Bilateral vertebral body derotation system

Information

  • Patent Grant
  • 8709015
  • Patent Number
    8,709,015
  • Date Filed
    Monday, March 10, 2008
    16 years ago
  • Date Issued
    Tuesday, April 29, 2014
    10 years ago
Abstract
The disclosed embodiments provide a system including an implant assembly and an instrument configured to work in conjunction to manipulate vertebral bodies to affect derotation. The implant assemblies include a removable attachment element that allows for the attachment of the instrument. The instrument is configured to attach to two implant assemblies that have been inserted bilaterally into a vertebral body. When the instrument is attached to the implant assemblies, forces applied to the instrument are translated and transferred to the implant assemblies and the vertebral body into which the implant assemblies have been inserted thereby providing a rotational force on the vertebral body.
Description
BACKGROUND

In spinal deformity surgical procedures, the curvature of the spine (e.g., the coronal curvature of the spine and/or the sagittal curvature of the spine) can be corrected by the implantation of a construct of bone anchors and spinal fixation elements. Examples of bone anchors used in such a construct include hooks and bone screws. Examples of spinal fixation elements used in such a construct include rods and tethers.


During spinal deformity surgical procedures, a surgeon typically first exposes the spine posterior and attaches bone anchors to selected vertebrae of the spine. The surgeon then inserts a spinal fixation element into receiving portions of the bone anchors to connect the selected vertebrae, thereby fixing the relative positions of the vertebrae.


In addition to correcting the curvature of the spine, the angular rotation of one or more vertebrae relative to other vertebrae around the axial plane of the vertebra may also be corrected. Conventional surgical procedures for correcting the angular relationship of a vertebra involve rotating the spinal fixation element, for example, a spinal rod, connected to the vertebra by a bone anchor. In the case of constructs that include a spinal rod, this procedure is typically referred to as “derotation.” Derotation can place significant stress on the interface between the bone anchors connected to the rotated spinal rod and the vertebra in which each bone anchor is implanted. This stress can cause a failure of one or more of the bone anchors or harm to the vertebra. Accordingly, there is a need for improved instruments and methods for manipulating a vertebra.


Conventional derotation instruments are designed to be used after reduction has been performed and the spinal fixation element has been secured to the bone anchor. However, the bone anchors often bind on the fixation element during the rotation, preventing the motion or requiring significant force to obtain it. Thus in some instances it may be beneficial to perform derotation before insertion of the spinal fixation element. Being able to insert the rod after derotation reduces the need for significant reduction, complicated rod contouring and in-situ bending thereby decreasing the complexity of the procedure.


SUMMARY

Disclosed herein is a system for manipulating vertebral bodies. The system and methods disclosed herein are particularly suited to facilitate rotation of vertebrae to correct the rotational relationship between vertebrae while leaving the implants accessible for attaching a spinal fixation element. The instrument does not require the spinal fixation element to be inserted into the bone anchor prior to manipulation.


In accordance with one example embodiment, an instrument for manipulating vertebral bodies is provided. The instrument includes a first arm and a second arm connected to the first arm. The first arm has a proximal end and a distal end configured to engage a removable attachment element of a first implant assembly implanted in a pedicle of a vertebral body. The second arm has a proximal end and a distal end configured to engage a removable attachment element of a second implant assembly implanted bilaterally from the first bone anchor assembly implanted in the other pedicle of the vertebral body.


In accordance with another example embodiment, an implant assembly is provided for use in bilateral vertebral body manipulation. The implant assembly includes a bone anchor, a body, and a removable attachment element. The bone anchor has a proximal head and a distal shaft extending along a longitudinal axis configured to engage bone. The body is configured to engage the proximal head of bone anchor and receive a spinal fixation element. The removable attachment element is provided on the body for connecting the implant assembly to an arm of the instrument used to manipulate the implant assembly in a bilateral arrangement. Once manipulation is completed, the removable attachment element is detached from the body.


In accordance with another example embodiment, a system is provided for manipulating one or more vertebrae. The system includes at least two implant assemblies as described herein and an instrument as described herein configured to attach to the two bone screw assemblies for manipulating a vertebra into which the implant assemblies are implanted.


In accordance with another example embodiment, a method is provided for manipulating a vertebral body. The method includes the following steps: A first implant assembly having a removable attachment element is inserted into a vertebra. Then, a second implant assembly having a removable attachment element is inserted into the vertebra bilaterally from the first implant assembly. An instrument as described herein is then attached to the first and second implant assembly. Finally, the instrument may be used to manipulate the vertebra using the instrument attached to the first and second implant assemblies implanted bilaterally in the vertebra.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a perspective view illustrating an example embodiment of an implant assembly;



FIG. 2 is a perspective view illustrating another example embodiment of an implant assembly;



FIG. 3 is a perspective view illustrating another example embodiment of an implant assembly;



FIG. 4 is a side view illustrating another embodiment of an attachment element of an implant assembly and an end of instrument configured to engage the attachment element;



FIG. 5 is a side view illustrating another embodiment of an attachment element of an implant assembly and an end of instrument configured to engage the attachment element;



FIG. 6A is a perspective view illustrating another embodiment of an attachment element of an implant assembly;



FIG. 6B is a top view of the instrument of FIG. 6A, illustrating the distal end of an instrument configured to engage the attachment element;



FIG. 7 is a perspective view illustrating another embodiment of an attachment element of an implant assembly;



FIG. 8 is a perspective view illustrating one embodiment of an instrument used to manipulate a vertebral body;



FIG. 9 is a perspective view illustrating another embodiment of an instrument used to manipulate a vertebral body;



FIG. 10 is a close-up perspective view illustrating the attachment of the instrument of FIG. 9 to an implant assembly;



FIG. 11 is a perspective view illustrating another embodiment of an instrument used to manipulate a vertebral body;



FIG. 12 is a perspective view illustrating another embodiment of an instrument used to manipulate a vertebral body;



FIG. 13 is a perspective view illustrating another embodiment of an instrument used to manipulate a vertebral body;



FIG. 14 is a perspective view illustrating another embodiment of an instrument used to manipulate a vertebral body;



FIG. 15 is flow chart illustrating one embodiment of manipulating a vertebra using the implant assemblies and instruments disclosed herein;



FIGS. 16A and 16B are a flow chart illustrating one embodiment of manipulating a vertebra using the implant assemblies and multiple instruments disclosed herein;



FIG. 17 if side view illustrating the manipulation of vertebra as set forth in the method of FIGS. 16A and 16B;



FIG. 18, is perspective view illustrating one embodiment of the connection of multiple instruments to a connector; and



FIG. 19 is a perspective view of an assembly wherein the connector is attached to an operating table.





