread, wherein the colorant is a colorant selected from the group consisting of: titanium dioxide, D&C Violet No. 2; D&C Blue #6; D&C Blue #9; D&C Green #5; FD&C Blue #2; Logwood extract; [Phthalocyaninato(2-)]copper; and Chromium-cobalt-aluminum oxide.
The bidirectional self-retaining suture, wherein:
the suture thread includes a colorant which has a color;
said first marking and said transition marking comprise portions of the suture thread in which the colorant has been selectively exposed to a fluid in order to extract colorant from the suture thread; and
wherein the transition marking has a changed color which allows the transition marking to be distinguished from the first section of the suture thread and the second section of the suture thread.
The bidirectional self-retaining suture, wherein:
the suture thread includes a colorant which has a color; and
said first marking and said transition marking comprise portions of the suture thread in which the colorant has been selectively exposed to a fluid in order to extract colorant from the suture thread.
The bidirectional self-retaining suture, wherein:
the transition marking is different from the first marking.
The bidirectional self-retaining suture, wherein:
the suture thread includes a colorant which has a color;
said first marking and said transition marking comprise portions of the suture thread in which the colorant has been selectively exposed to a supercritical fluid in order to extract colorant from the suture thread; and
wherein the transition marking has a changed color which allows the transition marking to be distinguished from the first section of the suture thread and the second section of the suture thread.
A method of forming a marked heterofunctional suture thread comprising, in any order, the steps of:
obtaining a suture thread comprising a colorant having a color;
forming first structural features on a first section of the suture thread;
forming second structural features on a second section of the suture thread;
the first section of suture thread being connected by a transition section of the suture thread to the second section of the suture thread; and
marking the transition section by changing the color of the colorant so that the transition section is distinguishable from the first section and the second section of the suture thread.
The method wherein step (e) comprises selectively exposing a portion of the transition section of the suture thread to a dye extraction agent to extract colorant from the portion thereby creating an indicia which allows the transition section to be distinguished from the first section and the second section of the suture thread.
The method wherein step (e) comprises selectively exposing a portion of the transition section of the suture thread to a supercritical fluid to extract colorant from the portion thereby creating an indicia which allows the transition section to be distinguished from the first section and the second section of the suture thread.
The method wherein step (e) comprises selectively exposing a portion of the transition section of the suture thread to electromagnetic radiation to change the color of the colorant in the portion thereby creating an indicia which allows the transition section to be distinguished from the first section and the second section of the suture thread.
The method wherein step (e) comprises selectively exposing a portion of the transition section of the suture thread to laser light to change the color of the colorant in the portion thereby creating an indicia which allows the transition section to be distinguished from the first section and the second section of the suture thread.
The method wherein: steps (b) and (c) comprise:
forming first structural features on a first section of the suture thread wherein the first structural features are tissue retainers having a first orientation; and
forming second structural features on a second section of the suture thread wherein the second structural features are tissue retainers having a second orientation different than the first orientation.
An apparatus for making a self-retaining suture thread having a transition section positioned between a first section of suture thread bearing retainers oriented in a first direction and a second section of suture thread bearing retainers oriented in a second direction different than the first direction wherein the apparatus comprises:
a frame;
a first chuck adapted to hold a first end of the suture thread wherein the first chuck is movably mounted on the frame;
a second chuck adapted to hold a second end of the suture thread wherein the second chuck is movably mounted on the frame;
a cutting head adapted to form retainer on the suture thread wherein the cutting head is provided in a position relative to the frame;
a marking head adapted to create visible indicia upon the suture thread wherein the marking head is provided in a position relative to the frame;
a transport mechanism adapted to move the first chuck and the second chuck along the axis of the suture thread relative to the frame such that different points along the suture thread are aligned with the cutting head and marking head;
whereby the first section of suture thread can be aligned with the cutting head to allow the cutting head to form retainers oriented in a first direction, the second section of suture thread can be aligned with the cutting head to form retainers oriented in a second direction, and the transition section can be aligned with the marking head to form indicia which allow the transition section to be distinguished from the first section and second section of the suture thread.
The apparatus wherein said marking head is adapted to expose the suture thread to a fluid in order to change a color of the suture thread.
The apparatus wherein said marking head is adapted to expose the suture thread to a supercritical fluid in order to change a color of the suture thread.
The apparatus wherein the marking head comprises:
a source of electromagnetic radiation; and
an optical system which directs the electromagnetic radiation to a selected portion of the suture thread to create visible indicia upon the suture thread.
The apparatus wherein the source of electromagnetic radiation is adapted to change a color of a colorant in the suture thread without cutting the suture thread.
The apparatus wherein the source of electromagnetic radiation is a laser adapted to change a color of a colorant in the suture thread without cutting the suture thread.
A method for making a self-retaining suture on an apparatus having a cutting head, a marking head and a suture translation mechanism, the method comprising:
securing a suture thread in the apparatus, the suture thread including a colorant having a color;
translating the suture thread to align a first section of the suture thread with a cutting head, and forming retainers having a first orientation on the first section of suture thread;
translating the suture thread to align a second section of the suture thread with the cutting head, and forming retainers having a second orientation on the second section of suture thread;
translating the suture thread to align a transition section of the suture thread located between the first section of suture thread and the second section of suture thread with a marking head, and operating the marking head to change the color of the colorant in the transition section of the suture thread;
removing the suture thread from the apparatus; and
wherein steps (b), (c) and (d) are performed in any order and each of steps (b), (c) and (d) are performed after step (a) and before step (e).
The method wherein said step of operating said marking head included operating said marking head to expose the suture thread to a fluid in order to change a color of the suture thread.
The method wherein said step of operating said marking head includes operating said marking head to expose the suture thread to supercritical fluid in order to change a color of the suture thread.
The method wherein the marking head comprises a source of electromagnetic radiation and wherein step (d) comprises:
translating the suture thread to align a transition section of the suture thread located between the first section of suture thread and the second section of suture thread with the marking head, and operating the marking head to expose a region of the suture thread in the transition head to electromagnetic radiation from the source of electromagnetic radiation to change the color of the colorant in the region of the transition section of the suture thread.
The method wherein the marking head comprises a laser and wherein step (d) comprises:
translating the suture thread to align a transition section of the suture thread located between the first section of suture thread and the second section of suture thread with the marking head, and operating the marking head to direct laser light from the laser at a region of the suture thread in the transition head to change the color of the colorant in the region of the transition section of the suture thread.
A method for making a self-retaining suture on an apparatus having a cutting head and a suture translation mechanism, the method comprising:
obtaining a suture thread having a visible indicia;
subsequent to step (a) securing the suture thread in the apparatus and identifying the position of the visible indicia relative to the cutting head;
translating the suture thread to align a first section of the suture thread on one side of the visible indicia with the cutting head, and forming retainers having a first orientation on the first section of suture thread;
translating the suture thread to align a second section of the suture thread on a second side of the visible indicia with the cutting head, and forming retainers having a second orientation on the second section of suture thread; and subsequent to steps (a), (b), (c) and (d) removing the suture thread from the apparatus.
The method wherein step (a) comprises:
(a1) obtaining a suture thread comprising a colorant having a color; and
(a2) treating a region of the suture thread to change the color of the colorant thereby creating a visible indicia on the suture thread.
The method wherein step (a) comprises:
(a1) obtaining a suture thread comprising a colorant having a color; and
(a2) treating a region of the suture thread with a dye extraction agent to remove colorant from the region thereby creating a visible indicia on the suture thread.
The method wherein step (a) comprises:
(a1) obtaining a suture thread comprising a colorant having a color; and
(a2) treating a region of the suture thread with a supercritical fluid to remove colorant from the region thereby creating a visible indicia on the suture thread.
The method wherein step (a) comprises:
(a1) obtaining a suture thread comprising a colorant having a color; and
(a2) treating a region of the suture thread with a laser to denature the colorant in the region thereby creating a visible indicia on the suture thread.
A self-retaining suture comprising:
a suture thread having a first section marked with a first indicia and a second section marked with a second indicia and a boundary where the first indicia end and the second indicia begin;
a first region of the first section of the suture thread bearing retainers oriented in a first direction;
a second region of the second section of the suture thread bearing retainers oriented in a second direction different than the first direction;
a transition region of suture thread between the first region and the second region; and
whereby the first region is identified by the first indicia, the second region is identified by the second indicia, and the transition region is identified by the boundary.
The self-retaining suture wherein at least one of the first indicia, the second indicia and the boundary identify at least one property of the suture thread.
The self-retaining suture, wherein:
the suture thread comprises a colorant which imparts a color to the suture thread; and
the second section of suture thread has been treated to modify the colorant and thereby impart a changed color to the suture thread; and
wherein the first indicia is the color of the suture thread and the second indicia is the changed color of the suture thread.
The self-retaining suture, wherein the colorant is a colorant selected from the group consisting of: titanium dioxide, D&C Violet No. 2; D&C Blue #6; D&C Blue #9; D&C Green #5; FD&C Blue #2; Logwood extract; [Phthalocyaninato(2-)]copper; and Chromium-cobalt-aluminum oxide.
The self-retaining suture, wherein the colorant is titanium dioxide, and the color is white and the changed color is black.
The self-retaining suture, wherein the colorant is [Phthalocyaninato(2-)]copper; and the color is blue and the changed color is a reduction in blue color.
An apparatus for making a self-retaining suture thread having a transition section positioned between a first section of suture thread bearing retainers oriented in a first direction and a second section of suture thread bearing retainers oriented in a second direction different than the first direction wherein the apparatus comprises:
a frame;
a first chuck adapted to hold a first end of the suture thread wherein the first chuck is movably mounted on the frame;
a second chuck adapted to hold a second end of the suture thread wherein the second chuck is movably mounted on the frame;
a cutting head adapted to form retainer on the suture thread wherein the cutting head is secured in a fixed position relative to the frame;
a marking head adapted to create visible indicia upon the suture thread wherein the cutting head is secured in a fixed position relative to the frame;
a transport mechanism adapted to move the first chuck and the second chuck along the axis of the suture thread relative to the frame such that different points along the suture thread are aligned with the cutting head and marking head;
whereby the first section of suture thread can be aligned with the cutting head to allow the cutting head to form retainers oriented in a first direction, the second section of suture thread can be aligned with the cutting head to form retainers oriented in a second direction, and the transition section can be aligned with the marking head to form indicia which allow the transition section to be distinguished from the first section and second section of the suture thread.
A system for performing surgical procedures comprising:
a tool system adapted to assist a physician to perform a surgical procedure with the hands of the physician located externally to the patient;
a suture with a marker on the suture that indicate information that includes at least one of suture type, suture material, suture dimensions, position on the suture, suture tension, suture drug load, suture condition, suture characteristics or suture properties; and
said tool system including a device that can assist the physician with the information on the marker.
The system wherein:
said marker is one of a visible marker or a non-visible marker.
The system wherein the marker is at least one of a color, a bar code, a code, or an RFID tag.
The system wherein the marker is at least one of human readable or machine readable.
The system wherein the tool system can at least one of read the marker or decode the marker.
The system wherein the tool system can read the marker and take an action.
The system wherein the tool system is an endoscopic system.
The system wherein the tool system is a robotic surgical assistance tool.
The system wherein the tool system can read the marker and display the information about the suture.
The system wherein the tool system can read the marker and provide the information to the physician over at least one of a visual mechanism, an aural mechanism, or a haptic mechanism.
