None.
Not applicable.
Not applicable.
A communication application may include one of a voice call, email, text messages, multi-media messages, network applications, streaming video, etc. These applications may be affected by jitter, latency, and/or data throughput. Jitter refers to the variability in the rate of delivery or the arrival time of delivery of communication content. Latency refers to the delay in delivery of communication content. Data throughput refers to a rate of flow of communication content. The amount of jitter, latency, and/or data throughput for a communication application may depend on the level of communication service and/or a quality of service (QoS) that a service provider offers to a subscriber.
In an embodiment, a mobile communication device is disclosed. The mobile communication device comprises a radio frequency transceiver to communicatively couple the mobile communication device to a radio access network by a wireless communication link, a processor, a memory, and an application, stored in the memory. The application when executed by the processor in a trusted security zone, wherein the trusted security zone provides hardware assisted trust, monitors a tier of communication service consumption, wherein a tier of communication service is associated to at least one of the amount of data, the data throughput, the latency, or the jitter allowed for a communication service; creates logs of communication service consumption differentiated by tier, wherein there are multiple tiers of communication service described as multi-tiered communication services, wherein the multiple tiers represent different rates of media data (videos, games, etc.), data throughput, latency, and or jitter that are allotted to the subscriber of the communication service based on how much the subscriber pays; and transmits a message containing the logs of the communication service consumption to a billing data store in a network of a service provider associated with the mobile communication device, whereby a bill is created by a billing server accessing the billing data store
In an embodiment, a method of monitoring and reporting consumption of multi-tiered communication services by a mobile communication device is disclosed. The method comprises monitoring consumption of a tier of communication services by an application stored in a memory that executes in a trusted security zone of the mobile communication device, wherein the trusted security zone provides hardware assisted trust; wherein a tier of communication service is associated to at least one of the amount of data, the data throughput, the latency, or the jitter allowed for a communication service. The method further comprises creating logs that differentiate between the tiers of communication service that are used by the mobile communication device, wherein there are multiple tiers of communication service described as multi-tiered communication services, wherein the multiple tiers represent different rates of media data (videos, games, etc.), data throughput, latency, and or jitter that are allotted to the subscriber of the communication service based on how much the subscriber pays. The method further comprises transmitting a message containing the recorded logs of the application to a billing data store that operates in a network of a service provider associated with the mobile communication device via a trusted end-to-end communication infrastructure, whereby in response to receiving this message, the service provider bills a subscriber for multi-tiered communication services.
In an embodiment, a method of reporting and billing for consumption of premium tier communication services by a mobile communication device is disclosed. The method comprises monitoring usage of a tier of communication services by an application stored in a memory that executes in a trusted security zone, wherein the trusted security zone provides hardware assisted trust; wherein a tier of communication service is associated to at least one of the amount of data, the data throughput, the latency, or the jitter allowed for a communication service. The method further comprises creating logs that record and differentiate between standard and premium tiers of communication services that are consumed by the mobile communication device, wherein there are multiple tiers of communication service described as multi-tiered communication services, wherein the multiple tiers represent different rates of media data (videos, games, etc.), data throughput, latency, and or jitter that are allotted to the subscriber of the communication service based on how much the subscriber pays. The method further comprises transmitting a daily message containing the recorded logs of the application to a billing data store that operates in a network of the service provider associated with the mobile communication device of a subscriber via a trusted end-to-end communication infrastructure, whereby in response to receiving this message the service provider bills the subscriber.
These and other features will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings and claims.
For a more complete understanding of the present disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
It should be understood at the outset that although illustrative implementations of one or more embodiments are illustrated below, the disclosed systems and methods may be implemented using any number of techniques, whether currently known or not yet in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, but may be modified within the scope of the appended claims along with their full scope of equivalents.