DETAILED DESCRIPTION OF THE INVENTION

The disclosed embodiments provide a system including an implant assembly and an instrument configured to work in conjunction to manipulate vertebral bodies to affect derotation. The implant assemblies include an attachment element that allows for the attachment of the instrument. The instrument is configured to attach to two implant assemblies that have been inserted bilaterally into a vertebral body. When the instrument is attached to the implant assemblies, forces applied to the instrument are translated and transferred to the implant assemblies and the vertebral body into which the implant assemblies have been inserted thereby providing a rotational force on the vertebral body.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


The terms “comprise,” “include,” and “have,” and the derivatives thereof, are used herein interchangeably as comprehensive, open-ended terms. For example, use of “comprising,” “including,” or “having” means that whatever element is comprised, had, or included, is not the only element encompassed by the subject of the clause that contains the verb.


Implant Assembly



FIG. 1 depicts one embodiment of an implant assembly 100. FIG. 1A depicts an assembled view implant assembly 100. The implant assembly 100 includes a bone anchor 110, a body 120, and an removable attachment element 130. The bone anchor 110 has a proximal head not shown and a distal shaft 114 extending along a longitudinal axis configured to engage bone. The body 120 is configured to engage the proximal head of bone anchor 110 and receive a spinal fixation element (not shown). The removable attachment element 130 extends from the body 120 and is configured for connecting the implant assembly 100 to an instrument used to manipulate the implant assembly 100. Each of these elements will be described in more detail below.


The distal shaft 114 extends from the body 120 along a longitudinal axis 105. The distal shaft 114 is configured to engage bone. To assist in the engagement of bone, the distal shaft 114 may be provided with threads 116 or other engagement configuration.


In the example of FIG. 1, the implant assembly 100 is configured as an open head screw type. As such, the body 120 includes a U-shaped slot 122 for receiving a spinal fixation element, such as a rod (not shown). The body 120 further includes a passage 124 for receiving the bone anchor 110 and engaging the proximal head of the bone anchor 110. When assembled, the distal shaft 114 of the bone anchor 110 is passed through the passage 124 until the proximal head is engaged. The implant assembly 100 in this embodiment is a uniplanar or monoplanar screw; thus the body further includes a rod seat 226 that restrict the movement of the body 220 around the proximal head to one axis. In other embodiments, a monoaxial screw in which the body does not rotate at all in relation to the bone anchor may be used.


The removable attachment element 130 in this embodiment is a detachable tab extending from the body 120. In this embodiment, there is a detachable tab 130 on each side of the body 120. The tabs 130 effectively extend the U-shaped slot 122 of the body 120. The tab 130 further defines a thru-hole 132. The thru-hole provides a convenient attachment point for connecting an instrument to the implant assembly 100. The thru-hole 132 creates a pin joint. Pinjoints do not transfer moments (or rotational forces) and as such a derotation force applied to the tab 230 result in push or pull forces rather than bending of the tab 130 when derotation is performed using the described instruments and techniques disclosed herein


The removable tabs 130 may be selectively detachable. This allows the tabs 130 to be removed after they have been used for de-rotation. By making the attachment elements 130 tabs extending from the body 120, the overall profile of the implant assembly 100 is maintained. Once the tabs 130 are detached, the implant assembly 100 resembles a traditional implant assembly 100 allowing the use of existing instruments with the implant assembly 100. In some embodiments, the tabs 130 may also include internal threads 134 allowing the tabs 130 to provide a certain degree or reduction of a spinal fixation element received in the U-shaped slot 122 of the body 120.



FIG. 2 depicts another embodiment with an alternate tab 240 configuration. The screw assembly 200 is largely the same as in FIG. 1. The implant assembly 200 includes a bone anchor 210 having a distal shaft 214 and a proximal head (not shown) connecting the bone anchor 210 to the body 220. The body 220 includes a U-shaped slot 222 for receiving a spinal fixation element, such as a rod (not shown). The body 220 further includes a passage 224 for receiving the bone anchor 210 and engaging the proximal head of the bone anchor 210. The implant assembly 200 in this embodiment is also a uniplanar or monoplanar screw. Thus, the body further includes a rod seat 226 that restrict the movement of the body 220 around the proximal head to one axis.


In the embodiment of FIG. 2, the removable attachment elements 240 are tabs extending from the body 220 of the implant assembly 200. However, in this embodiment the tabs 240 include a spherical undercut feature instead of a thru-hole. The arms 250 of the instrument in turn are provided with a spherical connection element 252 that engage the spherical undercut feature. The spherical shape of the undercut feature and the connection element provide many of the same benefits as the pin joint in the embodiment of FIG. 2A.



FIG. 3 depicts another alternate configuration for a connection element 330. In this embodiment, the connection element is a post 330 extending from the body 320 of the implant assembly 300 having a cylindrical shape. In this embodiment, the instrument (not shown) passes over the post to engage the implant assembly 300. The post 330 may be provided with surface features 332 such as threads, or grooves to keep the instrument engaged with the implant assembly during derotation. The post 330 is selectively detachable from connector body 320. Once the post 330 is detached, the implant assembly 300 resembles a traditional implant assembly 300 allowing the use of existing instruments with the implant assembly 300.



FIGS. 4-7 depict various embodiments wherein the attachment element may take on a number of geometries and configurations.


In the example of FIG. 4, the implant assembly 400 includes bone anchor 410, a body 420, and removable attachment elements 430. The bone anchor 410 and body 420 are similar to those previously discussed. The body 420 further includes engagement feature 424 that works in conjunction with the removable attachment elements. The attachment elements 430 in this example include tabs extending from the body including attachment features 432. Here the engagement features 424, 432 are notches that angled away from each other. The notches 424 on the body 420 are angled away from the notches 432 of the tabs 430 with are in turn angled away from the notches 424 of the body 420. The end(s) of an instrument 470 may be configured to engage the notches 424 and 432. In the example, the end(s) of the instrument 470 includes a first portion 472 and second portion 474 configured to engage the notches 424 and 432. Here, the attachment of the end of the instrument 470 is achieved through distraction. Thus, the first portion 472 and second portion 474 are slid relative to each other in the direction indicated by arrow 480 to secure the attachment. After derotation has occurred using the instrument, the tabs 430 may be detached from the body 420.