The system wherein said surgical procedure is a microsurgical procedure.
A system for performing surgical procedures comprising:
a tool system adapted to assist a physician to perform a surgical procedure with the hands of the physician located externally to the patient;
a suture with a marker on the suture that indicate at least one of suture type, suture material, suture dimensions, position on the suture, suture tension, suture drug load, suture condition, suture characteristics or suture properties;
said tool system including a device that can assist the physician with the information on the marker;
wherein the marker is at least machine readable;
wherein the tool system can at least one of read the marker or decode the marker; and
wherein the tool system can display the information about the suture.
The system wherein the marker is at least one of a color, a bar code, a code, or an RFID tag.
The system wherein the tool system can take an action after reading the marker.
The system wherein the tool system is an endoscopic system.
The system wherein the tool system is a robotic surgical assistance tool.
The system wherein the tool system can provide the information to the physician over at least one of a visual mechanism, an aural mechanism, or a haptic mechanism.
A method of performing a surgical procedure comprising the steps of:
using a tool system adapted to assist a physician to perform a surgical procedure with the hands of the physician located externally to the patient;
using a suture with a marker on the suture that indicate information that includes at least one of suture type, suture material, suture dimensions, position on the suture, suture tension, suture drug load, suture condition, suture characteristics or suture properties; and
wherein said tool system using step includes using said tool system that includes a device that can assist the physician with the information on the marker.
The method wherein:
said marker using step includes using a marker is one of a visible marker or a non-visible marker.
The method wherein:
said marker using step includes using a marker that is at least one of a color, a bar code, a code, or an RFID tag.
The method wherein:
said marker using step includes using a marker that is at least one of human readable or machine readable.
The method wherein the tool system using step includes using a tool system that can at least one of read the marker or decode the marker.
The method wherein:
the tool using step includes using a tool system can read the marker and take an action.
The method wherein:
the tool system using step includes using a tool system that is an endoscopic system.
The method wherein:
the tool system using step includes using a tool system that is a robotic surgical assistance tool.
The method wherein:
the tool system using step includes using the tool system to display the information about the suture.
The system wherein:
the tool system using step included using a tool system that can read the marker and provide the information to the physician over at least one of a visual mechanism, an aural mechanism, or a haptic mechanism.
A method for performing surgical procedures comprising:
using a tool system adapted to assist a physician to perform a surgical procedure with the hands of the physician located externally to the patient;
using a suture with a marker on the suture that indicate at least one of suture type, suture material, suture dimensions, position on the suture, suture tension, suture drug load, suture condition, suture characteristics or suture properties, which marker is machine readable; and
wherein said tool system using step includes using a tool system that includes a device that can assist the physician with the information on the marker by at least one of reading the marker or decoding the marker, and by displaying the information about the suture.
In accordance with particular embodiments the self-retaining sutures are bidirectional self-retaining sutures.
In accordance with particular embodiments, the present invention further provides methods and devices for providing one or more visible/recognizable indicia on a section of a self-retaining suture.
In accordance with particular embodiments, the present invention further provides a bidirectional self-retaining suture thread including a first section of the suture thread having retainers oriented in a first direction, a second section of the suture thread having retainers oriented in a second direction that is different from said first direction, and a transition section of the suture thread located between the first section and the second section, wherein at least one of the aforementioned sections includes within it a region which has been treated to create a marker indicative of one of: presence of retainers, absence of retainers, and orientation of retainers.
In some of these particular embodiments, the suture thread has a colorant and at least one of these sections has been treated to create the marker by exposing the region of the suture thread to a fluid in order to extract the colorant from the suture thread within said region. In some other of these particular embodiments, at least one of these sections has been treated to create the marker which may be an indentation, a loop, a protrusion, a ridge, a discontinuity, a deformation, or a reduced diameter, in the suture thread.
In yet others of these particular embodiments, at least one of the sections includes a region which has been treated with electromagnetic radiation to create a marker indicative of the presence of retainers, the absence of retainers, or the orientation of retainers within at least one of the sections. In yet further of these embodiments, each of the sections includes a region which has been treated with electromagnetic radiation to create a marker indicative of the presence of retainers, the absence of retainers, or the orientation of retainers.
In some of the embodiments incorporating at least one region in at least one section that has been treated with electromagnetic radiation to create a marker, the transition section includes such a region and the marker is a visible marker adapted to allow said transition section to be recognized by a surgeon.
In some of the embodiments incorporating at least one region in at least one section that has been treated with electromagnetic radiation to create a marker, the transition section includes a first region which has been treated with electromagnetic radiation to create a first marker adapted to be recognized by a surgeon; and the second section includes a second region which has been treated with electromagnetic radiation to create a second marker different than the first marker and adapted to be recognized by a surgeon.
In some of the embodiments incorporating at least one region in at least one section that has been treated with electromagnetic radiation to create a marker, the first section includes a first region which has been treated with electromagnetic radiation to create a first marker, the second section includes a second region which has been treated with electromagnetic radiation to create a second marker, the transition section includes a third region which has been treated with electromagnetic radiation to create a third marker. In such embodiments, the first marker is different than the second marker, and the third marker is different than the first second markers.
In some of the embodiments incorporating at least one region in at least one section that has been treated with electromagnetic radiation to create a marker, the marker is an optically-marked marker.
In some of the embodiments incorporating at least one region in at least one section that has been treated with electromagnetic radiation to create a marker, the marker is visible.
In some of the embodiments incorporating at least one region in at least one section that has been treated with electromagnetic radiation to create a marker, the suture thread includes a colorant and the electromagnetic radiation has changed the color to create said marker.
In some of the embodiments incorporating at least one region in at least one section that has been treated with electromagnetic radiation to create a marker, the suture thread includes a colorant selected from the group consisting of: titanium dioxide, D&C Violet No. 2; D&C Blue #6; D&C Blue #9; D&C Green #5; FD&C Blue #2; Logwood extract; [Phthalocyaninato(2-)]copper; and Chromium-cobalt-aluminum oxide; and the colorant in the region which has been treated with electromagnetic radiation has changed color to create said marker.
In some of the embodiments incorporating at least one region in at least one section that has been treated with electromagnetic radiation to create a marker, the suture thread includes a colorant which has a first color and the colorant in the region which has been treated with electromagnetic radiation has a second color distinguishable from the first color.
In some of the embodiments in which the suture thread includes a colorant which has a first color and the colorant in the region which has been treated with electromagnetic radiation has a second color distinguishable from the first color, the colorant is titanium dioxide and the first and second colors are white and black, respectively.
