The present invention relates to magnetic write heads, and more particularly to a magnetic write head having a bilayer insulation layer for preventing P1 pole pedestal recession.
The heart of a computer is an assembly that is referred to as a magnetic disk drive. The magnetic disk drive includes a rotating magnetic disk, write and read heads that are suspended by a suspension arm adjacent to a surface of the rotating magnetic disk and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The read and write heads are directly located on a slider that has an air bearing surface (ABS). The suspension arm biases the slider into contact with the surface of the disk when the disk is not rotating but, when the disk rotates, air is swirled by the rotating disk. When the slider rides on the air bearing, the write and read heads are employed for writing magnetic impressions to and reading magnetic impressions from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
The write head includes a coil layer embedded in first, second and third insulation layers (insulation stack), the insulation stack being sandwiched between first and second pole piece layers. A gap is formed between the first and second pole piece layers by a gap layer at an air bearing surface (ABS) of the write head and the pole piece layers are connected at a back gap. Current conducted to the coil layer induces a magnetic flux in the pole pieces which causes a magnetic field to fringe out at a write gap at the ABS for the purpose of writing the aforementioned magnetic impressions in tracks on the moving media, such as in circular tracks on the aforementioned rotating disk.
In recent read head designs a spin valve sensor, also referred to as a giant magnetoresistive (GMR) sensor, has been employed for sensing magnetic fields from the rotating magnetic disk. The sensor includes a nonmagnetic conductive layer, hereinafter referred to as a spacer layer, sandwiched between first and second ferromagnetic layers, hereinafter referred to as a pinned layer and a free layer. First and second leads are connected to the spin valve sensor for conducting a sense current therethrough. The magnetization of the pinned layer is pinned perpendicular to the air bearing surface (ABS) and the magnetic moment of the free layer is located parallel to the ABS, but free to rotate in response to external magnetic fields. The magnetization of the pinned layer is typically pinned by exchange coupling with an antiferromagnetic layer.
The thickness of the spacer layer is chosen to be less than the mean free path of conduction electrons through the sensor. With this arrangement, a portion of the conduction electrons is scattered by the interfaces of the spacer layer with each of the pinned and free layers. When the magnetizations of the pinned and free layers are parallel with respect to one another, scattering is minimal and when the magnetizations of the pinned and free layer are antiparallel, scattering is maximized. Changes in scattering alter the resistance of the spin valve sensor in proportion to cos θ, where θ is the angle between the magnetizations of the pinned and free layers. In a read mode the resistance of the spin valve sensor changes proportionally to the magnitudes of the magnetic fields from the rotating disk. When a sense current is conducted through the spin valve sensor, resistance changes cause potential changes that are detected and processed as playback signals.
In the face of the ever increasing demand for improved data rate and data capacity, researchers continually strive to decrease the size and increase the write performance of write elements. One recently constructed write head, termed a bionic head, has been manufactured by Hitachi Global Storage Technologies. The bionic head includes a first pole (P1) that includes a first layer of magnetic material, and a magnetic pedestal (P1 pedestal) formed on that first layer of magnetic material. A thin layer of dielectric material is formed over the top of the P1 pedestal, and the second pole extends over the first pole from the pole tip region to the back gap. The bionic head provides excellent track width control, bit size and magnetic field strength.
Write heads, such as the bionic head described above, have suffered from recession. Recession of the P1 pedestal is a term that refers to the P1 pedestal sinking into the write head (ie. away from the magnetic medium). As can be appreciated, this recession of the pedestal portion of the first pole increases the effective fly height of the write head. As slider fly heights decrease, the effect of this recession becomes a larger percentage of the fly height budget, seriously degrading write performance. To maintain performance standards, manufacturers must specify a maximum allowable level of recession. A head having recession greater than this amount must be scrapped. Currently yield losses due to recession have been as high as 0.5%.
