Bifurcated stent with improvement securement

Information

  • Patent Grant
  • 8298278
  • Patent Number
    8,298,278
  • Date Filed
    Tuesday, March 7, 2006
    18 years ago
  • Date Issued
    Tuesday, October 30, 2012
    11 years ago
Abstract
A stent assembly includes a branch portion and a main body with a proximal main body, a contralateral main body, and a distal main body. The branch portion is in fluid communication with the main body. In the expanded state the branch portion extends at an oblique angle in relation to the longitudinal axis. The main body and the branch portion are at least partially constructed of interconnected struts. A plurality of the struts are connected one to another by a peak. The distal main body has a greater peak width to strut width ratio than does the proximal main body and contralateral main body.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

Not Applicable


FIELD OF THE INVENTION

In some embodiments this invention relates to implantable medical devices, their manufacture, and methods of use. Some embodiments are directed to delivery systems, such as catheter systems of all types, which are utilized in the delivery of such devices.


BACKGROUND OF THE INVENTION

A stent is a medical device introduced to a body lumen and is well known in the art. Typically, a stent is implanted in a blood vessel at the site of a stenosis or aneurysm endoluminally, i.e. by so-called “minimally invasive techniques” in which the stent in a radially reduced configuration, optionally restrained in a radially compressed configuration by a sheath and/or catheter, is delivered by a stent delivery system or “introducer” to the site where it is required. The introducer may enter the body from an access location outside the body, such as through the patient's skin, or by a “cut down” technique in which the entry blood vessel is exposed by minor surgical means.


Stents, grafts, stent-grafts, vena cava filters, expandable frameworks, and similar implantable medical devices, collectively referred to hereinafter as stents, are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. Stents may be implanted in a variety of body lumens or vessels such as within the vascular system, urinary tracts, bile ducts, fallopian tubes, coronary vessels, secondary vessels, etc. Stents may be used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding, expanded by an internal radial force, such as when mounted on a balloon, or a combination of self-expanding and balloon expandable (hybrid expandable).


Stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids.


Within the vasculature it is not uncommon for stenoses to form at a vessel bifurcation. A bifurcation is an area of the vasculature or other portion of the body where a first (or parent) vessel is bifurcated into two or more branch vessels. Where a stenotic lesion or lesions form at such a bifurcation, the lesion(s) can affect only one of the vessels (i.e., either of the branch vessels or the parent vessel) two of the vessels, or all three vessels. Many prior art stents however are not wholly satisfactory for use where the site of desired application of the stent is juxtaposed or extends across a bifurcation in an artery or vein such, for example, as the bifurcation in the mammalian aortic artery into the common iliac arteries.


The art referred to and/or described above is not intended to constitute an admission that any patent, publication or other information referred to herein is “prior art” with respect to this invention.


All US patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety.


Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.


A brief abstract of the technical disclosure in the specification is provided as well only for the purposes of complying with 37 C.F.R. 1.72. The abstract is not intended to be used for interpreting the scope of the claims.


BRIEF SUMMARY OF THE INVENTION

In at least one embodiment, the invention is directed to a stent assembly having a main body with a proximal main body, a contralateral main body, and a distal main body at least partially constructed of interconnected struts connected one to another by a peak wherein the distal main body has a greater peak width to strut width ratio than does the proximal main body and contralateral main body. In at least one embodiment, a branch portion may be in fluid communication with the main body such that in the expanded state the branch portion extends at an oblique angle in relation to the longitudinal axis. In at least one embodiment the branch portion extends from the contralateral main body.


In at least one embodiment, the peak width to strut width ratio of the distal main body is about 3 to 1. Other ratios include 1.1:1, 1.25:1, 1.5:1.75:1, 2:1, 2.5:1, 3.5:1, etc.


In at least one embodiment, the peaks in the distal main body have a greater strain concentration than does the rest of the stent.


In at least one embodiment, the stent assembly may be disposed about at least one catheter balloon.


In at least one embodiment, the branch portion may be deployed using a second balloon.


In at least one embodiment, the distal main body may comprise at least one third of the length of the stent assembly.


In at least one embodiment, the struts of the distal main body may be narrower than the struts of the rest of the stent.


