The present invention relates to such a bill handling device as to be mounted to an automated teller machine (ATM) which, for example, is installed in a financial institution or the like, and a bill storage box with which the bill handling device is loaded.
Heretofore, a bill handling device has been mounted to an automated teller machine which is used in a financial institution or the like. This bill handling device is provided with a bill insert/discharge port through which a user carries out charging and taking-out of bills, and a bill discriminating unit for discriminating inserted bills or bills to be paid. Also, the bill handling device is provided with a temporarily storage box for temporarily storing inserted bills until the transaction is done, a bill storage box for storing and charging bills, and a bill conveyance path for conveying bills to each of the units described above.
The bill storage box includes a reject box for storing reject bills which are discriminated as not reaching a predetermined reference in the bill discriminating unit, a recycle box for storing bills for insert as well as discharge by denomination, a loading box for carrying out supplement of the bills to the recycle box, and recovery of the bills from the recycle box, and the like.
In recent days, along with an increase in denomination transacted in the ATM, a bill handling device to which as many bill storage boxes as possible are mounted has been proposed. For example, in a bill handing device described in a PATENT LITERATURE 1, plural bill storage boxes are disposed in a lower portion of the device and in an anteroposterior direction of the device side by side, and other mechanical units such as a bill insert/discharge port, a bill discriminating unit, and a temporarily storage box are intensively disposed in the upper portion of the device.
The denominations which can be handled in the bill handing device correspond to the number of bill storage boxes described above. That is to say, many denominations can be handled as the number of bill storage boxes is larger. However, in the case of the bill handling device described in the PATENT LITERATURE 1, the bill handling device grows in size in an anteroposterior direction in correspondence to the number of bill storage boxes. For this reason, a bill handling device which can cope with the increase in denomination without causing the device to grow in size has been required.
For the request as described above, as shown in a PATENT LITERATURE 2, a bill storage box which includes plural storage units in the inside thereof is proposed. In the case of the bill storage box described in the PATENT LITERATURE 2, plural denominations can be handled by one bill storage box. For this reason, even when more bill storage box is not added, it becomes possible to provide the bill handling device which can cope with the increase in denomination.
The bill storage box disclosed in the PATENT LITERATURE 2 includes a bill insert/discharge port through which bills are inserted and discharged from and to the outside, a sorting gate for switching connection of a conveyance path in order to sort conveyance destinations of the bills, and plural storage units having a feeding/accumulation mechanical unit (a feed roller, a gate roller, and the like) for carrying out a feeding operation and an accumulating operation for bills. The bill storage box concerned is provided with an internal conveyance path for conveying bills in a vertical direction of a storage box, and a sorting gate for sorting storage destinations of bill.
When the bills being conveyed are retained (jammed) due to some sort of cause in the bill storage box described above (especially, in the inside of the feeding/accumulation mechanical unit, on the internal conveyance path, and on the sorting gate), the retained bills (jammed bills) are removed away by opening a door provided in the bill storage box. However, the jammed bills are hard to remove away in some cases depending on an opening and closing direction of the door, and an opening and closing degree (an angle at which the opening and closing are carried out) of the door. For this reason, it is necessary to enhance the workability.
The present invention aims at providing a bill storage box in which jammed hills are easy to remove away, and a bill handling device which is loaded with the bill storage box.
In order to solve the problems described above, the present invention is characterized in that at least a first bill storage unit and a second bill storage unit are stacked and arranged in the stated sequence from a bill insert/discharge port side provided to the upper surface of the bill storage box; a door for loading and removing bills inside the bill storage units, and an opening and closing part for removing bills retained in an internal conveyance path between the first bill storage unit and the internal conveyance path are included; and the opening and closing direction of the door for loading and removing bills in the first bill storage unit and the opening and closing direction of the opening and closing part are substantially the same.
According to the present invention, the jammed bills retained on the internal conveyance path is made easy to remove away to the outside of the bill storage box, whereby it is possible to provide the bill storage box in which the workability is enhanced, and it is possible to increase a satisfaction level of a user.
Hereinafter, a description will be given with respect to a first embodiment of the present invention with reference to the drawings.
A card/statement processing unit 102 which communicates with a card slot 102a, and which processes a card of a user, and prints a transaction statement which is in turn discharged is provided inside an upper right-hand portion of an ATM 101. A passbook processing unit 103 which communicates with a passbook slot 103a, and which processes a passbook of the user, and prints a transaction detail which is in turn discharged is provided inside an upper left-hand portion of the ATM 101.