In the example of FIG. 5, the implant assembly 500 includes bone anchor 510, a body 520, and removable attachment elements 530. The bone anchor 510 and body 520 are similar to those previously discussed. The body further includes engagement feature 524. The removable attachment elements 530 in this example are tabs extending from the body 520 having further engagement features 532. Here the engagement features 524, 532 are notches that angled toward each other. The notches 524 on the body 520 are angled toward the notches 532 of the tabs 530 with are in turn angled toward the notches 524 of the body 520. The end(s) of an instrument 570 may be configured to engage the surface configurations 532 on the tabs 530 in combination with an annular ring 524 on the body 520. In the example, the end(s) of the instrument 570 includes a first portion 572 and second portion 574 configured to engage the surface configurations 532 and the annular ring 524. Here, the attachment of the end of the instrument 570 is achieved through compression. Thus, the first portion 572 and second portion 574 are slid relative to each other in the direction indicated by arrows 580 to secure the attachment. After derotation has occurred using the instrument, the tabs 530 may be detached from the body 520.



FIG. 6A and 6B depict another embodiment of an implant assembly 600. FIG. 6A is a perspective view of the implant assembly 600. FIG. 6B is a top view of the implant assembly 600 showing the end of an instrument 670 configured to attach to the implant assembly 600. The implant assembly 600 includes bone anchor 610, a body 620, and removable attachment elements 630. The bone anchor 610 and body 720 are similar to those previously discussed. The removable attachment elements 630 in this example are tab extending from the body 620. The end(s) of an instrument 670 may be configured to engage the tabs 630. In some embodiments, the instrument 670 could be provided with a clearance fit between the tabs 630 and the body 620. Alternately, the spacing between the tabs 630 and the body 620 could taper providing a wedging effect when the instrument 670 is attached. In other embodiments, the instrument 670 could be tapered to create the wedging effect. Once derotation has occurred, the tabs 630 may be selectively detached from the body 620.


In the example of FIG. 7, the implant assembly 700 includes bone anchor 710, a body 720, and removable attachment elements 730. The bone anchor 710 and body 720 are similar to those previously discussed. The attachment elements 830 in this example comprise one or more pins extending from the body 720. The pins may operate similar to thru holes but instead of the instrument having pins to engage the thru holes on the body, the instrument has thru holes for engaging pins on the body. Once derotation has occurred, the pins 730 may be removed from the body 720.


While, the previous examples have focused on poly-planar or mono-planar screws having open heads, it should be understood that the implant assembly have a closed head or a mono-axial screw. Other embodiments, configurations, and applications will be apparent to one skilled in the art given the benefit of this disclosure.


The components of the implant assembly of the illustrative embodiments of the invention may be manufactured from any suitable biocompatible material, including, but not limited to, metals and metal alloys such as titanium and stainless steel, polymers and/or ceramics. The components may be manufactured from the same or different materials though manufacturing processes known in the art.


Instrument



FIG. 8 depicts one embodiment of an instrument 800 used for manipulating vertebra. The instrument 800 includes a first arm 810 and a second arm 8920 pivotly connected to the first arm 810. The first arm has a proximal end 812 and a distal end 814. The distal end 814 is configured to engage a first implant assembly as discussed above. The second arm 820 also has a proximal end 822 and a distal end 824. The distal end 822 of the second arm 820 is configured to engage a second bone screw as discussed above.


In certain embodiments, the instrument may further include a handle 830 disposed at the proximal end of at least one of the first or second arms. In the example of FIG. 8, the handle 830 is attached to the proximal end 812 of the first arm 810. The handle provides a user a convenient area to grip the instrument 800 and apply force for manipulating a vertebra.


In this example, the second arm 820 is attached to the first arm at a pivot 840. The proximal end 822 of the second arm 820 is further pivotably connected to a support arm 842, which is pivotably connected to a push button or ratchet mechanism 844 on the first arm 810. When the push button or ratchet mechanism 844 is moved along the length of the first arm 810, the connected support arm 842 transfers the motion to the proximal end 822 of the second arm. This causes the second arm 820 to rotate around pivot 840. This results in the distal end 824 of the second arm 820 moving toward or away from the distal end 814 of the first arm 810 in the direction indicated by arrow 850.


As the distal ends 814, 824 of the first and second arms 810, 820 are configured to engage implant assemblies as previously discussed, the distal ends 914, 924 may be provided with specifically configured feet 816, 826 for engaging the attachment element of the implant assembly. In the example of FIG. 8, the feet 816, 826 are pins for engaging thru holes provided on an implant assembly. Other examples of feet and distal ends of instrument have been shown in FIGS. 2 and 4-6. Still other embodiments and configurations will be apparent to one skilled in the art given the benefit of this disclosure.



FIG. 9 depicts another embodiment of an instrument 900. In this example, the distal ends 912 and 922 of the first arm 910 and second arm 920 are connected to a central shaft 940 as well as an adjustment mechanism 942 that rides along the central shaft 940. Both the first arm 910 and second arm 920 also include pivots 944. The handle 930 is connected to the adjustment mechanism 942. The handle includes a central bore 932 that allows the handle 930 to receive the central shaft 940. In this embodiment, the handle 930 also is used to control the spacing of the first and second arm 910, 920. By advancing or retracting the handle 930 along the central shaft 940, the adjustment mechanism 942 is moved along the central shaft 940. This movement is translated through pivots 944 and the pivotable connection to the central shaft 940 into movement of the distal ends 914, 916 in the direction indicated by arrows 950.


In the example of FIG. 9, the instrument has been attached to a first implant assembly 100a and a second implant assembly 100b inserted bilaterally in a vertebra 960. This allows the vertebra to be manipulated by moving the handle 1130 in the direction indicated by arrow 1170 to effect derotation.


The first implant assembly 100a is attached to the first arm 910 and the second implant assembly 100b is attached to the second arm 920. Here the feet 916, 926 are configured to engage the respective attachment element of the respective implant assembly 100a, 100b. A close-up of the interconnection between a foot of the instrument and the attachment element of the implant assembly can be seen in FIG. 10.