In some of the embodiments in which the suture thread includes a colorant which has a first color and the colorant in the region which has been treated with electromagnetic radiation has a second color distinguishable from the first color, the colorant is [Phthalocyaninato(2-)]copper and the first color is blue while the second color is less blue.
Although the present invention has been shown and described in detail with regard to only a few exemplary embodiments of the invention, it should be understood by those skilled in the art that it is not intended to limit the invention to the specific embodiments disclosed. Various modifications, omissions, and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings. Accordingly, it is intended to cover all such modifications, omissions, additions, and equivalents as may be included within the spirit and scope of the invention as defined by the following claims.
This application is a continuation-in-part of U.S. application Ser. No. 12/992,453, filed Nov. 12, 2010, which is the National Stage of International Application No. PCT/US2009/044274, filed May 16, 2009, and which claims the benefit of U.S. Provisional Application No. 61/053,912, filed May 16, 2008. This application also claims the benefit of U.S. Provisional Application No. 61/290,750, filed Dec. 29, 2009, and U.S. Provisional Application No. 61/296,721, filed Jan. 20, 2010. All of the above patent applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
709392 | Brown | Sep 1902 | A |
733723 | Lukens | Jul 1903 | A |
816026 | Meier | Mar 1906 | A |
879758 | Foster | Feb 1908 | A |
1142510 | Engle | Jun 1915 | A |
1248825 | Dederer | Dec 1917 | A |
1321011 | Cottes | Nov 1919 | A |
1558037 | Morton | Oct 1925 | A |
1728316 | Von Wachenfeldt | Sep 1929 | A |
1886721 | O'Brien | Nov 1932 | A |
2094578 | Blumenthal et al. | Oct 1937 | A |
2201610 | Dawson, Jr. | May 1940 | A |
2232142 | Schumann | Feb 1941 | A |
2254620 | Miller | Sep 1941 | A |
2347956 | Lansing | May 1944 | A |
2355907 | Cox | Aug 1944 | A |
2421193 | Gardner | May 1947 | A |
2452734 | Costelow | Nov 1948 | A |
2472009 | Gardner | May 1949 | A |
2480271 | Sumner | Aug 1949 | A |
2572936 | Kulp et al. | Oct 1951 | A |
2684070 | Kelsey | Jul 1954 | A |
2736964 | Lieberman | Mar 1956 | A |
2779083 | Enton | Jan 1957 | A |
2814296 | Everett | Nov 1957 | A |
2817339 | Sullivan | Dec 1957 | A |
2866256 | Matlin | Dec 1958 | A |
2910067 | White | Oct 1959 | A |
2928395 | Forbes et al. | Mar 1960 | A |
2988028 | Alcamo | Jun 1961 | A |
3003155 | Mielzynski et al. | Oct 1961 | A |
3066452 | Bott et al. | Dec 1962 | A |
3066673 | Bott et al. | Dec 1962 | A |
3068869 | Shelden et al. | Dec 1962 | A |
3068870 | Levin | Dec 1962 | A |
3123077 | Alcamo | Mar 1964 | A |
3166072 | Sullivan, Jr. | Jan 1965 | A |
3187752 | Glick | Jun 1965 | A |
3206018 | Lewis et al. | Sep 1965 | A |
3209652 | Burgsmueller | Oct 1965 | A |
3209754 | Brown | Oct 1965 | A |
3212187 | Benedict | Oct 1965 | A |
3214810 | Mathison | Nov 1965 | A |
3221746 | Noble | Dec 1965 | A |
3234636 | Brown | Feb 1966 | A |
3273562 | Brown | Sep 1966 | A |
3352191 | Crawford | Nov 1967 | A |
3378010 | Codling | Apr 1968 | A |
3385299 | LeRoy | May 1968 | A |
3394704 | Dery | Jul 1968 | A |
3494006 | Brumlik | Feb 1970 | A |
3522637 | Brumlik | Aug 1970 | A |
3525340 | Gilbert | Aug 1970 | A |
3527223 | Shein | Sep 1970 | A |
3545608 | Berger et al. | Dec 1970 | A |
3557795 | Hirsch | Jan 1971 | A |
3570497 | Lemole | Mar 1971 | A |
3586002 | Wood | Jun 1971 | A |
3608095 | Barry | Sep 1971 | A |
3608539 | Miller | Sep 1971 | A |
3618447 | Goins | Nov 1971 | A |
3646615 | Ness | Mar 1972 | A |
3683926 | Suzuki | Aug 1972 | A |
3700433 | Duhl | Oct 1972 | A |
3716058 | Tanner, Jr. | Feb 1973 | A |
3720055 | de Mestral et al. | Mar 1973 | A |
3748701 | De Mestral | Jul 1973 | A |
3762418 | Wasson | Oct 1973 | A |
3825010 | McDonald | Jul 1974 | A |
3833972 | Brumlik | Sep 1974 | A |
3845641 | Waller | Nov 1974 | A |
3847156 | Trumble | Nov 1974 | A |
3889322 | Brumlik | Jun 1975 | A |
3918455 | Coplan | Nov 1975 | A |
3922455 | Brumlik | Nov 1975 | A |
3941164 | Musgrave | Mar 1976 | A |
3963031 | Hunter | Jun 1976 | A |
3977937 | Candor | Aug 1976 | A |
3980177 | McGregor | Sep 1976 | A |
3981051 | Brumlik | Sep 1976 | A |
3981307 | Borysko | Sep 1976 | A |
3985138 | Jarvik | Oct 1976 | A |
3990144 | Schwartz | Nov 1976 | A |
4006747 | Kronenthal | Feb 1977 | A |
4008303 | Glick et al. | Feb 1977 | A |
4027608 | Arbuckle | Jun 1977 | A |
4043344 | Landi | Aug 1977 | A |
4052988 | Doddi et al. | Oct 1977 | A |
D246911 | Bess, Jr. et al. | Jan 1978 | S |
4069825 | Akiyama | Jan 1978 | A |
4073298 | Le Roy | Feb 1978 | A |
4137921 | Okuzumi et al. | Feb 1979 | A |
4182340 | Spencer | Jan 1980 | A |
4186239 | Mize et al. | Jan 1980 | A |
4198734 | Brumlik | Apr 1980 | A |
4204541 | Kapitanov | May 1980 | A |
4204542 | Bokros et al. | May 1980 | A |
4259959 | Walker | Apr 1981 | A |
4278374 | Wolosianski | Jul 1981 | A |
4300424 | Flinn | Nov 1981 | A |
4311002 | Hoffmann et al. | Jan 1982 | A |
4313448 | Stokes | Feb 1982 | A |
4316469 | Kapitanov | Feb 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4372293 | Vijil-Rosales | Feb 1983 | A |
4428376 | Mericle | Jan 1984 | A |
4430998 | Harvey | Feb 1984 | A |
4434796 | Karapetian | Mar 1984 | A |
4449298 | Patz | May 1984 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4467805 | Fukuda | Aug 1984 | A |
4490326 | Beroff et al. | Dec 1984 | A |
4492075 | Faure | Jan 1985 | A |
4493323 | Albright et al. | Jan 1985 | A |
4505274 | Speelman | Mar 1985 | A |
4510934 | Batra | Apr 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4535772 | Sheehan | Aug 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4553544 | Nomoto et al. | Nov 1985 | A |
4610250 | Green | Sep 1986 | A |
4610251 | Kumar | Sep 1986 | A |
4635637 | Schreiber | Jan 1987 | A |
4637380 | Orejola | Jan 1987 | A |
4653486 | Coker | Mar 1987 | A |
4669473 | Richards et al. | Jun 1987 | A |
4676245 | Fukuda | Jun 1987 | A |
4689882 | Lorenz | Sep 1987 | A |
4702250 | Ovil et al. | Oct 1987 | A |
4712553 | MacGregor | Dec 1987 | A |
4719917 | Barrows | Jan 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4750910 | Takayanagi et al. | Jun 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4832025 | Coates | May 1989 | A |
4841960 | Garner | Jun 1989 | A |
4865026 | Barrett | Sep 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4887601 | Richards | Dec 1989 | A |
4895148 | Bays et al. | Jan 1990 | A |
4898156 | Gatturna et al. | Feb 1990 | A |
4899743 | Nicholson et al. | Feb 1990 | A |
4900605 | Thorgersen et al. | Feb 1990 | A |
4905367 | Pinchuk et al. | Mar 1990 | A |
4930945 | Arai et al. | Jun 1990 | A |
4932962 | Yoon et al. | Jun 1990 | A |
4946468 | Li | Aug 1990 | A |
4948444 | Schutz et al. | Aug 1990 | A |
4950258 | Kawai et al. | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4968315 | Gatturna | Nov 1990 | A |
4976715 | Bays et al. | Dec 1990 | A |
4979956 | Silvestrini | Dec 1990 | A |
4981149 | Yoon | Jan 1991 | A |
4994073 | Green | Feb 1991 | A |
4994084 | Brennan | Feb 1991 | A |
4997439 | Chen | Mar 1991 | A |
5002550 | Li | Mar 1991 | A |
5002562 | Oberlander | Mar 1991 | A |
5007921 | Brown | Apr 1991 | A |
5007922 | Chen et al. | Apr 1991 | A |
5026390 | Brown | Jun 1991 | A |
5037422 | Hayhurst et al. | Aug 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5046513 | Gatturna et al. | Sep 1991 | A |
5047047 | Yoon | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5084063 | Korthoff | Jan 1992 | A |
5089010 | Korthoff | Feb 1992 | A |
5102418 | Granger et al. | Apr 1992 | A |
5102421 | Anspach, Jr. | Apr 1992 | A |
5103073 | Danilov et al. | Apr 1992 | A |
5112344 | Petros | May 1992 | A |
5123911 | Granger et al. | Jun 1992 | A |
5123913 | Wilk et al. | Jun 1992 | A |
5123919 | Sauter et al. | Jun 1992 | A |
5127413 | Ebert | Jul 1992 | A |
5133738 | Korthoff et al. | Jul 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5147382 | Gertzman et al. | Sep 1992 | A |
5156615 | Korthoff et al. | Oct 1992 | A |
5156788 | Chesterfield et al. | Oct 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5179964 | Cook | Jan 1993 | A |
5192274 | Bierman | Mar 1993 | A |
5192302 | Kensey et al. | Mar 1993 | A |
5192303 | Gatturna et al. | Mar 1993 | A |
5197597 | Leary et al. | Mar 1993 | A |
5201326 | Kubicki et al. | Apr 1993 | A |
5207679 | Li | May 1993 | A |
5207694 | Broome | May 1993 | A |
5217486 | Rice et al. | Jun 1993 | A |
5217494 | Coggins et al. | Jun 1993 | A |
5222508 | Contarini | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5224946 | Hayhurst et al. | Jul 1993 | A |
5234006 | Eaton et al. | Aug 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5246441 | Ross et al. | Sep 1993 | A |
5258013 | Granger et al. | Nov 1993 | A |
5259846 | Granger et al. | Nov 1993 | A |
5263973 | Cook | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5282832 | Toso et al. | Feb 1994 | A |
5292326 | Green | Mar 1994 | A |
5306288 | Granger et al. | Apr 1994 | A |
5306290 | Martins et al. | Apr 1994 | A |
5312422 | Trott | May 1994 | A |
5320629 | Noda et al. | Jun 1994 | A |
5330488 | Goldrath | Jul 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5336239 | Gimpelson | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5350385 | Christy | Sep 1994 | A |
5352515 | Jarrett et al. | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5354298 | Lee et al. | Oct 1994 | A |
5358511 | Gatturna et al. | Oct 1994 | A |
5363556 | Banholzer et al. | Nov 1994 | A |
5372146 | Branch | Dec 1994 | A |
5374268 | Sander | Dec 1994 | A |
5374278 | Chesterfield et al. | Dec 1994 | A |
