Bile acid analogs as FXR/TGR5 agonists and methods of use thereof

Information

  • Patent Grant
  • 10519191
  • Patent Number
    10,519,191
  • Date Filed
    Wednesday, November 25, 2015
    8 years ago
  • Date Issued
    Tuesday, December 31, 2019
    4 years ago
Abstract
The present invention relates to compounds of Formula (IA) and Formula (IB),
Description
TECHNICAL FIELD

The present invention relates generally to compounds and pharmaceutical compositions useful as FXR/TGR5 modulators. Specifically, the present invention relates to bile acid derivatives and methods for their preparation and use.


BACKGROUND OF THE INVENTION

Farnesoid X Receptor (FXR) is an orphan nuclear receptor initially identified from a rat liver cDNA library (B M. Forman, et al., Cell, 1995, 81(5), 687-693) that is most closely related to the insect ecdysone receptor. FXR is a member of the nuclear receptor family of ligand-activated transcription factors that includes receptors for the steroid, retinoid, and thyroid hormones (D J. Mangelsdorf, et al., Cell, 1995, 83(6), 841-850). The relevant physiological ligands of FXR are bile acids (D. Parks et al., Science, 1999, 284(5418), 1362-1365). The most potent one is chenodeoxycholic acid (CDCA), which regulates the expression of several genes that participate in bile acid homeostasis. Farnesol and derivatives, together called farnesoids, are originally described to activate the rat orthologue at high concentration but they do not activate the human or mouse receptor. FXR is expressed in the liver, throughout the entire gastrointestinal tract including the esophagus, stomach, duodenum, small intestine, colon, ovary, adrenal gland and kidney. Beyond controlling intracellular gene expression, FXR seems to be also involved in paracrine and endocrine signaling by upregulating the expression of the cytokine Fibroblast Growth Factor (J. Holt et al., Genes Dev., 2003, 17(13), 1581-1591; T. Inagaki et al., Cell Metab., 2005, 2(4), 217-225).


Small molecule compounds which act as FXR modulators have been disclosed in the following publications: WO 2000/037077, WO 2003/015771, WO 2004/048349, WO 2007/076260, WO 2007/092751, WO 2007/140174, WO 2007/140183, WO 2008/051942, WO 2008/157270, WO 2009/005998, WO 2009/012125, WO 2008/025539, WO 2008/025540, WO 2011/020615, and WO 2013/007387.


Further small molecule FXR modulators have been recently reviewed (R. C. Buijsman et al. Curr. Med. Chem. 2005, 12, 1017-1075).


TGR5 receptor is a G-protein-coupled receptor that has been identified as a cell-surface receptor that is responsive to bile acids (BAs). The primary structure of TGR5 and its responsiveness to bile acids has been found to be highly conserved in TGR5 among human, bovine, rabbit, rat, and mouse, and thus suggests that TGR5 has important physiological functions. TGR5 has been found to be widely distributed in not only lymphoid tissues but also in other tissues. High levels of TGR5 mRNA have been detected in placenta, spleen, and monocytes/macrophages. Bile acids have been shown to induce internalization of the TGR5 fusion protein from the cell membrane to the cytoplasm (Kawamata et al., J. Bio. Chem., 2003, 278, 9435). TGR5 has been found to be identical to hGPCR19 reported by Takeda et al., FEBS Lett. 2002, 520, 97-101.


TGR5 is associated with the intracellular accumulation of cAMP, which is widely expressed in diverse cell types. While the activation of this membrane receptor in macrophages decreases pro-inflammatory cytokine production, (Kawamata, Y., et al., J. Biol. Chem. 2003, 278, 9435-9440) the stimulation of TGR5 by BAs in adipocytes and myocytes enhances energy expenditure (Watanabe, M., et al. Nature. 2006, 439, 484-489). This latter effect involves the cAMP-dependent induction of type 2 iodothyronine deiodinase (D2), which by, locally converting T4 into T3, gives rise to increased thyroid hormone activity. Consistent with the role of TGR5 in the control of energy metabolism, female TGR5 knock-out mice show a significant fat accumulation with body weight gain when challenged with a high fat diet, indicating that the lack of TGR5 decreases energy expenditure and elicits obesity (Maruyama, T., et al., J. Endocrinol. 2006, 191, 197-205). In addition and in line with the involvement of TGR5 in energy homeostasis, bile acid activation of the membrane receptor has also been reported to promote the production of glucagon-like peptide 1 (GLP-1) in murine enteroendocrine cell lines (Katsuma, S., Biochem. Biophys. Res. Commun., 2005, 329, 386-390). On the basis of all the above observations, TGR5 is an attractive target for the treatment of disease e.g., obesity, diabetes and metabolic syndrome.


In addition to the use of TGR5 agonists for the treatment and prevention of metabolic diseases, compounds that modulate TGR5 modulators are also useful for the treatment of other diseases e.g., central nervous diseases as well as inflammatory diseases (WO 01/77325 and WO 02/84286). Modulators of TGR5 also provide methods of regulating bile acid and cholesterol homeostasis, fatty acid absorption, and protein and carbohydrate digestion.


There is a need for the development of FXR and/or TGR5 modulators for the treatment and prevention of disease.


SUMMARY OF THE INVENTION

The present invention relates to compounds which modulate FXR and/or TGR activity as well as methods of using these compounds to treat disease.


In one aspect, the invention provides compounds represented by Formula IA, or pharmaceutically acceptable salts, stereoisomer, solvate, hydrate or combination thereof:




embedded image



wherein:

  • R1 is selected from:




embedded image


embedded image



wherein,

  • Ra is hydrogen, substituted or unsubstituted C3-C8-cycloalkyl or substituted or unsubstituted C1-C8 alkyl;
  • Rb is selected from the group consisting of:
    • 1) Halogen;
    • 2) Hydroxyl;
    • 3) Substituted or unsubstituted —C1-C8 alkyl;
    • 4) Substituted or unsubstituted —C2-C8 alkenyl;
    • 5) Substituted or unsubstituted —C2-C8 alkynyl;
    • 6) Substituted or unsubstituted —C3-C8 cycloalkyl;
    • 7) Substituted or unsubstituted aryl;
    • 8) Substituted or unsubstituted alkylaryl;
    • 9) Substituted or unsubstituted heterocycloalkyl;
    • 10) Substituted or unsubstituted heteroaryl;
    • 11) Substituted or unsubstituted alkylheteroaryl; and
    • 12) —NR10R11; wherein R10 and R11 are each independently selected from hydrogen, substituted or unsubstituted —C1-C8 alkyl, substituted or unsubstituted —C2-C8 alkenyl, Substituted or unsubstituted —C2-C8 alkynyl, substituted or unsubstituted —C3-C8 cycloalkyl, or R10 and R11, taken together with the nitrogen atom to which they are attached, form a hetercyclic ring.
  • R2 is selected from the group consisting of:
    • 1) Hydrogen;
    • 2) Substituted or unsubstituted —C1-C8 alkyl;
    • 3) Substituted or unsubstituted —C2-C8 alkenyl;
    • 4) Substituted or unsubstituted —C2-C8 alkynyl;
    • 5) Substituted or unsubstituted alkylaryl; and
    • 6) Substituted or unsubstituted aryl.


      In certain embodiments R2 is hydrogen or methyl.
  • m is 0, 1, 2 or 3; in certain embodiments, m is 0, 1 or 2.
  • R3 is hydrogen, hydroxyl, —OSO3H, —OSO3, —OAc, —OPO3H2 or —OPO32−; in certain embodiments, R3 is hydrogen or hydroxyl.
  • R4 is hydrogen, halogen, CN, N3, hydroxyl, —OSO3H, —OSO3, —OAc, —OPO3H2, —OPO32−, —SR2 or —NHR12, wherein R12 is hydrogen; substituted or unsubstituted —C1-C8 alkyl; substituted or unsubstituted —C2-C8 alkenyl; substituted or unsubstituted —C2-C8 alkynyl; substituted or unsubstituted alkylaryl; or substituted or unsubstituted aryl; in certain embodiments, R4 is hydrogen.


    Alternatively, R3 and R4 are taken together with the carbon atoms to which they are attached to form —CH═CH—, a cycloalkyl ring or a heterocycloalkyl ring such as, but not limited to, cyclopropyl or epoxide.


    R5 and R6 are independently selected from hydrogen or a hydroxyl protecting group such as, but not limited to, acetyl, trimethylsilyl, or benzyl; in certain embodiments, both R5 and R6 are hydrogen.
  • R7 is selected from the group consisting of:
    • 1) Hydrogen;
    • 2) Halogen;
    • 3) Substituted or unsubstituted —C1-C8 alkyl;
    • 4) Substituted or unsubstituted —C2-C8 alkenyl;
    • 5) Substituted or unsubstituted —C2-C8 alkynyl; and
    • 6) Substituted or unsubstituted —C3-C8 cycloalkyl.


      In certain embodiments, R7 is C1-C4-alkyl, preferably ethyl.


In another aspect, the invention provides compounds represented by Formula IB, or pharmaceutically acceptable salts, stereoisomer, solvate, hydrate or combination thereof:




embedded image



wherein:

  • R1 is selected from:




embedded image


embedded image



wherein,

  • Ra is hydrogen, substituted or unsubstituted C3-C8-cycloalkyl or substituted or unsubstituted C1-C8 alkyl;
  • Rb is selected from the group consisting of:
    • 1) hydrogen
    • 2) Halogen;
    • 3) Hydroxyl;
    • 4) Substituted or unsubstituted —C1-C8 alkyl;
    • 5) Substituted or unsubstituted —C2-C8 alkenyl;
    • 6) Substituted or unsubstituted —C2-C8 alkynyl;
    • 7) Substituted or unsubstituted —C3-C8 cycloalkyl;
    • 8) Substituted or unsubstituted aryl;
    • 9) Substituted or unsubstituted alkylaryl;
    • 10) Substituted or unsubstituted heterocycloalkyl;
    • 11) Substituted or unsubstituted heteroaryl;
    • 12) Substituted or unsubstituted alkylheteroaryl; and
    • 13) —NR10R11; wherein R10 and R11 are each independently selected from hydrogen, substituted or unsubstituted —C1-C8 alkyl, substituted or unsubstituted —C2-C8 alkenyl, Substituted or unsubstituted —C2-C8 alkynyl, substituted or unsubstituted —C3-C8 cycloalkyl, or R10 and R11, taken together with the nitrogen atom to which they are attached, form a hetercyclic ring.
  • R2 is selected from the group consisting of:
    • 1) Hydrogen;
    • 2) Substituted or unsubstituted —C1-C8 alkyl;
    • 3) Substituted or unsubstituted —C2-C8 alkenyl;
    • 4) Substituted or unsubstituted —C2-C8 alkynyl;
    • 5) Substituted or unsubstituted alkylaryl; and
    • 6) Substituted or unsubstituted aryl.


      In certain embodiments R2 is hydrogen or methyl.
  • m is 0, 1, 2 or 3; in certain embodiments, m is 0, 1 or 2.
  • R3 is hydrogen, hydroxyl, —OSO3H, —OSO3, —OAc, —OPO3H2 or —OPO32−; in certain embodiments, R3 is hydrogen or hydroxyl.
  • R4 is hydrogen, halogen, CN, N3, hydroxyl, —OSO3H, —OSO3, —OAc, —OPO3H2, —OPO32−, —SR2 or —NHR12, wherein R12 is hydrogen; substituted or unsubstituted —C1-C8 alkyl; substituted or unsubstituted —C2-C8 alkenyl; substituted or unsubstituted —C2-C8 alkynyl; substituted or unsubstituted alkylaryl; or substituted or unsubstituted aryl; in certain embodiments, R4 is hydrogen.


    Alternatively, R3 and R4 are taken together with the carbon atoms to which they are attached to form —CH═CH—, a cycloalkyl ring or a heterocycloalkyl ring such as, but not limited to, cyclopropyl or epoxide.


    R5 and R6 are independently selected from hydrogen or a hydroxyl protecting group such as, but not limited to, acetyl, trimethylsilyl, or benzyl; in certain embodiments, both R5 and R6 are hydrogen.
  • R7 is selected from the group consisting of:
    • 1) Hydrogen;
    • 2) Halogen;
    • 3) Substituted or unsubstituted —C1-C8 alkyl;
    • 4) Substituted or unsubstituted —C2-C8 alkenyl;
    • 5) Substituted or unsubstituted —C2-C8 alkynyl; and
    • 6) Substituted or unsubstituted —C3-C8 cycloalkyl.


      In certain embodiments, R7 is C1-C4-alkyl, preferably ethyl.


R8 and R9 are independently selected from hydrogen; substituted or unsubstituted —C1-C8 alkyl; substituted or unsubstituted —C2-C8 alkenyl; substituted or unsubstituted —C2-C8 alkynyl; substituted or unsubstituted alkylaryl; or substituted or unsubstituted aryl; in certain embodiments, both R8 and R9 are hydrogen.


In another embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound or combination of compounds of the present invention, or a pharmaceutically acceptable salt form, stereoisomer, solvate, hydrate or combination thereof, in combination with a pharmaceutically acceptable carrier or excipient.


In another embodiment, the present invention provides a method for the prevention or treatment of an FXR mediated disease or condition. The method comprises administering a therapeutically effective amount of a compound of Formula (IA) or Formula (IB). The present invention also provides the use of a compound of Formula (IA) or Formula (IB) for the preparation of a medicament for the prevention or treatment of an FXR mediated disease or condition.