In FIG. 10, the foot 916 of the first arm 910 of the instrument 900 is configured as a pin to engage a thru hole 132 in the removable attachment element 130 extending from the body 120 of the first implant assembly 100a. Dashed line 1000 indicated a possible trajectory for the insertion of the pin into the thru-hole 132. As discussed previously, the thru-hole 132 provides a convenient attachment point for connecting an instrument to the implant assembly 100. The thru-hole 132 creates a pin joint. Pin joints do not transfer moments and as such, a rotational force applied to the instrument results in push or pull forces rather than bending of the tab 130. Depending on the implementation, the implant assemblies 100a and 100b may be at different relative heights, angles, and rotations. Pin joints accommodate these variations better than many other geometries.


The adjustment of the spacing and positions of the first and second arms can be handled in a number of ways. FIGS. 11-14 depict a number of embodiments of instruments with different positioning mechanisms.


In FIG. 11, the instrument is a modified parallel distractor used with the Expedium® screw system made by Depuy Spine. The spacing of the arms 1110, 1120 is actuated by squeezing the proximal handle 1130. The distal ends 1114, 1124 have been modified to engage attachment elements 130 on the bilaterally implanted first and second implant assemblies 100a, 100b.


In FIG. 12, the spacing of the first arm 1210 and second arm 1220 is controlled be a mechanism 1232 in the handle 1230. In this example, the mechanism 1232 is a plunger mechanism. By actuating the plunger 1232 in the handle 1230, the spacing of the first and second arms 1210, 1220 is actuated.


In FIG. 13, the second arm 1320 is connected to the first arm 1310 at apivot 1340. The handle 1330 is attached to the proximal end of the second arm 1320. A turnbuckle 1350 is provided on the second arm 1320 to affect derotation. The first arm 1310 is connected to a first implant in a first pedicle of a vertebra and the second arm 1320 is connected to a second implant in the second pedicle of the vertebra. When, the turnbuckle 1350 is rotated, the length of the second arm is adjusted. Since the first arm 1310 and second arm 1320 are pivotly attached to each other, the adjustment of the length of the second arm 1320 causes the vertebra to rotate, thus derotating the vertebra.


In FIG. 14, the first arm 1410 and the second arm 1420 are connected at their respective proximal ends 1412, 1422 by a pivot 1440 providing a caliper type configuration. The proximal ends 1412, 1422 also form the handle 1430 in this configuration. The distal ends 1414, 1424 are provided with feet 1416, 1426 having pins configured to engage thru holes of an attachment element of the implant assembly described above. In this embodiment, the instrument 1400 further includes one or more connection elements 1450 for connecting instrument to a connector, such as an alignment rod (not shown).


The components of the instrument of the illustrative embodiments may be manufactured from any suitable material, including, but not limited to, metals and metal alloys such as titanium and stainless steel, polymers and/or ceramics. The components may be manufactured from the same or different materials though manufacturing processes known in the art.


Methods of Use



FIG. 15 depicts an example flowchart 1500 of one embodiment of a method used for manipulating a vertebral body. The method includes inserting a first implant bilaterally into a vertebra (step 1510). A second implant assembly may then be inserted into the vertebra bilaterally from the first implant assembly (step 1520). An instrument may then be attached to the first and second implant assemblies (step 1530). Once the instrument has been attached, the vertebra may then be manipulated using the instrument (step 1540). In certain embodiments, the method may further include the steps of attaching a first spinal fixation element to the first implant assembly (step 1550) and attaching a second spinal fixation element to the second implant assembly (step 1560). After the first and second spinal fixation elements have been attached, the instrument may be removed from the first implant assembly (step 1570) and the second implant assembly (step 1575). After the instrument has been removed, the removable attachment element of the first and second implant assemblies may be removed (steps 1580 and 1590).



FIG. 16 depicts an example flowchart 1600 of one embodiment of a method used for manipulating multiple vertebral bodies. The method includes inserting a first implant bilaterally into a first vertebra (step 1605). A second implant assembly may then be inserted into the first vertebra bilaterally from the first implant assembly (step 1610). A third implant assembly may be inserted bilaterally into a second vertebra (step 1615). A fourth implant assembly may then be inserted bilaterally from the third implant assembly (step 1620). A first instrument may then be attached to the first and second implant assemblies (step 1625). A second instrument may also be attached to the third and fourth implant assemblies (step 1630). Once the first instrument has been attached, the first vertebra may then be manipulated using the first instrument (step 1635). Once the second instrument has been attached, the second vertebra may also be manipulated using the second instrument (step 1640). In certain embodiments, the method may also include connecting the first instrument to the second instrument using a connector (step 1645). In still other embodiments, the method may also include the steps of attaching a first spinal fixation element to the first and third implant assemblies (step 1650) and attaching a second spinal fixation element to the second and fourth implant assemblies (step 1655). After the first and second spinal fixation elements have been attached, the instrument may be removed from the first and second implant assembly of the first vertebra (step 1560) and the second instrument may be removed from the third and fourth implant assembly of the second vertebra (step 1565). After the first and second instrument has been removed, the attachment element of the first and third implant assemblies in may be removed (steps 1570) as well as the attachment elements of the second and fourth implant assemblies (1675).



FIG. 17 depict the manipulation of a two vertebrae using two instruments and implant assemblies described previously. The instruments 1400a, 1400b are the caliper type as describe in relation to FIG. 14. The implant assemblies 100a, 100b, 100c, 100d are of the type described in relation to FIG. 1. However, it should be understood that any of the embodiments of the implant assemblies or instrument may be used.


In this example, the first and second implant assemblies 100a, 100b have been inserted bilaterally into the first vertebra 1750. The third and fourth implant assemblies 100c, 100d have been inserted bilaterally into the second vertebra 1760. The distal end 1414a of first arm 1410a of the first instrument 1400a is attached to the attachment element 130a of the first implant assembly 100a. The distal end of the second arm 1420a of the first instrument 1400a is attached to the attachment element 130b of the second implant assembly 100b. The distal end of first arm 1410b of the second instrument 1400b is attached to the attachment element 130c of the third implant assembly 100c. The distal end of the second arm 1420b of the second instrument 1400b is attached to the attachment element 130d of the fourth implant assembly 100d.


With the first and second instruments 1400a, 1400b attached, the first and second vertebra 1750, 1760 may be manipulated individually or together in relation to each other or to other vertebrae. In the example of FIG. 17, the first instrument 1400a has been used to orientate the first vertebra 1750 in relation to the second vertebra 1760 and both the first and second instruments 1400a, 1400b are used together to orientate the first and second vertebra 1750, 1760 in relation to the other vertebra.