5380334 | Torrie et al. | Jan 1995 | A |
5391173 | Wilk | Feb 1995 | A |
5403346 | Loeser | Apr 1995 | A |
5411523 | Goble | May 1995 | A |
5414988 | DiPalma et al. | May 1995 | A |
5417691 | Hayhurst | May 1995 | A |
5425746 | Proto et al. | Jun 1995 | A |
5425747 | Brotz | Jun 1995 | A |
5437680 | Yoon et al. | Aug 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5451461 | Broyer | Sep 1995 | A |
5462561 | Voda | Oct 1995 | A |
5464422 | Silverman | Nov 1995 | A |
5464426 | Bonutti | Nov 1995 | A |
5464427 | Curtis et al. | Nov 1995 | A |
5472452 | Trott | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5480403 | Lee et al. | Jan 1996 | A |
5480411 | Liu et al. | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5486197 | Le et al. | Jan 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5500991 | Demarest et al. | Mar 1996 | A |
5520084 | Chesterfield et al. | May 1996 | A |
5520691 | Branch | May 1996 | A |
5522845 | Wenstrom, Jr. | Jun 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5531760 | Alwafaie | Jul 1996 | A |
5531761 | Yoon | Jul 1996 | A |
5531790 | Frechet et al. | Jul 1996 | A |
5533982 | Rizk et al. | Jul 1996 | A |
5536582 | Prasad et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5540718 | Bartlett | Jul 1996 | A |
5545148 | Wurster | Aug 1996 | A |
5546957 | Heske | Aug 1996 | A |
5549631 | Bonutti | Aug 1996 | A |
5554171 | Gatturna et al. | Sep 1996 | A |
5569272 | Reed et al. | Oct 1996 | A |
5571139 | Jenkins, Jr. | Nov 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5571216 | Anderson | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5584859 | Brotz | Dec 1996 | A |
5593424 | Northrup, III et al. | Jan 1997 | A |
5601557 | Hayhurst | Feb 1997 | A |
5626590 | Wilk | May 1997 | A |
5626611 | Liu et al. | May 1997 | A |
5632753 | Loeser | May 1997 | A |
5643288 | Thompson | Jul 1997 | A |
5643295 | Yoon | Jul 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5647874 | Hayhurst | Jul 1997 | A |
5649939 | Reddick | Jul 1997 | A |
5653716 | Malo et al. | Aug 1997 | A |
5662714 | Charvin et al. | Sep 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5676675 | Grice | Oct 1997 | A |
D386583 | Ferragamo et al. | Nov 1997 | S |
5683417 | Cooper | Nov 1997 | A |
D387161 | Ferragamo et al. | Dec 1997 | S |
5693072 | McIntosh | Dec 1997 | A |
5695879 | Goldmann et al. | Dec 1997 | A |
5697976 | Chesterfield et al. | Dec 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5702462 | Oberlander | Dec 1997 | A |
5709692 | Mollenauer et al. | Jan 1998 | A |
5716358 | Ochoa et al. | Feb 1998 | A |
5716376 | Roby et al. | Feb 1998 | A |
5722991 | Colligan | Mar 1998 | A |
5723008 | Gordon | Mar 1998 | A |
5725557 | Gatturna et al. | Mar 1998 | A |
5728114 | Evans et al. | Mar 1998 | A |
5731855 | Koyama et al. | Mar 1998 | A |
5741277 | Gordon et al. | Apr 1998 | A |
5744151 | Capelli | Apr 1998 | A |
5763411 | Edwardson et al. | Jun 1998 | A |
5765560 | Verkerke et al. | Jun 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5779719 | Klein et al. | Jul 1998 | A |
5782864 | Lizardi | Jul 1998 | A |
5807403 | Beyar et al. | Sep 1998 | A |
5807406 | Brauker et al. | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5814051 | Wenstrom, Jr. | Sep 1998 | A |
5843087 | Jensen et al. | Dec 1998 | A |
5843178 | Vanney et al. | Dec 1998 | A |
5855619 | Caplan et al. | Jan 1999 | A |
5863360 | Wood et al. | Jan 1999 | A |
5887594 | LoCicero, III | Mar 1999 | A |
5891166 | Schervinsky | Apr 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5895395 | Yeung | Apr 1999 | A |
5895413 | Nordstrom | Apr 1999 | A |
5897572 | Schulsinger et al. | Apr 1999 | A |
5899911 | Carter | May 1999 | A |
5916224 | Esplin | Jun 1999 | A |
5919234 | Lemperle et al. | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5925078 | Anderson | Jul 1999 | A |
5931855 | Buncke | Aug 1999 | A |
5935138 | McJames, II et al. | Aug 1999 | A |
5938668 | Scirica et al. | Aug 1999 | A |
5941899 | Granger et al. | Aug 1999 | A |
5950633 | Lynch et al. | Sep 1999 | A |
5954747 | Clark | Sep 1999 | A |
5964765 | Fenton, Jr. et al. | Oct 1999 | A |
5964783 | Grafton et al. | Oct 1999 | A |
5968097 | Frechet et al. | Oct 1999 | A |
5972024 | Northrup, III et al. | Oct 1999 | A |
5984933 | Yoon | Nov 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6001111 | Sepetka et al. | Dec 1999 | A |
6012216 | Esteves et al. | Jan 2000 | A |
6015410 | Tormala et al. | Jan 2000 | A |
6024757 | Haase et al. | Feb 2000 | A |
6027523 | Schmieding | Feb 2000 | A |
6039741 | Meislin | Mar 2000 | A |
6056778 | Grafton et al. | May 2000 | A |
6063105 | Totakura | May 2000 | A |
6071292 | Makower et al. | Jun 2000 | A |
6074419 | Healy et al. | Jun 2000 | A |
6076255 | Shikakubo et al. | Jun 2000 | A |
6083244 | Lubbers et al. | Jul 2000 | A |
6102947 | Gordon | Aug 2000 | A |
6106544 | Brazeau | Aug 2000 | A |
6106545 | Egan | Aug 2000 | A |
6110484 | Sierra | Aug 2000 | A |
6129741 | Wurster et al. | Oct 2000 | A |
D433753 | Weiss | Nov 2000 | S |
6146406 | Shluzas et al. | Nov 2000 | A |
6146407 | Krebs | Nov 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6159234 | Bonutti et al. | Dec 2000 | A |
6160084 | Langer et al. | Dec 2000 | A |
6163948 | Esteves et al. | Dec 2000 | A |
6165203 | Krebs | Dec 2000 | A |
6168633 | Shoher et al. | Jan 2001 | B1 |
6174324 | Egan et al. | Jan 2001 | B1 |
6183499 | Fischer et al. | Feb 2001 | B1 |
6187095 | Labrecque et al. | Feb 2001 | B1 |
6203565 | Bonutti et al. | Mar 2001 | B1 |
6206908 | Roby | Mar 2001 | B1 |
6214030 | Matsutani et al. | Apr 2001 | B1 |
6231911 | Steinback et al. | May 2001 | B1 |
6235869 | Roby et al. | May 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6251143 | Schwartz et al. | Jun 2001 | B1 |
6264675 | Brotz | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6270517 | Brotz | Aug 2001 | B1 |
6315788 | Roby | Nov 2001 | B1 |
6319231 | Andrulitis | Nov 2001 | B1 |
6322581 | Fukuda et al. | Nov 2001 | B1 |
6334865 | Redmond et al. | Jan 2002 | B1 |
6383201 | Dong | May 2002 | B1 |
6387363 | Gruskin | May 2002 | B1 |
6388043 | Langer et al. | May 2002 | B1 |
6395029 | Levy | May 2002 | B1 |
D462766 | Jacobs et al. | Sep 2002 | S |
6443962 | Gaber | Sep 2002 | B1 |
6471715 | Weiss | Oct 2002 | B1 |
6478809 | Brotz | Nov 2002 | B1 |
6485503 | Jacobs et al. | Nov 2002 | B2 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491714 | Bennett | Dec 2002 | B1 |
6494898 | Roby et al. | Dec 2002 | B1 |
6495127 | Wallace et al. | Dec 2002 | B1 |
RE37963 | Thal | Jan 2003 | E |
6506190 | Walshe | Jan 2003 | B1 |
6506197 | Rollero et al. | Jan 2003 | B1 |
6511488 | Marshall et al. | Jan 2003 | B1 |
6514265 | Ho et al. | Feb 2003 | B2 |
6527795 | Lizardi | Mar 2003 | B1 |
6548002 | Gresser et al. | Apr 2003 | B2 |
6548569 | Williams et al. | Apr 2003 | B1 |
6551343 | Tormala et al. | Apr 2003 | B1 |
6554802 | Pearson et al. | Apr 2003 | B1 |
6565597 | Fearnot et al. | May 2003 | B1 |
6592609 | Bonutti | Jul 2003 | B1 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6599310 | Leung et al. | Jul 2003 | B2 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6610078 | Bru-Magniez et al. | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6613254 | Shiffer | Sep 2003 | B1 |
6616982 | Merrill et al. | Sep 2003 | B2 |
6623492 | Berube et al. | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6632245 | Kim | Oct 2003 | B2 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6645226 | Jacobs et al. | Nov 2003 | B1 |
6645227 | Fallin et al. | Nov 2003 | B2 |
6648921 | Anderson et al. | Nov 2003 | B2 |
6656182 | Hayhurst | Dec 2003 | B1 |
6689153 | Skiba | Feb 2004 | B1 |
6689166 | Laurencin et al. | Feb 2004 | B2 |
6692761 | Mahmood et al. | Feb 2004 | B2 |
6702844 | Lazarus | Mar 2004 | B1 |
6712830 | Esplin | Mar 2004 | B2 |
6712859 | Rousseau et al. | Mar 2004 | B2 |
6716234 | Grafton et al. | Apr 2004 | B2 |
6720402 | Langer et al. | Apr 2004 | B2 |
6726705 | Peterson et al. | Apr 2004 | B2 |
6746443 | Morley et al. | Jun 2004 | B1 |
6746458 | Cloud | Jun 2004 | B1 |
6749616 | Nath | Jun 2004 | B1 |
6773450 | Leung et al. | Aug 2004 | B2 |
6783554 | Amara et al. | Aug 2004 | B2 |
6814748 | Baker et al. | Nov 2004 | B1 |
6818010 | Eichhorn et al. | Nov 2004 | B2 |
6836284 | Murokh et al. | Dec 2004 | B2 |
6838493 | Williams et al. | Jan 2005 | B2 |
6848152 | Genova et al. | Feb 2005 | B2 |
6852825 | Lendlein et al. | Feb 2005 | B2 |
6860891 | Schulze | Mar 2005 | B2 |
6860901 | Baker et al. | Mar 2005 | B1 |
6867248 | Martin et al. | Mar 2005 | B1 |
6877934 | Gainer | Apr 2005 | B2 |
6881766 | Hain | Apr 2005 | B2 |
6893452 | Jacobs | May 2005 | B2 |
6905484 | Buckman et al. | Jun 2005 | B2 |
6911035 | Blomme | Jun 2005 | B1 |
6911037 | Gainor et al. | Jun 2005 | B2 |
6913607 | Ainsworth et al. | Jul 2005 | B2 |
6921811 | Zamora et al. | Jul 2005 | B2 |
6923819 | Meade et al. | Aug 2005 | B2 |
6945021 | Michel | Sep 2005 | B2 |
6945980 | Nguyen et al. | Sep 2005 | B2 |
6960221 | Ho et al. | Nov 2005 | B2 |
6960233 | Berg et al. | Nov 2005 | B1 |
6974450 | Weber et al. | Dec 2005 | B2 |
6981983 | Rosenblatt et al. | Jan 2006 | B1 |
6984241 | Lubbers et al. | Jan 2006 | B2 |
6986780 | Rudnick et al. | Jan 2006 | B2 |
6991643 | Saadat | Jan 2006 | B2 |
6996880 | Kurtz, Jr. | Feb 2006 | B2 |
7021316 | Leiboff | Apr 2006 | B2 |
7033379 | Peterson | Apr 2006 | B2 |
7037984 | Lendlein et al. | May 2006 | B2 |
7041121 | Williams et al. | May 2006 | B1 |
7048748 | Ustuner | May 2006 | B1 |