In at least one embodiment, the peaks of the distal main body may be wider than the peaks of the rest of the stent.


In at least one embodiment, the stent assembly may be secured to the catheter only in the distal main body.


In at least one embodiment, the stent assembly may be secured to a catheter in at least one of the proximal main body, the contralateral main body, and the distal main body.


In at least one embodiment, the stent assembly may comprise a plurality of annular bands having a serpentine configuration.


In at least one embodiment, the annular bands of the distal main body may have a smaller number of peaks than the annular bands of the proximal main body and the contralateral main body.


In at least one embodiment, the proximal main body, the contralateral main body, and the branch portion may have the substantially same peak width to strut width ratio.


In at least one embodiment, the peaks in the distal main body are at least twice as wide as the struts of the distal main body.


In at least one embodiment of the invention a method of securing a stent assembly to a catheter balloon comprises providing a stent assembly as described above, disposing the stent assembly about a catheter balloon and a branch balloon, and securing the peaks and/or struts of the distal main body of the stent assembly to the catheter balloon. In at least one embodiment, the struts and peaks of the distal main body may be secured to the catheter balloon by plastically deforming the struts and peaks. Plastically deforming the stent struts and/or peaks may prevent them from elastically recoiling away from the balloon. By preventing this recoil, the mechanical interaction between the stent struts/peaks and balloon material may resist movement of the stent in relation to the balloon when an external force is applied.


These and other embodiments which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for further understanding of the invention, its advantages and objectives obtained by its use, reference should be made to the drawings which form a further part hereof and the accompanying descriptive matter, in which there is illustrated and described an embodiments of the invention.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

A detailed description of the invention is hereafter described with specific reference being made to the drawings.



FIG. 1 is a side view of the bifurcated stent disposed about a catheter balloon.



FIG. 2 is a side view of a pair of serpentine bands having peaks.



FIG. 3
a is a side view of a peak in the proximal main body.



FIG. 3
b is a side view of a peak in the distal main body.



FIG. 4 is a side view of a bifurcated stent with two inflation balloons



FIG. 5 is a flat view of an embodiment of the bifurcated stent depicted in FIG. 1 in an unexpanded state, in accordance with the present invention.



FIG. 6 is a flat view of another embodiment of the bifurcated stent depicted in FIG. 1 in an unexpanded state, in accordance with the present invention.



FIG. 7 is a flat view of another embodiment of a stent.





DETALED DESCRIPTION OF THE INVENTION

While this invention may be embodied in many different forms, there are described in detail herein specific embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.


For the purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated.


In FIG. 1 stent assembly 10 has a main body 12 and a branch portion 25 with a longitudinal axis 32 passing through the main body 12. The main body includes a proximal main body 15, a contralateral main body 20, a distal main body 30, and a branch portion 25. In at least one embodiment the branch portion 25 extends from the contralateral main body 20. The stent assembly 10 may be expanded using balloons 33 and 34. The balloons may expand simultaneously or one may expand before the other. The branch portion 25 may comprise a petal region. In at least one embodiment, the petals comprise single members that when expanded extend obliquely out from the main body 12 of the stent. The branch portion may also comprise portions which extend obliquely that are formed from interconnected bands.


In some embodiments as shown in FIG. 1, the distal main body 30 is about one third of the length of the main body 12. In some embodiments, the distal main body 30, the contralateral main body 20, and the proximal main body 15 each comprise about a third of the length of the main body 12; however they may comprise many different percentages of the total main body length as well.


The main body 12 may be constructed of interconnected bands. FIG. 2 illustrates two such bands 35. Though only two bands are shown many more interconnected bands 35 may be used. Each interconnected band 35 as shown includes a plurality of interconnected struts 36. The interconnected struts 36 may be connected by peak portions 37 or valley portions 38.


In FIGS. 3a and 3b an enlarged segment 39 of a proximal band 35 is shown juxtaposed with an enlarged segment 40 of a distal band 35. The distal band peak 37 has a greater peak width 50 than the peak width 45 of segment 39 while the strut widths of each segment are similar. The greater peak width to strut width ratio of segment 40 provides increased strain concentration resulting in higher securement.