As discussed previously, instruments may be provided with a connection element allowing the instrument to connect to a connector. Multiple instruments may thus be connected to the same connector (step 1645 of FIG. 16). An example of this can be seen in FIG. 18.



FIG. 18 depicts a perspective view of multiple instruments connected to the same connector 1840, such as an alignment rod. A first instrument 1810 is attached to a first vertebra 1850 for manipulating the first vertebra 1850. A second instrument 1820 is attached to a second vertebra 1860 for manipulating the second vertebra 1860. A third instrument 1830 is attached to a third vertebra 1870 for manipulating the third vertebra 1870. The first instrument 1810 is provided with a connector element 1815 for connecting the first instrument 1810 to the alignment rod 1840. The second instrument 2220 is provided with a connector element 2225 for connecting the second instrument 1820 to the alignment rod 1840. The third instrument 1830 is provided with a connector element 1835 for connecting the third instrument 1830 to the alignment rod 1840. By connecting each of the instruments 1810, 1820, 1830 to the alignment rod 1840, the orientation of each of the vertebra 1850, 1860, 1870 in relation to each other can be maintained while further manipulation or attachment of a spinal fixation element is performed. In some embodiments, multiple connectors 1840 may be used. In certain embodiments, the connector 1840 may be connected to operating table to provide a fixed location for the connecter 1840. An example of this can be seen in FIG. 19.



FIG. 19 depict and example of an operation table 1900. Here the table 1900 is provided with one or more adjustable arms 1910 to which the connector 1840 is attached. In operation, the arms 1910 are adjusted to place the connector in the desired orientation in relation to the patient's spine. Instruments 1600a, 1600b may then be attached to the connector to maintain the vertebral bodies, to which the instruments 1600a, 1600b are attached, in proper alignment. The position of the connector 1840 may be further adjusted at needed to maintain proper alignment. Other possible connections and configurations will be apparent to one skilled in the art given the benefit of this disclosure.


While the instruments and methods disclosed herein have been particularly shown and described with reference to the example embodiments thereof, those of ordinary skill in the art will understand that various changes may be made in the form and details herein without departing from the spirit and scope of the present invention. Those of ordinary skill in the art will recognize or be able to ascertain many equivalents to the example embodiments described specifically herein by using no more than routine experimentation. Such equivalents are intended to be encompassed by the scope of the present invention and the appended claims.