7056331 | Kaplan et al. | Jun 2006 | B2 |
7056333 | Walshe | Jun 2006 | B2 |
7057135 | Li | Jun 2006 | B2 |
7063716 | Cunningham | Jun 2006 | B2 |
7070610 | Im et al. | Jul 2006 | B2 |
7081135 | Smith et al. | Jul 2006 | B2 |
7083637 | Tannhauser | Aug 2006 | B1 |
7083648 | Yu et al. | Aug 2006 | B2 |
7107090 | Salisbury, Jr. et al. | Sep 2006 | B2 |
7112214 | Peterson et al. | Sep 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7125413 | Grigoryants et al. | Oct 2006 | B2 |
D532107 | Peterson et al. | Nov 2006 | S |
7138441 | Zhang | Nov 2006 | B1 |
7141302 | Mueller et al. | Nov 2006 | B2 |
7144401 | Yamamoto et al. | Dec 2006 | B2 |
7144412 | Wolf et al. | Dec 2006 | B2 |
7144415 | DelRio et al. | Dec 2006 | B2 |
7150757 | Fallin et al. | Dec 2006 | B2 |
7156858 | Schuldt-Hempe et al. | Jan 2007 | B2 |
7156862 | Jacobs et al. | Jan 2007 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7172595 | Goble | Feb 2007 | B1 |
7172615 | Morriss et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7195634 | Schmieding et al. | Mar 2007 | B2 |
7211088 | Grafton et | May 2007 | B2 |
7214230 | Brock et al. | May 2007 | B2 |
7217744 | Lendlein et al. | May 2007 | B2 |
7225512 | Genova et al. | Jun 2007 | B2 |
7226468 | Ruff | Jun 2007 | B2 |
7232447 | Gellman et al. | Jun 2007 | B2 |
7244270 | Lesh et al. | Jul 2007 | B2 |
7279612 | Heaton et al. | Oct 2007 | B1 |
7297142 | Brock | Nov 2007 | B2 |
7322105 | Lewis | Jan 2008 | B2 |
7371253 | Leung et al. | May 2008 | B2 |
7468242 | Bellomo et al. | Dec 2008 | B2 |
7513904 | Sulamanidze et al. | Apr 2009 | B2 |
7582105 | Kolster | Sep 2009 | B2 |
7601164 | Wu | Oct 2009 | B2 |
7624487 | Trull et al. | Dec 2009 | B2 |
7645293 | Martinek et al. | Jan 2010 | B2 |
7806908 | Ruff | Oct 2010 | B2 |
7845356 | Paraschac et al. | Dec 2010 | B2 |
7857829 | Kaplan et al. | Dec 2010 | B2 |
7879072 | Bonutti et al. | Feb 2011 | B2 |
7919112 | Pathak et al. | Apr 2011 | B2 |
8092856 | Hadba | Jan 2012 | B2 |
8118834 | Goraltchouk et al. | Feb 2012 | B1 |
8216273 | Goraltchouk et al. | Jul 2012 | B1 |
8226684 | Nawrocki et al. | Jul 2012 | B2 |
8308761 | Brailovski et al. | Nov 2012 | B2 |
20010011187 | Pavcnik et al. | Aug 2001 | A1 |
20010018592 | Schaller et al. | Aug 2001 | A1 |
20010018599 | D'Aversa et al. | Aug 2001 | A1 |
20010039450 | Pavcnik et al. | Nov 2001 | A1 |
20010051807 | Grafton | Dec 2001 | A1 |
20020007218 | Cauthen | Jan 2002 | A1 |
20020022861 | Jacobs et al. | Feb 2002 | A1 |
20020029011 | Dyer | Mar 2002 | A1 |
20020029066 | Foerster | Mar 2002 | A1 |
20020077448 | Antal et al. | Jun 2002 | A1 |
20020095164 | Andreas et al. | Jul 2002 | A1 |
20020099394 | Houser et al. | Jul 2002 | A1 |
20020111641 | Peterson et al. | Aug 2002 | A1 |
20020111688 | Cauthen | Aug 2002 | A1 |
20020138009 | Brockway et al. | Sep 2002 | A1 |
20020151932 | Bryant et al. | Oct 2002 | A1 |
20020151980 | Cauthen | Oct 2002 | A1 |
20020161168 | Shalaby et al. | Oct 2002 | A1 |
20020165555 | Stein et al. | Nov 2002 | A1 |
20020173822 | Justin et al. | Nov 2002 | A1 |
20020179718 | Murokh et al. | Dec 2002 | A1 |
20030040795 | Elson et al. | Feb 2003 | A1 |
20030069602 | Jacobs et al. | Apr 2003 | A1 |
20030088270 | Lubbers et al. | May 2003 | A1 |
20030149447 | Morency et al. | Aug 2003 | A1 |
20030158604 | Cauthen, III et al. | Aug 2003 | A1 |
20030167072 | Oberlander | Sep 2003 | A1 |
20030199923 | Khairkhahan et al. | Oct 2003 | A1 |
20030203003 | Nelson et al. | Oct 2003 | A1 |
20030204193 | Gabriel et al. | Oct 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030225424 | Benderev | Dec 2003 | A1 |
20030229361 | Jackson | Dec 2003 | A1 |
20030236551 | Peterson | Dec 2003 | A1 |
20040006353 | Bosley, Jr. et al. | Jan 2004 | A1 |
20040010275 | Jacobs et al. | Jan 2004 | A1 |
20040010276 | Jacobs et al. | Jan 2004 | A1 |
20040015187 | Lendlein et al. | Jan 2004 | A1 |
20040024169 | Shalaby et al. | Feb 2004 | A1 |
20040024420 | Lubbers et al. | Feb 2004 | A1 |
20040030354 | Leung et al. | Feb 2004 | A1 |
20040039415 | Zamierowski | Feb 2004 | A1 |
20040049224 | Buehlmann et al. | Mar 2004 | A1 |
20040059370 | Greene, Jr. et al. | Mar 2004 | A1 |
20040059377 | Peterson et al. | Mar 2004 | A1 |
20040060409 | Leung et al. | Apr 2004 | A1 |
20040060410 | Leung et al. | Apr 2004 | A1 |
20040068293 | Scalzo et al. | Apr 2004 | A1 |
20040068294 | Scalzo et al. | Apr 2004 | A1 |
20040088003 | Leung et al. | May 2004 | A1 |
20040093023 | Allen et al. | May 2004 | A1 |
20040098051 | Fallin et al. | May 2004 | A1 |
20040106949 | Cohn et al. | Jun 2004 | A1 |
20040116620 | Shalaby et al. | Jun 2004 | A1 |
20040138683 | Shelton et al. | Jul 2004 | A1 |
20040153153 | Elson et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040167575 | Roby | Aug 2004 | A1 |
20040186487 | Klein et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040193217 | Lubbers et al. | Sep 2004 | A1 |
20040193257 | Wu et al. | Sep 2004 | A1 |
20040230223 | Bonutti et al. | Nov 2004 | A1 |
20040260340 | Jacobs et al. | Dec 2004 | A1 |
20040265282 | Wright et al. | Dec 2004 | A1 |
20040267309 | Garvin | Dec 2004 | A1 |
20050004601 | Kong et al. | Jan 2005 | A1 |
20050004602 | Hart et al. | Jan 2005 | A1 |
20050033324 | Phan | Feb 2005 | A1 |
20050034431 | Dey et al. | Feb 2005 | A1 |
20050038472 | Furst | Feb 2005 | A1 |
20050049636 | Leiboff | Mar 2005 | A1 |
20050055051 | Grafton | Mar 2005 | A1 |
20050059984 | Chanduszko et al. | Mar 2005 | A1 |
20050065533 | Magen et al. | Mar 2005 | A1 |
20050070959 | Cichocki, Jr. | Mar 2005 | A1 |
20050080455 | Schmieding et al. | Apr 2005 | A1 |
20050085857 | Peterson et al. | Apr 2005 | A1 |
20050096698 | Lederman | May 2005 | A1 |
20050113936 | Brustad et al. | May 2005 | A1 |
20050119694 | Jacobs et al. | Jun 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050125034 | Cichocki, Jr. | Jun 2005 | A1 |
20050125035 | Cichocki, Jr. | Jun 2005 | A1 |
20050149064 | Peterson et al. | Jul 2005 | A1 |
20050149118 | Koyfman et al. | Jul 2005 | A1 |
20050154255 | Jacobs | Jul 2005 | A1 |
20050171561 | Songer et al. | Aug 2005 | A1 |
20050177190 | Zamierowski | Aug 2005 | A1 |
20050181009 | Hunter et al. | Aug 2005 | A1 |
20050182444 | Peterson et al. | Aug 2005 | A1 |
20050182445 | Zamierowski | Aug 2005 | A1 |
20050186247 | Hunter et al. | Aug 2005 | A1 |
20050197699 | Jacobs et al. | Sep 2005 | A1 |
20050199249 | Karram | Sep 2005 | A1 |
20050203576 | Sulamandize et al. | Sep 2005 | A1 |
20050209542 | Jacobs et al. | Sep 2005 | A1 |
20050209612 | Nakao | Sep 2005 | A1 |
20050234510 | Zamierowski | Oct 2005 | A1 |
20050240220 | Zamierowski | Oct 2005 | A1 |
20050267531 | Ruff et al. | Dec 2005 | A1 |
20050267532 | Wu | Dec 2005 | A1 |
20050277984 | Long | Dec 2005 | A1 |
20050283246 | Cauthen, III et al. | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060030884 | Young et al. | Feb 2006 | A1 |
20060036266 | Sulamanidze et al. | Feb 2006 | A1 |
20060058470 | Rizk | Mar 2006 | A1 |
20060058574 | Priewe et al. | Mar 2006 | A1 |
20060058799 | Elson et al. | Mar 2006 | A1 |
20060058844 | White et al. | Mar 2006 | A1 |
20060063476 | Dore | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060064116 | Allen et al. | Mar 2006 | A1 |
20060064127 | Fallin et al. | Mar 2006 | A1 |
20060079469 | Anderson et al. | Apr 2006 | A1 |
20060079935 | Kolster | Apr 2006 | A1 |
20060085016 | Eremia | Apr 2006 | A1 |
20060089525 | Mamo et al. | Apr 2006 | A1 |
20060089672 | Martinek | Apr 2006 | A1 |
20060111734 | Kaplan et al. | May 2006 | A1 |
20060111742 | Kaplan et al. | May 2006 | A1 |
20060116503 | Lendlein et al. | Jun 2006 | A1 |
20060122608 | Fallin et al. | Jun 2006 | A1 |
20060135994 | Ruff | Jun 2006 | A1 |
20060135995 | Ruff | Jun 2006 | A1 |
20060140999 | Lendlein et al. | Jun 2006 | A1 |
20060142784 | Kontos | Jun 2006 | A1 |
20060193769 | Nelson et al. | Aug 2006 | A1 |
20060194721 | Allen | Aug 2006 | A1 |
20060200062 | Saadat | Sep 2006 | A1 |
20060207612 | Jackson et al. | Sep 2006 | A1 |
20060229671 | Steiner et al. | Oct 2006 | A1 |
20060235445 | Birk et al. | Oct 2006 | A1 |
20060235447 | Walshe | Oct 2006 | A1 |
20060235516 | Cavazzoni | Oct 2006 | A1 |
20060241658 | Cerundolo | Oct 2006 | A1 |
20060249405 | Cerwin et al. | Nov 2006 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20060257629 | Lendlein et al. | Nov 2006 | A1 |
20060258938 | Hoffman et al. | Nov 2006 | A1 |
20060272979 | Lubbers et al. | Dec 2006 | A1 |
20060276808 | Arnal et al. | Dec 2006 | A1 |
20060282099 | Stokes et al. | Dec 2006 | A1 |
20060286289 | Prajapati et al. | Dec 2006 | A1 |
20060287675 | Prajapati et al. | Dec 2006 | A1 |
20060287676 | Prajapati et al. | Dec 2006 | A1 |
20060293710 | Foerster et al. | Dec 2006 | A1 |
20070005109 | Popadiuk et al. | Jan 2007 | A1 |
20070005110 | Collier et al. | Jan 2007 | A1 |
20070016251 | Roby | Jan 2007 | A1 |
20070021779 | Garvin et al. | Jan 2007 | A1 |
20070027475 | Pagedas | Feb 2007 | A1 |
20070038249 | Kolster | Feb 2007 | A1 |
20070065663 | Trull et al. | Mar 2007 | A1 |
20070088135 | Lendlein et al. | Apr 2007 | A1 |
20070088391 | McAlexander et al. | Apr 2007 | A1 |
20070134292 | Suokas et al. | Jun 2007 | A1 |
20070135840 | Schmieding | Jun 2007 | A1 |
20070135843 | Burkhart | Jun 2007 | A1 |
20070151961 | Kleine et al. | Jul 2007 | A1 |
20070156175 | Weadock et al. | Jul 2007 | A1 |
20070167958 | Sulamanidze et al. | Jul 2007 | A1 |
20070187861 | Geneva et al. | Aug 2007 | A1 |
20070208355 | Ruff | Sep 2007 | A1 |
20070208377 | Kaplan et al. | Sep 2007 | A1 |
20070213770 | Drefyss | Sep 2007 | A1 |
