Bifurcated tubular graft for treating tricuspid regurgitation

Information

  • Patent Grant
  • 11583399
  • Patent Number
    11,583,399
  • Date Filed
    Wednesday, June 2, 2021
    3 years ago
  • Date Issued
    Tuesday, February 21, 2023
    a year ago
Abstract
A lubricated tubular graft is implanted in the inferior vena cava and the superior vena cava in order to control the inflow of blood to the right atrium. A bifurcated leg with a non-collapsing stent extends across the tricuspid valve. A bioprosthetic valve is positioned proximal of the stent in the bifurcated leg in order to regulate flow through the tricuspid valve and to eliminate tricuspid regurgitation.
Description
BACKGROUND

The human heart includes four chambers, which are the left and right atrium and the left and right ventricles. The mitral valve, which allows blood flow in one direction, is positioned between the left ventricle and left atrium. The tricuspid valve is positioned between the right ventricle and the right atrium. The aortic valve is positioned between the left ventricle and the aorta, and the pulmonary valve is positioned between the right ventricle and pulmonary artery. The heart valves function in concert to move blood throughout the circulatory system.


If the valves of the heart do not function properly, due either to disease or congenital defects, the circulation of the blood may be compromised. Diseased heart valves may be stenotic, wherein the valve does not open sufficiently to allow adequate forward flow of blood through the valve, and/or incompetent, wherein the valve does not close completely. Incompetent heart valves cause regurgitation or excessive backward flow of blood through the valve when the valve is closed. For example, certain diseases of the heart valves can result in dilation of the heart and one or more heart valves. When a heart valve annulus dilates, the valve leaflet geometry deforms and causes ineffective closure of the valve leaflets. The ineffective closure of the valve can cause regurgitation of the blood, accumulation of blood in the heart, and other problems. Valvular regurgitation can occur when the valve leaflets (for the tricuspid and mitral valve) or the valve cusps (for the aortic or pulmonary valve) do not coapt properly when the valve is closed. This can be caused by a variety of disease processes, including, e.g., leaflet or cusp retraction, annular dilatation (e.g., annuloaortic ectasia, mitral or tricuspid annular dilatation, etc.), etc. Also, the leaflets or cusps of a valve can prolapse (or fall back) as a result of stretching or rupture of their support system. What all these processes have in common is that an orifice (a regurgitant orifice) remains after valve closure through which blood can flow backwards (i.e., not in the intended direction), thus creating valve regurgitation.


Diseased or damaged heart valves can be treated by valve replacement surgery, in which damaged leaflets are excised and the annulus is sculpted to receive a replacement valve. Another repair technique that has been shown to be effective in treating incompetence is annuloplasty, in which the effective size of the valve annulus is contracted by attaching a prosthetic annuloplasty repair segment or ring to an interior wall of the heart around the valve annulus. The annuloplasty ring reinforces the functional changes that occur during the cardiac cycle to improve coaptation and valve integrity. Thus, annuloplasty rings help reduce reverse flow or regurgitation while permitting good hemodynamics during forward flow.


Annuloplasty rings may be stiff or flexible, may be open or closed, and may have a variety of shapes including circular, D-shaped, or C-shaped. The configuration of the ring is generally based on the shape of the heart valve being repaired or on the particular application. For example, the tricuspid valve is generally circular and the mitral valve is generally D-shaped. Further, C-shaped rings may be used for tricuspid valve repairs, for example, because it allows a surgeon to position the break in the ring adjacent the atrioventricular (AV) node, thus avoiding the need for suturing at that location. All of these prior art procedures are complicated repairs that involve risks to the patient. The present invention improves blood flow through the tricuspid valve and prevents regurgitation and is delivered and implanted minimally invasively thereby reducing risks and improving patient safety.


SUMMARY OF THE INVENTION

A device and method of use is provided for reducing cardiac valve regurgitation, and more particularly, provides a device designed to regulate flow through the tricuspid valve and reduce the likelihood or prevent regurgitation through the tricuspid valve.


In one embodiment, a tubular graft having a Y-shaped configuration includes a tubular main body and a tubular leg portion extending from the tubular main body and being in fluid communication with the tubular main body. The tubular main body has a first end extending into the superior vena cava (SVC) and a first stent adjacent the first end of the tubular main body for attaching the tubular main body to the SVC. The tubular main body has a second end extending into the inferior vena cava (IVC) and a second stent adjacent the second end for attaching the tubular main body to the IVC. The tubular leg portion extends from the tubular main body and is in fluid communication with the tubular main body. The tubular leg portion is configured for extending into and through the right atrium and through the tricuspid valve. The tubular leg portion has a third stent adjacent a distal end of the tubular leg portion to hold open the tricuspid valve. A bioprosthetic valve is positioned in the tubular leg portion and spaced proximal to the third stent a distance in the range from 0.0394 in. to 1.1811 in. (1.0 mm to 30.0 mm). In one embodiment, the bioprosthetic valve is positioned in the tubular portion and spaced proximal to the third stent a distance in the range from 0.1969 in. to 0.7874 in. (5.0 mm to 20.0 mm). In another embodiment, the bioprosthetic valve is positioned in the tubular leg portion and spaced proximal to the third stent a distance in the range from 0.0394 in. to 0.3937 in. (1.0 mm to 10.0 mm). In yet another embodiment, the bioprosthetic valve is positioned in the tubular leg portion and abuts the third stent.