In addition, a bill handling device 1 for processing bills is provided inside a lower right-hand portion of the ATM 101. In the bill handling device 1, a bill insert/discharge port through which the user carries out the charging and taking-out of bills communicates with a shutter 20a. Thus, the bill handling device 1 processes credit transaction and disbursement transaction of the bills. A coil processing unit 104 for processing coins is provided inside a lower left-hand portion of the ATM 101. In the coil processing unit 104, the insert/discharge port communicates with the shutter 104a. Thus, the coil processing unit 104 processes the credit transaction and the disbursement transaction of the coins. It is noted that the ATM may have a configuration in which it does not includes the coil processing unit 104.
In addition, a front surface of the ATM. 101 is provided with a customer manipulating unit 105 for displaying and inputting the contents of the transaction.
The bill handling device 1 includes a tray 110 as an installation unit of the bill storage box in a lower portion thereof. Bill storage boxes 70, 71a, 71b, 72a, 72b are detachably mounted to a tray 110 in a state in which they are disposed in a line in an anteroposterior direction of the ATM 101 to the tray 110. It is noted that although in
The ATM 101 includes the card/statement processing unit 102, the passbook processing unit 103, a bill receipt/payment machine 1, the coin processing unit 104, the customer manipulating portion 105, and a main body control unit 106. In the card/statement processing unit 102, the passbook processing unit 103, the bill receipt/payment machine 1, the coin processing unit 104, and the customer manipulating portion 105 carry out the necessary operations under the control by the main body control unit 106.
A bill insert/discharge port 20 is disposed on a side of the front surface (on a side facing the user: an upper right-hand side of
Here, even in any of the case of the bills which are conveyed from the front to the back, and the case of the bills which are conveyed from the back to the front, the bill discriminating unit 30 can carry out the denomination discrimination and the authenticity discrimination. In a word, the bill discriminating unit 30 can carry out the denomination discrimination and the authenticity discrimination for the bills which are bidirectionally conveyed, and can discriminate whether or not the bills should be rejected.
The bill storage boxes 72a, 71b, 72a, 71a for storing the bills, and a loading box 70 for loading/recovering the bills in those bill storage boxes, thereby functioning as a bill loading unit are disposed from the front side toward the backside in the lower portion of the bill handling device 1. The bill storage box 71 (71a and 71b) is a bill storage box having a single storage unit for storing only one denomination in the inside thereof. On the other hand, the bill storage box 72 (72a and 72b) is a bill storage box including two storage units in the inside thereof.
A control unit 2 of the bill handling device 1 is connected to the main control unit 106 of the ATM 101, and carries out the control for the bill handling device 1 in accordance with an instruction issued from the main control unit 106, and the detection of the state of the bill handling device 1. In addition, the control unit 2 sends a state of the bill handling device 1 to the main body control unit 106 as may be necessary.
The bill handling device 1 has a motor for driving the units (the conveyance path 10, the bill insert/discharge port 20, the bill discriminating unit 30, the temporarily storage box 35, the loading box 70, the bill storage boxes 71, 72, the reject box 75), a solenoid, a sensor, and the like. The bill handling device 1 controls the driving of the motor, the solenoid, and the like while the state of the device is monitored by the sensor. In particular, the bill storage box 72 including the two storage units in the inside thereof has motors 61a to 61c each becoming a driving source for the conveyance, the storage/feeding, and the like, and stepping motors 69b, 69c for operating the storage mechanism(s). The two storage units can be operated independently of each other.
By the bill handling device 1 configured in the manner as described above, it becomes possible to carry out the credit transaction, the payment transaction, and the like of the bills.
Hereinafter, a description will be given with respect to the case where the bill storage boxes 71 and 72 are each operated as a recycle box for storing the bills for the credit as well as the payment. It is noted that the bill storage boxes 71 and 72 may also be each operated as either the reject box or loading box described above.
Firstly, a description will be given with respect to the operation of the bill storage box 71 including the single storage unit in the inside thereof.
The feeding/accumulation mechanical unit provided in the storage unit 700a is composed of a feed roller 41a, a pickup roller 42, a gate roller 43a, a brush roller 44a, and a stack guide 45a. In this case, the feed roller 41a rotates in a phase of the operation for accumulating bills and in a phase of an operation for feeding bills, thereby conveying the bills. The gate roller 43a rotates in the phase of the operation for accumulating the bills, while it does not rotate in the phase of the operation for feeding the bills. The brush roller 44a is provided coaxially with the gate roller, and elastic members are radially disposed in the brush roller 44a. Also, the stack guide 45a can be moved in the phase of the operation for accumulating the bills and in the phase of the operation for feeding the bills.