The higher securement of the peak portions 37 in the distal main body 30 improves the securement of the entire stent assembly 10 as the securement of a bifurcated stent is dependent on the interaction between only the distal end of the stent interacting with the delivery balloon. In some embodiments the peak width to strut width ratio is 3 to 1. In some instances it is at least 2 to 1.


In some embodiments, the peaks in the distal main body have a width that is equal to or less than the width of the peaks in the rest of the stent. In such embodiments, the increased peak width to strut width ratio is maintained by strut widths in the distal main body that are proportionally narrower than the strut widths in the rest of the stent. In some embodiments, the stent assembly may be secured to the balloon in only the distal main body. In some embodiments, securement to the balloon is present in other parts of the stent assembly.


In some embodiments, the number of peaks in one annular band may be greater than the number of peaks in another annular band. In some embodiments, the annular bands of the distal main body have a smaller number of peaks in the annular bands than in other parts of the stent assembly.


In some embodiments as shown in FIG. 1, the second balloon 34 is in fluid communication with first balloon 33. Balloons 33 and 34 may be constructed of material different from one another such that under the same pressure one or the other balloon may inflate before the other balloon. As shown in FIG. 4, some embodiments of the invention include balloons 33 and 34 that are not directly in fluid communication. In some embodiments, as shown, the second balloon 34 shares a portion of the inflation lumen until the lumen splits in the area of a bifurcation. In some embodiments, the second balloon has an inflation lumen separate from the inflation lumen of the first balloon 33.


As shown in FIGS. 5-7, in some embodiments, the distal closed serpentine bands have a greater peak width than the proximal closed serpentine bands. In some embodiments, the distal closed serpentine bands have narrower struts than the proximal closed serpentine bands.


The inventive stents may be created by methods including cutting or etching a design from a tubular stock, from a flat sheet which is cut or etched and which is subsequently rolled or from one or more interwoven wires or braids. Any other suitable technique which is known in the art or which is subsequently developed may also be used to manufacture the inventive stents disclosed herein.


In some embodiments at least a portion of the stent assembly is configured to include one or more mechanisms for the delivery of a therapeutic agent. Often the agent will be in the form of a coating or other layer (or layers) of material placed on a surface region of the stent, which is adapted to be released at the site of the stent's implantation or areas adjacent thereto. The therapeutic agent can be applied in a variety of ways and can include therapeutic agent being applied in some locations more than others.


A therapeutic agent may be a drug or other pharmaceutical product such as non-genetic agents, genetic agents, cellular material, etc. Some examples of suitable non-genetic therapeutic agents include but are not limited to: anti-thrombogenic agents such as heparin, heparin derivatives, vascular cell growth promoters, growth factor inhibitors, Paclitaxel, etc. Where an agent includes a genetic therapeutic agent, such a genetic agent may include but is not limited to: DNA, RNA and their respective derivatives and/or components; hedgehog proteins, etc. Where a therapeutic agent includes cellular material, the cellular material may include but is not limited to: cells of human origin and/or non-human origin as well as their respective components and/or derivatives thereof. Where the therapeutic agent includes a polymer agent, the polymer agent may be a polystyrene-polyisobutylene-polystyrene triblock copolymer (SIBS), polyethylene oxide, silicone rubber and/or any other suitable substrate.


The inventive stents may be made from any suitable biocompatible materials including one or more polymers, one or more metals or combinations of polymer(s) and metal(s). Examples of suitable materials include biodegradable materials that are also biocompatible. By biodegradable is meant that a material will undergo breakdown or decomposition into harmless compounds as part of a normal biological process. Suitable biodegradable materials include polylactic acid, polyglycolic acid (PGA), collagen or other connective proteins or natural materials, polycaprolactone, hylauric acid, adhesive proteins, co-polymers of these materials as well as composites and combinations thereof and combinations of other biodegradable polymers. Other polymers that may be used include polyester and polycarbonate copolymers. Examples of suitable metals include, but are not limited to, stainless steel, titanium, tantalum, platinum, tungsten, gold and alloys of any of the above-mentioned metals. Examples of suitable alloys include platinum-iridium alloys, cobalt-chromium alloys including Elgiloy and Phynox, MP35N alloy and nickel-titanium alloys, for example, Nitinol.