In another embodiment, a bifurcated endograft has a Y-shaped configuration and includes a first leg, a second leg, and a third leg, all in fluid communication with each other. The first leg has a first length and is configured for extending into the SVC and a first stent adjacent a distal end of the first leg for attaching the first leg to the SVC. The second leg has a second length and is configured for extending into the IVC and a second stent adjacent the distal end of the second leg for attaching the second leg to the IVC. A third leg has a third length and is configured for extending into the right atrium and through the tricuspid valve. The third leg has a third stent adjacent a distal end of the third leg to hold open the tricuspid valve. A bioprosthetic valve is positioned in the third leg and spaced proximal to the third stent a distance in the range from 0.0394 in. to 1.1811 in. (1.0 mm to 30.0 mm). In another embodiment, the bioprosthetic valve is positioned in the third leg and spaced proximal to the third stent a distance in the range from 0.1969 in. to 0.7874 in. (5.0 mm to 20.0 mm). In another embodiment, the bioprosthetic valve is positioned in the third leg and spaced proximal to the third stent a distance in the range from 0.0394 in. to 0.3937 in. (1.0 mm to 10.0 mm). In yet another embodiment, the bioprosthetic valve is positioned in the third leg and abuts the third stent.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates a cross-section of the heart showing blood flow throughout the heart;



FIG. 2 schematically illustrates a vertical cross-section of the heart;



FIG. 3 schematically illustrates a horizontal cross-section of the heart in diastole showing valve operation;



FIG. 4 schematically illustrates a horizontal cross-section of the heart in systole showing valve operation;



FIG. 5 is a plan view of the tubular graft;



FIG. 6 is a plan view, in cross-section, showing the tubular graft, the stents for attaching the graft to the vessel walls, and a prosthetic valve;



FIG. 7 schematically illustrates the tubular graft implanted in the SVC, IVC, and extending across the tricuspid valve;



FIG. 8 is a schematic view of the tubular graft in cross-section, implanted in the SVC, IVC, and across the tricuspid valve;



FIG. 9 schematically illustrates the tubular graft in cross-section and implanted in the SVC, IVC, and across the tricuspid valve, with the prosthetic valve abutting the third stent;



FIG. 10 schematically illustrates in cross-section the tubular endograft implanted in the SVC, IVC, and across the tricuspid valve; and



FIG. 11 schematically illustrates in cross-section the tubular endograft implanted in the SVC, IVC, and across the tricuspid valve, with the bioprosthetic valve abutting the third stent.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, a cross-sectional view of a heart is shown to illustrate blood flow throughout the heart. Deoxygenated blood returning from the body comes into heart 100 from either superior vena cava 126 or inferior vena cava 116 and collects in right atrium 122. Right atrium 122 contracts to pump the blood through tricuspid valve 118 where it flows into right ventricle 114. Right ventricle 114 contracts to send the blood through pulmonary valve 120 into pulmonary artery 124 where it goes into the lungs (not shown). The oxygenated blood returning from the lungs flows through pulmonary veins 102 where it flows into left atrium 101. Left atrium 101 contracts sending the blood through bicuspid or mitral valve 104 and into left ventricle 108. When left ventricle 108 contracts, the blood is sent through aortic valve 106 and into aorta 128. Left ventricle 108 and right ventricle 114 are separated by ventricular septum 110.


If there is a problem with aortic valve 106, when left ventricle 108 expands to take in blood through mitral valve 104 from left atrium 101, left ventricle 108 may also suck blood back into the left ventricle 108 from the aorta 128 through the aortic valve 106. This back flow of blood from aorta 128 into left ventricle 108 can occur if the aortic valve 106 is not properly functioning. In order to repair a nonfunctioning aortic valve 106, a patient's heart is normally arrested and the patient is placed on cardiopulmonary bypass so that a surgery on the aortic valve 106 can be performed. It is difficult to perform a percutaneous aortic valve 106 repair or replacement while the heart is beating, since blood needs to flow through the heart 100 by flowing into pulmonary veins 102 into left atrium 101, through mitral valve 104 into left ventricle 108 across aortic valve 106 and into aorta 128 to be fed to the rest of the body. If there are a number of tools (not shown) that are blocking the aorta 128 that are being used to operate on aortic valve 106, then this blood flow cannot occur normally. In order to perform a surgery on aortic valve 106 without cardiopulmonary bypass, normal blood flow needs to occur through heart 100 and the rest of the body.


Similar problems of heart surgeries or procedures are encountered when working on mitral valve 104, tricuspid valve 118, pulmonary valve 120, and ventricular septum 110. In order to conduct a successful procedure on an area of heart 100, it is necessary to place an inlet of a pump upstream of the area and an outlet of a pump downstream of the area that is going to be worked on, when the area that will be worked on will be blocked by the tools that are used to perform the procedure.