In yet another embodiment, the present invention provides a method for the prevention or treatment of a TGR5 mediated disease or condition. The method comprises administering a therapeutically effective amount of a compound of Formula (IA) or Formula (IB). The present invention also provides the use of a compound of Formula (IA) or Formula (IB) for the preparation of a medicament for the prevention or treatment of a TGR5 mediated disease or condition.


In certain embodiments, a disease that involves modulation of the TGR5 receptor is selected from metabolic disease, inflammatory disease, liver disease, autoimmune disease, cardiac disease, kidney disease, cancer, and gastrointestinal disease.







DETAILED DESCRIPTION OF THE INVENTION

A first embodiment of the invention is a compound represented by Formula IA or IB as described above, or a pharmaceutically acceptable salt, hydrate, solvate, ester or prodrug thereof.


In certain embodiments of the invention, R2 is hydrogen or methyl; m is 0, 1 or 2; R3 is hydrogen or hydroxyl; R4 is hydrogen; R5 is hydrogen; R6 is hydrogen; R7 is ethyl; R8 is hydrogen and R9 is hydrogen.


In certain embodiments of the invention, Ra is hydrogen, C4-C6-cycloalkyl, phenyl-C1-C4-alkyl or C1-C4-alkyl, preferably benzyl, C1-C3-alkyl or C4-C6-cycloalkyl.


In certain embodiments of the invention, R1 in Formula IA is selected from the group consisting of




embedded image


In certain embodiments of the invention, R1 in Formula IB is selected from the group consisting of




embedded image


In embodiments of the compounds of the invention wherein R1 is




embedded image



this R1 can be deprotonated to form the conjugate base of the parent compound which forms a salt with a pharmaceutically acceptable cation, such as ammonium, an alkali metal cation, including Li+, Na+, K+ and Cs+, or an alkaline earth metal cation, such as Mg2+ or Ca2+.


In certain embodiments of the compounds of the invention, R1 is —S(O)2NRaRb, wherein Ra and Rb are both hydrogen.


In certain embodiments of the compounds of the invention, Rb is C1-C4-alkyl, halogenated C1-C4-alkyl, C1-C4-alkenyl, phenyl-C1-C4-alkyl, substituted or unsubstituted C3-C6-cycloalkyl, C1-C6-cycloalkyl-C1-C4-alkyl, substituted or unsubstituted phenyl or halogen.


In certain embodiments of the compounds of the invention, Rb is methyl, ethyl, isopropyl, butyl, t-butyl, propyl, benzyl, vinyl, allyl, CF3,




embedded image



or fluoro.


In certain embodiments of the compounds of the invention, Rb is selected from the groups set forth in the table below:
















embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image











In certain embodiments, the compounds of the invention have the stereochemistry indicated in Formula (IA′) and Formula (IB′).




embedded image


A second embodiment of the invention is a compound represented by Formula (IIA) or (IIB) or a pharmaceutically acceptable salt, hydrate, solvate, ester or prodrug thereof.




embedded image



wherein R1, R2, R3, R4, R7, R8, R9 and m are as previously defined.


A third embodiment of the invention is a compound represented by Formula (III-A) or (III-B) or a pharmaceutically acceptable salt, hydrate, solvate, ester or prodrug thereof




embedded image



wherein, R1, R2, R3, R7 and m are as previously defined.


Illustrative structures of Formula (III-A) and Formula (III-B) can be represented, but are not limited, by Formula (III-1˜III-18), where R1, R7 and m are as previously defined:




embedded image


embedded image


embedded image


A fourth embodiment of the invention is a compound represented by Formula (IV-A) or (IV-B) or a pharmaceutically acceptable salt, solvate, hydrate, ester or prodrug thereof:




embedded image



wherein R1 and m are as previously defined.


Representative compounds of the invention include, but are not limited to, the following compounds according to Formula (IV-A), wherein, R1 and m are delineated for each compound in Table 1.




embedded image











TABLE 1





Compound
m
R1

















1
0


embedded image







2
0


embedded image







3
0


embedded image







4
0


embedded image







5
0


embedded image







6
0


embedded image







7
0


embedded image







8
0


embedded image







9
0


embedded image







11
0


embedded image







12
0


embedded image







13
0


embedded image







14
0


embedded image







16
0


embedded image







17
0


embedded image







18
0


embedded image







19
0


embedded image







20
0


embedded image







21
0


embedded image







22
0


embedded image







23
0


embedded image







24
0


embedded image







25
0


embedded image







26
0


embedded image







27
0


embedded image







31
1


embedded image







32
1


embedded image







33
1


embedded image







34
1


embedded image







35
1


embedded image







36
1


embedded image







37
1


embedded image







38
1


embedded image







39
1


embedded image







41
1


embedded image







42
1


embedded image







43
1


embedded image







44
1


embedded image







46
1


embedded image







47
1


embedded image







48
1


embedded image







49
1


embedded image







50
1


embedded image







51
1


embedded image







52
1


embedded image







53
1


embedded image







54
1


embedded image







55
1


embedded image







56
1


embedded image







57
1


embedded image







61
2


embedded image







62
2


embedded image







63
2


embedded image







64
2


embedded image







65
2


embedded image







66
2


embedded image







67
2


embedded image







68
2


embedded image







69
2


embedded image







71
2


embedded image







72
2


embedded image







73
2


embedded image







74
2


embedded image







76
2


embedded image







77
2


embedded image







78
2


embedded image







79
2


embedded image







80
2


embedded image







81
2


embedded image







82
2


embedded image







83
2


embedded image







84
2


embedded image







85
2


embedded image







86
2


embedded image







87
2


embedded image











Representative compounds of the invention include, but are not limited to, the following compounds according to Formula (IV-B), wherein R1 and m are delineated for each example in Table 2.




embedded image











TABLE 2





Compound
m
R1







 91
0


embedded image







 92
0


embedded image







 93
0


embedded image







 94
0


embedded image







 95
0


embedded image







 96
0


embedded image







 97
0


embedded image







 98
0


embedded image







 99
0


embedded image







100
0


embedded image







101
0


embedded image







102
0


embedded image







103
0


embedded image







104
0


embedded image







105
0


embedded image







106
0


embedded image







107
0


embedded image







108
0


embedded image







109
0


embedded image







110
0


embedded image







111
0


embedded image







112
0


embedded image







113
0


embedded image







114
0


embedded image







115
0


embedded image







116
0


embedded image







117
0


embedded image







118
0


embedded image







119
0


embedded image







120
0


embedded image







121
1


embedded image







122
1


embedded image







123
1


embedded image







124
1


embedded image







125
1


embedded image







126
1


embedded image







127
1


embedded image







128
1


embedded image







129
1


embedded image







130
1


embedded image







131
1


embedded image







132
1


embedded image







133
1


embedded image







134
1


embedded image







135
1


embedded image







136
1


embedded image







137
1


embedded image







138
1


embedded image







139
1


embedded image







140
1


embedded image







141
1


embedded image







142
1


embedded image







143
1


embedded image







144
1


embedded image







145
1


embedded image







146
1


embedded image







147
1


embedded image







148
1


embedded image







149
1


embedded image







150
1


embedded image







151
2


embedded image







152
2


embedded image







153
2


embedded image







154
2


embedded image







155
2


embedded image







156
2


embedded image







157
2


embedded image







158
2


embedded image







159
2


embedded image







160
2


embedded image







161
2


embedded image







162
2


embedded image







163
2


embedded image







164
2


embedded image







165
2


embedded image







166
2


embedded image







167
2


embedded image







168
2


embedded image







169
2


embedded image







170
2


embedded image







171
2


embedded image







172
2


embedded image







173
2


embedded image







174
2


embedded image







175
2


embedded image







176
2


embedded image







177
2


embedded image







178
2


embedded image







179
2


embedded image







180
2


embedded image











A fifth embodiment of the invention is a compound represented by Formula (V-A) or (V-B) or a pharmaceutically acceptable salt, solvate, hydrate, ester or prodrug thereof.




embedded image



wherein R1 and m are as previously defined.


Representative compounds of the invention include, but are not limited to, the following compounds according to Formula (V-A), wherein, R1 and m are delineated for each compound in Table 3.




embedded image











TABLE 3





Compound
m
R1







181
0


embedded image







182
0


embedded image







183
0


embedded image







184
0


embedded image







185
0


embedded image







186
0


embedded image







187
0


embedded image







188
0


embedded image







189
0


embedded image







191
0


embedded image







192
0


embedded image







193
0


embedded image







194
0


embedded image







196
0


embedded image







197
0


embedded image







198
0


embedded image







199
0


embedded image







200
0


embedded image







211
0


embedded image







212
0


embedded image







213
0


embedded image







214
0


embedded image







215
0


embedded image







216
0


embedded image







217
0


embedded image







211
1


embedded image







212
1


embedded image







213
1


embedded image







214
1


embedded image







215
1


embedded image







216
1


embedded image







217
1


embedded image







218
1


embedded image







219
1


embedded image







221
1


embedded image







222
1


embedded image







223
1


embedded image







224
1


embedded image







226
1


embedded image







227
1


embedded image







228
1


embedded image







229
1


embedded image







230
1


embedded image







231
1


embedded image







232
1


embedded image







233
1


embedded image







234
1


embedded image







235
1


embedded image







236
1


embedded image







237
1


embedded image







241
2


embedded image







242
2


embedded image







243
2


embedded image







244
2


embedded image







245
2


embedded image







246
2


embedded image







247
2


embedded image







248
2


embedded image







249
2


embedded image







251
2


embedded image







252
2


embedded image







253
2


embedded image







254
2


embedded image







256
2


embedded image







257
2


embedded image







258
2


embedded image







259
2


embedded image







260
2


embedded image







261
2


embedded image







262
2


embedded image







263
2


embedded image







264
2


embedded image







265
2


embedded image







266
2


embedded image







267
2


embedded image











Representative compounds of the invention include, but are not limited to, the following compounds according to Formula (V-B), wherein, R1 and m are delineated for each compound in Table 4.




embedded image











TABLE 4





Compound
m
R1







271
0


embedded image







272
0


embedded image







273
0


embedded image







274
0


embedded image







275
0


embedded image







276
0


embedded image







277
0


embedded image







278
0


embedded image







279
0


embedded image







280
0


embedded image







281
0


embedded image







282
0


embedded image







283
0


embedded image







284
0


embedded image







285
0


embedded image







286
0


embedded image







287
0


embedded image







288
0


embedded image







289
0


embedded image







290
0


embedded image







291
0


embedded image







292
0


embedded image







293
0


embedded image







294
0


embedded image







295
0


embedded image







296
0


embedded image







297
0


embedded image







298
0


embedded image







299
0


embedded image







300
0


embedded image







301
1


embedded image







302
1


embedded image







303
1


embedded image







304
1


embedded image







305
1


embedded image







306
1


embedded image







307
1


embedded image







308
1


embedded image







309
1


embedded image







310
1


embedded image







311
1


embedded image







312
1


embedded image







313
1


embedded image







314
1


embedded image







315
1


embedded image







316
1


embedded image







317
1


embedded image







318
1


embedded image







319
1


embedded image







320
1


embedded image







321
1


embedded image







322
1


embedded image







323
1


embedded image







324
1


embedded image







325
1


embedded image







326
1


embedded image







327
1


embedded image







328
1


embedded image







329
1


embedded image







330
1


embedded image







331
2


embedded image







332
2


embedded image







333
2


embedded image







334
2


embedded image







335
2


embedded image







336
2


embedded image







337
2


embedded image







338
2


embedded image







339
2


embedded image







340
2


embedded image







341
2


embedded image







342
2


embedded image







343
2


embedded image







344
2


embedded image







345
2


embedded image







346
2


embedded image







347
2


embedded image







348
2


embedded image







349
2


embedded image







350
2


embedded image







351
2


embedded image







352
2


embedded image







353
2


embedded image







354
2


embedded image







355
2


embedded image







356
2


embedded image







357
2


embedded image







358
2


embedded image







359
2


embedded image







360
2


embedded image











A sixth embodiment of the invention is a compound represented by Formula (VI-A) or (VI-B) or a pharmaceutically acceptable salt, solvate, hydrate, ester or prodrug thereof:




embedded image



wherein, R1 and m are as previously defined.