It is noted that when the function of the bill storage box 71 is only the function of accumulating the bills, a structure may also be adopted in which the pickup roller 42a is not included. On the other hand, when the function of the bill storage box 71 is only the function of feeding the bills, a structure may also be adopted in which the stack guide 45a is not included.
The bills which have been conveyed within the bill storage box 71 through the bill insert/discharge port 50a are discharged to the storage unit 700a along with the rotation of the feed roller 41a and the gate roller 43a.
Here, before the bills are discharged to the storage unit 700a, the push plate 46a is moved by a driving force of a stepping motor (not shown). The push plate 46a is controlled in movement in a direction in which the stored bills are moved down so as to ensure a space within the storage unit. Next, the stack guide 45a rotates with a shaft 48a of the feed roller as a fulcrum, thereby obliquely moving the stack guide 45a. The stack guide 45a is obliquely moved, which results in that the bills discharged to the storage unit 700a are moved along a tilt of the stack guide 45a.
The push plate 46a is moved upward by the driving force of the stepping motor (not shown). The push plate 46a is moved upward, so that by a force of a spring or the like (not shown), the bills on the push plate 46a are pressed against the pickup roller 42a by a predetermined pressing force. It is noted that although the case where the push plate 46a presses the bills has been described here, a structure may also be adopted in which the pickup roller 42a presses the bills.
As described above, the pickup roller 42a rotates in the state in which the pressing force is applied between the pickup roller 42a and the bills, whereby the bills contacting the pickup roller 42a can be fed from the storage unit 700a. The bills which have been fed from the storage unit 700a are sent away by the rotating feed roller 41a. Also, the bills pass through the pinch roller 47a while double-feeding is prevented by the gate roller 43a which does not rotate in the feeding direction, and are conveyed one sheet by one sheet from the bill insert/discharge port 50a to the outside of the bill storage box. After the sending-away of a predetermined number of sheets of bills to the outside of the bill storage box has been completed, the driving of the feed roller 41a is stopped.
Next, a description will be given with respect to the operation of the bill storage box 72 including the two storage units in the inside thereof.
The feeding/accumulation, mechanical unit provided in each storage unit 700 (700b, 700c) is composed of a feed roller 41 (41b, 41c), a pickup roller 42 (42b, 42c), a gate roller 43 (43b, 43c), a brush roller 44 (44b, 44c), and a stack guide 45 (45b, 45c) similarly to the feeding/accumulation mechanical unit provided in the storage unit 700a of the bill storage box 71 including the single storage unit in the inside thereof. In particular, the upper storage unit 700b has a structure in which the bills are inserted from the back surface side (from the left-hand side of
The bill insert/discharge port 50b is an insert/discharge port which is common to the upper storage unit 700b and the lower storage unit 700c. A roller 51a for inserting/discharging the bills from/to the outside of the storage box is provided in a position adjacent to the insert/discharge port 50b concerned. The roller 51a, the feed roller 41b, and the gate roller 42b are disposed approximately at the same height, thereby preventing a decrease in a volume of the upper storage unit 700b.
The bill insert/discharge port 50b, the upper storage unit 700b, and the lower storage unit 700c are connected to one another through an internal conveyance path which can convey the bills in the bidirectional direction. Specifically, the internal conveyance path includes an internal conveyance path 80a, and an internal conveyance path 80b. In this case, the internal conveyance path 80a conveys the bills approximately in a horizontal direction (in an anteroposterior direction of the bill storage box). Also, the internal conveyance path 80b conveys the bills approximately in a vertical direction (in a direction perpendicular to the front and back of the bill storage box). The internal conveyance path 80b is structured in such a way that the bills are conveyed while a driven roller is pressed against a conveyance belt 65c disposed on one side, whereby a width of the conveyance path in the anteroposterior direction is limited to the minimum necessary. In addition, a sorting gate 52a for sorting the bills into the internal conveyance path 80a or the internal conveyance path 80b is disposed just under the roller 51a.