Referring to FIG. 2, a more detailed vertical cross-section of heart 100 is shown. Blood first collects in right atrium 122 from superior vena cava 126 or other veins. Right atrium 122 also includes right auricle 142. When right atrium 122 contracts, blood is sent through tricuspid valve 118 and into right ventricle 114. Tricuspid valve 118 is made up of three cusps: posterior cusp 176, septal cusp 178, and anterior cusp 180 (shown retracted). Right ventricle 114 has a number of muscles that contract to send blood out of right ventricle 114. Some of the muscles in right ventricle 114 include right anterior papillary muscle 174 (shown cut), and right posterior papillary muscle 172. Other parts of the anatomy of right ventricle 114 includes conus arteriosis 156, supra ventricular crest 152, and moderator band 160 and septal band 162 of septal marginal trabacula 164. The blood outflow to the pulmonary trunk is marked by arrow 154. Pulmonary trunk is shown as 138. The blood returning from the lungs returns by left pulmonary veins 134 and right pulmonary veins 136 where it collects in left atrium 101. Left atrium 101 also includes left auricle 138. When left atrium 101 contracts, blood is sent through mitral valve 104 which is made up of posterior cusp 132 and anterior cusp 130. Blood flows through mitral valve 104 and into left ventricle 108. Muscles in the left ventricle include left posterior papillary muscle 170, left anterior papillary muscle 168. Septum 110 separates left ventricle 108 from right ventricle 114. Septum 110 includes the muscular part of intraventricular septum 186, interventricular part of the membranous septum 182, and the atrial ventricular part of membranous septum 184. When left ventrical 108 contracts, blood is sent through aortic valve 106 which includes left semi-lunar cusp 146, posterior semi-lunar (non-coronary) cusp 148, and right semi-lunar cusp 150. Most of the blood flows through aortic valve 106 and into ascending aorta 128, although some of the blood is diverted into the openings of coronary arteries 140.


Referring now to FIG. 3, is a horizontal cross-section of the heart showing the heart in diastole viewed from the base with the atria removed. Pulmonary valve 120 is shown in a closed position. Pulmonary valve 120 includes anterior semi-lunar cusp 198, right semi-lunar cusp 190, and left semi-lunar cusp 192. Aortic valve 106 is also shown in a closed position. Aortic valve 106 includes right (coronary) semi-lunar cusp 150, left (coronary) semi-lunar cusp 146, and posterior (non-coronary) semi-lunar cusp 148. The circumflex branch of the left coronary artery is labeled as reference number 208. Mitral valve 104 (between left atrium 101 and left ventricle 108) is shown in an open position. Mitral valve 104 includes anterior cusp 130, posterior cusp 132, and commissural cusps 131. There is also left fibrous ring 206 of mitral valve 104.


At the base of FIG. 3 (as viewed) is the posterior intraventricular branch of right coronary artery 204 and the atrial ventricular nodal branch of right coronary artery 202. In the middle of the heart is right fibrous trigone 200. Tricuspid valve 118 between the right atrium 122 and the right ventricle 114 is shown in an open position and includes anterior cusp 180, septal cusp 178, and posterior cusp 176. Surrounding tricuspid valve 118 is a right fibrous ring of tricuspid valve 198. Membranous septum 110 includes intraventricular part 182 (shown by a broken line) and atrial-ventricular part 184. Right coronary artery is shown as 196, and left coronary artery is shown as 197. Left fibrous trigone is shown as 194, and conus arteriosis is shown as 156.


Referring to FIG. 4 is the heart in systole viewed from the base with the atria removed. All of the parts are essentially the same as in FIG. 3, however, in this figure, aortic valve 106 and pulmonary valve 120 are shown open and tricuspid valve 118 and mitral valve 104 are shown closed. Again, pulmonary valve 120 has anterior semi-lunar cusp 188, right semi-lunar cusp 190, and left semi-lunar cusp 192. Aortic valve 106 is made up of right (coronary) semi-lunar cusp 150, left (coronary) semi-lunar cusp 146, and posterior (non-coronary) semi-lunar cusp 148. Mitral valve 104 is shown with anterior cusp 130 and posterior cusp 132 surrounded by left fibrous ring 206. Tricuspid valve 118 is shown with anterior cusp 180, septal cusp 178, posterior cusp 176, surrounded by right fibrous ring of tricuspid valve 198. Right coronary artery is shown as 196 with atrial ventricular branch 202 of right coronary artery 196 and posterior interventricular branch 204 of right coronary artery 196 showing. Left coronary artery 197 is also shown. Other parts of the heart shown in B are the same as those shown in A.


The oxygenated blood of the body originates in heart 100 and is pumped by the left ventricle (not shown) into aorta 128. From aorta 128, some blood is supplied to heart 100 through right coronary artery 196 and left coronary artery 197, the remaining blood branches throughout the rest of the body. A first branch, subclavian artery feeds axillary artery which turns into brachial artery to feed blood to the arms. Brachial artery in turn feeds radial artery and ulnar artery. Another branch off of aorta 128 is common carotid artery which feeds blood to the head. Superior mesenteric artery and inferior mesenteric artery feed blood to the abdomen. There is a common iliac artery for both legs. The common iliac artery in turn branches into external iliac artery and femoral artery. One of the branches of femoral artery is popliteal artery which branches into anterior tibial artery, posterior tibial artery, and dorsalis pedis artery. Peroneal artery branches off of external iliac artery.


The deoxygenated blood returns to heart 100 through the venous system. Some blood returning from the legs flows into posterior tibial vein, and anterior tibial vein, which feed into popliteal vein, and flows into femoral vein. Another vein in the legs is great saphenous vein which also feeds into femoral vein. Blood then flows into either internal iliac vein or external iliac vein which then flow into common iliac vein to return to heart 100 via inferior vena cava 284. Other branches feeding into inferior vena cava 284 include hepatic vein. Blood returning from the arms flows into ulnar vein, radial vein, brachial vein, or basilic vein, and flows into axillary vein. Blood flows from axillary vein into left or right innominate vein which flows into superior vena cava. Blood also flows into superior vena cava 278 from right subclavian vein, and from external jugular vein and internal jugular vein.