Representative compounds of the invention include, but are not limited to, the following compounds according to Formula (VI-A), wherein R1 and m are delineated for each compound in Table 5.




embedded image











TABLE 5





Compound
m
R1







361
0


embedded image







362
0


embedded image







363
0


embedded image







364
0


embedded image







365
0


embedded image







366
0


embedded image







367
0


embedded image







368
0


embedded image







369
0


embedded image







371
0


embedded image







372
0


embedded image







373
0


embedded image







374
0


embedded image







376
0


embedded image







377
0


embedded image







378
0


embedded image







379
0


embedded image







380
0


embedded image







381
0


embedded image







382
0


embedded image







383
0


embedded image







384
0


embedded image







385
0


embedded image







386
0


embedded image







387
0


embedded image







391
1


embedded image







392
1


embedded image







393
1


embedded image







394
1


embedded image







395
1


embedded image







396
1


embedded image







397
1


embedded image







398
1


embedded image







399
1


embedded image







401
1


embedded image







402
1


embedded image







403
1


embedded image







404
1


embedded image







406
1


embedded image







407
1


embedded image







408
1


embedded image







409
1


embedded image







410
1


embedded image







411
1


embedded image







412
1


embedded image







413
1


embedded image







414
1


embedded image







415
1


embedded image







416
1


embedded image







417
1


embedded image







421
2


embedded image







422
2


embedded image







423
2


embedded image







424
2


embedded image







425
2


embedded image







426
2


embedded image







427
2


embedded image







428
2


embedded image







429
2


embedded image







431
2


embedded image







432
2


embedded image







433
2


embedded image







434
2


embedded image







436
2


embedded image







437
2


embedded image







438
2


embedded image







439
2


embedded image







440
2


embedded image







441
2


embedded image







442
2


embedded image







443
2


embedded image







444
2


embedded image







445
2


embedded image







446
2


embedded image







447
2


embedded image











Representative compounds of the invention include, but are not limited to, the following compounds according to Formula (VI-B), wherein R1 and m are delineated for each compound in Table 6.




embedded image











TABLE 6





Compound
m
R1







451
0


embedded image







452
0


embedded image







453
0


embedded image







454
0


embedded image







455
0


embedded image







456
0


embedded image







457
0


embedded image







458
0


embedded image







459
0


embedded image







460
0


embedded image







461
0


embedded image







462
0


embedded image







463
0


embedded image







464
0


embedded image







465
0


embedded image







466
0


embedded image







467
0


embedded image







468
0


embedded image







469
0


embedded image







470
0


embedded image







471
0


embedded image







472
0


embedded image







473
0


embedded image







474
0


embedded image







475
0


embedded image







476
0


embedded image







477
0


embedded image







478
0


embedded image







479
0


embedded image







480
0


embedded image







481
1


embedded image







482
1


embedded image







483
1


embedded image







484
1


embedded image







485
1


embedded image







486
1


embedded image







487
1


embedded image







488
1


embedded image







489
1


embedded image







490
1


embedded image







491
1


embedded image







492
1


embedded image







493
1


embedded image







494
1


embedded image







495
1


embedded image







496
1


embedded image







497
1


embedded image







498
1


embedded image







499
1


embedded image







500
1


embedded image







501
1


embedded image







502
1


embedded image







503
1


embedded image







504
1


embedded image







505
1


embedded image







506
1


embedded image







507
1


embedded image







508
1


embedded image







509
1


embedded image







510
1


embedded image







511
2


embedded image







512
2


embedded image







513
2


embedded image







514
2


embedded image







515
2


embedded image







516
2


embedded image







517
2


embedded image







518
2


embedded image







519
2


embedded image







520
2


embedded image







521
2


embedded image







522
2


embedded image







523
2


embedded image







524
2


embedded image







525
2


embedded image







526
2


embedded image







527
2


embedded image







528
2


embedded image







529
2


embedded image







530
2


embedded image







531
2


embedded image







532
2


embedded image







533
2


embedded image







534
2


embedded image







535
2


embedded image







536
2


embedded image







537
2


embedded image







538
2


embedded image







539
2


embedded image







540
2


embedded image











In certain embodiments, the present invention provides a method for the prevention or treatment of an FXR mediated disease or condition. The method comprises administering a therapeutically effective amount of a compound of the invention. The present invention also provides the use of a compound of the invention for the preparation of a medicament for the prevention or treatment of an FXR mediated disease or condition.


In certain embodiments, the FXR-mediated disease or condition is cardiovascular disease, atherosclerosis, arteriosclerosis, hypercholesteremia, or hyperlipidemia chronic liver disease, gastrointestinal disease, renal disease, metabolic disease, cancer (i.e., colorectal cancer), or neurological indications such as stroke.


In certain embodiments, the chronic liver disease is primary biliary cirrhosis (PBC), cerebrotendinous xanthomatosis (CTX), primary sclerosing cholangitis (PSC), drug induced cholestasis, intrahepatic cholestasis of pregnancy, parenteral nutrition associated cholestasis (PNAC), bacterial overgrowth or sepsis associated cholestasis, autoimmune hepatitis, chronic viral hepatitis, alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), liver transplant associated graft versus host disease, living donor transplant liver regeneration, congenital hepatic fibrosis, choledocholithiasis, granulomatous liver disease, intra- or extrahepatic malignancy, Sjogren's syndrome, Sarcoidosis, Wilson's disease, Gaucher's disease, hemochromatosis, or alpha 1-antitrypsin deficiency. In certain embodiments, the gastrointestinal disease is inflammatory bowel disease (IBD) (including Crohn's disease and ulcerative colitis), irritable bowel syndrome (IBS), bacterial overgrowth, malabsorption, post-radiation colitis, or microscopic colitis.


In certain embodiments, the renal disease is diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), hypertensive nephrosclerosis, chronic glomerulonephritis, chronic transplant glomerulopathy, chronic interstitial nephritis, or polycystic kidney disease.


In certain embodiments, the cardiovascular disease is atherosclerosis, arteriosclerosis, dyslipidemia, hypercholesterolemia, or hypertriglyceridemia.


In certain embodiments, the metabolic disease is insulin resistance, Type I and Type II diabetes, or obesity.


In yet another embodiment, the invention provides the use of the compound or pharmaceutical composition of the invention, in the manufacture of a medicament for a treating or preventing a disease in a subject that involves modulation of the TGR5 receptor. The invention includes a method of treating or preventing a disease that involves modulation of the TGR5 receptor in a subject by administering a compound or pharmaceutical composition of the invention.


In certain embodiments, a disease that involves modulation of the TGR5 receptor is selected from metabolic disease, inflammatory disease, liver disease, autoimmune disease, cardiac disease, kidney disease, cancer, and gastrointestinal disease.


In one aspect, the disease is an inflammatory disease selected from allergy, osteoarthritis, appendicitis, bronchial asthma, pancreatitis, allergic rash, and psoriasis. The invention includes a method of treating or preventing an inflammatory disease selected from allergy, osteoarthritis, appendicitis, bronchial asthma, pancreatitis, allergic rash, and psoriasis.


In one aspect, the disease is an autoimmune disease selected from rheumatoid arthritis, multiple sclerosis, and type I diabetes. The invention includes a method of treating or preventing an autoimmune disease selected from rheumatoid arthritis, multiple sclerosis, and type I diabetes.


In one aspect, the disease is a gastrointestinal disease selected from inflammatory bowel disease (Crohn's disease, ulcerative colitis), short bowel syndrome (post-radiation colitis), microscopic colitis, irritable bowel syndrome (malabsorption), and bacterial overgrowth. The invention includes a method of treating or preventing a gastrointestinal disease selected from inflammatory bowel disease (Crohn's disease, ulcerative colitis), short bowel syndrome (post-radiation colitis), microscopic colitis, irritable bowel syndrome (malabsorption), and bacterial overgrowth.


In one aspect, the disease is kidney disease selected from diabetic nephropathy, chronic renal failure, hypertensive nephrosclerosis, chronic glomerulonephritis, chronic transplant giomerulopathy, chronic interstitial nephritis, and polysystic kidney disease. The invention includes a method of treating or preventing kidney diease selected from diabetic nephropathy, chronic renal failure, hypertensive nephrosclerosis, chronic glomerulonephritis, chronic transplant glomerulopathy, chronic interstitial nephritis, and polysystic kidney disease.


In one aspect, the disease is cancer selected from colorectal cancer, liver cancer, heptacellular carcinoma, cholangio carcinoma, renal cancer, gastric cancer, pancreatic cancer, prostate cancer, and insulanoma. The invention includes a method of treating or preventing cancer selected from colorectal cancer, liver cancer, heptacellular carcinoma, cholangio carcinoma, renal cancer, gastric cancer, pancreatic cancer, prostate cancer, and insulanoma.


In one aspect, the compound is a selective FXR agonist over TGR5 activator.


In one aspect, the compound is a selective TGR5 agonist over FXR activator.


In one aspect, the compound is a dual agonist for both FXR and TGR5.


Yet a further aspect of the present invention is a process of making any of the compounds delineated herein employing any of the synthetic means delineated herein.


Definitions

Listed below are definitions of various terms used to describe this invention. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.


The term “alkyl”, as used herein, refers to a saturated, monovalent straight- or branched-chain hydrocarbon group. Preferred alkyl radicals include C1-C6 alkyl and C1-C8 alkyl radicals. Examples of C1-C6 alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl groups; and examples of C1-C8 alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, neopentyl, n-hexyl, heptyl, and octyl groups.


The term “alkenyl”, as used herein, denote a monovalent group derived from a hydrocarbon moiety by the removal of a single hydrogen atom wherein the hydrocarbon moiety has at least one carbon-carbon double bond. Preferred alkenyl groups include C2-C6 alkenyl and C2-C8 alkenyl groups. Alkenyl groups include, but are not limited to, for example, ethenyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, heptenyl, octenyl and the like.


The term “alkynyl”, as used herein, denotes a monovalent group derived from a hydrocarbon moiety by the removal of a single hydrogen atom wherein the hydrocarbon moiety has at least one carbon-carbon triple bond. Preferred alkynyl groups include C2-C6 alkynyl and C2-C8 alkynyl groups. Representative alkynyl groups include, but are not limited to, for example, ethynyl, 1-propynyl, 1-butynyl, heptynyl, octynyl and the like.


The term “carbocycle” refers to a saturated (e.g., “cycloalkyl”), partially saturated (e.g., “cycloalkenyl” or “cycloalkynyl”) or completely unsaturated (e.g., “aryl”) ring system containing zero heteroatom ring atom. “Ring atoms” or “ring members” are the atoms bound together to form the ring or rings. Where a carbocycle group is a divalent moiety linking two other elements in a depicted chemical structure (such as Z in Formula IA), the carbocycle group can be attached to the two other elements through any two substitutable ring atoms. A C4-C6 carbocycle has 4-6 ring atoms.


The term “cycloalkyl”, as used herein, denotes a monovalent group derived from a monocyclic or polycyclic saturated carbocyclic ring compound by the removal of a single hydrogen atom. Preferred cycloalkyl groups include C3-C8 cycloalkyl and C3-C12 cycloalkyl groups. Examples of C3-C8-cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentyl and cyclooctyl; and examples of C3-C12-cycloalkyl include, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo[2.2.1]heptyl, and bicyclo[2.2.2]octyl.


The term “cycloalkenyl” as used herein, denote a monovalent group derived from a monocyclic or polycyclic carbocyclic ring compound having at least one carbon-carbon double bond by the removal of a single hydrogen atom. Preferred cycloalkenyl groups include C3-C8 cycloalkenyl and C3-C12 cycloalkenyl groups. Examples of C3-C8-cycloalkenyl include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like; and examples of C3-C12-cycloalkenyl include, but not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, and the like.


The term “aryl,” as used herein, refers to a mono- or bicyclic carbocyclic ring system having one or two aromatic rings including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl and the like.


The term “arylalkyl,” as used herein, refers to a C1-C3 alkyl or C1-C6 alkyl residue attached to an aryl ring. Examples include, but are not limited to, benzyl, phenethyl and the like.


The term “heteroaryl,” as used herein, refers to a mono-, bi-, or tri-cyclic aromatic radical or ring having from five to ten ring atoms of which at least one ring atom is selected from S, O and N; wherein any N or S contained within the ring may be optionally oxidized. Preferred heteroaryl groups are monocyclic or bicyclic. Heteroaryl groups include, but are not limited to, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, thiophenyl, furanyl, quinolinyl, isoquinolinyl, benzimidazolyl, benzooxazolyl, quinoxalinyl, and the like.


The term “heteroarylalkyl,” as used herein, refers to a C1-C3 alkyl or C1-C6 alkyl residue attached to a heteroaryl ring. Examples include, but are not limited to, pyridinylmethyl, pyrimidinylethyl and the like.