The present disclosure teaches a system and methods that promote monitoring and trusted reporting consumption of multi-tiered communication services by a mobile communication device, wherein a tier of communication service is associated with the level of media data (videos, games, etc.), the data throughput, latency, the latency, and/or the jitter allowed for a communication service. Different tiers of communication services may be billed to a subscriber at different rates. In an embodiment, multi-tiered communication services are associated with different levels of media data (videos, games, etc.) and/or different allowable amounts of data, data throughput, latency, or jitter. In an embodiment, there may be three tiers of communication service from which a subscriber may choose from. In an embodiment, there may be a standard tier of basic communication service that the communication service gives to all subscribers at a base level. In an embodiment, there may be premium tiers of communication service that are offered by the communication service which go a step further in offering higher data throughput, lower latency, or lower jitter than offered by both the standard tier of communication service and the intermediate tier of communication service. In an embodiment, an application in the mobile communication device monitors tiers of communication service consumption by a subscriber. The application operates in a trusted security zone to prevent fraud, wherein the trusted security zone provides hardware assisted trust. The trusted security zone further prevents other software from executing at the same time and possibly corrupting the reporting of multi-tiered communication service consumption. The application creates logs of the communication services consumed and differentiates between the consumption by tier. Said in other words, the logs identify a tier of communication service consumed, an amount of the service consumed, an identity of the mobile communication device, and/or the subscriber, and possibly other data. In some contexts, different tiers of communication service may also be referred to as different qualities of service (QoS) or different levels of service. The logs are stored in a trusted security zone portion of memory of the mobile communication device, only allowing trusted applications that execute in the trusted security zone to access them. The trusted security zone and the trusted execution environment (TEE) are discussed in more detail hereinafter. The application then sends a message containing the recorded logs to a billing data store. A billing server accesses the billing data store, analyzes the recorded logs in the billing data store, and bills the subscriber according to the consumption of communication services.
In an embodiment, the application monitors consumption of communication services and differentiates that consumption according to the tiers of communication service that are consumed, wherein there is a standard tier and one or more premium tiers. In an embodiment, a standard tier of communication service may provide normal data throughput, latency, and jitter. In an embodiment, the premium tier(s) communication service may provide higher data throughput, lower latency, and/or lower jitter. The application creates logs of the consumed communication services and differentiates them by the tiers that are consumed. The application then periodically transmits a message that contains the recorded logs to the billing data store. When the mobile communication device sends logs while roaming in another wireless service provider's wireless coverage, the application may transmit the message containing the logs via a trusted end-to-end communication infrastructure while the message is transiting the roaming wireless network and before entering the home service provider network, wherein the trusted end-to-end communication infrastructure ensures that the information in the logs contained in the message is not tampered with in the roaming wireless network. In an embodiment, the application sends a daily message containing the logs of the premium tier communication service consumption to the billing data store.
The application allows for subscribers to access or use premium tier communication services while recording the consumption of premium tier communication services separate from standard tier communication service. Since the application is monitoring consumption of media data, network based call detail records (CDR's) do not fill the same utilization as the logs gathered from the monitoring application as CDR's are in reference to data associated with voice calls. This allows for simplified billing, as the bill for premium communication service consumption may be appended to the bill that has standard communication service consumption. The application, because it executes in the trusted security zone, assures the service provider that the records that it receives from the application in the billing data store have not been tampered with.
A trusted security zone provides chipsets with a hardware root of trust, a secure execution environment for applications, and secure access to peripherals. A hardware root of trust means the chipset should only execute programs intended by the device manufacturer or vendor and resists software and physical attacks, and therefore remains trusted to provide the intended level of security. The chipset architecture is designed to promote a programmable environment that allows the confidentiality and integrity of assets to be protected from specific attacks. Trusted security zone capabilities are becoming features in both wireless and fixed hardware architecture designs. Providing the trusted security zone in the main mobile device chipset and protecting the hardware root of trust removes the need for separate secure hardware to authenticate the device or user. To ensure the integrity of the applications requiring trusted data, such as a mobile financial services application, the trusted security zone also provides the secure execution environment where only trusted applications can operate, safe from attacks. Security is further promoted by restricting access of non-trusted applications to peripherals, such as data inputs and data outputs, while a trusted application is running in the secure execution environment. In an embodiment, the trusted security zone may be conceptualized as hardware assisted security.