20070219587 | Accardo | Sep 2007 | A1 |
20070224237 | Hwang et al. | Sep 2007 | A1 |
20070225642 | Houser et al. | Sep 2007 | A1 |
20070225761 | Shetty | Sep 2007 | A1 |
20070225763 | Zwolinski et al. | Sep 2007 | A1 |
20070233188 | Hunt et al. | Oct 2007 | A1 |
20070239206 | Shelton, IV et al. | Oct 2007 | A1 |
20070239207 | Beramendi | Oct 2007 | A1 |
20070257395 | Lindh et al. | Nov 2007 | A1 |
20070282247 | Desai et al. | Dec 2007 | A1 |
20070293892 | Takasu | Dec 2007 | A1 |
20080004490 | Bosley, Jr. et al. | Jan 2008 | A1 |
20080004603 | Larkin et al. | Jan 2008 | A1 |
20080009838 | Schena et al. | Jan 2008 | A1 |
20080009888 | Ewers et al. | Jan 2008 | A1 |
20080009902 | Hunter et al. | Jan 2008 | A1 |
20080027273 | Gutterman | Jan 2008 | A1 |
20080027486 | Jones et al. | Jan 2008 | A1 |
20080046094 | Han et al. | Feb 2008 | A1 |
20080058869 | Stopek et al. | Mar 2008 | A1 |
20080064839 | Hadba et al. | Mar 2008 | A1 |
20080066764 | Paraschac et al. | Mar 2008 | A1 |
20080066765 | Paraschac et al. | Mar 2008 | A1 |
20080066766 | Paraschac et al. | Mar 2008 | A1 |
20080066767 | Paraschac et al. | Mar 2008 | A1 |
20080077181 | Jones et al. | Mar 2008 | A1 |
20080082113 | Bishop et al. | Apr 2008 | A1 |
20080082129 | Jones et al. | Apr 2008 | A1 |
20080086169 | Jones et al. | Apr 2008 | A1 |
20080086170 | Jones et al. | Apr 2008 | A1 |
20080109036 | Stopek et al. | May 2008 | A1 |
20080131692 | Rolland et al. | Jun 2008 | A1 |
20080132943 | Maiorino et al. | Jun 2008 | A1 |
20080169059 | Messersmith et al. | Jul 2008 | A1 |
20080195147 | Stopek | Aug 2008 | A1 |
20080208358 | Bellamkonda et al. | Aug 2008 | A1 |
20080215072 | Kelly | Sep 2008 | A1 |
20080221618 | Chen et al. | Sep 2008 | A1 |
20080234731 | Leung et al. | Sep 2008 | A1 |
20080248216 | Yeung et al. | Oct 2008 | A1 |
20080255611 | Hunter | Oct 2008 | A1 |
20080262542 | Sulamanidze et al. | Oct 2008 | A1 |
20080281338 | Wohlert et al. | Nov 2008 | A1 |
20080281357 | Sung et al. | Nov 2008 | A1 |
20080312688 | Naworocki et al. | Dec 2008 | A1 |
20090012560 | Hunter et al. | Jan 2009 | A1 |
20090018577 | Leung et al. | Jan 2009 | A1 |
20090043336 | Yuan et al. | Feb 2009 | A1 |
20090076543 | Maiorino et al. | Mar 2009 | A1 |
20090082856 | Flanagan | Mar 2009 | A1 |
20090088835 | Wang | Apr 2009 | A1 |
20090099597 | Isse | Apr 2009 | A1 |
20090105753 | Greenhalgh et al. | Apr 2009 | A1 |
20090107965 | D'Agostino | Apr 2009 | A1 |
20090112236 | Stopek | Apr 2009 | A1 |
20090112259 | D'Agostino | Apr 2009 | A1 |
20090143819 | D'Agostino | Jun 2009 | A1 |
20090200487 | Maiorino et al. | Aug 2009 | A1 |
20090210006 | Cohen et al. | Aug 2009 | A1 |
20090216253 | Bell et al. | Aug 2009 | A1 |
20090226500 | Avelar et al. | Sep 2009 | A1 |
20090248066 | Wilkie | Oct 2009 | A1 |
20090248067 | Maiorino | Oct 2009 | A1 |
20090248070 | Kosa et al. | Oct 2009 | A1 |
20090250588 | Robeson et al. | Oct 2009 | A1 |
20090259233 | Bogart et al. | Oct 2009 | A1 |
20090259251 | Cohen | Oct 2009 | A1 |
20090287245 | Ostrovsky et al. | Nov 2009 | A1 |
20090299407 | Yuan et al. | Dec 2009 | A1 |
20090299408 | Schuldt-Hempe et al. | Dec 2009 | A1 |
20090306710 | Lindh et al. | Dec 2009 | A1 |
20100021516 | McKay | Jan 2010 | A1 |
20100023055 | Rousseau | Jan 2010 | A1 |
20100057123 | D'Agostino et al. | Mar 2010 | A1 |
20100063540 | Maiorino | Mar 2010 | A1 |
20100071833 | Maiorino | Mar 2010 | A1 |
20100087855 | Leung et al. | Apr 2010 | A1 |
20100101707 | Maiorino et al. | Apr 2010 | A1 |
20100160961 | Nawrocki et al. | Jun 2010 | A1 |
20100163056 | Tschopp et al. | Jul 2010 | A1 |
20100211097 | Hadba et al. | Aug 2010 | A1 |
20100211098 | Hadba et al. | Aug 2010 | A1 |
20100239635 | McClain et al. | Sep 2010 | A1 |
20100292718 | Sholev et al. | Nov 2010 | A1 |
20100294103 | Genova et al. | Nov 2010 | A1 |
20100294104 | Genova et al. | Nov 2010 | A1 |
20100294105 | Genova et al. | Nov 2010 | A1 |
20100294106 | Genova et al. | Nov 2010 | A1 |
20100294107 | Genova et al. | Nov 2010 | A1 |
20100298637 | Ruff | Nov 2010 | A1 |
20100298639 | Leung et al. | Nov 2010 | A1 |
20100298867 | Ruff | Nov 2010 | A1 |
20100298868 | Ruff | Nov 2010 | A1 |
20100298871 | Ruff et al. | Nov 2010 | A1 |
20100298878 | Leung et al. | Nov 2010 | A1 |
20100298879 | Leung et al. | Nov 2010 | A1 |
20100298880 | Leung et al. | Nov 2010 | A1 |
20100313723 | Genova et al. | Dec 2010 | A1 |
20100313729 | Genova et al. | Dec 2010 | A1 |
20100313730 | Genova et al. | Dec 2010 | A1 |
20100318122 | Leung et al. | Dec 2010 | A1 |
20100318123 | Leung et al. | Dec 2010 | A1 |
20100318124 | Leung et al. | Dec 2010 | A1 |
20110009902 | Leung et al. | Jan 2011 | A1 |
20110046669 | Goraltchouk et al. | Feb 2011 | A1 |
20110106152 | Kozlowski | May 2011 | A1 |
20110130774 | Criscuolo et al. | Jun 2011 | A1 |
20110166597 | Herrmann et al. | Jul 2011 | A1 |
20120109188 | Viola | May 2012 | A1 |
Number | Date | Country |
---|---|---|
1014364 | Sep 2003 | BE |
2309844 | Dec 1996 | CA |
2640420 | Sep 2004 | CN |
01810800 | Jun 1970 | DE |
03227984 | Feb 1984 | DE |
04302895 | Aug 1994 | DE |
19618891 | Apr 1997 | DE |
19833703 | Feb 2000 | DE |
10245025 | Apr 2004 | DE |
102005004317 | Jun 2006 | DE |
0121362 | Sep 1987 | EP |
0329787 | Aug 1989 | EP |
0513713 | May 1992 | EP |
0428253 | Jul 1994 | EP |
0632999 | Jan 1995 | EP |
0513736 | Feb 1995 | EP |
0464479 | Mar 1995 | EP |
0464480 | Mar 1995 | EP |
0576337 | Mar 1997 | EP |
0576337 | Mar 1997 | EP |
0574707 | Aug 1997 | EP |
0612504 | Nov 1997 | EP |
0558993 | Apr 1998 | EP |
0913123 | May 1999 | EP |
0916310 | May 1999 | EP |
0664198 | Jun 1999 | EP |
0960600 | Dec 1999 | EP |
0705567 | Mar 2002 | EP |
0673624 | Aug 2002 | EP |
0839499 | Sep 2003 | EP |
0755656 | Dec 2003 | EP |
1075843 | Feb 2005 | EP |
1525851 | Apr 2005 | EP |
1532942 | May 2005 | EP |
0826337 | Dec 2005 | EP |
0991359 | Nov 2007 | EP |
2036502 | Mar 2009 | EP |
1948261 | Nov 2010 | EP |
1726317 | Jul 2012 | EP |
2619129 | Feb 1989 | FR |
2693108 | Jan 1994 | FR |
0267007 | Mar 1927 | GB |
1091282 | Nov 1967 | GB |
1428560 | Jul 1973 | GB |
1506362 | Apr 1978 | GB |
1508627 | Apr 1978 | GB |
1506362 | Apr 1978 | JP |
54-116419 | Sep 1979 | JP |
63-288146 | Nov 1988 | JP |
001113091 | May 1989 | JP |
3-165751 | Jul 1991 | JP |
4-096758 | Mar 1992 | JP |
4-266749 | Sep 1992 | JP |
9-103477 | Apr 1997 | JP |
410085225 | Apr 1998 | JP |
11-313826 | Nov 1999 | JP |
011332828 | Dec 1999 | JP |
2002-059235 | Feb 2002 | JP |
2003-275217 | Sep 2003 | JP |
2009-118967 | Jun 2009 | JP |
10-2005-0072908 | Jul 2005 | KR |
6013299 | Feb 2006 | KR |
501224 | Mar 2002 | NZ |
531262 | Dec 2005 | NZ |
2139690 | Oct 1999 | RU |
2175855 | Nov 2001 | RU |
2241389 | Dec 2004 | RU |
2268752 | Jan 2006 | RU |
1745214 | Jul 1992 | SU |
1752358 | Aug 1992 | SU |
WO 9606565 | Mar 1966 | WO |
WO 8600020 | Jan 1986 | WO |
WO 8701270 | Mar 1987 | WO |
WO 8905618 | Jun 1989 | WO |
WO 9009149 | Aug 1990 | WO |
WO 9014795 | Dec 1990 | WO |
WO 9222336 | Dec 1992 | WO |
WO 9516399 | Jun 1995 | WO |
WO 9529637 | Nov 1995 | WO |
WO 9852473 | Nov 1998 | WO |
WO 8809157 | Dec 1998 | WO |
WO 9855031 | Dec 1998 | WO |
WO 9921488 | May 1999 | WO |
WO 9933401 | Jul 1999 | WO |
WO 9952478 | Oct 1999 | WO |
WO 9959477 | Nov 1999 | WO |
WO 9962431 | Dec 1999 | WO |
WO 0051658 | Sep 2000 | WO |
WO 0051685 | Sep 2000 | WO |
WO 0106952 | Feb 2001 | WO |
WO 01056626 | Aug 2001 | WO |
WO 03001979 | Jan 2003 | WO |
WO 03003925 | Jan 2003 | WO |
WO 03045255 | Jun 2003 | WO |
WO 03077772 | Sep 2003 | WO |
WO 03092758 | Nov 2003 | WO |
WO 03103733 | Dec 2003 | WO |
WO 03103972 | Dec 2003 | WO |
WO 03105703 | Dec 2003 | WO |
WO 2004014236 | Feb 2004 | WO |
WO 2004030517 | Apr 2004 | WO |
WO 2004030520 | Apr 2004 | WO |
WO 2004030704 | Apr 2004 | WO |
WO 2004030705 | Apr 2004 | WO |
WO 2004062459 | Jul 2004 | WO |
WO 2004100801 | Nov 2004 | WO |
WO 2004112853 | Dec 2004 | WO |
WO 2005016176 | Feb 2005 | WO |
WO 2005074913 | Aug 2005 | WO |
WO 2005096955 | Oct 2005 | WO |
WO 2005096956 | Oct 2005 | WO |
WO 2005112787 | Dec 2005 | WO |
WO 2006005144 | Jan 2006 | WO |
WO 2006012128 | Feb 2006 | WO |
WO 2006037399 | Apr 2006 | WO |
WO 2006061868 | Jun 2006 | WO |
WO 2006079469 | Aug 2006 | WO |
WO 2006082060 | Aug 2006 | WO |
WO 2006099703 | Sep 2006 | WO |
WO 2006138300 | Dec 2006 | WO |
WO 2007005291 | Jan 2007 | WO |
WO 2007005296 | Jan 2007 | WO |
WO 2007038837 | Apr 2007 | WO |
WO 2007053812 | May 2007 | WO |
WO 2007089864 | Aug 2007 | WO |
WO 2007112024 | Oct 2007 | WO |
WO 2007133103 | Nov 2007 | WO |
WO 2007145614 | Dec 2007 | WO |
WO 2008128113 | Oct 2008 | WO |
WO 2008150773 | Dec 2008 | WO |
WO 2009042841 | Apr 2009 | WO |
WO 2009068252 | Jun 2009 | WO |
WO 2009087105 | Jul 2009 | WO |
WO 2009097556 | Aug 2009 | WO |
WO 2009151876 | Dec 2009 | WO |
WO 2010052007 | May 2010 | WO |
WO 2011053375 | May 2011 | WO |
WO 2011139916 | Nov 2011 | WO |
WO 2011140283 | Nov 2011 | WO |
Entry |
---|
Communication from EPO re: 10000486 dated Apr. 4, 2011, 4 pages. |
European Search Report re: EP05025816 dated Jun. 23, 2006. |
European Search Report for EP07006258.3 dated May 4, 2007, 4 pages. |
European Search Report for EP07015906 dated Oct. 2, 2007. |
European Search Report for EP07015905.8 dated Oct. 2, 2007, 2 pages. |
European Search Report for EP07016222 dated Jan. 7, 2008. |
European Search Report for EP09014651 dated Jan. 12, 2010. |
European Search Report for EP10000629.5 dated Mar. 10, 2010, 4 pages. |
European Search Report re: EP10000486 dated Apr. 23, 2010. |