The term “substituted” as used herein, refers to independent replacement of one, two, or three or more of the hydrogen atoms thereon with substituents including, but not limited to, deuterium, —F, —Cl, —Br, —I, —OH, protected hydroxy, —NO2, —CN, —NH2, N3, protected amino, alkoxy, thioalkoxy, oxo, -halo-C1-C12-alkyl, -halo-C2-C12-alkenyl, -halo-C2-C12-alkynyl, -halo-C3-C12-cycloalkyl, —NH—C1-C12-alkyl, —NH—C2-C12-alkenyl, —NH—C2-C12-alkynyl, —NH—C3-C12-cycloalkyl, —NH-aryl, —NH-heteroaryl, —NH-heterocycloalkyl, -dialkylamino, -diarylamino, -diheteroarylamino, —O—C1-C12-alkyl, —O—C2-C12-alkenyl, —O—C2-C12-alkynyl, —O—C3-C12-cycloalkyl, —O-aryl, —O-heteroaryl, —O-heterocycloalkyl, —C(O)—C1-C12-alkyl, —C(O)—C2-C12-alkenyl, —C(O)—C2-C12-alkynyl, —C(O)—C3-C12-cycloalkyl, —C(O)-aryl, —C(O)-heteroaryl, —C(O)-heterocycloalkyl, —CONH2, —CONH—C1-C12-alkyl, —CONH—C2-C12-alkenyl, —CONH—C2-C12-alkynyl, —CONH—C3-C12-cycloalkyl, —CONH-aryl, —CONH-heteroaryl, —CONH— heterocycloalkyl, —OCO2—C1-C12-alkyl, —OCO2—C2-C12-alkenyl, —OCO2—C2-C12-alkynyl, —OCO2—C3-C12-cycloalkyl, —OCO2-aryl, —OCO2-heteroaryl, —OCO2-heterocycloalkyl, —OCONH2, —OCONH—C1-C12-alkyl, —OCONH—C2-C12-alkenyl, —OCONH—C2-C12-alkynyl, —OCONH—C3-C12-cycloalkyl, —OCONH-aryl, —OCONH—heteroaryl, —OCONH—heterocycloalkyl, —NHC(O)—C1-C12-alkyl, —NHC(O)—C2-C12-alkenyl, —NHC(O)—C2-C12-alkynyl, —NHC(O)—C3-C12-cycloalkyl, —NHC(O)-aryl, —NHC(O)-heteroaryl, —NHC(O)-heterocycloalkyl, —NHCO2—C1-C12-alkyl, —NHCO2—C2-C12-alkenyl, —NHCO2—C2-C12-alkynyl, —NHCO2—C3-C12-cycloalkyl, —NHCO2-aryl, —NHCO2-heteroaryl, —NHCO2-heterocycloalkyl, —NHC(O)NH2, —NHC(O)NH—C1-C12-alkyl, —NHC(O)NH—C2-C12-alkenyl, —NHC(O)NH—C2-C12-alkynyl, —NHC(O)NH—C3-C12-cycloalkyl, —NHC(O)NH-aryl, —NHC(O)NH-heteroaryl, —NHC(O)NH-heterocycloalkyl, NHC(S)NH2, —NHC(S)NH—C1-C12-alkyl, —NHC(S)NH—C2-C12-alkenyl, —NHC(S)NH—C2-C12-alkynyl, —NHC(S)NH—C3-C12-cycloalkyl, —NHC(S)NH-aryl, —NHC(S)NH-heteroaryl, —NHC(S)NH-heterocycloalkyl, —NHC(NH)NH2, —NHC(NH)NH—C1-C12-alkyl, —NHC(NH)NH—C2-C12-alkenyl, —NHC(NH)NH—C2-C12-alkynyl, —NHC(NH)NH—C3-C12-cycloalkyl, —NHC(NH)NH-aryl, —NHC(NH)NH-heteroaryl, —NHC(NH)NH-heterocycloalkyl, —NHC(NH)—C1-C12-alkyl, —NHC(NH)—C2-C12-alkenyl, —NHC(NH)—C2-C12-alkynyl, —NHC(NH)—C3-C12-cycloalkyl, —NHC(NH)-aryl, —NHC(NH)-heteroaryl, —NHC(NH)-heterocycloalkyl, —C(NH)NH—C1-C12-alkyl, —C(NH)NH—C2-C12-alkenyl, —C(NH)NH—C2-C12-alkynyl, —C(NH)NH—C3-C12-cycloalkyl, —C(NH)NH-aryl, —C(NH)NH-heteroaryl, —C(NH)NH-heterocycloalkyl, —S(O)—C1-C12-alkyl, —S(O)—C2-C12-alkenyl, —S(O)—C2-C12-alkynyl, —S(O)—C3-C12-cycloalkyl, —S(O)-aryl, —S(O)-heteroaryl, —S(O)-heterocycloalkyl —SO2NH2, —SO2NH—C1-C12-alkyl, —SO2NH—C2-C12-alkenyl, —SO2NH—C2-C12-alkynyl, —SO2NH—C3-C12-cycloalkyl, —SO2NH-aryl, —SO2NH-heteroaryl, —SO2NH-heterocycloalkyl, —NHSO2—C1-C12-alkyl, —NHSO2—C2-C12-alkenyl, —NHSO2—C2-C12-alkynyl, —NHSO2—C3-C12-cycloalkyl, —NHSO2-aryl, —NHSO2-heteroaryl, —NHSO2-heterocycloalkyl, —CH2NH2, —CH2SO2CH3, -aryl, -arylalkyl, -heteroaryl, -heteroarylalkyl, -heterocycloalkyl, —C3-C12-cycloalkyl, polyalkoxyalkyl, polyalkoxy, -methoxymethoxy, -methoxyethoxy, —SH, —S—C1-C12-alkyl, —S—C2-C12-alkenyl, —S—C2-C12-alkynyl, —S—C3-C12-cycloalkyl, —S-aryl, —S-heteroaryl, —S-heterocycloalkyl, methylthiomethyl, or -L′-R′, wherein L′ is C1-C6alkylene, C2-C6alkenylene or C2-C6alkynylene, and R′ is aryl, heteroaryl, heterocyclic, C3-C12cycloalkyl or C3-C12cycloalkenyl. It is understood that the aryls, heteroaryls, alkyls, and the like can be further substituted. In some cases, each substituent in a substituted moiety is additionally optionally substituted with one or more groups, each group being independently selected from —F, —Cl, —Br, —I, —OH, —NO2, —CN, or —NH2.


In accordance with the invention, any of the aryls, substituted aryls, heteroaryls and substituted heteroaryls described herein, can be any aromatic group. Aromatic groups can be substituted or unsubstituted.


It is understood that any alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl moiety described herein can also be an aliphatic group, an alicyclic group or a heterocyclic group. An “aliphatic group” is non-aromatic moiety that may contain any combination of carbon atoms, hydrogen atoms, halogen atoms, oxygen, nitrogen or other atoms, and optionally contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched or cyclic and preferably contains between about 1 and about 24 carbon atoms, more typically between about 1 and about 12 carbon atoms. In addition to aliphatic hydrocarbon groups, aliphatic groups include, for example, polyalkoxyalkyls, such as polyalkylene glycols, polyamines, and polyimines, for example. Such aliphatic groups may be further substituted. It is understood that aliphatic groups may be used in place of the alkyl, alkenyl, alkynyl, alkylene, alkenylene, and alkynylene groups described herein.


The term “alicyclic,” as used herein, denotes a monovalent group derived from a monocyclic or polycyclic saturated carbocyclic ring compound by the removal of a single hydrogen atom. Examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, bicyclo[2.2.1]heptyl, and bicyclo[2.2.2]octyl. Such alicyclic groups may be further substituted.


The term “heterocycloalkyl” and “heterocyclic” can be used interchangeably and refer to a non-aromatic 3-, 4-, 5-, 6- or 7-membered ring or a bi- or tri-cyclic group fused system, where: (i) each ring contains between one and three heteroatoms independently selected from oxygen, sulfur and nitrogen, (ii) each 5-membered ring has 0 to 1 double bonds and each 6-membered ring has 0 to 2 double bonds, (iii) the nitrogen and sulfur heteroatoms may optionally be oxidized, (iv) the nitrogen heteroatom may optionally be quaternized, (v) any of the above rings may be fused to a benzene ring, and (vi) the remaining ring atoms are carbon atoms which may be optionally oxo-substituted. Representative heterocycloalkyl groups include, but are not limited to, [1,3]dioxolane, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazinyl, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidinyl, quinoxalinyl, pyridazinonyl, and tetrahydrofuryl. Such heterocyclic groups may be further substituted to give substituted heterocyclic.


It will be apparent that in various embodiments of the invention, the substituted or unsubstituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, arylalkyl, heteroarylalkyl, and heterocycloalkyl are intended to be monovalent or divalent. Thus, alkylene, alkenylene, and alkynylene, cycloaklylene, cycloalkenylene, cycloalkynylene, arylalkylene, hetoerarylalkylene and heterocycloalkylene groups are to be included in the above definitions, and are applicable to provide the formulas herein with proper valency.


The term “hydroxy activating group”, as used herein, refers to a labile chemical moiety which is known in the art to activate a hydroxy group so that it will depart during synthetic procedures such as in a substitution or elimination reactions. Examples of hydroxy activating group include, but not limited to, mesylate, tosylate, triflate, p-nitrobenzoate, phosphonate and the like.


The term “activated hydroxy”, as used herein, refers to a hydroxy group activated with a hydroxy activating group, as defined above, including mesylate, tosylate, triflate, p-nitrobenzoate, phosphonate groups, for example.


The term “protected hydroxy,” as used herein, refers to a hydroxy group protected with a hydroxy protecting group, as defined above, including benzoyl, acetyl, trimethylsilyl, triethylsilyl, methoxymethyl groups.


The term “hydroxy protecting group,” as used herein, refers to a labile chemical moiety which is known in the art to protect a hydroxy group against undesired reactions during synthetic procedures. After said synthetic procedure(s) the hydroxy protecting group as described herein may be selectively removed. Hydroxy protecting groups as known in the are described generally in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, New York (1999). Examples of hydroxy protecting groups include benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, methoxycarbonyl, tert-butoxycarbonyl, isopropoxycarbonyl, diphenylmethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, 2-(trimethylsilyl)ethoxycarbonyl, 2-furfuryloxycarbonyl, allyloxycarbonyl, acetyl, formyl, chloroacetyl, trifluoroacetyl, methoxyacetyl, phenoxyacetyl, benzoyl, methyl, t-butyl, 2,2,2-trichloroethyl, 2-trimethylsilyl ethyl, 1,1-dimethyl-2-propenyl, 3-methyl-3-butenyl, allyl, benzyl, para-methoxybenzyldiphenylmethyl, triphenylmethyl (trityl), tetrahydrofuryl, methoxymethyl, methylthiomethyl, benzyloxymethyl, 2,2,2-trichloroethoxymethyl 2-(trimethylsilyl)ethoxymethyl, methanesulfonyl, para-toluenesulfonyl, trimethylsilyl, triethylsilyl, triisopropylsilyl, and the like. Preferred hydroxy protecting groups for the present invention are acetyl (Ac or —C(O)CH3), benzoyl (Bz or —C(O)C6H5), and trimethylsilyl (TMS or —Si(CH3)3).


The terms “halo” and “halogen,” as used herein, refer to an atom selected from fluorine, chlorine, bromine and iodine.


Pharmaceutically acceptable salts can also be prepared by deprotonation of the parent compound with a suitable base, thereby forming the anionic conjugate base of the parent compound. In such salts the counter ion is a cation. Suitable cations include ammonium and metal cations, such as alkali metal cations, including Li+, Na+, K+ and Cs+, and alkaline earth metal cations, such as Mg2+ and Ca2+.


The compounds described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-, or as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optical isomers may be prepared from their respective optically active precursors by the procedures described above, or by resolving the racemic mixtures. The resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization or by some combination of these techniques, which are known to those skilled in the art. Further details regarding resolutions can be found in Jacques, et al., Enantiomers, Racemates, and Resolutions (John Wiley & Sons, 1981). When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers. Likewise, all tautomeric forms are also intended to be included. The configuration of any carbon-carbon double bond appearing herein is selected for convenience only and is not intended to designate a particular configuration unless the text so states; thus a carbon-carbon double bond depicted arbitrarily herein as trans may be cis, trans, or a mixture of the two in any proportion.


The term “subject” as used herein refers to a mammal. A subject therefore refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, and the like. Preferably the subject is a human. When the subject is a human, the subject may be referred to herein as a patient.


As used herein, the term “pharmaceutically acceptable salt” refers to those salts of the compounds formed by the process of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art.


Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977). The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid. Examples of pharmaceutically acceptable salts include, but are not limited to, nontoxic acid addition salts e.g., salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate.


The term “amino protecting group,” as used herein, refers to a labile chemical moiety which is known in the art to protect an amino group against undesired reactions during synthetic procedures. After said synthetic procedure(s) the amino protecting group as described herein may be selectively removed. Amino protecting groups as known in the are described generally in T. H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, New York (1999). Examples of amino protecting groups include, but are not limited to, t-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, benzyloxycarbonyl, and the like.


As used herein, the term “pharmaceutically acceptable ester” refers to esters of the compounds formed by the process of the present invention which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.


The term “pharmaceutically acceptable prodrugs” as used herein refers to those prodrugs of the compounds formed by the process of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the present invention. “Prodrug”, as used herein means a compound, which is convertible in vivo by metabolic means (e.g. by hydrolysis) to afford any compound delineated by the formulae of the instant invention. Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, Vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed.), “Design and Application of Prodrugs, Textbook of Drug Design and Development, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38(1992); Bundgaard, J. of Pharmaceutical Sciences, 77:285 et seq. (1988); Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975); and Bernard Testa & Joachim Mayer, “Hydrolysis In Drug And Prodrug Metabolism: Chemistry, Biochemistry And Enzymology,” John Wiley and Sons, Ltd. (2002).


The term “treating”, as used herein, means relieving, lessening, reducing, eliminating, modulating, or ameliorating, i.e. causing regression of the disease state or condition. Treating can also include inhibiting, i.e. arresting the development, of a existing disease state or condition, and relieving or ameliorating, i.e. causing regression of an existing disease state or condition, for example when the disease state or condition may already be present.


The term “preventing”, as used herein means, to completely or almost completely stop a disease state or condition, from occurring in a patient or subject, especially when the patient or subject is predisposed to such or at risk of contracting a disease state or condition.


Additionally, the compounds of the present invention, for example, the salts of the compounds, can exist in either hydrated or unhydrated (the anhydrous) form or as solvates with other solvent molecules. Nonlimiting examples of hydrates include monohydrates, dihydrates, etc. Nonlimiting examples of solvates include ethanol solvates, acetone solvates, etc.


“Solvates” means solvent addition forms that contain either stoichiometric or non stoichiometric amounts of solvent. Some compounds have a tendency to trap a fixed molar ratio of solvent molecules in the crystalline solid state, thus forming a solvate. If the solvent is water the solvate formed is a hydrate, when the solvent is alcohol, the solvate formed is an alcoholate. Hydrates are formed by the combination of one or more molecules of water with one of the substances in which the water retains its molecular state as H2O, such combination being able to form one or more hydrate.