Therefore, there is a strong felt need for a way of reducing recession in the construction of a write head such as a bionic head. Such a means for reducing recession would preferably involve existing manufacturing techniques and materials so as not require significant additional manufacturing expense. Such a method would also preferably not negatively affect other performance parameters such as track width control, write gap thickness, or field strength among others.
After the read and write heads have been manufactured, the air bearing surface of the slider must be formed. The air bearing surface of the slider is engineered with a desired topography that allows the slider to fly at a stable, low fly height. In fact, fly height is a critical performance parameter, in that lower fly heights provide better read and write sensor performance due to decreased spacing between the read/write head and the magnetic medium.
One of the manufacturing processes used to create the air bearing surface is a soda blast operation. The soda blast operation removes unwanted residual dry film resist left over from the manufacture of the read/write head. We have found that this soda blast operation is a major contributor to recession of the P1 pedestal. We have also found that this recession is not due to the removal of material from the P1 pedestal but is actually due to plastic deformation of the P1 pedestal caused by the force of the soda blast on the pedestal. The P1 pedestal is actually bent in the process.
The present invention, provides magnetic write head that exhibits exceptional recession resistance during soda blast. The write head includes a first magnetic pole P1 that includes a first magnetic layer and a P1 pedestal formed thereon in a pole tip region. An electrically conductive coil is formed over and insulated from the first layer of magnetic material of the P1 pole.
A layer of photoresist encases the coil and insulates the winds of the coil from one another. Another layer of photoresist, a fill layer, is deposited to fill in any void left between the encasing photoresist layer and the P1 pedestal. The photoresist layers are preferably constructed so that the upper surface of the photoresist is below the upper surface of the coil. A layer of alumina is deposited over the photoresist preferably having an upper surface that is coplanar with an upper surface of the P1 pedestal. Subsequent manufacturing processes may be familiar to those skilled in the art and may include depositing a non-magnetic write gap layer and forming a second pole.
The bilayer insulation of the present invention, therefore, includes a layer of photoresist, and layer of alumina formed there over. The photoresist has the ability to flow into and fill small spaces. Therefore, the presence of the photoresist underlayer can advantageously fill the spaces between the turns of the coil and can fill the space between the coil and the P1 pedestal without resulting in undesirable voids.
The presence of the alumina upper insulation layer advantageously prevents recession by providing a strong mechanical brace to the P1 pedestal. Alumina is several thousands of times stronger than photoresist. The alumina layer is deposited in such a way that it abuts a back end of the P1 pedestal, very strongly supporting the pedestal and effectively preventing deformation of the P1 pedestal during soda blast operations.
These and other features and advantages of the invention will be apparent upon reading of the following detailed description of preferred embodiments taken in conjunction with the Figures in which like reference numerals indicate like elements throughout.
For a fuller understanding of the nature and advantages of this invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings which are not to scale.
The following description is of the best embodiments presently contemplated for carrying out this invention. This description is made for the purpose of illustrating the general principles of this invention and is not meant to limit the inventive concepts claimed herein.
Referring now to
At least one slider 113 is positioned near the magnetic disk 112, each slider 113 supporting one or more magnetic head assemblies 121. As the magnetic disk rotates, slider 113 moves radially in and out over the disk surface 122 so that the magnetic head assembly 121 may access different tracks of the magnetic disk where desired data are written. Each slider 113 is attached to an actuator arm 119 by way of a suspension 115. The suspension 115 provides a slight spring force which biases slider 113 against the disk surface 122. Each actuator arm 119 is attached to an actuator means 127. The actuator means 127 as shown in
During operation of the disk storage system, the rotation of the magnetic disk 112 generates an air bearing between the slider 113 and the disk surface 122 which exerts an upward force or lift on the slider. The air bearing thus counter-balances the slight spring force of suspension 115 and supports slider 113 off and slightly above the disk surface by a small, substantially constant spacing during normal operation.