A device and method of use is provided for reducing cardiac valve regurgitation, and more particularly, the device is designed to regulate flow through the tricuspid valve and reduce the likelihood or prevent regurgitation through the tricuspid valve.


In one embodiment shown in FIGS. 5-9, a tubular graft 220 having a Y-shaped configuration includes a tubular main body 222 and a tubular leg portion 224 extending from the tubular main body and being in fluid communication with the tubular main body. The tubular main body 222 has a first end 226 extending into the superior vena cava (SVC) 228, and a first stent 230 adjacent the first end of the tubular main body for attaching the tubular main body to the SVC. The tubular main body 222 has a second end 232 extending into the inferior vena cava (IVC) 234 and a second stent 236 adjacent the second end for attaching the tubular main body to the IVC. The tubular leg portion 224 extends from the tubular main body 222 and is in fluid communication with the tubular main body. The tubular leg portion 224 is configured for extending into and through the right atrium 238 and through the tricuspid valve 240. The tubular leg portion has a third stent 242 adjacent a distal end 244 of the tubular leg portion to hold open the tricuspid valve. A bioprosthetic valve 246 is positioned in the tubular leg portion 224 and spaced proximal to the third stent 242 a distance 248 in the range from 0.0394 in. to 1.1811 in. (1.0 mm to 30.0 mm). In one embodiment, the bioprosthetic valve is positioned in the tubular leg portion and spaced proximal to the third stent a distance in the range from 0.1969 in. to 0.7874 in. (5.0 mm to 20.0 mm). In another embodiment, the bioprosthetic valve is positioned in the tubular leg portion and spaced proximal to the third stent a distance in the range from 0.0394 in. to 0.3937 in. (1.0 mm to 10.0 mm). In yet another embodiment as shown in FIG. 9, the bioprosthetic valve 246 is positioned in the tubular leg portion 224 and abuts 250 the third stent 246.


In another embodiment, a bifurcated endograft 260 has a Y-shaped configuration 262 and includes a first leg 264, a second leg 266, and a third leg 268, all in fluid communication with each other. The first leg has a first length 270 and is configured for extending into the SVC 272, and a first stent 274 adjacent a distal end 276 of the first leg for attaching the first leg to the SVC. The second leg 266 has a second length 278 and is configured for extending into the IVC 280, and a second stent 282 adjacent the distal end 284 of the second leg for attaching the second leg to the IVC. The third leg has a third length 286 and is configured for extending into the right atrium 288 and through the tricuspid valve 290. The third leg has a third stent 292 adjacent a distal end 294 of the third leg to hold open the tricuspid valve. A bioprosthetic valve 296 is positioned in the third leg 268 and spaced proximal to the third stent 292 a distance 298 in the range from 0.0394 in. to 1.1811 in. (1.0 mm to 30.0 mm). In another embodiment, the bioprosthetic valve is positioned in the third leg and spaced proximal to the third stent a distance in the range from 0.1969 in. to 0.7874 in. (5.0 mm to 20.0 mm). In another embodiment, the bioprosthetic valve is positioned in the third leg and spaced proximal to the third stent a distance in the range from 0.0394 in. to 0.3937 in. (1.0 mm to 10.0 mm). In yet another embodiment as shown in FIG. 11, the bioprosthetic valve 296 is positioned in the third leg 268 and is proximal to the stent and abuts 300 the stent.


The tubular graft 220 or tubular endograft 260 are formed from a flexible material such as PTFE, ePTFE, polyester, urethane, DACRON®, TEFLON®, or other distensible polymer material. The diameter of the tubular graft and tubular endograft as well as the length of the legs will vary depending on the size of the patient's heart, SVC, IVC and tricuspid valve.


The bioprosthetic valve 246, 296 disclosed herein is well known in the art. For example, a 23 mm Edwards Sapien valve (manufactured by Edwards Lifesciences, Irvine, Calif.) can be attached in the third leg 268 or tubular leg portion by using sutures or an adhesive. The valve can be collapsed during delivery and expanded in a known manner.


The first, second and third stents described herein are balloon expandable stents of the kind well known in the art. The stents plastically deform when expanded using a balloon in conjunction with a delivery catheter. One example of a balloon expandable stent is the VISION® stent manufactured by Abbott Cardiovascular Systems, Inc., Santa Clara, Calif. The VISION® stent is balloon expandable and made from a cobalt-chromium alloy to enhance visibility under fluoroscopy during stent delivery. The stents herein are attached to the tubular graft by known means, such as an adhesive. Upon expansion, the first, second and third stents form a seal with the SVC, IVC, and tricuspid valve, respectively.


The tubular graft 220 or bifurcated endograft 260 have a bifurcated or Y-shaped configuration as disclosed herein. The tubular graft and tubular endograft can be mounted on a bifurcated balloon delivery catheter system similar to that shown in U.S. Pat. No. 8,029,558, assigned to Abbott Cardiovascular Systems, Inc. The catheter shown in the '558 patent (FIGS. 28A-29) is designed to deliver a bifurcated stent in the coronary arteries, but it can be modified to carry and deliver the Y-shaped tubular graft 220 and tubular endograft 260 to the SVC, IVC and tricuspid valve. Thus, the present invention graft can be delivered percutaneously and implanted in the SVC, IVC and tricuspid valve using a modified version of bifurcated delivery catheter disclosed in the '558 patent.