The inventive stents may be made of shape memory materials such as superelastic Nitinol or spring steel, or may be made of materials which are plastically deformable. In the case of shape memory materials, the stent may be provided with a memorized shape and then deformed to a reduced diameter shape. The stent may restore itself to its memorized shape upon being heated to a transition temperature and having any restraints removed therefrom.


In some embodiments the stent, the delivery system or other portion of the assembly may include one or more areas, bands, coatings, members, etc. that is (are) detectable by imaging modalities such as X-Ray, MRI, ultrasound, etc. In some embodiments at least a portion of the stent and/or adjacent assembly is at least partially radiopaque.


The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. The various elements shown in the individual figures and described above may be combined or modified for combination as desired. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”.


Further, the particular features presented in the dependent claims may be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.


This completes the description of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.

Claims
  • 1. A stent comprising: a central portion comprising a branch portion and a contralateral main body, the contralateral main body comprising at least one partial serpentine band attached to the branch portion;a plurality of proximal serpentine bands located proximal to the central portion;a plurality of distal serpentine bands located distal to the central portion;each serpentine band comprising of a repeating waveform, said waveform comprising alternating struts and peaks, the distal serpentine bands having a greater peak width than the proximal serpentine bands, the distal serpentine bands having narrower struts than the proximal serpentine bands.
  • 2. The stent assembly of claim 1 wherein a peak width to strut width ratio of at least one distal serpentine band is about 3 to 1.
  • 3. The stent assembly of claim 1 disposed about at least one catheter balloon.
  • 4. The stent assembly of claim 3 wherein the branch portion is deployed using a second balloon.
  • 5. The stent assembly of claim 1 wherein the peaks of the distal serpentine bands are wider than the peaks of the rest of the stent.
  • 6. The stent assembly of claim 1 wherein a partial serpentine band comprises a smaller peak width to strut width ratio than a distal serpentine band.
  • 7. The stent of claim 1 wherein the distal serpentine bands have less peaks than the proximal serpentine bands.
  • 8. The stent of claim 1, wherein the stent comprises stainless steel or nickel titanium.
US Referenced Citations (223)
Number Name Date Kind
4309994 Grunwald Jan 1982 A
4769005 Ginsburg et al. Sep 1988 A
4774949 Fogarty Oct 1988 A
4896670 Crittenden Jan 1990 A
4905667 Foerster et al. Mar 1990 A
4994071 MacGregor Feb 1991 A
5342387 Summers Aug 1994 A
5387235 Chuter Feb 1995 A
5456712 Maginot Oct 1995 A
5476471 Shifrin et al. Dec 1995 A
5487730 Marcadis et al. Jan 1996 A
