1. Field of the Invention
The present invention is directed generally to exercise devices, and more particularly to devices that provide resistance and are configured for use as bike trainers.
2. Description of the Related Art
Bike trainers (or “bicycle trainers”) have been used by bicycling enthusiasts to support their bicycles for stationary riding. Rather than ride in cold, hot, or rainy weather, a cyclist may use the trainer to ride indoors and obtain an aerobic, cardiovascular workout. Bike trainers also obviate the need for purchasing a separate stationary bicycle for persons who want to occasionally workout while, for example, reading or watching television.
A typical bike trainer has a frame onto which a user mounts a bicycle. The rear wheel of the bicycle contacts a roller or like mechanism connected to a resistance unit. Resistance to the rotation of the rear wheel may be adjustable. In addition, it would be desirable for a resistance unit to provide increased resistance as the rotation of the wheel is increased, so that more energy is required to pedal the bicycle and the rider receives a greater workout.
To use the bike trainer 10, a user first removes the rear wheel of the bicycle 100, secures the rear dropouts 106 of the bicycle to the bike trainer 10, tightens the axle clamp adjustment 22, and aligns a chain 104 of the bicycle with one of the sprockets of the cassette 26. In operation, the cassette 26 works with a rear derailleur 108 of the bicycle 100 to provide multiple gear ratios for a user of the bike trainer 10. As can be appreciated the freehub 32 includes a conventional freewheel mechanism that allows a user of the bike trainer 10 to stop pedaling whilst the first pulley 12 is still in motion, which simulates the feel of “coasting” on a moving bicycle. That is, the freewheel mechanism includes a first portion engaged with the first pulley 12 and a second portion engaged with the cassette 26, such that the freewheel mechanism is operative to disengage the first portion from the second portion when the first portion rotates faster than the second portion as would be the situation if the bicycle 100 was moving in a forward direction.
In some embodiments, an adapter 33 (see
As may best be viewed in
As best viewed in
The bike trainer 10 may be supported by a center support member 58, a laterally extending right support member 56 and a laterally extending left support member 60, which are removably coupled to the frame 40. In the embodiment shown, the left support member 60 and the right support member 56 are integrally formed, but this is not a requirement. The support members 56, 58, and 60 also include a total of four pads 62 to provide a stable interface between the bike trainer 10 and a supporting surface (e.g., a floor). One of the pads 62 is positioned near each forward end of each of the support members 56, 58, and 60, and one pad is positioned near the rearward intersection of the left support member 60 and the right support member 56. The height of each of the pads 62 relative to the support members 56, 58, and 60 may be adjustable so that the bike trainer 10 may be sturdily supported by an uneven surface without rocking. As can be appreciated, this configuration provides substantial support to the bike trainer 10 and bicycle 100 when a user is operating the bike trainer 10, such that the user remains stable on the bicycle 100 without rocking during use. It should also be appreciated that the number of pads 62 may be varied as well (e.g., three pads, six pads, or the like).
The support members 56, 58, and 60 are coupled to a lower portion 42 of the frame 40 using one or more fasteners such as screws (not shown). As illustrated, when coupled together, the lower portion 42 of the frame 40 and a lower shell 46 form a hollow interior region sized to receive rearward portions of the support members 56, 58, and 60. One or more fasteners, such as screws, may be used to secure the support members 56, 58, and 60 to the lower shell 46 and to the lower portion 42 of the frame 40. Advantageously, by permitting the support member 56, 58, and 60 to be selectively removed from the remainder of the bike trainer 10, the bike trainer 10 may be relocated and/or shipped more efficiently.
In operation, the fan 80 acts as a flywheel to provide resistance as well as inertia to the bike trainer 10. As the fan 80 rotates at a higher speed, the air resistance provided by a plurality of radially extending fan blades 84 provides relatively more resistance to a user of the bike trainer 10. Further, the fan 80 has a suitable weight such that it has a relatively high moment of inertia, thereby storing a large amount of rotational energy. To further increase the inertia provided by the fan 80 as it rotates, a significant portion of the weight of the fan is disposed at its periphery. This is achieved by an outer band 85 that extends circumferentially around the distal ends of each of the fan blades 84. This inertia provided by the fan 80 allows the bike trainer 10 to provide a feel of “coasting” for a user, such that the energy produced by pedaling is not immediately lost after the user stops pedaling. As can be appreciated, this feature of the present disclosure provides a user with a riding experience that is similar to a moving bicycle.
To provide a suitable amount of inertia, the fan 80 may be formed from ductile iron, steel, or any other material or materials having a relatively high toughness and density. Additionally, the fan 80 may have a weight of about 5 to 25 pounds (e.g., 15 pounds). The moment of inertia of the fan 80 about its spinning axis may be about 220 to 260 pound square inches (lb*in^2). Further, as shown best in
As best shown in
Additionally, a fan housing 82 may be provided to enclose the fan 80. The fan housing includes a right fan grill 86 and a left fan grill 87. As shown in
The bike trainer 10 shown and described herein permits a user to simulate the feel and ride of his or her own bicycle, thereby providing a quality workout when riding a bicycle in a conventional manner is undesirable (e.g., poor weather, limited space, or the like). As discussed above, the bike trainer 10 provides a these features by creating a suitable amount of resistance to allow users to get an effective workout, and by providing a freewheel and flywheel mechanism to preserve the rotational energy generated by a user by pedaling a bicycle coupled to the bike trainer 10. Further, by providing a substantial support structure, a user of the bike trainer 10 is sturdily supported on his or her bicycle during use.
The foregoing described embodiments depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this invention and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this invention.
Furthermore, it is to be understood that the invention is solely defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations).
Accordingly, the invention is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3240153 | Schrader | Mar 1966 | A |
4789153 | Brown | Dec 1988 | A |
4981294 | Dalebout et al. | Jan 1991 | A |
RE34959 | Potts | May 1995 | E |
5480366 | Harnden et al. | Jan 1996 | A |
5944637 | Stickler et al. | Aug 1999 | A |
6612597 | Baker et al. | Sep 2003 | B2 |
6945917 | Baatz | Sep 2005 | B1 |
7226395 | Wu et al. | Jun 2007 | B2 |
7351171 | Kanehisa et al. | Apr 2008 | B2 |
20040130117 | Lipton | Jul 2004 | A1 |
20050227822 | Liou | Oct 2005 | A1 |
20070222278 | Hoisington | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20110287902 A1 | Nov 2011 | US |