It is noted that when the function of the bill storage box 72 is only the junction of accumulating the bills, a structure may also be adopted in which the pickup roller 42 (42b, 42c) is not included. On the other hand, when the function of the bill storage box 72 is only the function of feeding the bills, a structure may also be adopted in which the stack guide 45 (45b, 45c) is not included. In addition, when the function of the bill storage box 72 is only one of the function of accumulating the bills or the function of feeding the bills, the internal conveyance paths 80a and 80b may also be made a conveyance path which can convey the bills only in one direction.
As shown in
It is noted that as described above, the feeding/accumulation mechanical unit provided in the upper storage unit 700b is provided on the back surface side of the bill storage box 72 and the space between the sorting gate 52a and the upper storage unit 700b is narrowed, and as a result, the upper storage unit 700b is disposed so as to be eccentrically located on the front surface (on the right-hand side of
It is noted that the supply of the electric portion to the DC motors and the sensor (not shown), and the transmission/reception of the electric signal(s) to/from the outside are carried out through a connector 68 provided in the lower portion of the bill storage box 72.
The bills which have been conveyed within the bill storage box 72 through the bill insert/discharge port 50b are conveyed to the internal conveyance path 80a by the roller 51a and the sorting gate 52a. After that, the conveyance direction is changed by the feed roller 41b in such a way that two sides of each bill are reversed, and the bills are discharged to the upper storage unit 700b.
Here, before the bills are discharged to the upper storage unit 700b, the push plate 46b is moved by a driving force of the stepping motor 69b (not shown). The push plate 46b is controlled in movement in the direction, in which the stored bills are moved down so as to ensure the space within the storage unit. Next, the stack guide 45b rotates with a shaft 48b of the feed roller as a fulcrum, thereby obliquely moving the stack guide 45b. The stack guide 45b is obliquely moved, which results in that the bills discharged to the upper storage unit 700b are moved along a tilt of the stack guide 45b. In addition, a speed at which the bills are taken in by the feed roller 41b is preferably faster than or equal to a conveyance speed of the bills by the internal conveyance path 80a. In this embodiment, the speed at which the bills are taken in by the feed roller 41b is made approximately equal to the conveyance speed of the bills by the internal conveyance path 80a.
The bills which have been conveyed within the bill storage box 72 through the bill insert/discharge port 50b are conveyed to the internal conveyance path 80b by the roller 51a and the sorting gate 52a. After that, the bills are discharged to the lower storage unit 700c by the feed roller 41c.
Here, before the bills are discharged to the lower storage unit 700c, the push plate 46c is moved by the driving force of the stepping motor 69c (not shown). The push plate 46c is controlled in movement in the direction in which the stored bills are moved down so as to ensure the space within the storage unit. Next, the stack guide 45c rotates with the shaft 48c of the feed roller as a fulcrum, thereby obliquely moving the stack guide 45c. The stack guide 45c is obliquely moved, which results in that the bills discharged to the lower storage unit 700c are moved along a tilt of the stack guide 45c. In addition, a speed at which the bills are taken in by the feed roller 41c is preferably faster than or equal to a conveyance speed of the bills by the internal conveyance path 80b. In this embodiment, the speed at which the bills are taken in by the feed roller 41b is made approximately equal to the conveyance speed of the bills by the internal conveyance path 80b.
The push plate 46b is moved upward by a driving force of the stepping motor 69b (not shown). The push plate 46b is moved upward, which results in that the bills on the push plate 46b is pressed against the pickup roller 42b with a predetermined pressing force by a force of a spring or the like (not shown). On the other hand, in the lower storage unit 700c, the pickup roller 42c moves downward the push plate 46c to a position where the push plate 46c does not contact the bills within the lower storage unit 700c so as not to feed the bills.
The bills which have been fed from the upper storage unit 700b by the pickup roller 42b are sent away by the rotating feed roller 41b. Then, the bills are sent away to the internal conveyance path 80a through a pinch roller 47b while the double-feeding is prevented by the gate roller 43b which does not rotate in the feeding direction. After that, the bills are conveyed one sheet by one sheet from the bill insert/discharge port 50b to the outside of the bill storage box by the roller 51a and the sorting gate 52a.
After the sending-away of a predetermined number of sheets of bills to the internal conveyance path 80a has been completed, the driving of the feed roller 41b is stopped. Subsequently, after all of the bills on the internal conveyance path 80a have been conveyed to the outside of the bill storage box, the driving of the internal conveyance path 80a and the roller 51a is stopped.