A complete trusted execution environment (TEE) may be implemented through the use of the trusted security zone hardware and software architecture. The trusted execution environment is an execution environment that is parallel to the execution environment of the main mobile device operating system. The trusted execution environment and/or the trusted security zone may provide a base layer of functionality and/or utilities for use of applications that may execute in the trusted security zone. For example, in an embodiment, trust tokens may be generated by the base layer of functionality and/or utilities of the trusted execution environment and/or trusted security zone for use in trusted end-to-end communication links to document a continuity of trust of the communications. For more details on establishing trusted end-to-end communication links relying on hardware assisted security, see U.S. patent application Ser. No. 13/532,588, filed Jun. 25, 2012, entitled “End-to-end Trusted Communications Infrastructure,” by Leo Michael McRoberts, et al., which is hereby incorporated by reference in its entirety. Through standardization of application programming interfaces (APIs), the trusted execution environment becomes a place to which scalable deployment of secure services can be targeted. A device which has a chipset that has a trusted execution environment on it may exist in a trusted services environment, where devices in the trusted services environment are trusted and protected against attacks. The trusted execution environment can be implemented on mobile phones and tablets as well as extending to other trusted devices such as personal computers, servers, sensors, medical devices, point-of-sale terminals, industrial automation, handheld terminals, automotive, etc.
The trusted security zone is implemented by partitioning all of the hardware and software resources of the mobile device into two partitions: a secure partition and a normal partition. Placing sensitive resources in the secure partition can protect against possible attacks on those resources. For example, resources such as trusted software applications may run in the secure partition and have access to hardware peripherals such as a touchscreen or a secure location in memory. Less secure peripherals such as wireless radios may be disabled completely while the secure partition is being accessed, while other peripherals may only be accessed from the secure partition. While the secure partition is being accessed through the trusted execution environment, the main mobile operating system in the normal partition is suspended, and applications in the normal partition are prevented from accessing the secure peripherals and data. This prevents corrupted applications or malware applications from breaking the trust of the device.
The trusted security zone is implemented by partitioning the hardware and software resources to exist in a secure subsystem which is not accessible to components outside the secure subsystem. The trusted security zone is built into the processor architecture at the time of manufacture through hardware logic present in the trusted security zone which enables a perimeter boundary between the secure partition and the normal partition. The trusted security zone may only be manipulated by those with the proper credential and, in an embodiment, may not be added to the chip after it is manufactured. Software architecture to support the secure partition may be provided through a dedicated secure kernel running trusted applications. Trusted applications are independent secure applications which can be accessed by normal applications through an application programming interface in the trusted execution environment on a chipset that utilizes the trusted security zone.
In an embodiment, the normal partition applications run on a first virtual processor, and the secure partition applications run on a second virtual processor. Both virtual processors may run on a single physical processor, executing in a time-sliced fashion, removing the need for a dedicated physical security processor. Time-sliced execution comprises switching contexts between the two virtual processors to share processor resources based on tightly controlled mechanisms such as secure software instructions or hardware exceptions. The context of the currently running virtual processor is saved, the context of the virtual processor being switched to is restored, and processing is restarted in the restored virtual processor. Time-sliced execution protects the trusted security zone by stopping the execution of the normal partition while the secure partition is executing.
The two virtual processors context switch via a processor mode called monitor mode when changing the currently running virtual processor. The mechanisms by which the processor can enter monitor mode from the normal partition are tightly controlled. The entry to monitor mode can be triggered by software executing a dedicated instruction, the Secure Monitor Call (SMC) instruction, or by a subset of the hardware exception mechanisms such as hardware interrupts, which can be configured to cause the processor to switch into monitor mode. The software that executes within monitor mode then saves the context of the running virtual processor and switches to the secure virtual processor.