As used herein, the term “analog” refers to a chemical compound that is structurally similar to another but differs slightly in composition (as in the replacement of one atom by an atom of a different element or in the presence of a particular functional group, or the replacement of one functional group by another functional group). Thus, an analog is a compound that is similar to or comparable in function and appearance to the reference compound.


The term “aprotic solvent,” as used herein, refers to a solvent that is relatively inert to proton activity, i.e., not acting as a proton-donor. Examples include, but are not limited to, hydrocarbons, such as hexane and toluene, for example, halogenated hydrocarbons, such as, for example, methylene chloride, ethylene chloride, chloroform, and the like, heterocyclic compounds, such as, for example, tetrahydrofuran and N-methylpyrrolidinone, and ethers such as diethyl ether, bis-methoxymethyl ether. Such solvents are well known to those skilled in the art, and individual solvents or mixtures thereof may be preferred for specific compounds and reaction conditions, depending upon such factors as the solubility of reagents, reactivity of reagents and preferred temperature ranges, for example. Further discussions of aprotic solvents may be found in organic chemistry textbooks or in specialized monographs, for example, Organic Solvents Physical Properties and Methods of Purification, 4th ed., edited by John A. Riddick et al., Vol. II, in the Techniques of Chemistry Series, John Wiley & Sons, NY, 1986.


The terms “protogenic organic solvent” or “protic solvent” as used herein, refer to a solvent that tends to provide protons, such as an alcohol, for example, methanol, ethanol, propanol, isopropanol, butanol, t-butanol, and the like. Such solvents are well known to those skilled in the art, and individual solvents or mixtures thereof may be preferred for specific compounds and reaction conditions, depending upon such factors as the solubility of reagents, reactivity of reagents and preferred temperature ranges, for example. Further discussions of protogenic solvents may be found in organic chemistry textbooks or in specialized monographs, for example: Organic Solvents Physical Properties and Methods of Purification, 4th ed., edited by John A. Riddick et al., Vol. II, in the Techniques of Chemistry Series, John Wiley & Sons, NY, 1986.


Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term “stable”, as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic or prophylactic administration to a subject).


The synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. In addition, the solvents, temperatures, reaction durations, etc. delineated herein are for purposes of illustration only and variation of the reaction conditions can produce the desired bridged macrocyclic products of the present invention. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein include, for example, those described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T.W. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995).


The compounds of this invention may be modified by appending various functionalities via synthetic means delineated herein to enhance selective biological properties. Such modifications include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.


Pharmaceutical Compositions

The pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a compound of the present invention formulated together with one or more pharmaceutically acceptable carriers. As used herein, the term “pharmaceutically acceptable carrier” means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols; such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator. The pharmaceutical compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), buccally, or as an oral or nasal spray.


The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.


Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.


Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.


The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.


In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.


Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.


Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.


Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.


The active compounds can also be in micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active compound may be admixed with at least one inert diluent such as sucrose, lactose or starch. Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.


Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.


The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.


Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.


Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.


Unless otherwise defined, all technical and scientific terms used herein are accorded the meaning commonly known to one with ordinary skill in the art. All publications, patents, published patent applications, and other references mentioned herein are hereby incorporated by reference in their entirety.


Abbreviations


Abbreviations which have been used in the descriptions of the schemes and the examples that follow are:

    • ACN for acetonitrile;
    • BME for 2-mercaptoethanol;
    • BOP for benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate;
    • BzCl for benzoyl chloride;
    • CDI for carbonyldiimidazole;
    • COD for cyclooctadiene;
    • DABCO for 1,4-diazabicyclo[2.2.2]octane;
    • DAST for diethylaminosulfur trifluoride;
    • DABCYL for 6-(N-4′-carboxy-4-(dimethylamino)azobenzene)-aminohexyl-1-O-(2-cyanoethyl)-(N,N-diisopropyl)-phosphoramidite;
    • DBU for 1, 8-Diazabicycloundec-7-ene;
    • DCC for N,N′-dicyclohexylcarbodiimide;
    • DCM for dichloromethane;
    • DIAD for diisopropyl azodicarboxylate;
    • DIBAL-H for diisobutylaluminum hydride;
    • DIPEA for diisopropyl ethylamine;
    • DMAP for N,N-dimethylaminopyridine;
    • DME for ethylene glycol dimethyl ether;
    • DMEM for Dulbecco's Modified Eagles Media;
    • DMF for N,N-dimethyl formamide;
    • DMSO for dimethylsulfoxide;
    • DSC for N,N′-disuccinimidyl carbonate;
    • DUPHOS for




embedded image




    • EDANS for 5-(2-Amino-ethylamino)-naphthalene-1-sulfonic acid;

    • EDCI or EDC for 1-(3-diethylaminopropyl)-3-ethylcarbodiimide hydrochloride;

    • EtOAc for ethyl acetate;

    • EtOH for ethyl alcohol;

    • HATU for 0 (7-Azabenzotriazole-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate;

    • HCl for hydrochloric acid;

    • Hoveyda's Cat. for Dichloro(o-isopropoxyphenylmethylene) (tricyclohexylphosphine)ruthenium(II);

    • In for indium;

    • KHMDS is potassium bis(trimethylsilyl)amide;

    • Ms for mesyl;

    • NMM for N-4-methylmorpholine;

    • NMI for N-methylimidazole;

    • NMO for N-4-methylmorpholine-N-Oxide;

    • PyBrOP for Bromo-tri-pyrolidino-phosphonium hexafluorophosphate;

    • Ph for phenyl;

    • RCM for ring-closing metathesis;

    • RT for reverse transcription;

    • RT-PCR for reverse transcription-polymerase chain reaction;

    • TBME for tert-butyl methyl ether;

    • TEA for triethyl amine;

    • Tf2O for trifluoromethanesulfonic anhydride;

    • TFA for trifluoroacetic acid;

    • THF for tetrahydrofuran;

    • TLC for thin layer chromatography;

    • (TMS)2NH for hexamethyldisilazane;

    • TMSOTf for trimethylsilyl trifluoromethanesulfonate;

    • TBS for t-Butyldimethylsilyl;

    • TMS for trimethylsilyl;

    • TPAP tetrapropylammonium perruthenate;

    • TPP or PPh3 for triphenylphosphine;

    • TrCl for trityl chloride;

    • DMTrCl for 4,4′-dimethoxytrityl chloride;

    • tBOC or Boc for tert-butyloxy carbonyl;

    • Xantphos for 4,5-Bis-diphenylphosphanyl-9,9-dimethyl-9H-xanthene; and

    • Zhan 1 B for







embedded image



Synthetic Methods


The compounds and processes of the present invention will be better understood in connection with the following synthetic schemes that illustrate the methods by which the compounds of the invention may be prepared, which are intended as an illustration only and not to limit the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.


As shown in Scheme 1, novel bile acid analogs of the compound of formula (1-3) are prepared from the compound of formula (1-1), wherein R2, m, Ra, and R7 are defined as previously. Thus, the compound of formula (1-1) is coupled with hydroxylamine compound of formula (1-2) using suitable coupling condition to give the compound of formula (1-3). The coupling reagent can be selected from, but not limited to, DCC, EDC, CDI, di-isopropyl carbodiimide, BOP—Cl, PyBOP, PyAOP, TFFH and HATU. Suitable bases include, but are not limited to, triethylamine, diisopropylethylamine, DBU, N-methylmorpholine and DMAP. The coupling reaction is carried out in an aprotic solvent such as, but not limited to, CH2Cl2, DMF or THF. The reaction temperature can vary from 0° C. to about 50° C.




embedded image


Scheme 2 illustrates the preparation of the compound of formula (2-4) from the compound of formula (1-1), wherein R2, m, R9, Ra, and R7 are defined as previously. Thus, the compound of formula (1-1) is coupled with an amino ester compound of formula (2-1) in suitable coupling condition to give the compound of formula (2-2). The coupling reagent can be selected from, but not limited to, DCC, EDC, CDI, di-isopropyl carbodiimide, BOP—Cl, PyBOP, PyAOP, TFFH and HATU. Suitable bases include, but are not limited to, triethylamine, diisopropylethylamine, DBU, N-methylmorpholine and DMAP. The coupling reaction is carried out in an aprotic solvent such as, but not limited to, CH2Cl2, DMF or THF. The reaction temperature can vary from 0° C. to about 50° C. Then, hydrolysis of methyl ester of compound of formula (2-2) gives the compound of formula (2-3). The reagent for hydrolysis can be, but not limited to LiOH, NaOH and KOH. The solvent can be, but not limited to THF, MeOH, EtOH, dioxane, water or mixture of above. The reaction temperature can vary from 0° C. to about 80° C. Further coupling of the compound of formula (2-3) with the compound of formula (1-2) affords the compound of formula (2-4).




embedded image


Scheme 3 illustrates the preparation of the compound of formula (3-2) from the compound of formula (1-1), wherein R2, m and R7 are defined as previously. Thus, the compound of formula (1-1) is coupled with aminonitrile compound of formula (3-1) in suitable coupling condition to give the compound of formula (3-2). The coupling reagent can be selected from, but not limited to, DCC, EDC, CDI, di-isopropyl carbodiimide, BOP—Cl, PyBOP, PyAOP, TFFH and HATU. Suitable bases include, but are not limited to, triethylamine, diisopropylethylamine, DBU, N-methylmorpholine and DMAP. The coupling reaction is carried out in an aprotic solvent such as, but not limited to, CH2Cl2, DMF or THF. The reaction temperature can vary from 0° C. to about 50° C.




embedded image


As illustrated in scheme 4, novel bile acid analogs of the compound of formula (4-5) are prepared from the compound of formula (1-1), wherein R2, m and R7 are defined as previously. The compound of formula (1-1) is coupled with ammonia using suitable coupling condition to give the compound of formula (4-2). The ammonia source can be selected from, but not limited to ammonium carbonate, ammonium hydroxide and ammonium bicarbonate. The coupling reagent can be selected from, but not limited to, DCC, EDC, CDI, di-isopropyl carbodiimide, BOP—Cl, PyBOP, PyAOP, TFFH and HATU. Suitable bases include, but are not limited to, triethylamine, diisopropylethylamine, DBU, N-methylmorpholine and DMAP. The coupling reaction is carried out in an aprotic solvent such as, but not limited to, CH2Cl2, DMF or THF. The reaction temperature can vary from 0° C. to about 50° C. The compound of formula (4-2) is treated with dehydration condition to give the compound of formula (4-3). The reagent can be selected from, but not limited to SOCl2, P2O5, cyanuric trichloride and Burgess reagent. The dehydration reaction is carried out in aprotic solvent such as, but not limited to, CH2Cl2, DMF or THF. The reaction temperature can vary from 0° C. to about 100° C.


The compound of formula of (4-3) is treated with hydroxyl amine to give the compound of formula (4-4). Reagent also can be hydroxylamine salt with organic or inorganic base.




embedded image


Suitable bases include, but not limited to LiOH, NaOH, KOH, triethylamine, diisopropylethylamine, DBU, N-methylmorpholine and DMAP. The dehydration reaction is carried out in solvent such as, but not limited to, MeOH, EtOH, iPr—OH, H2O, CH2Cl2, DMF, DMSO or THF. The reaction temperature can vary from 0° C. to about 100° C.


The compound of formula of (4-4) is treated with phosgene or phosgene alternative and base to give the compound of formula (4-5). Reagent can be selected from, but not limited to phosgene, diphosgene, triphosgene, carbonyl diimidazole and disuccinimidyl carbonate. Suitable bases include, but not limited to triethylamine, diisopropylethylamine, DBU, N-methylmorpholine and DMAP. The reaction is carried out in aprotic solvent such as, but not limited to, CH2Cl2, DMF, DMSO or THF. The reaction temperature can vary from 0° C. to about 100° C.