In the preceding detailed description, reference to specific embodiments were described. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A medical device for treating tricuspid valve regurgitation, comprising: a bifurcated endograft having a Y-shaped configuration including a first leg, a second leg and a third leg all in fluid communication;the first leg having a first length and being configured for extending into the superior vena cava (SVC) and a first stent adjacent a distal end of the first leg for attaching the first leg to the SVC;the second leg having a second length and being configured for extending into the inferior vena cava (IVC) and a second stent adjacent a distal end of the second leg for attaching the second leg to the IVC;the third leg having a third length and being configured for extending into the right atrium and through the tricuspid valve;the third leg having a third stent adjacent a distal end of the third leg to hold open the tricuspid valve; anda bioprosthetic valve positioned in the third leg and spaced proximal to the third stent so that the bioprosthetic valve does not contact any stent.
  • 2. The medical device of claim 1, wherein the first stent extends into and is attached to the distinct end of the first leg.
  • 3. The medical device of claim 1, wherein the second stent extends into and is attached to the distal end of the second leg.
  • 4. The medical device of claim 1, wherein the third stent extends into and is attached to the distal end of the third leg.
  • 5. The medical device of claim 1, wherein the third stent has a non-collapsing lattice structure in order to hold open the tricuspid valve.
  • 6. The medical device of claim 1, wherein the bifurcated endograft is formed from PTFE, ePTFE, polyester, urethane, polyethylene terephthalate, polytetrafluoroethylene, or other distensible polymeric material.
  • 7. The medical device of claim 1, wherein the first stent, second stent and third stent are balloon expandable and plastically deform when expanded.
  • 8. A medical device for treating tricuspid valve regurgitation, comprising: a tubular graft having a Y-shaped configuration including a tubular main body and a tubular leg portion extending from the tubular main body and being in fluid communication;the tubular main body having a first end extending into the superior vena cava (SVC) and a first stent adjacent the first end for attaching the tubular main body to the SVC;the tubular main body having a second end extending into the inferior vena cava (IVC) and a second stent adjacent the second end for attaching the tubular main body to the IVC;the tubular leg portion being configured for extending into the right atrium and through the tricuspid valve;the tubular leg portion having a third stent adjacent a distal end of the tubular leg portion to hold open the tricuspid valve; anda bioprosthetic valve positioned in the tubular leg portion and spaced proximal to the third stent so that the bioprosthetic valve does not contact any stent.
  • 9. The medical device of claim 8, wherein the first stent extends into and is attached to the first end of the tubular main body.
  • 10. The medical device of claim 8, wherein the second stent extends into and is attached to the second end of the tubular main body.
  • 11. The medical device of claim 8, wherein the third stent extends into and is attached to the distal end of the tubular leg portion.
  • 12. The medical device of claim 8, wherein the third stent has a non-collapsing lattice structure in order to hold open the tricuspid valve.
  • 13. The medical device of claim 8, wherein the tubular graft is formed from PTFE, ePTFE, polyester, urethane, polyethylene terephthalate, polytetrafluoroethylene, or other distensible polymeric material.
  • 14. The medical device of claim 8, wherein the first stent, second stent and third stent are balloon expandable and plastically deform when expanded.
  • 15. A medical device for treating tricuspid valve regurgitation, comprising: a bifurcated endograft having a Y-shaped configuration including a first leg, a second leg and a third leg all in fluid communication;the first leg having a first length and being configured for extending into the superior vena cava (SVC) and a first stent adjacent a distal end of the first leg for attaching the first leg to the SVC;the second leg having a second length and being configured for extending into the inferior vena cava (IVC) and a second stent adjacent a distal end of the second leg for attaching the second leg to the IVC;the third leg having a third length and being configured for extending into the right atrium and through the tricuspid valve;the third leg having a third stent adjacent a distal end of the third leg to hold open the tricuspid valve; anda bioprosthetic valve positioned in the third leg proximal to the third stent wherein the bioprosthetic valve abuts the third stent but does not overlap any stent.
  • 16. The medical device of claim 15, wherein the first stent extends into and is attached to the distinct end of the first leg.
  • 17. The medical device of claim 15, wherein the second stent extends into and is attached to the distal end of the second leg.
  • 18. The medical device of claim 15, wherein the third stent extends into and is attached to the distal end of the third leg.
  • 19. The medical device of claim 15, wherein the third stent has a non-collapsing lattice structure in order to hold open the tricuspid valve.
  • 20. The medical device of claim 15, wherein the bifurcated endograft is formed from PTFE, ePTFE, polyester, urethane, polyethylene terephthalate, polytetrafluoroethylene, or other distensible polymeric material.
  • 21. The medical device of claim 15, wherein the first stent, second stent and third stent are balloon expandable and plastically deform when expanded.
Parent Case Info

This application is a division of U.S. application Ser. No. 16/193,895 filed Nov. 16, 2018, which is a division of U.S. application Ser. No. 15/051,045 filed Feb. 23, 2016, now U.S. Pat. No. 10,130,465 issued Nov. 20, 2018, the entire contents of which are incorporated herein by reference.