The pitch plate 46c is moved upward by a driving force of the stepping motor 69c (not shown). The push plate 46c is moved upward, which results in that the bills on the push plate 46c are pressed against the pickup roller 42c with a predetermined pressing force by a force of a spring or the like (not shown). On the other hand, in the lower storage unit 700b, the pickup roller 42b moves downward the push plate 46b to a position where the push plate 46b does not contact the bills within the lower storage unit 700b so as not to feed the bills.
The bills pressed against the pickup roller 42c are sent away by the rotating feed roller 41c. Then, the bills are sent away to the conveyance path 80b through a pinch roller 47c while the double-feeding is prevented by the gate roller 43c which does not rotate in the feeding direction. After that, the bills are conveyed one sheet by one sheet from the bill insert/discharge port 50b to the outside of the bill storage box by the roller 51a and the sorting gate 52a.
After the sending-away of a predetermined number of sheets of bills to the conveyance path 80b has been completed, the driving of the feed roller 41c is stopped. Subsequently, after ail of the bills on the conveyance path 80b have been conveyed to the outside of the bill storage box, the driving of the conveyance path 80b and the roller 51a is stopped.
Of the bill handling device structured in the manner as described above, the storage boxes: the hill storage box 71; and the bill storage boxes 72 are structured in external dimensions, positions of the bill insert/discharge ports (50a, 50b), shape of the bill insert/discharge port, and the like in the form of the common structure. As a result, the storage boxes of the bill storage boxes 71, 72 can be given the compatibility. Also, a combination of the bill storage boxes 71, 72 can be freely changed in accordance with the operation situations of the countries, thereby installing the bill storage boxes 71, 72 in the tray 110.
For example, the four kinds of bills; a 10000-yen bill; a 5000-yen bill; a 2000-yen bill; and a 1000-yen bill are present as the bills which circulate within Japan. In this case, such an operation can be carried out that the 10000-yen bills and the 1000-yen bills the trading volumes of which are large are stored in the bill storage box 71 having the single storage unit in the inside thereof, and the 5000-yen bills and the 2000-yen bills the trading volumes of which are small are stored together with each other in the bill storage box 72 having the two storage units in the inside thereof.
Next, a description will be given with respect to the door which is provided in the bill storage box 72 in order to carry out the loading and taking-out of the bills within the upper storage unit 700b and the lower storage unit 700c.
In addition, the upper door 81 was structured in such a way that the upper door 81 rotated with a rotating shaft 83 with a fulcrum to be opened and closed (hereinafter, vertical opening). On the other hand, the lower door 82 was structured in such a way that the upper door 82 rotated with a rotating shaft 84 disposed in a corner portion of the bill storage box 72 as a fulcrum to be opened and closed (hereinafter, horizontal opening). That is to say, the upper door 81 and the lower door 83 have the structures in which the opening and closing directions of them are different from each other.
The reason why the upper door 81 has the vertical opening style will be described. The feed roller 43b and the stack guide 45b operate in conjunction with each other through the shaft 48b of the feed roller. Therefore, the feed roller 41b is desirably left inside the bill storage box 72 irrespective of the opening and closing of the upper door 81. In addition, since the user is hard to insert and take out the bills when the gate roller 43b is present inside the bill storage box 72, desirably, the gate roller 43b and the upper door 81 are evacuated in conjunction with each other.
When as described above, the feed roller 41b is left inside the storage box, and the gate roller 43b is moved in conjunction with the upper door 81, there is the possibility that if the upper door 81 is subjected to the horizontal opening, then, the upper door 81 is shifted in a direction in which the shaft 48b of the feed roller, and the shaft 49b of the gate roller intersect with each other when, for example, an error occurs due to a tolerance in a phase of a design or a temporal change, which poses an impediment in the phase of the conveyance of the bills. On the other hand, the structure is adopted in which when the upper door 81 is subjected to the vertical opening, even if the error occurs due to the tolerance in the phase of the design or the temporal change, the problem as described above is hard to cause.
In addition, a shaft position plate 91 is disposed in two portions: the inside of the bill storage box 72; and the outside of the internal conveyance path 80a of the bills. A shaft-to-shaft distance between the shaft 48b of the teed roller, and the shaft 49b of the gate roller is precisely fixed by the shaft position plate 91. For the purpose of reducing the force for opening and closing the door 82, an area of contact between the shaft position plate 91 and the shaft 49b of the gate roller is limited to the minimum necessary to the extent that the shaft 49b of the gate roller can be pinched.