Claims
  • 1. An instrument for manipulating a vertebral body, the instrument comprising: a first arm having a proximal end and a distal end, the distal end configured to engage a removable attachment element of a first implant assembly implanted in a vertebral body, said distal end of said first arm creating a pin joint with the first implant assembly that facilitates derotation of the vertebral body; anda second arm pivotably connected to the first arm having a proximal end and a distal end, the distal end configured to engage a removable attachment element of a second implant assembly implanted bilaterally from the first implant assembly in the vertebral body,wherein the removable attachment element of the first implant assembly and the removable attachment element of the second implant assembly are configured to be removable from the first implant assembly and the second implant assembly implanted in the vertebral body, respectively; andwherein the removable attachment elements comprise one or more detachable tabs extending from at least one of the implant assemblies.
  • 2. The instrument of claim 1, further comprising a handle disposed at the proximal end of at least one of the first or second arms.
  • 3. The instrument of claim 1, wherein the distal ends of the first and second arms pivotably engage the removable attachment elements of the first and second implant assemblies.
  • 4. The instrument of claim 3, wherein the distal ends of the first and second arms comprise feet for engaging through holes of the removable attachment elements of the first and second implant assemblies thereby forming the pin joint.
  • 5. The instrument of claim 1, wherein the proximal end of at least one of the first or second arm further comprises a connection element configured to engage a connector for connecting the instrument to another instrument.
  • 6. An implant assembly for use in bilateral vertebral body manipulation, the implant assembly comprising: a bone anchor having a proximal head and a distal shaft extending along a longitudinal axis configured to engage bone;a body configured to engage the proximal head of the bone anchor and engage a spinal fixation element; a removable attachment element extending from the body for connecting the implant assembly to an arm of an instrument configured to manipulate the implant assembly in a bilateral arrangement, wherein the removable attachment element is configured to be removable from the implant assembly implanted in the vertebral body; andwherein the removable attachment element comprises one or more tabs extending from the body that are detachable and wherein the one or more tabs include a thru-hole configured to engage a distal end of an instrument to create a pin joint facilitating derotation of the vertebral body.
  • 7. The implant assembly of claim 6 wherein implant assembly is a polyaxial screw.
US Referenced Citations (369)
Number Name Date Kind
410780 Cahn Sep 1889 A
445513 Powell Jan 1891 A
1470313 Woolen Oct 1923 A
1628144 Herrmann May 1927 A
1709766 Bolton Apr 1929 A
1889330 Humes et al. Nov 1932 A
1925385 Humes et al. Sep 1933 A
2113246 Frederick Apr 1938 A
2248054 Becker Jul 1941 A
2248057 Bond Jul 1941 A
2291413 Siebrandt Jul 1942 A
2370407 Howard Feb 1945 A
2669896 Clough Feb 1954 A
2800820 Retterath Jul 1957 A
2952285 Roosli Sep 1960 A
3604487 Gilbert Sep 1971 A
3960147 Murray Jun 1976 A
4237875 Termanini Dec 1980 A
4271836 Bacal et al. Jun 1981 A
4363250 Suga Dec 1982 A
4411259 Drummond Oct 1983 A
4445513 Ulrich et al. May 1984 A
4655223 Kim Apr 1987 A
4733657 Kluger Mar 1988 A
4743260 Burton May 1988 A
4809695 Gwathmey et al. Mar 1989 A
4887596 Sherman Dec 1989 A
4896661 Bogert et al. Jan 1990 A
4957495 Kluger et al. Sep 1990 A
4987892 Krag et al. Jan 1991 A
5005562 Cotrel Apr 1991 A
5014407 Boughten et al. May 1991 A
5020519 Hayes et al. Jun 1991 A
5067955 Cotrel Nov 1991 A
5092866 Breard et al. Mar 1992 A
5120171 Lasner Jun 1992 A
5176678 Tsou Jan 1993 A
5176680 Vignaud et al. Jan 1993 A
5181917 Rogozinski Jan 1993 A
5181971 Ohtsuka Jan 1993 A
5190543 Schlapfer Mar 1993 A
5219349 Krag et al. Jun 1993 A
5226766 Lasner Jul 1993 A
5263939 Wortrich Nov 1993 A
5282801 Sherman Feb 1994 A
5282863 Burton Feb 1994 A
D346217 Sparker et al. Apr 1994 S
5306248 Barrington Apr 1994 A
5330474 Lin Jul 1994 A
5360431 Puno et al. Nov 1994 A
5364397 Hayes et al. Nov 1994 A
5385565 Ray Jan 1995 A
5387213 Breard et al. Feb 1995 A
5391170 McGuire et al. Feb 1995 A
5415661 Holmes May 1995 A
5429641 Gotfried Jul 1995 A
5468241 Metz-Stavenhagen et al. Nov 1995 A
5478340 Kluger Dec 1995 A
5484440 Allard Jan 1996 A
5487744 Howland Jan 1996 A
5499983 Hughes Mar 1996 A
5501684 Schlapfer et al. Mar 1996 A
5520689 Schlapfer et al. May 1996 A
5536127 Pennig Jul 1996 A
5536268 Griss Jul 1996 A
5540688 Navas Jul 1996 A
5545165 Biedermann et al. Aug 1996 A
5549608 Errico et al. Aug 1996 A
5551320 Horobec et al. Sep 1996 A
5591166 Bernhardt et al. Jan 1997 A
5616143 Schlapfer et al. Apr 1997 A
5649931 Bryant et al. Jul 1997 A
5667513 Torrie et al. Sep 1997 A
5672175 Martin Sep 1997 A
5672176 Biedermann et al. Sep 1997 A
5683399 Jones Nov 1997 A
5697933 Gundlapalli et al. Dec 1997 A
5707371 Metz-Stavenhagen Jan 1998 A
5720751 Jackson Feb 1998 A
5725532 Shoemaker Mar 1998 A
5746757 McGuire May 1998 A
5782831 Sherman et al. Jul 1998 A
5797910 Martin Aug 1998 A
5797911 Sherman et al. Aug 1998 A
5810878 Burel et al. Sep 1998 A
5814046 Hopf Sep 1998 A
5879350 Sherman et al. Mar 1999 A
5882350 Ralph et al. Mar 1999 A
5885285 Simonson Mar 1999 A
RE36211 Nonomura May 1999 E
RE36221 Breard et al. Jun 1999 E
5910141 Morrison et al. Jun 1999 A
5941885 Jackson Aug 1999 A
5951555 Rehak et al. Sep 1999 A
5951564 Schroder et al. Sep 1999 A
5951579 Dykes Sep 1999 A
5964760 Richelsoph Oct 1999 A
5976133 Kraus et al. Nov 1999 A