5591228 Edoga Jan 1997 A
5607444 Lam Mar 1997 A
5609605 Marshall et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5613980 Chauhan Mar 1997 A
5617878 Taheri Apr 1997 A
5632762 Myler May 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5636641 Fariabi Jun 1997 A
5669924 Shaknovich Sep 1997 A
5669932 Fischell et al. Sep 1997 A
5676697 McDonald Oct 1997 A
5683450 Goicoechea et al. Nov 1997 A
5697971 Fischell et al. Dec 1997 A
5707348 Krogh Jan 1998 A
5709713 Evans et al. Jan 1998 A
5720735 Dorros Feb 1998 A
5749825 Fischell et al. May 1998 A
5749890 Shaknovich May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755771 Penn et al. May 1998 A
5755773 Evans et al. May 1998 A
5755778 Kleshinski May 1998 A
5782906 Marshall et al. Jul 1998 A
5824036 Lauterjung Oct 1998 A
5824040 Cox et al. Oct 1998 A
5827320 Richter et al. Oct 1998 A
5851464 Davila et al. Dec 1998 A
5868777 Lam Feb 1999 A
5893887 Jayaraman Apr 1999 A
5906640 Penn et al. May 1999 A
5922020 Klein et al. Jul 1999 A
5961548 Shmulewitz Oct 1999 A
5972017 Berg et al. Oct 1999 A
6013054 Jiun Yan Jan 2000 A
6013091 Ley et al. Jan 2000 A
6017324 Tu et al. Jan 2000 A
6017363 Hojeibane Jan 2000 A
6030414 Taheri Feb 2000 A
6033433 Ehr et al. Mar 2000 A
6033434 Borghi Mar 2000 A
6033435 Penn et al. Mar 2000 A
6048361 Von Oepen Apr 2000 A
6056775 Borghi et al. May 2000 A
6059824 Taheri May 2000 A
6068655 Seguin et al. May 2000 A
6086611 Duffy et al. Jul 2000 A
6093203 Uflacker Jul 2000 A
6096073 Webster et al. Aug 2000 A
6099497 Adams et al. Aug 2000 A
6113579 Eidenschink et al. Sep 2000 A
6117117 Mauch Sep 2000 A
6117156 Richter et al. Sep 2000 A
6129738 Lashinski et al. Oct 2000 A
6129754 Kanesaka et al. Oct 2000 A
6142973 Carleton et al. Nov 2000 A
6143002 Vietmeier Nov 2000 A
6159238 Killion et al. Dec 2000 A
6165195 Wilson et al. Dec 2000 A
6168621 Vrba Jan 2001 B1
6183509 Dibie Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6203569 Wijay Mar 2001 B1
6210380 Mauch Apr 2001 B1
6210429 Vardi et al. Apr 2001 B1
6210433 Larre Apr 2001 B1
6254593 Wilson Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258116 Hojeibane Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6261316 Shaolian et al. Jul 2001 B1
6264662 Lauterjung Jul 2001 B1
6264686 Rieu et al. Jul 2001 B1
6290673 Shanley Sep 2001 B1
6293968 Taheri Sep 2001 B1
6325822 Chouinard et al. Dec 2001 B1
6325826 Vardi et al. Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6334870 Ehr et al. Jan 2002 B1
6346089 Dibie Feb 2002 B1
6355060 Lenker et al. Mar 2002 B1
6361544 Wilson et al. Mar 2002 B1
6361555 Wilson Mar 2002 B1
6383213 Wilson et al. May 2002 B2
6395018 Castaneda May 2002 B1
6416543 Hilaire et al. Jul 2002 B1
6436104 Hojeibane Aug 2002 B2
6436134 Richter et al. Aug 2002 B2
6508836 Wilson et al. Jan 2003 B2
6517558 Gittings et al. Feb 2003 B2
6520988 Colombo et al. Feb 2003 B1
6540774 Cox Apr 2003 B1
6540779 Richter et al. Apr 2003 B2
6579309 Loos et al. Jun 2003 B1
6579312 Wilson et al. Jun 2003 B2
6582394 Reiss et al. Jun 2003 B1
6596020 Vardi et al. Jul 2003 B2
6599315 Wilson Jul 2003 B2
6599316 Vardi et al. Jul 2003 B2
6645242 Quinn Nov 2003 B1