The various components of the disk storage system are controlled in operation by control signals generated by control unit 129, such as access control signals and internal clock signals. Typically, the control unit 129 comprises logic control circuits, storage means and a microprocessor. The control unit 129 generates control signals to control various system operations such as drive motor control signals on line 123 and head position and seek control signals on line 128. The control signals on line 128 provide the desired current profiles to optimally move and position slider 113 to the desired data track on disk 112. Write and read signals are communicated to and from write and read heads 121 by way of recording channel 125.
With reference to
With reference now to
An electrically conductive coil 320 has a plurality of turns 322 that pass between the first and second poles 302, 308 in a region between the P1 pedestal 306 and the back gap structure 310. The coil 320 (shown in cross section in
With continued reference to
While it would be desirable to have as much alumina 336 as possible behind the P1 pedestal to act as a brace against recession, the amount of alumina deposited is limited by the need to prevent the formation of voids within the alumina layer 336. When deposited into small spaces alumina tends to form voids. Such voids lead to corrosion and compromise structure integrity and are, therefore, unacceptable. If one were to attempt to completely fill the space between the coil turns 322 with alumina such unacceptable voids would inevitably result. Similarly, if one were to attempt to completely fill the space between the hard baked resist 326 and the P1 pedestal 306 with alumina, without first depositing the fill layer 330 voids would be formed.
Therefore, the photoresist fill 330 is preferably applied to such a height or thickness that filling the remainder of the space with alumina will not result in voids. This thickness will vary by specific write head configuration, but is generally such that the aspect ratio of a particular region is not greater than about ½. For example, as can be seen in
With continued reference to
With reference now to
Thereafter, with reference to
Subsequent manufacturing processes (not shown) include the deposition of the write gap layer 316, such as by sputter depositing alumina, formation of the second magnetic pole 308 such as by electroplating a magnetic material such as NiFe, and processes such as soda blast operations, photolithography and etching to clean and form the air bearing surface ABS of the slider.
The previously described RIE process 602 is preferably performed to remove an amount of photoresist material 402, 502 to allow the alumina layer 336 to be as thick as possible without forming voids, in order to provide the best possible protection against recession. As can be seen with reference to
It should also be pointed out that the structures formed after the formation of the alumina layer 336 could include additional structures, other than those shown with reference to
With reference now to
With continued reference to
With reference
Thereafter, with reference to
With reference now to
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4943882 | Wada et al. | Jul 1990 | A |
5325254 | Cooperrider | Jun 1994 | A |
5395644 | Affinito | Mar 1995 | A |
5652687 | Chen et al. | Jul 1997 | A |
6317290 | Wang et al. | Nov 2001 | B1 |
6353511 | Shi et al. | Mar 2002 | B1 |
6377423 | Dill, Jr. et al. | Apr 2002 | B2 |
6400526 | Crue et al. | Jun 2002 | B2 |
6504676 | Hiner et al. | Jan 2003 | B1 |
6515825 | Sato | Feb 2003 | B1 |
6557242 | Santini | May 2003 | B1 |
6597534 | Sato | Jul 2003 | B1 |
6693769 | Hsu et al. | Feb 2004 | B2 |
6785953 | Santini | Sep 2004 | B2 |
6870712 | Chen et al. | Mar 2005 | B2 |
6940688 | Jiang et al. | Sep 2005 | B2 |
7002776 | Sasaki | Feb 2006 | B2 |
7126789 | Han et al. | Oct 2006 | B2 |
20020060879 | Sato | May 2002 | A1 |
20020191350 | Santini | Dec 2002 | A1 |
20030076630 | Sato et al. | Apr 2003 | A1 |
20030202278 | Chen et al. | Oct 2003 | A1 |
20040027716 | Chen et al. | Feb 2004 | A1 |
20040042117 | Ikegawa | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
5046929 | Feb 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20060023351 A1 | Feb 2006 | US |