The trusted security zone runs a separate operating system that is not accessible to the device users. For security purposes, the trusted security zone is not open to users for installing applications, which means users do not have access to install applications in the trusted security zone. This prevents corrupted applications or malware applications from executing powerful instructions reserved to the trusted security zone and thus preserves the trust of the device. The security of the system is achieved at least in part by partitioning the hardware and software resources of the mobile communication device so they exist in one of two partitions, the secure partition for the security subsystem and the normal partition for everything else. Placing the trusted security zone in the secure partition and restricting access from the normal partition protects against software and basic hardware attacks. Hardware logic ensures that no secure partition resources can be accessed by the normal partition components or applications. A dedicated secure partition operating system runs in a virtual processor separate from the normal partition operating system that likewise executes in its own virtual processor. Users may install applications on the mobile communication device which may execute in the normal partition operating system described above. The trusted security zone runs a separate operating system for the secure partition that is installed by the mobile device manufacturer or vendor, and users are not able to install new applications in or alter the contents of the trusted security zone.
Turning now to
The system 100 may further comprise a base transceiver station (BTS) 112, and a network 114. The network 114 may be communicatively coupled to a billing data store 116 and a billing server 118. In an embodiment, the base transceiver station 112 may provide a wireless communication link to the mobile communication device 102 and communicatively couple it to the network 114. In an embodiment, the base transceiver station 112 may provide a wireless communication link to the mobile communication device 102 according to one of a code division multiple access (CDMA) wireless protocol, a global system for mobile communications (GSM) wireless protocol, a long term evolution (LTE) wireless protocol, a worldwide interoperability for microwave access (WiMAX) wireless protocol, or another well-known wireless communication protocol. While one mobile communication device 102 and one base transceiver station 112 are illustrated in
In an embodiment, the application 110 is executed by the processor 106 in the trusted security zone 111 and monitors the tier of communication service that is accessed by the mobile communication device 102. In an embodiment, the trusted security zone 111 provides hardware assisted trust. The application 110 creates a log of consumption of communication services differentiated by tier. In an embodiment, the log may be a usage record, a call detail record, or another form of record.
In an embodiment, there may be multiple tiers of communication service which the mobile communication device 102 consumes. The tiers of communication service may comprise a standard tier, an intermediate tier, or a premium tier of communication service. In an embodiment, the standard tier of communication service is the normal tier of communication service that is offered by the service provider of the mobile communication device 102. In an embodiment, the mobile communication device 102 may be subscribed to the standard tier of communication service, but is able to access the intermediate tier and premium tier of communication service by paying extra and/or appending the amount to a monthly account bill. In an embodiment, there may be several levels of premium tier communication service. In an embodiment, the intermediate tier of communication service and premium tier(s) of communication service may provide at least one of a higher data throughput, lower latency, or lower jitter than offered by the standard tier of communication service. In an embodiment, the application 110 may create logs for intermediate tier communication service consumption and for premium tier communication service consumption and may not create logs for standard tier communication service consumption.
The application 110 may transmit a message containing the logs of consumed communication services of the mobile communication device 102 to the billing data store 116 that is communicatively coupled to the network 114. The billing server 118 may analyze the message received by the billing data store 116 and may bill the subscriber according to the consumption of communication services by the mobile communication device 102. In an embodiment, the message containing the recorded logs of the application 110 is transmitted to the billing data store 116 at least in part via a trusted end-to-end communication infrastructure. In an embodiment, the daily message sent to the billing data store 116 from the application 110 of the mobile communication device 102 contains records of consumption of premium communication services and does not contain records of consumption of standard communication services. In an embodiment, the message sent from the application 110 to the billing data store 116 may be sent periodically. In an embodiment, the message may be sent to the billing data store 116 every time communication services are used, every day, every week, every month, or every two months
In an embodiment, the application 110 may pre-analyze and send a summary report of premium tier communication service consumption to the billing data store 116. For example, the application 110 may analyze the logs 113 and generate a summary that comprises a total consumption of a first tier of service, a total consumption of a second tier of communication service, and a total consumption of a third tier of communication service over a unit of time and send this summary or rolled-up report to the billing data store 116.