As illustrated in scheme 5, novel bile acid analogs of the compound of formula (5-2) are prepared from the compound of formula (4-4), wherein R2, m and R7 are defined as previously. The compound of formula (4-4) is treated with thiophsogene or thiophosgene alternative and base to give the compound of formula (5-2). Reagent can be selected from, but not limited to thiophosgene and di(1H-imidazol-1-yl)methanethione. Suitable bases include, but not limited to triethylamine, diisopropylethylamine, DBU, N-methylmorpholine and DMAP. The reaction is carried out in aprotic solvent such as, but not limited to, CH2Cl2, DMF, DMSO or THF. The reaction temperature can vary from 0° C. to about 100° C.




embedded image


As illustrated in scheme 6, novel bile acid analogs of the compound of formula (6-2) are prepared from the compound of formula (5-2), wherein R2, m and R7 are defined as previously. The compound of formula (5-2) is rearranged under acidic condition to give the compound of formula (6-2). The acid can be selected from, but not limited to BF3·OEt2, TMSOTf, Yb(OTf)3, Sc(OTf)3, H2SO4, HCl, HBr and HClO4. The rearrangement reaction is carried out in solvent such as, but not limited to, CH2Cl2, DMF, DMSO, or THF. The reaction temperature can vary from 0° C. to about 100° C.




embedded image


As shown in Scheme 7, novel bile acid analogs of the compound of formula (7-7) are prepared from the compound of formula (7-1), wherein R7, R2, Ra and m are defined as previously, P1 and P2 are hydroxyl protecting groups. Thus, the two hydroxyl groups of the compound of formula (7-1) are protected with P1 and P2 groups. P1 and P2 can be same or different. P1 and P2 can be any hydroxyl protecting group such as, but not limited to Ac, Bz, chloroacetyl, TES, TBS, MOM and Bn. A more detailed discussion of the procedures, reagents and conditions for protection of hydroxyl group is described in literature, for example, by T.W. Greene and P.G.M. Wuts in “Protective Groups in Organic Synthesis” 3rd ed., John Wiley & Son, Inc., 1999.




embedded image


embedded image


Then the hydroxyl protected compound of formula (7-2) is reduced to the primary alcohol compound of formula (7-3) using suitable reducing reagents which can be selected from, but not limited to, DIBAL-H, NaBH4, LiBH4, and LiAlH4. The alcohol compound of formula (7-3) is transformed to compound of formula (7-4) where X is a leaving group such as OMs, OTs, OTf or halogen (Cl, Br, I), using suitable bases including but not limited to triethylamine, diisopropylethylamine, DBU, N-methylmorpholine and DMAP with acylation reagents such as MsCl, Ms2O, TsCl and Tf2O, or using suitable halogenation conditions which can be selected from, but not limited to Ph3P/CBr4, Ph3P/I2, and Ph3P/Br2. Treatment of compound (7-4) with trialkylphosphite of formula (7-5) at elevated temperatures provides the phosphate compound of formula (7-6). The Ra. group in phosphate compound of formula (7-6) can be removed under acidic conditions (TMSBr/DCM) or partially removed under basic conditions (NaOH/MeOH). Deprotection of hydroxyl protecting groups of P1 and P2 of compound of formula (7-6) to give the compound of formula (7-7). More efficiently, the Ra group and the hydroxyl protecting group P1/P2 can be removed at the same time under suitable conditions. A more detailed discussion of the procedures, reagents and conditions for deprotection of hydroxyl protecting group is described in literature, for example, by T.W. Greene and P.G.M. Wuts in “Protective Groups in Organic Synthesis” 3rd ed., John Wiley & Son, Inc., 1999.


Scheme 8 illustrates the preparation of some other carboxylic acid isosteres of bile acid, such as the compound of formula (10-1), the compound of formula (10-2) and the compound of formula (10-3). R7, R2 and m are defined as previously.




embedded image


embedded image


EXAMPLES

The compounds and processes of the present invention will be better understood in connection with the following examples, which are intended as an illustration only and not limiting of the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.


Example 1



embedded image


The bile acid analog (1-1, 0.3 mmol), HATU (0.3 mmol) and DIPEA (2.4 mmol) were first dissolved in DMF (5 mL). The solution was stirred at room temperature for 10 min., the methyl hydroxylamine was then added. The resulting mixture was stirred at room temperature for 2 h (monitored by TLC and LC/MS), then quenched with brine and 1 N HCl, and extracted with ethyl acetate. The combined organic layers were washed with brine and concentrated. The residue was purified by chromatography on silica gel using hexane/acetone (100/0 to 60/40, 10 min) to give the the compound of example 1 in 79% yield.


The examples 2 to 4 were prepared using same procedure as the one used in example preparation. The MS data is delineated in Table 7.




embedded image













TABLE 7





Example
Ra =
R7 =
Yield (%)
ESMS (M + 1)







1
Me
H
79
422.33


2
i-Pr
H
77
450.46


3


embedded image


H
60
490.60





4


embedded image


Et
65
526.59









Example 5



embedded image


The bile acid analog (6-ECDCA, 0.15 mmol) is dissolved in DCM (2 mL)/DMF (0.5 mL). To the solution is added DMAP (0.3 mmol), EDCI (0.3 mmol) and cyanamide (0.45 mmol) sequentially. The mixture is stirred at room temperature for 2 h (reaction is monitored by TLC and LC/MS). The mixture is quenched with brine and extracted with ethyl acetate (2×). The combined organic layers are washed with 1 N HCl and sat. NaCl, dried over Na2SO4, and concentrated. The residue is purified by chromatography on silica gel using hexane/acetone (100/0 to 50/50, 10 min) to afford the compound of example 5.


Example 6



embedded image



Step 6-1:




embedded image


6-ECDCA methyl ester compound of formula (6-1) (J. Med. Chem. 2014, 57, 937-954) (0.23 mmol, 100 mg) is dissolved in DCM (2 mL) and cooled to 0° C. To the solution at 0° C. is added DIPEA (0.69 mmol, 89 mg) and chloromethyl methyl ether (0.5 mmol, 40 mg). The resulting solution is stirred at 0° C. to room temperature until TLC indicates the reaction is complete. The reaction is quenched by saturated NaHCO3 and extracted with DCM. The combined organic layers is washed with 1 M HCl, dried over Na2SO4, and concentrated in vacuo. Purification of the residue by SiO2 chromatography provides compound of formula (6-2).


Step 6-2:




embedded image


The ester compound of formula (6-2) (100 mg, 0.19 mmol) is dissolved in THF (2 mL). To the solution at 0° C. is added dry MeOH (0.29 mmol) and LiBH4 solution (2 M in THF, 0.15 mL, 0.3 mmol). The mixture is stirred at 0° C. for 8 h or until TLC indicates the reaction is complete. The reaction is quenched with 1 M NaOH, warmed to room temperature, and extracted with EtOAc. The combined organic layer is washed with water, dried over Na2SO4, and concentrated in vacuo. Purification of the residue by SiO2 chromatography provides compound of formula (6-3).




embedded image



Step 6-3


The alcohol compound of formula (6-3) (100 mg, 0.20 mmol) is dissolved in DCM (2 mL). To the solution at 0° C. is added triphenylphosphine (0.20 mmol, 52 mg) and tetrabromomethane (0.20 mmol, 66 mg). The resulting mixture is stirred at 0° C. for 40 min and then concentrated in vacuo. Purification of the residue by SiO2 chromatography provides compound of formula (6-4).




embedded image



Step 6-4:


The bromide compound of formula (6-4) (100 mg, 0.18 mmol) is dissolved in trimethylphosphite (0.5 mL). The mixture is heated at 130° C. for 4 h and cooled to room temperature. Purification of the residue with C18 chromatography provides compound of formula (6-5).


Step 6-5:




embedded image


The phosphate compound of formula (6-5) (100 mg, 0.17 mmol) is dissolved in a solution of 1 M NaOH in MeOH (1.7 mL). The mixture is stirred at room temperature for 14 h. MeOH is removed in vacuo and the residue is dissolved in HCl/dioxane solution (4 M, 2 mL). The resulting mixture is stirred at room temperature for 2 h or until LC/MS indicates the completion of the reaction. Removal of the solvent and purification of the residue by C18 chromatography provides example 6.


Example 8



embedded image



Step 8-1:




embedded image


MEMCl (3.7 mL, 30 mmol) was added to a stirred solution of (8-1) (4.35 g, 10 mmol) (J. Med. Chem. 2014, 57, 937-954) and DIPEA (10.3 mL, 60 mmol) in DCM (100 mL) at 0° C. under N2. The resulting reaction mixture was allowed to warm up to RT and stirred overnight, then quenched with water (50 mL) and 1 N HCl (50 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated to give 6.5 g of crude product (8-2), which was used directly for next step. LC-MS observed 2M+NH4=1062.83 (Calcd. 1062.81).


Step 8-2:




embedded image


The above mentioned crude product (8-2) (4.18 g, 8.0 mmol) was first dissolved in THF (30 mL) at 0° C. under N2, dry MeOH (1.28 mL, 32 mmol) was added, followed by slow addition of LiBH4 (697 mg, 32 mmol). The mixture was stirred at 0° C. for 6 h, TLC and LC-MS analysis showed partial conversion of the starting material, more LiBH4 (348 mg, 16 mmol) was then added. The mixture was allowed to warm up to RT and stirred overnight, quenched with 1 M aq. NaOH (20 mL), and extracted with ethyl acetate. The combined organic layers were washed with brine and concentrated. The residue was purified by chromatography on silica gel using hexane/acetone (100/0 to 60/40, 10 min) to afford alcohol product (8-3) (3.2 g, 94% yield based on 86% conversion) as a white foam. LC-MS observed 2M+NH4=1006.83 (Calcd. 1006.83).


Step 8-3:




embedded image


To a stirred solution of (8-3) (870 mg, 1.76 mmol) in THF (10 mL) at RT under N2 was added 2-nitrophenyl selenocyanate (800 mg, 3.52 mmol), followed by PBu3 (0.87 mL, 3.52 mmol). The reaction mixture was stirred at RT for 3 h, and then concentrated. The residue was purified by chromatography on silica gel using hexane/EtOAc (100/0 to 60/40, 10 min) to give a product (8-4) as a yellow oil (1.14 g, 95% yield).


Step 8-4:




embedded image


To a stirred solution of (8-4) (1.14 g, 1.68 mmol) in THF (20 mL) at RT was added slowly H2O2 (30% in H2O, 3.8 mL, 33.6 mmol). The reaction mixture was allowed to warm up to RT and stirred for 20 h, quenched with H2O/brine (1/1), and extracted with EtOAc. The combined organic layers were washed with brine and concentrated. DCM was added to the residue, and the solid was removed by filtration and washed with DCM. The filtrate was concentrated. The residue was purified by chromatography on silica gel using hexane/EtOAc (100/0 to 70/30, 10 min) to obtain a product (8-5) as a pale yellow oil (701 mg, 87% yield).


Step 8-5:




embedded image


A solution of (8-5) (28 mg, 0.06 mmol) in THF (2 mL) at RT was treated with HCl (37%, 0.1 mL). The reaction mixture was stirred at RT for 2 h, quenched with sat NaHCO3, and extracted with EtOAc. The combined organic layers were washed with brine and concentrated. The residue was purified by chromatography on silica gel using hexane/EtOAc (100/0 to 60/40, 10 min) to afford a product as a white foam (8-6) (20 mg, 87% yield). LC-MS observed 2M+1=777.68 (Calcd. 777.66). 1HNMR (500 MHz, CDCl3): δ 5.77 (1H, m), 4.90 (2H, d, J=11.5 Hz), 3.71 (1H, s), 3.40 (1H, br s), 0.90 (6H, br s), 0.67 (3H, s).


Step 8-6:




embedded image


A solution of (8-6) (58 mg, 0.15 mmol) and 2,6-difluoro-4-iodophenol (58 mg, 0.23 mmol) in DMF (1.5 mL) at RT was degassed with N2 for 10 min, Et3N (43 μl) and Pd(OAc)2 (4 mg) were added, and degassed for another 10 min. The reaction mixture was heated to 80° C. and stirred overnight, cooled down to RT, quenched with 3% citric acid and brine (1/1), and extracted with EtOAc. The combined organic layers were washed with brine and concentrated. The residue was purified by chromatography on silica gel using hexane/EtOAc (100/0 to 50/50, 10 min) to obtain example 8 as a white solid (64 mg, 83% yield). LC-MS observed M+HCO2H−1=561.34 (Calcd. 561.37).


Example 9



embedded image


Pd/C (10%, 10 mg) was first added to a solution of example 8 (38 mg, 0.07 mmol) in MeOH/EtOAc (1/1, 2 mL). The mixture was first degassed with N2 for 15 min and then stirred under H2 for 16 h, filtered through celite, and the solid was washed with MeOH and EtOAc. The filtrate was concentrated and dried to provide example 9 as a white solid (35 mg, 92% yield). LC-MS observed M−1=517.35 (Calcd. 517.36).


Example 10



embedded image



Step 10-1:




embedded image


To a solution of 6α-ethylchenodeoxycholic acid (6.5 g, 15.5 mmol) in MeOH (130 mL) was added sulfuric acid (98%, 0.13 mL). The solution was stirred at 23° C. for 24 h, and concentrated in vacuo. Purification of the residue on silica gel (105 g) with 0-30% acetone in hexane provided compound 10-1 (6.6 g, 98% yield).


Step 10-2:




embedded image


To a solution of compound 10-1 (6.39 g, 14.7 mmol) in DMF (30 mL) was added imidazole (2.20 g, 32.3 mmol) and TBSCl (2.33 g, 15.5 mmol). The mixture was stirred at 23° C. for 20 h, quenched with pH 7 buffer, and extracted with MTBE. The organic layer was washed with sat. NaCl solution, dried over Na2SO4, and concentrated in vacuo. Purification of the residue on silic gel (105 g) with 0-50% EtOAc/hexane provided compound 10-2 (7.59 g, 94% yield).


Step 10-3:




embedded image


To a solution of 10-2 (7.59 g, 13.85 mmol) in THF was added LiBH4 (2.0 M in THF, 41.6 mmol, 20.8 mL) and anhydrous MeOH (1.7 mL, 41.6 mmol) dropwise. The mixture was stirred at 23° C. for 15 h, slowly quenched with water (100 mL), and extracted with EtOAc. The aqueous layer was acidified with 1 M HCl to pH 5 and extracted with EtOAc (2×). The organic layers were combined, washed with 1 M HCl solution, sat. NaCl, dried over Na2SO4, and concentrated in vacuo. Purification of the residue on silic gel (105 g) with 0-30% EtOAc/hexane provided compound 10-3 (6.5 g) in 90% yield.


Step 10-4:




embedded image


To a solution of 10-3 (200 mg, 0.38 mmol) in toluene (3 mL) was added PPh3 (259 mg, 0.99 mmol) and imidazole (129 mg, 1.9 mmol). The mixture was stirred at RT for 5 min and iodine (193 mg, 1.52 mmol) was added. The reaction mixture was stirred at RT for 1.5 h, quenched with sat. Na2S2O3 solution, and extracted with DCM (2×). The organic layers were combined, dried over Na2SO4, and concentrated in vacuo. Purification of the residue on 12 g of silica with 0-20% EtOAc/hexane provided 240 mg of 10-4 (contains PPh3).