By adopting the structure as described above, the width in the anteroposterior direction of the bill storage box including the plural storage units in the inside thereof can be miniaturized to the same extent as that of the bill storage box having the single storage unit in which only one denomination is stored in the inside thereof. In addition, the bill storage box including the plural storage boxes in the inside thereof or the bill storage box including the single storage box in the inside thereof is arbitrarily selected and is installed in the tray 110, which results in that it is possible to provide the bill handling device which can carry out the flexible response in accordance with the operation situations of the countries.
Next, a description will be given with respect to a procedure for removing away the bills when the bills conveyed to the internal conveyance path 80b are retained (jammed) due to some sort of cause.
When the bills conveyed to the internal conveyance path 80b are retained (jammed), a sensor (not shown) provided in the internal conveyance path 80b detects that the bills have been retained or the bills have not reached. When it is detected that the bills have been retained or the bills have not reached, the driving of the DC motor 61 (61a, 61b, 61c) is stopped, thereby stopping the conveyance of the bills. After that, the bill storage box 72 is taken out from the tray 110.
An opening and closing portion 200 for making possible an access to the internal conveyance path 80b when the retained bills (jammed bills) are removed away is provided in the downside of the upper storage unit 700b (on the front side of the storage box). The opening and closing portion 200 is a thing for carrying out the opening and closing operation with a fulcrum 201 as a center. In a phase of a normal operation, the opening and closing portion 200 is set in the closing state, thereby preventing the access of the internal conveyance path 80b to the conveyance guide 202.
In the series of procedure described above, the upper door 81, and the opening, and closing portion 200 are common to each other in that they are opened from the front surface side toward the back surface side (from the upside to the downside of the figure) of the storage box (refer to the arrows A, C of
Next, a description will be given with respect to a second embodiment of the present invention with reference to the drawing, it is noted that the structure of the bill handling device 1, and the procedure for removing away the jammed bills are the same as those in the first embodiment. For this reason, only the structure of the bill storage box different from that of the first embodiment will be described.
The opening and closing portion 200 is the thing for carrying out the opening and closing operation with the fulcrum 201 as the center similarly to the first embodiment. However, since the opening and closing portion 200 has the function as the conveyance guide, when the hills are conveyed to the internal conveyance path 80b, the position of the opening and closing portion 200 is desirably fixed. In this case, the opening and closing portion 200 cannot be moved with a conveyance force by which the bills are conveyed to the internal conveyance path 80b. However, a dynamic friction coefficient between the fulcrum 201 and the rotating working is adjusted in such a way that the clerk in charge or the like becomes easy to open the opening and closing portion 200 by a hand working.
It is noted that as shown in
Next, a description will be given with respect to a third embodiment of the present invention with reference to the drawing. It is noted that the structure of the bill handling device 1 is the same as that in the first embodiment. For this reason, the structure of the bill storage box, and the procedure for removing away the jammed bills which are different from those in the first embodiment will be described.
The lock mechanism is composed of a lock lever 204 and an elastic body 205 such as a spring. The lock lever 204 is moved with a fulcrum 206 as a rotation center. Thus, the lock mechanism is biased in a direction (in a direction indicated by an arrow D) in which the feeding/accumulation mechanism unit is provided by an elastic force of the elastic body 205. For this reason, the opening and closing portion 200 is held in a state in which it is closed in a direction (in a direction indicated by an arrow E) of the front surface of the bill storage box 72.
It is noted that with regard to the position of the rotating shaft of the pinch roller 203, it is possible to both provide the pinch roller 203 in a position different from that of the conveyance guide 202 in order to fix the pinch roller 203, and provide the pinch roller 203 on the conveyance guide 202 side in order to make it easy to remove away the jammed bills 301.
Hereinafter, a description will be given with respect to the procedure for removing away the jammed bills from the bill storage box. Firstly, the clerk in charge or the like opens the upper door 81 in the direction of the outside of the bill storage box, and takes out the accumulated bills 300 to the outside of the storage box. When the accumulated bills 300 have been removed away, the push plate 46b is moved in the direction (in the direction indicated by the arrow B) of the feed/accumulation mechanical unit by the force of the spring or the like (not shown), so that the space is ensured in which the clerk in charge or the like manipulates the opening and closing portion 200. After that, the clerk in charge or the like moves the lock lever 204 in a direction (in a direction opposite to the direction indicated by the arrow D) opposite to the direction in which the feeding/accumulating mechanical unit is provided, thereby releasing the lock of the opening and closing portion 200. After the release of the lock, the opening and closing portion 200 is opened in the direction of the feeding/accumulating mechanical unit, thereby removing away the jammed bills 301.