US Referenced Citations (347)
Number Name Date Kind
2701559 Cooper Feb 1955 A
2845959 Sidebotham Aug 1958 A
2978787 Liebig Apr 1961 A
2990605 Demsyk Jul 1961 A
3029819 Starks Apr 1962 A
3096560 Liebig Jul 1963 A
3105492 Jeckel Oct 1963 A
3142067 Liebig Jul 1964 A
3657744 Ersek Apr 1972 A
3868956 Alfidi et al. Mar 1975 A
3908662 Razgulov et al. Sep 1975 A
3945052 Liebig Mar 1976 A
3993078 Bergentz et al. Nov 1976 A
4041931 Elliott et al. Aug 1977 A
4047252 Liebig et al. Sep 1977 A
4061134 Samuels et al. Dec 1977 A
4108161 Samuels et al. Aug 1978 A
4130904 Whalen Dec 1978 A
4140126 Choudhury Feb 1979 A
4159719 Haerr Jul 1979 A
4193137 Heck Mar 1980 A
4202349 Jones May 1980 A
4214587 Sakura, Jr. Jul 1980 A
4323071 Simpson et al. Apr 1982 A
4387952 Slusher Jun 1983 A
4503569 Dotter Mar 1985 A
4504354 George et al. Mar 1985 A
4512338 Balko et al. Apr 1985 A
4516972 Samson May 1985 A
4517687 Liebig et al. May 1985 A
4531933 Norton et al. Jul 1985 A
4553545 Maass et al. Nov 1985 A
4560374 Hammerslag Dec 1985 A
4562596 Kornberg Jan 1986 A
4577631 Kreamer Mar 1986 A
4580568 Gianturco Apr 1986 A
4616652 Simpson Oct 1986 A
4617932 Kornberg Oct 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4649922 Wiktor Mar 1987 A
4650466 Luther Mar 1987 A
4652263 Herweck et al. Mar 1987 A
4655771 Wallsten Apr 1987 A
4665918 Garza et al. May 1987 A
4681110 Wiktor Jul 1987 A
4693249 Schenck et al. Sep 1987 A
4706671 Weinrib Nov 1987 A
4728328 Hughes et al. Mar 1988 A
4732152 Wallsten et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4740207 Kreamer Apr 1988 A
4748982 Horzewski et al. Jun 1988 A
4760849 Kropf Aug 1988 A
4762128 Rosenbluth Aug 1988 A
4767418 Deininger et al. Aug 1988 A
4768507 Fischell et al. Sep 1988 A
4774949 Fogarty Oct 1988 A
4776337 Palmaz Oct 1988 A
4787899 Lazarus Nov 1988 A
4793348 Palmaz Dec 1988 A
4795458 Regan Jan 1989 A
4795465 Marten Jan 1989 A
4800882 Gianturco Jan 1989 A
4817624 Newbower Apr 1989 A
4830003 Wolff et al. May 1989 A
4848343 Wallsten et al. Jul 1989 A
4856516 Hillstead Aug 1989 A
4870966 Dellon et al. Oct 1989 A
4872874 Taheri Oct 1989 A
4877030 Beck et al. Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4887997 Okada Dec 1989 A
4892539 Koch Jan 1990 A
4893623 Rosenbluth Jan 1990 A
4907336 Gianturco et al. Mar 1990 A
4913141 Hillstead Apr 1990 A
4921479 Grayzel May 1990 A
4922905 Strecker May 1990 A
4923464 Dipisa, Jr. May 1990 A
4943346 Mattelin Jul 1990 A
4950227 Savin et al. Aug 1990 A
4963022 Sommargren Oct 1990 A
4969458 Wiktor Nov 1990 A
4969890 Sugita et al. Nov 1990 A
4969896 Shors Nov 1990 A
4986831 King et al. Jan 1991 A
4988356 Crittenden et al. Jan 1991 A
4990155 Wilkoff Feb 1991 A
4994071 Macgregor Feb 1991 A
4998539 Delsanti Mar 1991 A
5002560 Machold et al. Mar 1991 A
5007926 Derbyshire Apr 1991 A
5015253 Macgregor May 1991 A
5019085 Hillstead May 1991 A
5019090 Pinchuk May 1991 A
5026377 Burton et al. Jun 1991 A
5034001 Garrison et al. Jul 1991 A
5035706 Giantureo et al. Jul 1991 A
5037377 Alonso Aug 1991 A
5037392 Hillstead Aug 1991 A
5037427 Harada et al. Aug 1991 A
5041126 Gianturco Aug 1991 A
5047050 Arpesani Sep 1991 A
5059211 Stack et al. Oct 1991 A
5061273 Yock Oct 1991 A
5061275 Wallsten et al. Oct 1991 A
5062829 Pryor et al. Nov 1991 A
5064435 Porter Nov 1991 A
5071407 Termin et al. Dec 1991 A
5073694 Tessier et al. Dec 1991 A
5078720 Burton et al. Jan 1992 A
5078726 Kreamer Jan 1992 A
5078736 Behl Jan 1992 A
5084065 Weldon et al. Jan 1992 A
5089005 Harada Feb 1992 A
5089006 Stiles Feb 1992 A
5092877 Pinchuk Mar 1992 A
5098374 Othel-Jacobsen et al. Mar 1992 A
5100429 Sinofsky et al. Mar 1992 A
5102417 Palmaz Apr 1992 A
5104399 Lazarus Apr 1992 A
5104404 Wolff Apr 1992 A