Step 10-5:




embedded image


The above product 10-4 was dissolved in MeOH (15 mL) and treated with 37% HCl (0.03 mL). The solution was stirred at RT for 15 min and concentrated in vacuo. Purification of the residue on 12 g of silica with 0-50% EtOAc in hexane provided 10-5 (165 mg) in 84% yield (2 steps). [2M+1]+, 1033.50.


Step 10-6:




embedded image


In a seal tube 10-5 (165 mg, 0.32 mmol) was dissolved in EtOH/THF/H2O (2 mL/1 mL/2 mL). To the solution was added Na2SO3 (807 mg, 6.4 mmol). The tube was sealed and heated at 100° C. for 5 h, cooled to RT, and diluted with water. The mixture was loaded on 34 g of C18 silica and eluted with 10-30% MeCN/H2O. Example 6 (166 mg) was obtained as a sodium salt. [M+NH4]+, 488.34.


Example 11



embedded image


embedded image


Example 11 was prepared from known acid 11-1 employing the same protocol as synthesis of Example 10.


Example 12



embedded image



Step-12-1:




embedded image


To a solution of 10-2 (7.13 g, 12.98 mmol) in THF (40 mL) at −78° C. was added a solution of NaHMDS in THF (1.0 M, 27.3 mL) dropwise over 10 min. The mixture was stirred at −78° C. for 1.5 h and a solution of PhSeBr (3.68 g, 15.6 mmol) in THF (10 mL) was added dropwise. The mixture was stirred at at −78° C. for 2.5 h and at RT for 30 min. The reaction was quenched at 0° C. with sat. NH4Cl solution and extracted with EtOAc (2×). The combined organic layer was washed with sat. NaCl solution and concentrated in vacuo. The residue was dissolved in EtOAc (35 mL), cooled to 0° C., and treated with 30% H2O2 (7 mL). The resulting mixture was rigorously stirred for 40 min, diluted with EtOAc, and washed with sat. NaHCO3 solution and sat. NaCl solution. The organic layer was concentrated and purified on 120 g of silica with 0-20% acetone in hexane, which provided 12-1 (5.46 g) in 77% yield.


Step 12-1:




embedded image


To a solution of 12-1 (2.0 g, 3.66 mmol) in DCM (12 mL) at 0° C. was added 1-methylimidazole (0.58 mL, 7.32 mmol) and TMSCl (0.7 mL, 5.49 mmol). The mixture was stirred at 0° C. for 2.5 h, quenched with 5% NaHCO3, and extracted with DCM. The organic layer was dried over Na2SO4, and concentrated in vacuo. Purification of the residue on 50 g of silica with 0-10% EtOAc/hexane provided 12-2 (2.1 g) in 93% yield.


Step 12-2:




embedded image


A solution of 12-2 (500 mg, 0.81 mmol) in DCM (20 mL) was cooled to −78° C. Ozone flow (3 psi) was passed through the reaction for 1 min or until the reaction turned blue. The solution was quenched with PPh3 (276 mg), stirred at RT for 16 h, and concentrated in vacuo. Purification of the residue on 25 g of silica with 0-20% EtOAc/hexane provided 12-3 (313 mg).


Step 12-3:




embedded image


To a solution of sulfonamide A (195 mg, 0.58 mmol) in THF (3 mL) at −78° C. was added LiHMDS solution (1.0 M in THF, 1.16 mL) dropwise. The solution was stirred at −78° C. for 30 min and diethylchlorophosphate (0.084 mL, 0.58 mmol) was added. The mixture was stirred at −78° C. for 1 h 20 min and a solution of 12-3 in THF (3 mL) was added dropwise. The reaction was stirred at at −78° C. for 2 h, at 0° C. for 2 h, and at RT for 30 min. The reaction was quenched with sat. NH4Cl and extracted with EtOAc (3×). The combined organic layer was dried over Na2SO4 and concentrated in vacuo. Purification of the residue on 35 g of silica with 0-20% EtOAc in hexane provided 12-4 (209 mg) in 29% yield (2 steps).


Step 12-4:




embedded image


To a solution of 12-4 (50 mg, 0.057 mmol) in ethanol (5 ml) was added palladium hydroxide on carbon (10 mg). The mixture was stirred under hydrogen (120 psi) at RT for 15 h. The reaction was diluted with EtOAc (10 mL), filtered through 2.5 g of SiO2 plug, and concentrated. The crude was purified on SiO2 column with 0-50% EtOAc/hexane, which provided example 12(40.5 mg). (2M+NH4, 1410).


Example 13



embedded image



Step 13-1:




embedded image


To a solution of example 12 (33 mg, 0.047 mmol) in CH2Cl2 (0.54 ml) at 0° C. was added trifluoroacetic acid (0.183 ml, 2.371 mmol) dropwise. The mixture was stirred at 0° C. for 4 h, and concentrated in vacuo. Purification of the residue on SiO2 with 0-50% acetone/hexane provided 13-1 (18.4 mg) in 58% yield. [M+HCOOH−1], 716.41.


Step 13-2:




embedded image


To a solution of 13-1 (18 mg, 0.027 mmol) in CH2Cl2 (0.3 ml) at 0° C. was added trifluoroacetic acid (0.103 ml, 1.34 mmol) dropwise. The mixture was stirred at 0° C. for 2 h, warmed to RT and stirred for 3 h, and concentrated in vacuo. The crude was dissolve in MeOH/EtOAc (5:1, 1 mL) and K2CO3 (37 mg, 0.268 mmol) was added. The mixture was stirred at RT for 2 h, filtered, and concentrated. Purification of the residue on silica gel with 0-50 acetone/hexane provided example 13 (5.4 mg). [M+HCOOH−1], 500.30.


The example compounds 14 to 29 were prepared using similar procedures used above. The MS data is delineated in Table 8.











TABLE 8







MS data


Example
Structure
(M − 1)







 8


embedded image


561.34 (M − 1 + HCO2H)





 9


embedded image


517.35





10


embedded image


[M + HCOOH − 1], 515.29





11


embedded image


[M + HCOOH − 1], 501





12


embedded image


[M + NH4]+, 713.56





13


embedded image


[M + HCOOH − 1]+, 500.30





14


embedded image


[M + NH4]+, 499





15


embedded image


[M + NH4]+, 501.37





16


embedded image


[M − 2H2O + 1]+, 552.39





17


embedded image


[M − 2H2O + 1]+, 432.30





18


embedded image


[2M + NH4]+, 1164.88





19


embedded image


[2M + NH4]+, 924.74





20


embedded image


[2M + NH4]+, 1168.90





21


embedded image


[M − 1], 496.31





22


embedded image


[M − 1], 558.33





23


embedded image


[M + HCOOH − 1], 514.32





24


embedded image


[M + HCOOH − 1], 577.33





25


embedded image


[M + HCOOH − 1], 515.32





26


embedded image


[2M + NH4]+, 1262.79





27


embedded image


[M − 2H2O + 1]+, 491





28


embedded image


[M + 1]+, 559.39





29


embedded image


[M + 1]+, 545.38










Assays


Human FXR (NR1H4) Assay


Determination of a ligand mediated Gal4 promoter driven transactivation to quantify ligand binding mediated activation of FXR. FXR Reporter Assay kit purchased from Indigo Bioscience (Catalogue number: IB00601) to determine the potency and efficacy of compound developed by Enanta that can induce FXR activation. The principle application of this reporter assay system is to quantify functional activity of human FXR. The assay utilizes non-human mammalian cells, CHO (Chinese hamster ovary) cells engineered to express human NR1H4 protein (referred to as FXR). Reporter cells also incorporate the cDNA encoding beetle luciferase which catalyzes the substrates and yields photon emission. Luminescence intensity of the reaction is quantified using a plate-reading luminometer, Envision. Reporter Cells include the luciferase reporter gene functionally linked to an FXR responsive promoter. Thus, quantifying changes in luciferase expression in the treated reporter cells provides a sensitive surrogate measure of the changes in FXR activity. EC50 and efficacy (normalize to CDCA set as 100%) is determined by XLFit. The assay is according to the manufacturer's instructions. In brief, the assay was performed in white, 96 well plates using final volume of 100 ul containing cells with different doses of compounds. Retrieve Reporter Cells from −80° C. storage. Perform a rapid thaw of the frozen cells by transferring a 10 ml volume of 37° C. cell recovery medium into the tube of frozen cells. Recap the tube of Reporter Cells and immediately place it in a 37° C. water bath for 5-10 minutes. Retrieve the tube of Reporter Cell Suspension from the water bath. Sanitize the outside surface of the tube with a 70% alcohol swab, and then transfer it into the cell culture hood. Dispense 90 μl of cell suspension into each well of the 96-well Assay Plate. Transfer the plate into 37° C. incubator, allowing the cells adherent to the bottom of the well. Dilute compounds in Dilution Plate (DP), and administrate to cells at Assay Plate (AP). DMSO content of the samples was kept at 0.2%. Cells were incubated for additional 22 hours before luciferase activities were measured. Thirty minutes before intending to quantify FXR activity, remove Detection Substrate and Detection Buffer from the refrigerator and place them in a low-light area so that they may equilibrate to room temperature. Remove the plate's lid and discard all media contents by ejecting it into an appropriate waste container. Gently tap the inverted plate onto a clean absorbent paper towel to remove residual droplets. Cells will remain tightly adhered to well bottoms. Add 100 μl of luciferase detection reagent to each well of the assay plate. Allow the assay plate to rest at room temperature for at least 5 minutes following the addition of LDR. Set the instrument (Envision) to perform a single 5 second “plate shake” prior to reading the first assay well. Read time may be 0.5 second (500 mSec) per well. EC50 and Efficacy (normalize to CDCA set as 100%) is determined by XLFit.


In Vitro Human TGR5 (GPBAR1) Activity Assay


The potency and efficacy of the compounds of the invention on TGR5 receptor was evaluated using in vitro assays which carried out using the express kit from DiscoverX (cAMP HUNTER™ eXpress GPBAR1 CHO-K1 GPCR Assay; Cataloguer number: 95-0049E2CP2S)GPBAR1 (G protein-coupled bile acid receptor 1) encodes a member of the G protein-coupled receptor (GPCR) superfamily. GPBAR1 activation following ligand binding initiates a series of second messenger cascades that result in a cellular response. Treatment of CHO cells expressing GPBAR1 with bile acids induces the production of intracellular cAMP and internalization of the receptor. The potency and efficacy of compound for GPBAR1 activation by measuring cyclic adenosine monophosphate (cyclic AMP or cAMP) levels in live cells using a competitive immunoassay based on Enzyme Fragment Complementation (EFC). In briefly, following seeding the cells into the white, 96 well microplate, place it in a 37° C., 5% CO2 in a humidified incubator for 18-24 hours prior to testing. On second day, proceed to the appropriate cAMP Hunter eXpress Protocol according to the manufacturer's instructions. Dissolve agonist compound in DMSO at the desired stock concentration, and prepare 3-fold serial dilutions of agonist compound in Cell Assay Buffer. The concentration of each dilution should be prepared at 4× of the final screening concentration (i.e. 15 μL compound+45 μL Cell Assay Buffer/cAMP Antibody Reagent). For each dilution, the final concentration of solvent should remain constant. Transfer 15 μL diluted compound the assay plate and incubate the plate for 30 minutes at 37° C. Following agonist incubation, add 60 μL of working cAMP detection reagents/cAMP Solution mixture (cAMP Lysis Buffer, Substrate Reagent 1, cAMP Solution D) to the appropriate wells. Incubate for 1 hour at room temperature (23° C.), protected from light. Add 60 μl of cAMP Solution A to the appropriate wells. Incubate for 3 hours at room temperature (23° C.), protected from light. Read samples on Envision standard luminescence plate reader. Calculate of average EC50 after logarithm transformation.


To assess the FXR agonistic potency of the example compounds as well as for reference compound, potency ranges were determined in the Human FXR (NR1H4) Assay as listed below in Table 9. The efficacy was normalized to CDCA set as 100%. (A=EC50<0.1 μM; B=0.1 μM<EC50<1.0 μM; C=1.0 μM<EC50<10 μM; D=EC50>10 μM).