5989250 Wagner et al. Nov 1999 A
5989254 Katz Nov 1999 A
6010509 Delgado et al. Jan 2000 A
6036692 Burel et al. Mar 2000 A
6050997 Mullane Apr 2000 A
6063090 Schlapfer May 2000 A
6074391 Metz-Stavenhagen et al. Jun 2000 A
6090110 Metz-Stavenhagen Jul 2000 A
6090113 Le Couedic et al. Jul 2000 A
6099528 Saurat Aug 2000 A
6123707 Wagner Sep 2000 A
6139549 Keller Oct 2000 A
6146383 Studer et al. Nov 2000 A
6183472 Lutz Feb 2001 B1
6189422 Stihl Feb 2001 B1
6204060 Mehtali et al. Mar 2001 B1
6210330 Tepper Apr 2001 B1
6235028 Brumfield et al. May 2001 B1
6251112 Jackson Jun 2001 B1
6254602 Justis Jul 2001 B1
6258090 Jackson Jul 2001 B1
6261287 Metz-Stavenhagen Jul 2001 B1
6280442 Barker et al. Aug 2001 B1
6280443 Gu et al. Aug 2001 B1
6299616 Beger Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6309389 Baccelli Oct 2001 B1
6368321 Jackson Apr 2002 B1
6371973 Tepper Apr 2002 B1
6379357 Bernstein et al. Apr 2002 B1
6423065 Ferree Jul 2002 B2
6440133 Beale et al. Aug 2002 B1
6440137 Horvath et al. Aug 2002 B1
6440142 Ralph et al. Aug 2002 B1
6440144 Bacher Aug 2002 B1
6443953 Perra et al. Sep 2002 B1
6478798 Howland Nov 2002 B1
6511484 Torode et al. Jan 2003 B2
6530929 Justis et al. Mar 2003 B1
6540748 Lombardo Apr 2003 B2
6565567 Haider May 2003 B1
6589249 Sater et al. Jul 2003 B2
6597279 Haraguchi Jul 2003 B1
6623485 Doubler et al. Sep 2003 B2
6648888 Shluzas Nov 2003 B1
6652523 Evrard et al. Nov 2003 B1
6660006 Markworth et al. Dec 2003 B2
6689137 Reed Feb 2004 B2
6692500 Reed Feb 2004 B2
6695843 Biedermann et al. Feb 2004 B2
6716214 Jackson Apr 2004 B1
6726692 Bette et al. Apr 2004 B2
6733502 Altarac et al. May 2004 B2
6743231 Gray et al. Jun 2004 B1
6746449 Jones et al. Jun 2004 B2
6749613 Conchy et al. Jun 2004 B1
6752832 Neumann Jun 2004 B2
6755829 Bono et al. Jun 2004 B1
6783527 Drewry et al. Aug 2004 B2
6790208 Oribe et al. Sep 2004 B2
6790209 Beale et al. Sep 2004 B2
6800078 Reed Oct 2004 B2
6800079 Reed Oct 2004 B2
6827722 Schoenefeld Dec 2004 B1
6837889 Shluzas Jan 2005 B2
6964666 Jackson Nov 2005 B2
7083621 Shaolian et al. Aug 2006 B2
7156849 Dunbar et al. Jan 2007 B2
7160300 Jackson Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179261 Sicvol et al. Feb 2007 B2
7250052 Landry et al. Jul 2007 B2
7278995 Nichols et al. Oct 2007 B2
7320689 Keller Jan 2008 B2
7322979 Crandall et al. Jan 2008 B2
7371239 Dec et al. May 2008 B2
7455685 Justis Nov 2008 B2
7462182 Lim Dec 2008 B2
7465306 Pond, Jr. et al. Dec 2008 B2
7470279 Jackson Dec 2008 B2
7485120 Ray Feb 2009 B2
7491207 Keyer et al. Feb 2009 B2
7491208 Pond, Jr. et al. Feb 2009 B2
7491218 Landry et al. Feb 2009 B2
7527638 Anderson et al. May 2009 B2
7572281 Runco et al. Aug 2009 B2
7588585 Gold et al. Sep 2009 B2
7591836 Dick et al. Sep 2009 B2
7621918 Jackson Nov 2009 B2
7651502 Jackson Jan 2010 B2
7666188 Anderson et al. Feb 2010 B2
7666189 Gerber et al. Feb 2010 B2
7708736 Mullaney May 2010 B2
7708763 Selover et al. May 2010 B2
7766944 Metz-Stavenhagen Aug 2010 B2
7794464 Bridwell et al. Sep 2010 B2
7867237 Stad et al. Jan 2011 B2
7887539 Dunbar, Jr. et al. Feb 2011 B2
7887541 Runco et al. Feb 2011 B2
7951168 Chao et al. May 2011 B2
7951172 Chao et al. May 2011 B2
7951175 Chao et al. May 2011 B2
7988698 Rosenberg et al. Aug 2011 B2
8007516 Chao et al. Aug 2011 B2
8172847 Dziedzic et al. May 2012 B2
20010020169 Metz-Stavenhagen Sep 2001 A1
20010029376 Sater et al. Oct 2001 A1
20020035366 Walder et al. Mar 2002 A1
20020082599 Crandall et al. Jun 2002 A1
20020095153 Jones et al. Jul 2002 A1
20020133155 Ferree Sep 2002 A1
20020143341 Biedermann et al. Oct 2002 A1
20020173789 Howland Nov 2002 A1
20030009168 Beale et al. Jan 2003 A1
20030028195 Bette Feb 2003 A1
20030073995 Reed Apr 2003 A1
20030083657 Drewry et al. May 2003 A1
20030083747 Winterbottom et al. May 2003 A1
20030088248 Reed May 2003 A1
20030100896 Biedermann et al. May 2003 A1
20030105460 Crandall et al. Jun 2003 A1
20030109880 Shirado et al. Jun 2003 A1
20030114852 Biedermann et al. Jun 2003 A1
20030125750 Zwirnmann et al. Jul 2003 A1
20030149438 Nichols et al. Aug 2003 A1
20030171749 Le Couedic et al. Sep 2003 A1
20030176861 Reed Sep 2003 A1
20030191370 Phillips Oct 2003 A1
20030191470 Ritland Oct 2003 A1
20030199872 Markworth et al. Oct 2003 A1
20030203488 Mehtali et al. Oct 2003 A1
20030220642 Freudiger Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030225408 Nichols et al. Dec 2003 A1
20040002708 Ritland Jan 2004 A1
20040036254 Patton Feb 2004 A1
20040049189 Le Couedic et al. Mar 2004 A1
20040049190 Biedermann et al. Mar 2004 A1
20040049191 Markworth et al. Mar 2004 A1
20040073215 Carli Apr 2004 A1
20040102789 Baughman May 2004 A1
20040147936 Rosenberg et al. Jul 2004 A1
20040147937 Dunbar et al. Jul 2004 A1
20040158257 Bonati et al. Aug 2004 A1
20040158258 Bonati et al. Aug 2004 A1
20040172025 Drewry et al. Sep 2004 A1
20040172057 Guillebon et al. Sep 2004 A1
20040176779 Casutt et al. Sep 2004 A1
20040181224 Biedermann et al. Sep 2004 A1
20040186473 Cournoyer et al. Sep 2004 A1
20040204711 Jackson Oct 2004 A1
20040220567 Eisermann et al. Nov 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040243139 Lewis et al. Dec 2004 A1
20040254576 Dunbar, Jr. et al. Dec 2004 A1
20040267260 Mack et al. Dec 2004 A1
20040267275 Cournoyer et al. Dec 2004 A1
20050015095 Keller Jan 2005 A1
20050033291 Ebara Feb 2005 A1
20050033295 Wisnewski Feb 2005 A1
20050033299 Shluzas Feb 2005 A1
20050055031 Lim Mar 2005 A1
20050059969 McKinley Mar 2005 A1
20050065514 Studer Mar 2005 A1
20050065515 Jahng Mar 2005 A1
20050065516 Jahng Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070917 Justis Mar 2005 A1
20050079909 Singhaseni Apr 2005 A1
20050085813 Spitler et al. Apr 2005 A1
20050085815 Harms et al. Apr 2005 A1
20050090824 Shluzas et al. Apr 2005 A1
20050131408 Sicvol et al. Jun 2005 A1
20050131420 Techiera et al. Jun 2005 A1
20050131421 Anderson et al. Jun 2005 A1