6689156 Davidson et al. Feb 2004 B1
6692483 Vardi et al. Feb 2004 B2
6695877 Brucker et al. Feb 2004 B2
6706062 Vardi et al. Mar 2004 B2
6749628 Cho et al. Jun 2004 B1
6776793 Brown et al. Aug 2004 B2
6811566 Penn et al. Nov 2004 B1
6835203 Vardi et al. Dec 2004 B1
6852124 Cox et al. Feb 2005 B2
6858038 Heuser Feb 2005 B2
6884258 Vardi et al. Apr 2005 B2
6896699 Wilson et al. May 2005 B2
6932837 Amplatz et al. Aug 2005 B2
6955687 Richter et al. Oct 2005 B2
6955688 Wilson et al. Oct 2005 B2
6962602 Vardi et al. Nov 2005 B2
7018400 Lashinski et al. Mar 2006 B2
7056323 Mareiro et al. Jun 2006 B2
7060091 Killion et al. Jun 2006 B2
20010003161 Vardi et al. Jun 2001 A1
20010004706 Hojeibane Jun 2001 A1
20010004707 Dereume et al. Jun 2001 A1
20010012927 Mauch Aug 2001 A1
20010016766 Vardi et al. Aug 2001 A1
20010016767 Wilson et al. Aug 2001 A1
20010016768 Wilson et al. Aug 2001 A1
20010025195 Shaolian et al. Sep 2001 A1
20010027291 Shanley Oct 2001 A1
20010027338 Greenberg Oct 2001 A1
20010029396 Wilson et al. Oct 2001 A1
20010037116 Wilson et al. Nov 2001 A1
20010037138 Wilson et al. Nov 2001 A1
20010039448 Dibie Nov 2001 A1
20010049552 Richter et al. Dec 2001 A1
20010056297 Hojeibane Dec 2001 A1
20020013618 Marotta et al. Jan 2002 A1
20020013619 Shanley Jan 2002 A1
20020022874 Wilson Feb 2002 A1
20020026232 Marotta et al. Feb 2002 A1
20020035392 Wilson Mar 2002 A1
20020042650 Vardi et al. Apr 2002 A1
20020052648 McGuckin, Jr. et al. May 2002 A1
20020072790 McGuckin, Jr. et al. Jun 2002 A1
20020095140 Lootz et al. Jul 2002 A1
20020111675 Wilson Aug 2002 A1
20020156516 Vardi et al. Oct 2002 A1
20020156517 Perouse Oct 2002 A1
20020165604 Shanley Nov 2002 A1
20020173835 Bourang et al. Nov 2002 A1
20020173840 Brucker et al. Nov 2002 A1
20020183763 Callol et al. Dec 2002 A1
20020193872 Trout, III et al. Dec 2002 A1
20020193873 Brucker et al. Dec 2002 A1
20030009209 Hojeibane Jan 2003 A1
20030028233 Vardi et al. Feb 2003 A1
20030050688 Fischell et al. Mar 2003 A1
20030055378 Wang et al. Mar 2003 A1
20030055483 Gumm Mar 2003 A1
20030074047 Richter Apr 2003 A1
20030093109 Mauch May 2003 A1
20030097169 Brucker May 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030125791 Sequin et al. Jul 2003 A1
20030125802 Callol et al. Jul 2003 A1
20030135259 Simso Jul 2003 A1
20030181923 Vardi Sep 2003 A1
20030195606 Davidson et al. Oct 2003 A1
20040002753 Burgermeister et al. Jan 2004 A1
20040006381 Sequin et al. Jan 2004 A1
20040015227 Vardi et al. Jan 2004 A1
20040044396 Clerc et al. Mar 2004 A1
20040059406 Cully et al. Mar 2004 A1
20040088007 Eidenschink May 2004 A1
20040117003 Ouriel et al. Jun 2004 A1
20040133268 Davidson et al. Jul 2004 A1
20040138732 Suhr et al. Jul 2004 A1
20040138737 Davidson et al. Jul 2004 A1
20040148006 Davidson et al. Jul 2004 A1
20040172121 Eidenschink et al. Sep 2004 A1
20040186560 Alt Sep 2004 A1
20040225345 Fischell et al. Nov 2004 A1
20040267352 Davidson et al. Dec 2004 A1
20050004656 Das Jan 2005 A1
20050010278 Vardi et al. Jan 2005 A1
20050015108 Williams et al. Jan 2005 A1
20050015135 Shanley Jan 2005 A1
20050060027 Khenansho et al. Mar 2005 A1
20050096726 Sequin et al. May 2005 A1