TABLE 9





Example
EC50 (μM)
Efficacy (%)

















CDCA
D
100


6-ECDCA
B
223


1
D
11


2
D
13


3
D
2


4
C
270


8
B
298


9
C
271


10
C
4


11
n/a
1


12
C
1


13
C
118


14
B
167


15
B
195


16
C
97


17
B
147


18
C
16


19
C
3


20
D
60


21
C
74


22
C
249


23
C
202


24
C
75


25
C
5


26
C
129


27
C
246


28
B
265


29
C
49.









While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims
  • 1. A compound represented by Formula IA or Formula IB, or a pharmaceutically acceptable salt, ester, solvate, or combination thereof:
  • 2. The compound of claim 1 represented by Formula IIA or Formula IIB or a pharmaceutically acceptable salt, ester, solvate, or combination thereof:
  • 3. The compound of claim 1 represented by Formula III-A or Formula III-B or a pharmaceutically acceptable salt, ester, solvate, or combination thereof:
  • 4. The compound of claim 1 represented by Formula IV-A or Formula IV-B or a pharmaceutically acceptable salt, ester, solvate, or combination thereof:
  • 5. The compound according to claim 1 selected from: (i) compounds of Formula IV-A,
  • 6. The compound according to claim 1, which is selected from: (i) compounds of Formula V-A,
  • 7. The compound according to claim 1 which is selected from (i) compounds of Formula VI-A,
  • 8. A pharmaceutical composition comprising a compound of claim 1and a pharmaceutically acceptable carrier.
  • 9. A method for ameliorating a disease or condition selected from the group consisting of primary biliary cirrhosis, cerebrotendinous xanthomatosis, primary sclerosing cholangitis, alcoholic liver disease, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, atherosclerosis, hypercholesterolemia, hypertriglyceridemia, Type II diabetes, and hepatocellular carcinoma in a subject in need thereof, comprising administering to the subject a therapeutically effective amount of a compound represented by Formula IA or Formula IB, or a pharmaceutically acceptable salt, ester, solvate or combination thereof:
  • 10. The method of claim 9, wherein the disease is primary biliary cirrhosis.
  • 11. The method of claim 9, wherein the disease is nonalcoholic steatohepatitis.
  • 12. The method of claim 9, wherein the disease is nonalcoholic fatty liver disease.
  • 13. A compound selected from the compounds set forth below, or a pharmaceutically acceptable salt, ester, solvate, or combination thereof:
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/084,769, filed on Nov. 26, 2014. The entire teachings of the above application are incorporated herein by reference.

US Referenced Citations (39)
Number Name Date Kind
4202876 Monks et al. May 1980 A
5466815 Enhsen et al. Nov 1995 A
5512558 Enhsen et al. Apr 1996 A
5646316 Jacobson et al. Jul 1997 A
5656277 Berlati et al. Aug 1997 A
20050054559 Gallop et al. Mar 2005 A1
20070142340 Pellicciari Jun 2007 A1
20080039435 Pellicciari Feb 2008 A1
20080182832 Pellicciari et al. Jul 2008 A1
20080214515 Ferrari et al. Sep 2008 A1
20090062526 Yu et al. Mar 2009 A1
20090163474 Zhang et al. Jun 2009 A1
20100063018 Pellicciari et al. Mar 2010 A1
20100324004 McLane et al. Dec 2010 A1
20110172198 Pellicciari Jul 2011 A1
20130116218 Kaplan et al. May 2013 A1
20130345188 Steiner et al. Dec 2013 A1
20140057886 Pellicciari et al. Feb 2014 A1
20140186438 Manku et al. Jul 2014 A1
20140187633 Manku et al. Jul 2014 A1
20140206657 Yu et al. Jul 2014 A1
20140371190 Pellicciari et al. Dec 2014 A1
20150112089 Finch et al. Apr 2015 A1
20160130297 Or et al. May 2016 A1
20160145295 Or et al. May 2016 A1
20160145296 Wang et al. May 2016 A1
20160176917 Wang et al. Jun 2016 A1
20160185815 Wang et al. Jun 2016 A1
20160229886 Shen et al. Aug 2016 A1
20160289262 Wang et al. Oct 2016 A1
20170101434 Pellicciari et al. Apr 2017 A1
20170240585 Shen et al. Aug 2017 A1
20170240586 Or et al. Aug 2017 A1
20170240587 Or et al. Aug 2017 A1
20170260225 Pellicciari et al. Sep 2017 A1
20180148469 Wang et al. May 2018 A1
20180148470 Li et al. May 2018 A1
20180237471 Wang et al. Aug 2018 A1
20180291058 Wang et al. Oct 2018 A1
Foreign Referenced Citations (33)
Number Date Country
106478759 Mar 2017 CN
106518946 Mar 2017 CN
583566 Feb 1994 EP
1364645 Nov 2003 EP
1947108 Jul 2008 EP
H1160594 Mar 1999 JP
H11109628 Apr 1999 JP
8702367 Apr 1987 WO
0037077 Jun 2000 WO
0228881 Apr 2002 WO
03030612 Apr 2003 WO
03086303 Oct 2003 WO
2005089316 Sep 2005 WO
2007089907 Aug 2007 WO
2007095174 Aug 2007 WO
2007111994 Oct 2007 WO
2008009407 Jan 2008 WO
2008091540 Jul 2008 WO
2010014836 Feb 2010 WO
WO 2010014836 Feb 2010 WO
2013020108 Feb 2013 WO
2013166176 Nov 2013 WO
2013192097 Dec 2013 WO
2014036379 Mar 2014 WO
2014184271 Nov 2014 WO
2015017813 Feb 2015 WO
2015181275 Dec 2015 WO
2016173493 Nov 2016 WO
2016173524 Nov 2016 WO
2016205475 Dec 2016 WO
2017027396 Feb 2017 WO
2017053826 Mar 2017 WO
2017129125 Aug 2017 WO
Non-Patent Literature Citations (48)
Entry
Okahata et al., “Catalytic Hydrolysis of p-Nitrophenyl Esters in the Presence of Representative Ammonium Aggregates. Specific Activation of a Cholesteryl Nucleophile Bound to a Dialkylammonium Bilayer Membrane.” Bulletin of hte Chemical Society of Japan, vol. 52(12), pp. 3647-3653, 1979.
Sato, et al., “Novel Potent and Selective Bile Acid Derivatives as TGR5 Agonists: Biological Screening, Structure-Activity Relationships, and Molecular Modeling Studies,” J. Med. Chem., 51:1831-1841, 2008.
Macchiarulo, et al., “Probing the Binding Site of Bile Acids in TGR5,” Medicinal Chemistry Letters, 4(12):1158-1162, 2011.
U.S. Appl. No. 14/951,989, filed Nov. 25, 2015.
U.S. Appl. No. 14/976,294, filed Dec. 21, 2015.
U.S. Appl. No. 15/041,811, filed Feb. 11, 2016.
U.S. Appl. No. 15/085,800, filed Mar. 30, 2016.
International Search Report for International Application No. PCT/US15/62743, dated Apr. 8, 2016.
Mosesin-4' at www.chemspider.com/ Chemical-Structure. 10375019.html (retrieved from the internet Oct. 11, 2016).
Pellicciari, et al., “6α-Ethyl-Chenodeoxycholic Acid (6-ECDCA), a Potent and Selective FXR Agonist Endowed with Anticholestatic Activity,” Journal of Medicinal Chemistry, 45(17):3569-3572, 2002.
Herr, “5-Substituted-1-H-tetrazoles as Carboxylic Acid Isosteres: Medicinal Chemistry and Synthetic Methods,” Bioorganic & Medicinal Chemistry 10(11):3379-3393, 2002.
U.S. Appl. No. 15/439,531, filed Feb. 22, 2017.
U.S. Appl. No. 15/439,358, filed Feb. 22, 2017.
Silverman, “Prodrugs and Drug Delivery Systems,” The Organic Chemistry of Drug Design and Drug Action, pp. 352-399, 1992.
Banker, et al., Modern Pharmaceutics, 3rd edition, 1996.
Bundgaard, “Design of Prodrugs: Bioreversible derivatives for various functional groups and chemical entities,” Design of Prodrugs, Chapter 1, 1985.
Wolff, Burger's Medicinal Chemistry and Drug Discovery, 5(1):975-977, 1995.
Kim, et al., “Synthesis and Antimicrobial Activity of New 3α-Hydroxy-23,24-bisnorcholane Polyamine Carbamates,” Bioorganic & Medicinal Chemistry Letters, 11:3065-3068, 2001.
Solaja, et al., “Novel 4-Aminoquinolines Active against Chloroquine-Resistant and Sensitive P. falciparum Strains that also Inhibit Botulinum Serotype A,” J. Med. Chem., 51:4388-4391, 2008.
Willemen, et al., “Alkyl Derivatives of Cholic Acid as Organogelators: One-Component and Two-Component Gels,” Langmuir, 18(19):7102-7106, 2002.
Pore, et al., “Design and synthesis of fluconazole/bile acid conjugate using click reaction”, Tetrahedron, 62:11178-11186, 2006.
Nikolaienko, et al., “Rapid way to fluorescent cholic-based chemosensor precursors”, Synthetic Organic Chemistry, pp. 1-4, 2011.
Sepe, et al., “Farnesoid X receptor modulators (2011-2014): a patent review,” Expert Opinion on Therapeutic Patents, 25:8, 885-896, 2015.
Crawley, “Farnesoid X Receptor Modulators: a patent review,” Expert Opinion on Therapeutic Patents, 20(8): 1047-1057, 2010.
U.S. Appl. No. 15/826,233, filed Nov. 29, 2017.
U.S. Appl. No. 15/896,400, filed Feb. 14, 2018.
Briere, et al., “Novel small molecule agonist of TGR5 possesses anti-diabetic effects but causes gallbladder filling in mice.” PLOS one, 10(8):1-17, 2015.
Sajisha, et al., “Remarkable isomer-selective gelation of aromatic solvents by a polymorph of a urea-linked bile acid-amino acid conjugate,” RSC Advances, 4(81):43167-43171, 2014. Abstract only.
Mayorquin-Torres, et al., “Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains”. Steroids, (101):21-27, 2015.
Ali, et al., “Recent advances in the development of farnesoid X receptor agonists,” Ann Transl Med, 3(1):5, pp. 1-16, 2015.
PUBCHEM-CID-122592927, Created Date: Dec. 8, 2016.
PUBCHEM-CID-122592945, Created Date: Dec. 8, 2016.
U.S. Appl. No. 16/222,380, filed Dec. 17, 2018.
Ballatore, C. et al., “Carboxylic Acid (Bio)lsosteres in Drug Design”, ChemMedChem., vol. 8, No. 3, 2013, 385-395.
Coleman, J. P. et al., “Metabolic Fate and Hepatocyte Toxicity of Reverse Amide Analogs of Conjugated Ursodeoxycholate in the Rat”, J. Steroid Biochem. Molec. Biol., vol. 64, No. 1/2, 1998, 91-101.
Fini, A. et al., “Basic Cholane Derivatives. XI: Comparison between Acid and Basic Derivatives”, Journal of Pharmaceutical Sciences, vol. 81, No. 7, 1992, 726-730.
Fini, A. et al., “Quantitative Structure-Antimicrobial Activity Relationship in 5B-Cholanyl-24-benzylamine Derivatives”, Journal of Pharmaceutical Sciences, vol. 79, No. 7, 1990, 603-605.
Gioiello, A et al., “Extending SAR of bile acids as FXR ligands: discovery of 23-N-(carbocinnamyloxy)-3[alpha],7[alpha]dihydroxy- 6[alpha]-ethyl-24-nor-5[beta]-ch o l an-23-amine”, Bioorganic & Medicinal Chemistry, vol. 19, No. 8, Apr. 15, 2011, 2650-2658.
Griffiths, W. J. et al., “Charge-remote fragmentation of bile acids derivatized with amino-sulphonic acids”, Rapid Communications in Mass Spectrometry, vol. 7, No. 3, Mar. 1, 1993, 235-240.
Honorio, K. M. et al., “Hologram QSAR Studies on Farnesoid X Receptor Activators”, Letters in Drug Design & Discovery, vol. 3(4), 2006, 261-267.
Macchiarulo, A. et al., “Charting the chemical space of target sites: insights into the binding modes of amine and amidine groups”, Journal of chemical information and modeling, 49(4):, Mar. 18, 2009, 900-912.
Okada, J. , “Preparation of bile acid derivatives and their use as nasal absorption enhancers”, Database CA [Online] Chemical Abstracts Service, Columbus, Ohio, US; retrieved from STN Database accession No. 1999:142390.
Okahata, Y. et al., “Base-catalyzed proton abstraction from .beta.-(p-nitrophenoxy)propiophenone in the presence of single-chain, double-chain, and triple-chain ammonium bilayer membrane aggregates”, Database CA [Online] Chemical Abstracts Service, Database accession No. 1980:549272, abstract, 1980.
Opsenica, I. M. et al., “4-Amino-7-chloroquinolines: Probing Ligand Efficiency Provides Botulinum Neurotoxin Serotype A Light Chain Inhibitors with Significant Antiprotozoal Activity”, J. Med. Chem., vol. 56, 2013, 5860-5871.
Pellicciari, R. et al., “Back Door Modulation of the Farnesoid X Receptor: Design, Synthesis and Biological Evaluation of a Series of Side Chain Modified Chenodeoxycholic Acid Derivatives”, Journal of Medicinal Chem., American Chemical Society, vol. 49, No. 4, Jun. 15, 2006, 4208-4215.
Pellicciari, R. et al., “Bile Acid Derivatives as Ligands of the Farnesoid X Receptor. Synthesis, Evaluation, and Structure-Activity Relationship of a Series of Body and Side Chain Modified Analogues of Chenodeoxycholic Acid”, Journal of Medicinal Chemistry, American Chemical Society, vol. 47, Jul. 23, 2004, 4559-4569.
Roda, A. et al., “Effect of Basic Cholane Derivatives on Intestinal Cholic Acid Metabolism: In Vitro and In Vivo Activity”, Journal of Pharmaceutical Sciences, vol. 81, No. 3, 1992, 237-240.
Okahata, “Base-catalyzed proton abstraction from.beta.-(p-nitrophenoxy) propiophenone in the presence of Single-chain, double-chain, and triple-chain ammonium bilayer membrane aggregates”, The Chemical Society of Japan, vol. 3, Mar. 10, 1980, 442-449. English Abstract only.
Related Publications (1)
Number Date Country
20160145296 A1 May 2016 US
Provisional Applications (1)
Number Date Country
62084769 Nov 2014 US