European Search Report re: 10004453 dated Jun. 15, 2010. |
European Search Report for EP10011871.0 dated Dec. 3, 2010, 2 pages. |
European Search Report for EP10011868.6 dated Dec. 6, 2010, 2 pages. |
European Search Report for EP10011869 dated Jan. 20, 2011. |
European Search Report for EP10011872 dated Apr. 20, 2011. |
European Search Report for EP10012437 dated Apr. 28, 2011. |
European Search Report for EP10186592.1 dated Jan. 19, 2011, 2 pages. |
European Search Report for EP10184766 dated Apr. 20, 2011. |
Extended European Search Report re: 07015905.8 dated Oct. 23, 2007. |
Extended European Search Report re: 07016222.7 dated Jan. 30, 2008. |
International Preliminary Examination Report re: PCT/US1998/10478 dated Dec. 11, 1999. |
International Preliminary Report re: PCT/US2007/002688 dated Aug. 14, 2008. |
International Preliminary Report re: PCT/US2008/060127 dated Oct. 13, 2009. |
International Preliminary Report re: PCT/US2008/087788 dated Jun. 22, 2010. |
International Preliminary Report re: PCT/US2009/032693 dated Aug. 3, 2010. |
International Preliminary Report re: PCT/US2009/040545 dated Oct. 19, 2010. |
International Preliminary Report re: PCT/US2009/041685 dated Oct. 26, 2010. |
International Preliminary Report re: PCT/US2011/035431 dated Nov. 6, 2012. |
International Preliminary Report re: PCT/US2011 /059238 dated May 7, 2013. |
International Search Report for PCT/US1994/09631 dated Dec. 9, 1994. |
International Search Report for PCT/US1998/10478 dated Sep. 23, 1998. |
International Search Report for PCT/US2002/20449 dated May 20, 2003. |
International Search Report for PCT/US2002/027525 dated Dec. 9, 2002, 3 pages. |
International Search Report for PCT/US2003/030424 dated Nov. 1, 2004. |
International Search Report for PCT/US2003/030664 dated May 25, 2004. |
International Search Report for PCT/2003/030666 dated Dec. 15, 2004. |
International Search Report for PCT/US2003/025088 dated Dec. 29, 2003. |
International Search Report re: PCT/US2003/030674 dated Sep. 2, 2004. |
International Search Report re: PCT/US2004/014962 dated Feb. 24, 2005. |
International Search Report for PCT/US2005/017028 dated Mar. 26, 2008. |
International Search Report for PCT/US2007/002688 dated Oct. 22, 2007. |
International Search Report for PCT/US2007/074658 dated Jun. 12, 2007, 3 pages. |
International Search Report for PCT/US2008/060127 dated Sep. 23, 2008, 5 pages. |
International Search Report for PCT/US2008/077813 dated Mar. 31, 2009. |
International Search Report for PCT/US2008/082009 dated Feb. 16, 2010. |
International Search Report for PCT/US2009/032693 dated Aug. 26, 2009. |
International Search Report for PCT/US2009/034703 dated Sep. 28, 2009. |
International Search Report for PCT/US2009/040545 dated Oct. 29, 2009. |
International Search Report for PCT/US2009/063081 dated Aug. 2, 2010. |
International Search Report for PCT/US2009/041685 dated Dec. 22, 2009. |
International Search Report for PCT/US2010/056898 dated Aug. 2, 2011. |
International Search Report for PCT/US2010/060889 dated Oct. 11, 2011. |
International Search Report for PCT/US2011/034660 dated Feb. 8, 2012. |
International Search Report for PCT/US2011/035270 dated Jan. 12, 2012. |
International Search Report for PCT/US2011/035271 dated Jan. 12, 2012. |
International Search Report re: PCT/US2011/035431 dated Jan. 12, 2012. |
International Search Report for PCT/US2011/059238 dated May 21, 2012. |
International Search Report for PCT/US2012/030441 dated Sep. 27, 2012. |
International Search Report for PCT/US2012/041001 dated Sep. 26, 2012. |
Partial European Search Report re: EP05025816 dated Mar. 20, 2006. |
Singapore Search Report for Singapore Patent Application No. 200702625-5 dated Nov. 26, 2008, 7 pages. |
Singapore Search Report for Singapore Patent Application No. 200702350-0 dated Nov. 26, 2008, 6 pages. |
Singapore Search Report for Singapore Patent Application No. 200703688-2 dated Nov. 26, 2008, 7 pages. |
Singapore Search Report for Singapore Patent Application No. 201103117-6 dated Mar. 8, 2013. |
Supplementary European Search Report re: EP98923664 dated Jun. 12, 2001. |
Supplementary European Search Report re: EP03752630 dated Nov. 17, 2005. |
Supplementary European Search Report re: 03770556 dated Nov. 17, 2005. |
Supplementary European Search Report re: 03754965 dated Nov. 18, 2005. |
Supplementary European Search Report re: EP03785177 dated May 19, 2009. |
Supplementary European Search Report re: 05750101 dated Apr. 7, 2010. |
Supplementary European Search Report re: 07017663 dated Nov. 7, 2007. |
Written Opinion of the International Searching Authority re: PCT/US2010/056898 dated Aug. 2, 2011. |
Written Opinion of the International Searching Authority re: PCT/US2012/041001 dated Sep. 26, 2012. |
International Preliminary Report on Patentability for PCT/US2009/044274, dated Nov. 17, 2010. |
International Search Report for PCT/US2009/044274 dated Jan. 15, 2010. |
US 6,447,535, (withdrawn). |
US 6,503,260, (withdrawn). |
Bacci, Pier Antonio, “Chirurgia Estetica Mini Invasiva Con Fili Di Sostegno”, Collana di Arti, Pensiero e Scienza; Minelli Editore—2006; 54 pgs. |
Behl, Marc et al., “Shape-Memory Polymers”, Materials Today Apr. 2007; 10(4); 20-28. |
Belkas, J. S. et al., “Peripheral nerve regeneration through a synthetic hydrogel nerve tube”, Restorative Neurology and Neuroscience 23 (2005) 19-29. |
Bellin, I. et al., “Polymeric triple-shape materials”, Proceedings of the National Academy of Sciences of the United States of America Nov. 28, 2006; 2103(48):18043-18047. |
Boenisch, U.W. et al ‘Pull-Out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures’ American Journal of Sports Medicine, Sep.-Oct. 1999 vol. 27, Issue 5, pp. 626-631. |
Buckley, P.R. ‘Actuation of Shape Memory Polymer using Magnetic Fields for Applications in Medical Devices’ Master of Science in Mechanical Engineering in Massachusetts Institute of Technology Jun. 2003, 144 pages. |
Buncke, Jr., H.J. et al ‘The Suture Repair of One-Millimeter Vessels, microvascular surgery’ (1966) Report of First Conference; Oct. 6-7 pp. 24-35. |
Bunnell, S. ‘Gig pull-out suture for tendons’ J Bone Joint Surg. Am (1954) vol. 36A, No. 4 pp. 850-851. |
CCPR Centro De Cirurgia Plastica e Reabilitacao 'Up Lifting (Aptos Threads) http://ccpr.com.br/upl-l.htm, Aug. 19, 2002 pp. 1-2. |
Dahlin, Lars, “Techniques of Peripheral Nerve Repair”, Scandinavian Journal of Surgery 97: 310-316, 2008. |
Datillo, Jr., P.P. ‘Knotless Bi-directional Barbed Absorbable Surgical Suture’ Dissertation submitted to the Graduate Faculty of North Carolina State University Textile Management and Technology Nov. 2002, 75 pages. |
Datillo, Jr. P.P. et al ‘Medical Textiles: Application of an Absorbable Barbed Bi-Directional Surgical Suture’ (2002) The Journal of Textile and Apparel Technology and Management vol. 2, Issue 2, pp. 1-5. |
Datillo, Jr., P. et al ‘Tissue holding performance of knotless absorbable sutures’ Society for Biomaterials 29th Annual Meeting Transactions (2003) p. 101. |
Declaration of Dr. Gregory L. Ruff, dated Aug. 19, 2005, 8 pages, with Exhibits A-E. |
De Persia, Raúl et al., “Mechanics of Biomaterials: Sutures After the Surgery”, Applications of Engineering Mechanics in Medicine, GED-University of Puerto Rico, Mayaguez May 2005, p. F1-F27. |
Delorenzi, C.L., “Barbed Sutures: Rationale and Technique”, Aesthetic Surg. J. Mar. 2006 26(2): 223-229. |
Demyttenaere, Sebastian V. et al., “Barbed Suture for Gastrointestinal Closure: A Randomized Control Trial”, Surgical Innovation; vol. 16, No. 3; Sep. 2009; pp. 237-242. |
Einarsson, Jon I. et al., “Barbed Suture, now in the toolbox of minimally invasive gyn surgery”, OBG Management; vol. 21, No. 9; Sep. 2009; pp. 39-41. |
Gross, Alex, “Physician perspective on thread lifts”, Dermatology Times Feb. 2006 27(2): 2 pages. |
Gross, R.A. et al ‘Biodegradable Polymers for the Environment’ Science (2002) vol. 297, Issue 5582 pp. 803. |
Han, H. et al ‘Mating and Piercing Micromechanical Suture for Surface Bonding Applications’ (1991) Proceedings of the 1991 Micro Electro Mechanical Systems (MEMS>91), An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots pp. 253-258. |
Ingle, N.P. et al ‘Barbed Suture Anchoring Strength: Applicability to Dissimilar Polymeric Materials’ College of Textiles, North Carolina State University, 7th World Biomaterials Congress 2004, 1 page. |
Ingle, N.P. et al ‘Mechanical Performance and Finite Element Analysis of Bi-directional Barbed Sutures’ Master of Science in Textile Technology & Management at North Carolina State University Aug. 2003, 126 pages. |
Ingle, N.P. et al., “Optimizing the tissue anchoring performance of barbed sutures in skin and tendon tissues”, Journal of Biomechanics 43 (2010); pp. 302-309. |
Ingle, Nilesh P et al., “Testing the Tissue-holding Capacity of Barbed Sutures”, College of Textiles, North Carolina State University, Fiber Science, The Next Generation Oct. 17-19, 2005, New Jersey Institute of Technology, Newark, NJ, 4 pages. |
Jennings et al ‘A New Technique in primary tendon repair’ Surg. Gynecol. Obstet. (1952) vol. 95, No. 5 pp. 597-600. |
Jeong, H.E. et al ‘A nontransferring dry adhesive with hierarchial polymer nanohairs’ PNAS 106 (14) pp. 5639-5644 (2009). |
Kaminer, M. et al., “ContourLift™: A New Method of Minimally Invasive Facial Rejuvenation”, Cosmetic Dermatology Jan. 2007; 20(1): 29-35. |
Kelch et al., “Shape-memory Polymer Networks from Olio[∈-hydroxycaproate)-co-glycolate]dimethacrylates and Butyl Acrylate with Adjustable Hydrolytic Degradation Rate”, Biomacromolecules 2007;8(3):1018-1027. |