20050102021 Osborne May 2005 A1
20050102023 Yadin et al. May 2005 A1
20050119731 Brucker et al. Jun 2005 A1
20050125076 Ginn Jun 2005 A1
20050131526 Wong Jun 2005 A1
20050149161 Eidenschink et al. Jul 2005 A1
20050154442 Eidenschink et al. Jul 2005 A1
20050154444 Quadri Jul 2005 A1
20050183259 Eidenschink et al. Aug 2005 A1
20050209673 Shaked Sep 2005 A1
20050228483 Kaplan et al. Oct 2005 A1
20050273157 Pinchasik Dec 2005 A1
20060030924 Van Der Leest et al. Feb 2006 A1
20060036315 Yadin et al. Feb 2006 A1
20060041303 Israel Feb 2006 A1
20060079956 Eigler et al. Apr 2006 A1
20060173528 Feld et al. Aug 2006 A1
20060271152 Hilaire et al. Nov 2006 A1
20060287707 Roeder et al. Dec 2006 A1
20070073376 Krolik et al. Mar 2007 A1
20080132994 Burgermeister et al. Jun 2008 A1
Foreign Referenced Citations (109)
Number Date Country
2220864 Jul 1999 CA
9014845 Feb 1991 DE
29701758 Mar 1997 DE
29701883 May 1997 DE
0479730 Oct 1991 EP
0751752 Jan 1997 EP
0783873 Jul 1997 EP
0804907 Nov 1997 EP
0479557 Jul 1998 EP
0876805 Nov 1998 EP
0880949 Dec 1998 EP
0891751 Jan 1999 EP
0 895 759 Feb 1999 EP
0904745 Mar 1999 EP
0937442 Aug 1999 EP
0347023 Dec 1999 EP
1031328 Aug 2000 EP
1031329 Aug 2000 EP
0883384 Dec 2000 EP
0862392 Aug 2001 EP
0808140 Dec 2001 EP
0884028 Feb 2002 EP
1 190 685 Mar 2002 EP
0897700 Jul 2002 EP
0684022 Feb 2004 EP
1157674 Jul 2005 EP
1031330 Nov 2005 EP
1070513 Jun 2006 EP
2678508 Jan 1993 FR
2740346 Oct 1995 FR
2756173 Nov 1996 FR
2337002 May 1998 GB
8806026 Aug 1988 WO
9521592 Aug 1995 WO
9629955 Oct 1996 WO
9634580 Nov 1996 WO
9641592 Dec 1996 WO
9707752 Mar 1997 WO
9715346 May 1997 WO
9716217 May 1997 WO
9726936 Jul 1997 WO
9741803 Nov 1997 WO
9745073 Dec 1997 WO
9746174 Dec 1997 WO
9819628 May 1998 WO
9836709 Aug 1998 WO
9837833 Sep 1998 WO
9847447 Oct 1998 WO
9848879 Nov 1998 WO
9903426 Jan 1999 WO
9904726 Feb 1999 WO
9915103 Apr 1999 WO
9915109 Apr 1999 WO
9924104 May 1999 WO
9934749 Jul 1999 WO
9936002 Jul 1999 WO
9936015 Jul 1999 WO
9944539 Sep 1999 WO
9956661 Nov 1999 WO
9965419 Dec 1999 WO
0007523 Feb 2000 WO
0010489 Mar 2000 WO
0016719 Mar 2000 WO
0027307 May 2000 WO
0027463 May 2000 WO
0028922 May 2000 WO
0145594 Jun 2000 WO
0044307 Aug 2000 WO
0044309 Aug 2000 WO
0047134 Aug 2000 WO
0048531 Aug 2000 WO
0049951 Aug 2000 WO
0051523 Sep 2000 WO
0057813 Oct 2000 WO
0067673 Nov 2000 WO
0071055 Nov 2000 WO
WO 0071054 Nov 2000 WO
0074595 Dec 2000 WO
0121095 Mar 2001 WO
0121109 Mar 2001 WO
0121244 Mar 2001 WO
0135715 May 2001 WO
0135863 May 2001 WO
0139697 Jun 2001 WO
0139699 Jun 2001 WO
0141677 Jun 2001 WO
0143665 Jun 2001 WO
0143809 Jun 2001 WO
0145785 Jun 2001 WO
0149342 Jul 2001 WO
0154621 Aug 2001 WO
0154622 Aug 2001 WO
0158385 Aug 2001 WO
0160284 Aug 2001 WO
0170294 Sep 2001 WO
0170299 Sep 2001 WO
0174273 Oct 2001 WO
0189409 Nov 2001 WO
0200138 Jan 2002 WO
02053066 Jul 2002 WO
02068012 Sep 2002 WO
WO 03007842 Jan 2003 WO
03055414 Jul 2003 WO
03063924 Aug 2003 WO
2004026174 Apr 2004 WO
2004026180 Apr 2004 WO
2005009295 Feb 2005 WO
2005014077 Feb 2005 WO
2006028925 Mar 2006 WO
Related Publications (1)
Number Date Country
20070213811 A1 Sep 2007 US