The billing server 118 may periodically analyze the logs received by the billing data store 116 in order to bill the subscriber. In an embodiment, the trusted end-to-end communication infrastructure assures that the message sent from the application 110 to the billing data store 116 remains in the trusted security zone 111 during each step on its way through a foreign service provider network until it enters the network 114, wherein the foreign service provider network is any network that is different from the network 114 which is operated by the service provider to which the mobile communication device 102 is subscribed.
In
In
The DSP 502 or some other form of controller or central processing unit operates to control the various components of the mobile device 400 in accordance with embedded software or firmware stored in memory 504 or stored in memory contained within the DSP 502 itself. In addition to the embedded software or firmware, the DSP 502 may execute other applications stored in the memory 504 or made available via information carrier media such as portable data storage media like the removable memory card 520 or via wired or wireless network communications. The application software may comprise a compiled set of machine-readable instructions that configure the DSP 502 to provide the desired functionality, or the application software may be high-level software instructions to be processed by an interpreter or compiler to indirectly configure the DSP 502.
The DSP 502 may communicate with a wireless network via the analog baseband processing unit 510. In some embodiments, the communication may provide Internet connectivity, enabling a user to gain access to content on the Internet and to send and receive e-mail or text messages. The input/output interface 518 interconnects the DSP 502 and various memories and interfaces. The memory 504 and the removable memory card 520 may provide software and data to configure the operation of the DSP 502. Among the interfaces may be the USB port 522 and the infrared port 524. The USB port 522 may enable the mobile device 400 to function as a peripheral device to exchange information with a personal computer or other computer system. The infrared port 524 and other optional ports such as a Bluetooth® interface or an IEEE 802.11 compliant wireless interface may enable the mobile device 400 to communicate wirelessly with other nearby handsets and/or wireless base stations.
The keypad 528 couples to the DSP 502 via the input/output interface 518 to provide one mechanism for the user to make selections, enter information, and otherwise provide input to the mobile device 400. Another input mechanism may be the touch screen LCD 530, which may also display text and/or graphics to the user. The touch screen LCD controller 532 couples the DSP 502 to the touch screen LCD 530. The GPS receiver 538 is coupled to the DSP 502 to decode global positioning system signals, thereby enabling the mobile device 400 to determine its position.
It is understood that by programming and/or loading executable instructions onto the computer system 380, at least one of the CPU 382, the RAM 388, and the ROM 386 are changed, transforming the computer system 380 in part into a particular machine or apparatus having the novel functionality taught by the present disclosure. It is fundamental to the electrical engineering and software engineering arts that functionality that can be implemented by loading executable software into a computer can be converted to a hardware implementation by well known design rules. Decisions between implementing a concept in software versus hardware typically hinge on considerations of stability of the design and numbers of units to be produced rather than any issues involved in translating from the software domain to the hardware domain. Generally, a design that is still subject to frequent change may be preferred to be implemented in software, because re-spinning a hardware implementation is more expensive than re-spinning a software design. Generally, a design that is stable that will be produced in large volume may be preferred to be implemented in hardware, for example in an application specific integrated circuit (ASIC), because for large production runs the hardware implementation may be less expensive than the software implementation. Often a design may be developed and tested in a software form and later transformed, by well known design rules, to an equivalent hardware implementation in an application specific integrated circuit that hardwires the instructions of the software. In the same manner as a machine controlled by a new ASIC is a particular machine or apparatus, likewise a computer that has been programmed and/or loaded with executable instructions may be viewed as a particular machine or apparatus.
The secondary storage 384 is typically comprised of one or more disk drives or tape drives and is used for non-volatile storage of data and as an over-flow data storage device if RAM 388 is not large enough to hold all working data. Secondary storage 384 may be used to store programs which are loaded into RAM 388 when such programs are selected for execution. The ROM 386 is used to store instructions and perhaps data which are read during program execution. ROM 386 is a non-volatile memory device which typically has a small memory capacity relative to the larger memory capacity of secondary storage 384. The RAM 388 is used to store volatile data and perhaps to store instructions. Access to both ROM 386 and RAM 388 is typically faster than to secondary storage 384. The secondary storage 384, the RAM 388, and/or the ROM 386 may be referred to in some contexts as computer readable storage media and/or non-transitory computer readable media.