5108416 Ryan et al. Apr 1992 A
5108417 Sawyer Apr 1992 A
5108424 Hoffman, Jr. et al. Apr 1992 A
5116318 Hillstead May 1992 A
5116360 Pinchuk et al. May 1992 A
5116365 Hillstead May 1992 A
5122154 Rhodes Jun 1992 A
5123917 Lee Jun 1992 A
5127919 Ibrahim et al. Jul 1992 A
5133732 Wiktor Jul 1992 A
5135536 Hillstead Aug 1992 A
5147385 Beck et al. Sep 1992 A
5156619 Ehrenfeld Oct 1992 A
5158548 Lau et al. Oct 1992 A
5161547 Tower Nov 1992 A
5163951 Pinchuk et al. Nov 1992 A
5163952 Froix Nov 1992 A
5163958 Pinchuk Nov 1992 A
5171262 Macgregor Dec 1992 A
5178630 Schmitt Jan 1993 A
5178634 Ramos Martinez Jan 1993 A
5180368 Garrison Jan 1993 A
5183085 Timmermans Feb 1993 A
5192297 Hull Mar 1993 A
5192307 Wall Mar 1993 A
5192311 King et al. Mar 1993 A
5195984 Schatz Mar 1993 A
5197976 Herweck et al. Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5197978 Hess Mar 1993 A
5201901 Harada et al. Apr 1993 A
5217482 Keith Jun 1993 A
5222971 Willard et al. Jun 1993 A
5226913 Pinchuk Jul 1993 A
5234416 Macaulay et al. Aug 1993 A
5234456 Silvestrini Aug 1993 A
5242394 Tremulis Sep 1993 A
5242399 Lau et al. Sep 1993 A
5242452 Inoue Sep 1993 A
5275622 Lazarus et al. Jan 1994 A
5282823 Schwartz et al. Feb 1994 A
5282824 Gianturco Feb 1994 A
5290295 Querals et al. Mar 1994 A
5290305 Inoue Mar 1994 A
5292331 Boneau Mar 1994 A
5298115 Leonard Mar 1994 A
5304200 Spaulding Apr 1994 A
5304220 Maginot Apr 1994 A
5314444 Gianturco May 1994 A
5314472 Fontaine May 1994 A
5316023 Palmaz et al. May 1994 A
5330500 Song Jul 1994 A
5344426 Lau et al. Sep 1994 A
5354308 Simon et al. Oct 1994 A
5356433 Rowland et al. Oct 1994 A
5360401 Turnland et al. Nov 1994 A
5360443 Barone et al. Nov 1994 A
5368566 Crocker Nov 1994 A
5372600 Beyar et al. Dec 1994 A
5378239 Termin et al. Jan 1995 A
5383892 Cardon et al. Jan 1995 A
5405378 Strecker Apr 1995 A
5421955 Lau et al. Jun 1995 A
5423745 Todd et al. Jun 1995 A
5423885 Williams Jun 1995 A
5443497 Venbrux Aug 1995 A
5443498 Fontaine Aug 1995 A
5445646 Euteneuer et al. Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5456694 Marin et al. Oct 1995 A
5456712 Maginot Oct 1995 A
5458615 Klemm et al. Oct 1995 A
5476476 Hillstead Dec 1995 A
5484449 Amundson et al. Jan 1996 A
5507768 Lau et al. Apr 1996 A
5514154 Lau et al. May 1996 A
5522880 Barone et al. Jun 1996 A
5527355 Ahn Jun 1996 A
5545132 Fagan et al. Aug 1996 A
5562724 Vorwerk et al. Oct 1996 A
5562726 Chuter Oct 1996 A
D376011 Nunokawa Nov 1996 S
5571135 Fraser et al. Nov 1996 A
5571170 Palmaz et al. Nov 1996 A
5571171 Barone et al. Nov 1996 A
5571173 Parodi Nov 1996 A
5575817 Martin Nov 1996 A
5578072 Barone et al. Nov 1996 A
5591228 Edoga Jan 1997 A
5591229 Parodi Jan 1997 A
5603721 Lau et al. Feb 1997 A
5609627 Goicoechea et al. Mar 1997 A
5613980 Chauhan Mar 1997 A
5617878 Faheri Apr 1997 A
5626604 Cottone, Jr. May 1997 A
5632763 Glastra May 1997 A
5639278 Dereume et al. Jun 1997 A
5643340 Nunokawa Jul 1997 A
5653690 Booth et al. Aug 1997 A
5653691 Rupp et al. Aug 1997 A
5653727 Wiktor Aug 1997 A
5669924 Shaknovich Sep 1997 A
5676696 Marcade Oct 1997 A
5676697 Mcdonald Oct 1997 A
5683450 Goicoechea et al. Nov 1997 A
5683452 Barone et al. Nov 1997 A
5683453 Palmaz Nov 1997 A
5693084 Chuter Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5693087 Parodi Dec 1997 A
5693088 Lazarus Dec 1997 A
5695517 Marin et al. Dec 1997 A
5709713 Evans et al. Jan 1998 A
5713363 Seward et al. Feb 1998 A
5713917 Leonhardt et al. Feb 1998 A
5716396 Williams, Jr. Feb 1998 A
5720726 Marcadis et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5720776 Chuter et al. Feb 1998 A
5733303 Israel et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5735893 Lau et al. Apr 1998 A