Next, a description will be given with respect to a fourth embodiment of the present invention with reference to the drawing. It is noted that the structure of the bill handling device 1, and the procedure for removing away the jammed bills are the same as those in the first embodiment. For this reason, only the structure of the bill storage box different from that in the first embodiment will be described.
In addition, the position of the stopper guide 210 can be changed so as to correspond to the lengths L in the short direction of the accumulated bills 300. Specifically plural bearings of the stopper guide 210 are provided, whereby the stopper guide is moved in a direction indicated by an arrow Q, and a width H of the upper storage unit 700b is changed in accordance with the difference in denomination as described above.
In addition, in the case of this embodiment, when the bills are inserted into the upper storage unit 700 again after the jammed bills 301 have been removed away, the positions in a longitudinal, direction of the bills can be aligned by the stopper guide function of the opening and closing portion 200 so as to become approximately parallel with the front surface of the storage box. For this reason, it becomes possible to enhance the performance of accumulation of the bills accumulated in the upper storage unit 700b. It is noted that a part of the opening and closing portion 200 of the first to third embodiments may be given the function as the stopper guide similarly to this embodiment.
Next, a description will be given with respect to a fifth embodiment of the present invention with reference to the drawing. It is noted that the structure of the bill handling device 1, and the procedure for removing away the jammed bills are the same as those in the first embodiment. For this reason, only the structure of the bill storage box different from that in the first embodiment will be described.
This embodiment is common to the second embodiment in that both of the opening and closing portion 200, and the conveyance guide 202 are opened, thereby removing way the jammed bills 301. However, unlike the second embodiment, the opening and closing portion 200, and the conveyance guide 202 have the different structures, respectively, and the respective fulcrums are made different from each other. As a result, as compared with the second embodiment, when the jammed bill are attempted to be removed away, the conveyance guide 202 can be largely opened with the opening and closing portion 200 not posing an impediment (a concrete opening degree of the conveyance guide is about 90 degrees), and the jammed bills 301 can be readily removed away. It is noted that when the opening and closing portion 200 is given the function as the stopper guide as math the fourth embodiment, this embodiment may be applied thereto.
The procedure for removing away the jammed bills from the bill storage box 72 is as follows.
Firstly, the clerk in charge or the like opens the upper door 81 in the direction (in the direction indicated by the arrow A) of the outside of the bill storage box, and takes out the accumulated bills 300 to the outside of the storage box. When the accumulated bills 300 have been removed away, the push plate 46b is moved in the direction (in the direction indicated by the arrow B) of the feeding/accumulation mechanical unit by the force of the spring or the like (not shown), so that the space is ensured in which the clerk in charge or the like manipulates the opening and closing portion 200, and the conveyance guide 202. After that, the clerk in charge or the like opens the opening and closing 200, and the conveyance guide 202 in this order in the direction (in the direction indicated by the arrow C) in which the feeding/accumulation mechanical unit is provided, and removes away the jammed bills 301.
Note that, when the bills are conveyed to the internal conveyance path 80b, the positions of the opening and closing portion 200, and the conveyance guide 202 are desirably fixed. However, the dynamic friction coefficient between, the individual fulcrums 201 and 207, and the rotating shaft is adjusted in such a way that the opening and closing portion 200, and the conveyance guide 202 cannot be moved with the conveyance force by which the bills are conveyed to the internal conveyance path 80b, but the clerk in charge or the like becomes easy to open the opening and closing portion 200, and the conveyance guide 202 by the hand working, thereby making it possible to fix the positions.
Next, a description will be given with respect to a sixth embodiment of the present invention with reference to the drawing. It is noted that the structure of the bill handling device 1, and the procedure for removing away the jammed bills are the same as those in the first embodiment. For this reason, only the structure of the bill storage box different from that in the first embodiment will be described.
As described in the fifth embodiment, the positions of the opening and closing portion 200, and the conveyance guide 202 need be fixed. In particular, with respect to the conveyance guide 202 by which the bills are actually conveyed, desirably, the dynamic friction coefficient between the fulcrum 207 and the rotating shaft is adjusted, and in addition thereto, a mechanism for fixing the position of the conveyance guide 202 is provided, thereby reliably fixing the position of the conveyance guide 202.