Khademhosseini, Ali et al., “Nanobiotechnology Drug Delivery and Tissue Engineering”, Chemical Engineering Progress 102:38-42 (2006). |
Kuniholm J.F. et al ‘Automated Knot Tying for Fixation in Minimally Invasive, Robot Assisted Cardiac Surgery’ Master of Science in Mechanical & Aerospace Engineering at North Carolina State University May 2003, 71 pages. |
Lendlein, A. et al ‘Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications’ (2002) Science vol. 296 pp. 1673-1676. |
Lendlein, A. et al ‘Shape-Memory Polymers’ Agnew Chem. Int. Ed. (2002) vol. 41 pp. 2034-2057. |
Leung, J. et al ‘Barbed, Bi-directional Medical Sutures: Biomechanical Properties and Wound Closure Efficacy Study’ 2002 Society for Biomaterials 28th Annual Meeting Transactions 1 page. |
Leung, J. et al ‘Barbed, Bi-directional Surgical Sutures’ International Conference & Exhibition on Healthcare & Medical Textiles, Jul. 8-9, 2003 pp. 1-8. |
Leung, J. et al ‘Barbed, Bi-directional Surgical Sutures: In Vivo Strength and Histopathology Evaluations’ 2003 Society for Biomaterials 29th Annual Meeting Transactions pp. 100. |
Leung, J. et al., “Barbed Suture Technology: Recent Advances”, Medical Textiles 2004, Advances in Biomedical Textiles and Healthcare Products, Conference Proceedings, IFAI Expo 2004, Oct. 26-27, 2004, Pittsburgh, PA., pp. 62-80. |
Leung, J. et al ‘Performance Enhancement of a Knotless Suture via Barb Geometry Modifications’ 7th World Biomaterials Congress 2004, 1 page. |
Li, Y.Y. et al ‘Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications’ (2003) Science vol. 299 p. 2045-2047. |
Liu, Changdeng et al., “Shape Memory Polymer with Improved Shape Recovery”, Mater. Res. Soc. Symp. Proc. vol. 855E, 2005 Materials Research Society, pp. W4.7.1-W4.7.6. |
Madduri, Srinivas, et al., “Neurotrophic factors release from nerve conduits for peripheral axonal regeneration”, European Cells and Materials vol. 16; Suppl. 1 (2008), p. 14. |
Madhave et al ‘A biodegradable and biocompatible gecko-inspired tissue adhesive’ PNAS 105(7) pp. 2307-2312 (2008). |
Maitland et al., “Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms”, Journal of Biomedical Optics 2007 May/Jun.;12(3): pp. 030504-1 to 030504-3. |
Malina, M. et al ‘Endovascular AAA Exclusion: Will Stents with Hooks and Barbs Prevent Stent-Graft Migration’ Journal Endovascular Surgery (1998) vol. 5 pp. 310-317. |
Mansberger et al ‘A New Type Pull-Out Wire for Tendon Surgery: A Preliminary Report’ Department of Surgery, University Hospital and University of Maryland School of Medicine, Baltimore, Maryland, Received for Publication May 10, 1951 pp. 119-121. |
Martin, D.P. et al ‘Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial’ Biochemical Engineering Journal vol. 16 (2003) pp. 97-105. |
Mason, M.L. ‘Primary and Secondary Tendon Suture. A discussion of the significance of technique in tendon surgery’ (1940) Surg Gynecol Obstet 70. |
McKee, GK ‘Metal anastomosis tubes in tendon suture’ The Lancet (1945) pp. 659-660. |
McKenzie ‘An Experimental Multiple Barbed Suture for the Long Flexor Tendons of the Palm and Fingers’ The Journal of Bone and Joint Surgery (1967) vol. 49B, No. 3 pp. 440-447. |
Middleton and Tipton ‘Synthetic Biodegradable Polymers as Medical Devices’ (1998) Medical Plastics and Biomaterials Magazine, 9 pages. |
Moran et al., “Bidirectional-Barbed Sutured Knotless Running Anastomosis v Classic van Velthovan in a Model System”, Journal of Endourology Oct. 2007; 21(10); 1175-1177. |
Mullner, “Metal Foam Has a Good Memory”, Dec. 18, 2007 Original story at <http://www.physorg.com/news117214996.html>. |
Murtha et al., “Evaluation of a Novel Technique for Wound Closure Using a Barbed Suture”, Journal of the American Society of Plastic Surgeons 2006; 117(6); 1769-1780. |
Nie, Zhihong and Kumacheva, Eugenia, “Patterning surfaces with functional polymers”, Nature Materials vol. 7(2008): 277-290. |
Paul, Malcolm D., “Bidirectional Barbed Sutures for Wound Closure: Evolution and Applications”, Journal of the American College of Certified Wound Specialists (2009) 1, 51-57. |
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures A Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., First Edition Aug. 2007: 20 pages. |
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures A Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., Second Edition Aug. 2008: 20 pages. |
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures A Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., Third Edition 2009, Aug. 2007-2009: 27 pages. |
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures A Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., Fourth Edition 2010, Aug. 2007-2010: 27 pages. |
Paul, Malcolm D., “Using Barbed Sutures in Open/Subperiosteal Midface Lifting”, Aesthetic Surgery Journal 2006(26): 725-732. |
Potenza, A. ‘Tendon Healing Within the Flexor Digital Sheath in the Dog: An Experimental Study’ Journal of Bone & Joint Surgery (1962) vol. 44A No. 1 pp. 49-64. |
Pulvertaft ‘Suture Materials and Tendon Junctures’ American Journal of Surgery (1965) vol. 109 pp. 346-352. |
Quill Medical, Inc. ‘Barbed Sutures, wrinkle filters give patients more innovative, non-surgical options’ Press Release of Program presented at American Society of Plastic Surgeons annual scientific meeting; Philadelphia, Oct. 9, 2004 3 pages. |
Quill Medical, Inc. ‘Quill Medical's Novel-Self-Anchoring Surgical Suture Approved for Sale in Europe’ Press Release; Research Triangle Park, N.C. May 10, 2004, 1 page. |
Quill Medical, Inc., “Quill Medical, Inc. Receives FDA Clearance for First-inClass Knot-Less Self-Anchoring Surgical Suture”, Press Release; Research Triangle Park, N.C., Nov. 4, 2004, 1 page. |
Richert, Ludovic, et al., “Surface Nanopatterning to Control Cell Growth”, Advanced Materials 2008(15): 1-5. |
Rodeheaver, G.T. et al., “Barbed Sutures for Wound Closure: In Vivo Wound Security, Tissue Compatibility and Cosmesis Measurements”, Society for Biomaterials 30th Annual Meeting Transactions, 2005, 2 pages. |
Rofin-Baasel ‘Laser Marking on Plastic Materials’ (2001) RB50.0, Rofin-Baasel Inc. 2 pages. |
Ruff, Gregory, “Technique and Uses for Absorbable Barbed Sutures”, Aesthetic Surgery Journal Sep./Oct. 2006; 26:620-628. |
Scherman, Peter et al., “Sutures as longitudinal guides for the repair of nerve defects-Influence of suture numbers and reconstruction of nerve bifurcations”, Restorative Neurology and Neuroscience 23 (2005) 79-85. |
Schmid A. et al ‘The outspreading anchor cord. A material for arthroscopic suturing of a fresh anterior cruciate ligament rupture’ Surgical Clinic of the University of Gottingen (1987) pp. 417-426. |
Semenov, G.M. et al ‘Surgical Suture’ (2001) Piter, Saint Petersburg, pp. 12-13 and 92-98. |
Serafetinides, AA ‘Short pulse laser beam interactions with polymers biocompatible materials and tissue’ Proce SPIE vol. 3052 (1996) pp. 111-123. |
Sulamanidze, M. et al., “APTOS Suture Lifting Methods: 10 Years of Experience”, Clin Plastic Surg 36 (2009); pp. 281-306. |
Sulamanidze, M.A. et al ‘Clinical aspects of bloodless facelift using APTOS filaments’ A.V. Vishnevsky Institute of Surgery, Bol'shaya Serpukhovskaya ul, 7, 113811, Moscow, Russia (2002) pp. 24-34. |
Sulamanidze, M.A. et al ‘Facial lifting with APTOS threads’ International Journal of Cosmetic Surgery and Aesthetic Dermatology (2001) No. 4 pp. 1-8. |
Sulamanidze, M.A. et al ‘Management of Facial Rhytids by Subcutaneous Soft Tissue Dissection’ (2000) International Journal of Cosmetic Surgery and Aesthetic Dermatology vol. 2 No. 4 pp. 255-259. |
Sulamanidze, M.A. et al ‘Morphological foundations of facelift using APTOS filaments’ Bolshaya Serpukhovskaya ul 27, 113811 Moscow, Russia (2002) pp. 19-26. |
Sulamanidze, M.A. et al ‘Removal of Facial Soft Tissue Ptosis with Special Threads’ Dermatol Surg (2002) vol. 28 pp. 367-371. |
Sulamanidze, MD, M.A., et al., “Soft tissue lifting in the mid-face: old philosophy, new approach-internal stitching technique (APTOS NEEDLE)”, Plastic and Aesthetic Surgery Clinic TOTAL SHARM, Moscow, Russia, (2005):15-29. |
Sulzle, Inc. B.G. et al Drilled End Surgical Needles Jul. 2002 Syracuse, New York. |
Surgical Specialties Corporation, “Wound Closure Catalog”; Summer 2005, 5 pages. |
Szarmach, R. et al ‘An Expanded Surgical Suture and Needle Evaluation and Selection Program by a Healthcare Resource Management Group Purchasing Organization’ Journal of Long-Term Effects of Medical Implants (2003) vol. 13 No. 3 pp. 155-170. |
Tan E.L. et al., “A wireless, passive strain sensor based on the harmonic response of magnetically soft materials”, Smart Materials and Structures 17 (2008): pp. 1-6. |
Verdan, C. ‘Primary Repair of Flexor Tendons’ Journal of Bone and Joint Surgery (1960) vol. 42, No. 4 pp. 647-657. |
Villa, Mark T. et al., “Barbed Sutures: A Review of Literature”, Plastic and Reconstructive Surgery; Mar. 2008; vol. 121, No. 3; pp. 102e-108e. |
Wu. W. ‘Barbed Sutures in Facial Rejuvenation’ Aesthetic Surgery Journal (2004) vol. 24 pp. 582-587. |
Zoltan, J. ‘Cicatrix Optimia: Techniques for Ideal Wound Healing’ English language edition University Park Press Baltimore (1977) Chapter 3 pp. 54-55. |
Number | Date | Country | |
---|---|---|---|
20110319932 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61053912 | May 2008 | US | |
61290750 | Dec 2009 | US | |
61296721 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12992453 | US | |
Child | 12970872 | US |