5749825 Fischell et al. May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5776180 Goicoechea et al. Jul 1998 A
5782855 Lau et al. Jul 1998 A
5782906 Marshall Jul 1998 A
5786339 Agouridas et al. Jul 1998 A
5800508 Goicoechea et al. Sep 1998 A
5800520 Fogarty et al. Sep 1998 A
5800521 Orth Sep 1998 A
5810871 Tuckey et al. Sep 1998 A
5817152 Birdsall et al. Oct 1998 A
5830217 Ryan Nov 1998 A
5836965 Jendersee et al. Nov 1998 A
5893852 Morales Apr 1999 A
5893887 Jayaraman Apr 1999 A
5895407 Jayaraman Apr 1999 A
5902332 Schatz May 1999 A
5906640 Penn May 1999 A
5913895 Burpee et al. Jun 1999 A
5916234 Lam Jun 1999 A
5984964 Roberts et al. Nov 1999 A
5997468 Wolff et al. Dec 1999 A
6030413 Lazarus Feb 2000 A
6056775 Borghi et al. May 2000 A
6066168 Lau et al. May 2000 A
6086604 Fischell et al. Jul 2000 A
6096073 Webster et al. Aug 2000 A
6146358 Rowe Nov 2000 A
6165195 Wilson et al. Dec 2000 A
6179868 Burpee et al. Jan 2001 B1
6183506 Penn et al. Feb 2001 B1
6183509 Dibie Feb 2001 B1
6190403 Fischell et al. Feb 2001 B1
6217608 Penn et al. Apr 2001 B1
6264686 Rieu Jul 2001 B1
6371961 Osborne et al. Apr 2002 B1
6447539 Nelson Sep 2002 B1
6503272 Duerig et al. Jan 2003 B2
6669722 Chen et al. Dec 2003 B2
6673107 Brandt Jan 2004 B1
6699278 Fischell et al. Mar 2004 B2
6733523 Shaolian May 2004 B2
6749628 Callol et al. Jun 2004 B1
6780174 Mauch Aug 2004 B2
6962602 Vardi et al. Nov 2005 B2
7241257 Ainsworth et al. Jul 2007 B1
7250041 Chiu et al. Jul 2007 B2
7520895 Douglas Apr 2009 B2
7771467 Svensson Aug 2010 B2
7799072 Greenberg Sep 2010 B2
7955379 Wilson et al. Jun 2011 B2
8029558 Kent et al. Oct 2011 B2
8226710 Nguyen et al. Jul 2012 B2
8252051 Chau et al. Aug 2012 B2
8715337 Chuter May 2014 B2
8758430 Ferrari Jun 2014 B2
8870944 Sochman Oct 2014 B2
8940040 Shahriar Jan 2015 B2
9023098 Kuehn May 2015 B2
9089414 Zimmerman et al. Jul 2015 B2
9427302 Xue Aug 2016 B2
20020077692 Besselink Jun 2002 A1
20020123802 Snyders Sep 2002 A1
20030033005 Houser et al. Feb 2003 A1
20030139805 Holmberg et al. Jul 2003 A1
20030204243 Shiu Oct 2003 A1
20040167598 Margolis Aug 2004 A1
20040199238 Brown et al. Oct 2004 A1
20040206363 McCarthy Oct 2004 A1
20040210304 Seguin Oct 2004 A1
20040260389 Case et al. Dec 2004 A1
20050015109 Lichtenstein Jan 2005 A1
20050060026 Gamboa Mar 2005 A1
20050222488 Chang Oct 2005 A1
20050246013 Gabbay Nov 2005 A1
20060212113 Shaolian Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060276813 Greenberg Dec 2006 A1
20070050015 O'Brien et al. Mar 2007 A1
20070061010 Hauser Mar 2007 A1
20070208298 Ainsworth Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20090264991 Paul, Jr. Oct 2009 A1
20100228184 Mavani Sep 2010 A1
20110301700 Fish et al. Dec 2011 A1
20120123527 Isch May 2012 A1
20120136430 Sochman et al. May 2012 A1
20130158673 Toomey Jun 2013 A1
20140142691 Pouletty May 2014 A1
20140277348 Roeder Sep 2014 A1
20150223793 Goldfarb et al. Aug 2015 A1
20150282958 Centola et al. Oct 2015 A1
20170172737 Kuetting Jun 2017 A1
20170239043 Wei Aug 2017 A1
20190099264 Kalfa Apr 2019 A1
20190380825 Perkins Dec 2019 A1
20200069412 Schreck Mar 2020 A1
20200397569 Mldirim et al. Dec 2020 A1
Foreign Referenced Citations (16)
Number Date Country
461791 Dec 1991 EP
2600798 Jun 2013 EP
2677872 Dec 1992 FR
62213762 Sep 1987 JP
62235496 Oct 1987 JP
63246178 Oct 1988 JP
03009745 Jan 1991 JP
03009746 Jan 1991 JP
1217402 Mar 1986 SU
1318235 Jun 1987 SU
1389778 Apr 1988 SU
1457921 Feb 1989 SU
1482714 May 1989 SU
9624306 Aug 1996 WO
9716217 May 1997 WO
9836709 Aug 1998 WO
Related Publications (1)
Number Date Country
20210282926 A1 Sep 2021 US
Divisions (2)
Number Date Country
Parent 16193895 Nov 2018 US
Child 17336542 US
Parent 15051045 Feb 2016 US
Child 16193895 US