20050131422 Anderson et al. Jun 2005 A1
20050137593 Gray et al. Jun 2005 A1
20050143749 Zalenski et al. Jun 2005 A1
20050149036 Varieur et al. Jul 2005 A1
20050149048 Leport et al. Jul 2005 A1
20050149053 Varieur et al. Jul 2005 A1
20050154389 Selover et al. Jul 2005 A1
20050159650 Raymond et al. Jul 2005 A1
20050177163 Abdou Aug 2005 A1
20050192570 Jackson Sep 2005 A1
20050192573 Abdelgany et al. Sep 2005 A1
20050192579 Jackson Sep 2005 A1
20050192589 Raymond et al. Sep 2005 A1
20050222570 Jackson Oct 2005 A1
20050228376 Boomer et al. Oct 2005 A1
20050228380 Moore et al. Oct 2005 A1
20050228392 Keyer et al. Oct 2005 A1
20050228400 Chao et al. Oct 2005 A1
20050234449 Aferzon Oct 2005 A1
20050245928 Colleran et al. Nov 2005 A1
20050261687 Garamszegi et al. Nov 2005 A1
20050261702 Oribe et al. Nov 2005 A1
20050283244 Gordon et al. Dec 2005 A1
20050288668 Brinkhaus Dec 2005 A1
20060009775 Dec et al. Jan 2006 A1
20060025768 Iott et al. Feb 2006 A1
20060036254 Lim Feb 2006 A1
20060036255 Pond et al. Feb 2006 A1
20060036260 Runco et al. Feb 2006 A1
20060069391 Jackson Mar 2006 A1
20060074418 Jackson Apr 2006 A1
20060079909 Runco et al. Apr 2006 A1
20060089651 Trudeau et al. Apr 2006 A1
20060095035 Jones et al. May 2006 A1
20060111712 Jackson May 2006 A1
20060111713 Jackson May 2006 A1
20060111730 Hay May 2006 A1
20060149236 Barry Jul 2006 A1
20060155277 Metz-Stavenhagen Jul 2006 A1
20060166534 Brumfield et al. Jul 2006 A1
20060166535 Brumfield et al. Jul 2006 A1
20060173454 Spitler et al. Aug 2006 A1
20060195092 Barry Aug 2006 A1
20060200131 Chao et al. Sep 2006 A1
20060200132 Chao et al. Sep 2006 A1
20060217735 MacDonald et al. Sep 2006 A1
20060229605 Olsen Oct 2006 A1
20060229614 Foley et al. Oct 2006 A1
20060247630 Iott et al. Nov 2006 A1
20060264934 Fallin Nov 2006 A1
20060271050 Piza Vallespir Nov 2006 A1
20060282073 Simanovsky Dec 2006 A1
20060293690 Abdelgany Dec 2006 A1
20060293692 Whipple et al. Dec 2006 A1
20070078460 Frigg et al. Apr 2007 A1
20070093849 Jones et al. Apr 2007 A1
20070129731 Sicvol et al. Jun 2007 A1
20070162009 Chao et al. Jul 2007 A1
20070162010 Chao et al. Jul 2007 A1
20070167954 Sicvol et al. Jul 2007 A1
20070173831 Abdou Jul 2007 A1
20070185375 Stad et al. Aug 2007 A1
20070191836 Justis Aug 2007 A1
20070213715 Bridwell et al. Sep 2007 A1
20070213716 Lenke et al. Sep 2007 A1
20070213722 Jones et al. Sep 2007 A1
20070231059 Mullaney Oct 2007 A1
20070233079 Fallin et al. Oct 2007 A1
20070233097 Anderson et al. Oct 2007 A1
20070260261 Runco et al. Nov 2007 A1
20070270880 Lindemann et al. Nov 2007 A1
20080045956 Songer et al. Feb 2008 A1
20080077134 Dziedzic et al. Mar 2008 A1
20080077135 Stad et al. Mar 2008 A1
20080172062 Donahue et al. Jul 2008 A1
20080195159 Kloss et al. Aug 2008 A1
20080243190 Dziedzic et al. Oct 2008 A1
20080255574 Dye Oct 2008 A1
20080288005 Jackson Nov 2008 A1
20090018541 Lavi Jan 2009 A1
20090030419 Runco et al. Jan 2009 A1
20090030420 Runco et al. Jan 2009 A1
20090054902 Mickiewicz et al. Feb 2009 A1
20090062857 Ramsay et al. Mar 2009 A1
20090082811 Stad et al. Mar 2009 A1
20090088764 Stad et al. Apr 2009 A1
20090138056 Anderson et al. May 2009 A1
20090143828 Stad et al. Jun 2009 A1
20090228051 Kolb et al. Sep 2009 A1
20090228053 Kolb et al. Sep 2009 A1
20100137915 Anderson et al. Jun 2010 A1
20110034961 Runco et al. Feb 2011 A1
20110034962 Dunbar, Jr. et al. Feb 2011 A1
20110077689 Mickiewicz et al. Mar 2011 A1
20110144695 Rosenberg et al. Jun 2011 A1
20110282402 Chao et al. Nov 2011 A1
Foreign Referenced Citations (55)
Number Date Country
3923996 Jan 1991 DE
4107480 Sep 1992 DE
4238339 May 1994 DE
29806563 Jul 1998 DE
10005385 Aug 2001 DE
10005386 Aug 2001 DE
20207851 Nov 2002 DE
0328883 Aug 1989 EP
0381588 Aug 1990 EP
0441729 Aug 1991 EP
0487895 Jun 1992 EP
0572790 Dec 1993 EP
0592266 Apr 1994 EP
0669109 Aug 1995 EP
0558883 Jul 1997 EP
0784693 Jul 1997 EP
0880344 Dec 1998 EP
0885598 Dec 1998 EP
0948939 Oct 1999 EP
0951246 Oct 1999 EP
1023873 Aug 2000 EP
1090595 Apr 2001 EP
1295566 Mar 2003 EP
1364622 Nov 2003 EP
1574175 Sep 2005 EP
2677242 Dec 1992 FR
2680314 Feb 1993 FR
2729291 Jul 1996 FR
2003-52708 Feb 2003 JP
2007-525274 Sep 2007 JP
9002527 Mar 1990 WO
9621396 Jul 1996 WO
9822033 May 1998 WO
9825534 Jun 1998 WO
9944527 Sep 1999 WO
0145576 Jun 2001 WO
0207622 Jan 2002 WO
02102259 Dec 2002 WO
03007828 Jan 2003 WO
03032863 Apr 2003 WO
03049629 Jun 2003 WO
2004019755 Mar 2004 WO
2004034916 Apr 2004 WO
2005006948 Jan 2005 WO
2005013839 Feb 2005 WO
2005030065 Apr 2005 WO
2005044117 May 2005 WO
2005044123 May 2005 WO
2005072081 Aug 2005 WO
2006020443 Feb 2006 WO
2007092797 Aug 2007 WO
2007092870 Aug 2007 WO
2007092876 Aug 2007 WO
2007149426 Dec 2007 WO
2008024937 Feb 2008 WO
Non-Patent Literature Citations (11)
Entry
Sofamor, The Spine Specialist, “Introducteur-Centreur De Tige,” 7 pages. (1994).
Wiltse, Leon L. et al., “History of Pedicle Screw Fixation of the Spine,” Spine, State of the Art Reviews, vol. 6(1):1-10 (1992).
Canadian Office Action for Application No. 2,717,758, 2 pages, dated May 4, 2012.
Chinese Office Action for Application No. 200980116856.2, 10 pages, dated Apr. 18, 2012.
European Office Action for Application No. 06736870, dated Dec. 18, 2009.
European Office Action for Application No. 06735464.7, dated Apr. 14, 2010.
International Preliminary Report on Patentability for Application No. PCT/US2009/036343, dated Sep. 14, 2010.
International Search Report and Written Opinion for Application No. PCT/US09/36343, dated Jan. 7, 2010.
International Search Report and Written Opinion for Application No. PCT/US06/40621, dated May 18, 2007.
International Search Report for Application No. PCT/US06/05811, dated Sep. 13, 2007.
International Search Report for Application No. PCT/US2008/068515, 3 pages, dated Jan. 2, 2009.
Related Publications (1)
Number Date Country
20090228051 A1 Sep 2009 US