In this embodiment, concave portions 400 and 401 are provided in the push plate 46b and the conveyance guide 202, respectively. For example, when the bills one taken out are loaded again or in the phase of the actual operation, the push plate 46b is moved in a direction (in a direction indicated by an arrow P) opposite to the direction in which the feeding/accumulation mechanical unit is provided. At this time, the concave portions 400 and 401 are moved so as to contact each other, which results in that the conveyance guide 202 is pressed against the front surface side of the storage box. For this reason, the pinching force for the bills by the pinch roller 203 is not weakened, and thus it becomes possible to reliably convey the bills on the internal conveyance unit 80b.
As described above, according to the claimed invention, when the jammed bills retained on the internal conveyance path of the bill storage box having the plural storage units are attempted to be removed away, the direction in which the upper door of the bill storage box is opened, and the direction in which the opening and closing portion of the internal conveyance path is opened are made the same direction. For this reason, it is possible to provide the bill storage box in which the property for removing away the jammed bills is enhanced.
In addition, the opening and closing portion, and the conveyance guide are structured integrally with each other, and the structure is adopted in which the conveyance guide and the pinch roller are moved together with each other. As a result, it is possible to provide the bill storage box in which the access to the jammed bills is made easy, and the work for removing away the jammed bills is improved. In addition, the opening and closing portion, and the conveyance guide are structured integrally with, each other, which results in that it is possible to provide the bill storage box in which the work for removing away the jammed bills is improved, and the accumulation performance is enhanced.
Moreover, the fulcrum 201 of the opening and closing portion 200, and the fulcrum 211 of the stopper guide 210 are provided differently from each other, and the opening degree of the opening and closing portion 200 is made large, which results in that it is possible to provide the bill storage box in which the property for removing away the jammed bills are extremely enhanced.
1 . . . bill handling device, 2 . . . control unit of bill handling device, 10a to 10f . . . conveyance path, 20 . . . bill insert/discharge port, 30 . . . bill discriminating unit, 35 . . . temporarily storage box, 41a to 41f . . . feed roller, 42a to 42f . . . pickup roller, 43a to 43f . . . gate roller, 44a to 44f . . . brush roller, 45a to 45f . . . stack guide, 46a to 46f . . . push plate, 47a to 47f . . . pinch roller, 48b to 48c . . . shall of feed roller, 49b . . . shaft of gate roller, 50a to 50c . . . insert/discharge port, 51a to 51c . . . roller, 52a to 52c . . . sorting gate, 61a to 61c . . . DC motor, 62a to 62b, 63a to 63b, 64a to 64b, 66, 67 . . . driving transmitting gear, 65a to 65b . . . timing belt, 65c . . . conveyance belt, 68 . . . connector, 70 . . . loading box, 71 . . . bill storage box including single storage unit in inside thereof, 72 . . . bill storage box including two single storage units in inside thereof 80a to 80d . . . internal conveyance path, 81 . . . upper door, 82 . . . lower door, 83 . . . rotating shaft of upper door, 84 . . . rotating shaft of lower door, 90 . . . conveyance guide to upper storage unit, 91 . . . shaft position plate, 200 . . . opening and closing portion, 201 . . . fulcrum of opening and closing portion, 202 . . . conveyance guide, 203 . . . pinch roller, 204 . . . lock lever, 205 . . . elastic body, 206 . . . fulcrum of lock lever, 207 . . . fulcrum of conveyance guide, 300 . . . accumulated bills, 301 . . . jammed bills, 400 . . . convex portion of push plate, 401 . . . convex portion of conveyance guide
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/003138 | 6/3/2011 | WO | 00 | 2/21/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/164629 | 12/6/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7322518 | Yokoi et al. | Jan 2008 | B2 |
20100218707 | Billet et al. | Sep 2010 | A1 |
20110048890 | Billet et al. | Mar 2011 | A1 |
20110074098 | Ichikawa et al. | Mar 2011 | A1 |
20110169210 | Nagura et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
08-221636 | Aug 1996 | JP |
2008-152430 | Jul 2008 | JP |
2011-145782 | Jul 2011 | JP |
Entry |
---|
PCT International Search Report on application PCT/JP2011/003138 mailed Jul. 5, 2011; 1 page. |
Number | Date | Country | |
---|---|---|---|
20140190787 A1 | Jul 2014 | US |