I/O devices 390 may include printers, video monitors, liquid crystal displays (LCDs), touch screen displays, keyboards, keypads, switches, dials, mice, track balls, voice recognizers, card readers, paper tape readers, or other well-known input devices.
The network connectivity devices 392 may take the form of modems, modem banks, Ethernet cards, universal serial bus (USB) interface cards, serial interfaces, token ring cards, fiber distributed data interface (FDDI) cards, wireless local area network (WLAN) cards, radio transceiver cards such as code division multiple access (CDMA), global system for mobile communications (GSM), long-term evolution (LTE), worldwide interoperability for microwave access (WiMAX), and/or other air interface protocol radio transceiver cards, and other well-known network devices. These network connectivity devices 392 may enable the processor 382 to communicate with the Internet or one or more intranets. With such a network connection, it is contemplated that the processor 382 might receive information from the network, or might output information to the network in the course of performing the above-described method steps. Such information, which is often represented as a sequence of instructions to be executed using processor 382, may be received from and outputted to the network, for example, in the form of a computer data signal embodied in a carrier wave.
Such information, which may include data or instructions to be executed using processor 382 for example, may be received from and outputted to the network, for example, in the form of a computer data baseband signal or signal embodied in a carrier wave. The baseband signal or signal embedded in the carrier wave, or other types of signals currently used or hereafter developed, may be generated according to several methods well known to one skilled in the art. The baseband signal and/or signal embedded in the carrier wave may be referred to in some contexts as a transitory signal.
The processor 382 executes instructions, codes, computer programs, scripts which it accesses from hard disk, floppy disk, optical disk (these various disk based systems may all be considered secondary storage 384), ROM 386, RAM 388, or the network connectivity devices 392. While only one processor 382 is shown, multiple processors may be present. Thus, while instructions may be discussed as executed by a processor, the instructions may be executed simultaneously, serially, or otherwise executed by one or multiple processors. Instructions, codes, computer programs, scripts, and/or data that may be accessed from the secondary storage 384, for example, hard drives, floppy disks, optical disks, and/or other device, the ROM 386, and/or the RAM 388 may be referred to in some contexts as non-transitory instructions and/or non-transitory information.
In an embodiment, the computer system 380 may comprise two or more computers in communication with each other that collaborate to perform a task. For example, but not by way of limitation, an application may be partitioned in such a way as to permit concurrent and/or parallel processing of the instructions of the application. Alternatively, the data processed by the application may be partitioned in such a way as to permit concurrent and/or parallel processing of different portions of a data set by the two or more computers. In an embodiment, virtualization software may be employed by the computer system 380 to provide the functionality of a number of servers that is not directly bound to the number of computers in the computer system 380. For example, virtualization software may provide twenty virtual servers on four physical computers. In an embodiment, the functionality disclosed above may be provided by executing the application and/or applications in a cloud computing environment. Cloud computing may comprise providing computing services via a network connection using dynamically scalable computing resources. Cloud computing may be supported, at least in part, by virtualization software. A cloud computing environment may be established by an enterprise and/or may be hired on an as-needed basis from a third party provider. Some cloud computing environments may comprise cloud computing resources owned and operated by the enterprise as well as cloud computing resources hired and/or leased from a third party provider.
In an embodiment, some or all of the functionality disclosed above may be provided as a computer program product. The computer program product may comprise one or more computer readable storage medium having computer usable program code embodied therein to implement the functionality disclosed above. The computer program product may comprise data structures, executable instructions, and other computer usable program code. The computer program product may be embodied in removable computer storage media and/or non-removable computer storage media. The removable computer readable storage medium may comprise, without limitation, a paper tape, a magnetic tape, magnetic disk, an optical disk, a solid state memory chip, for example analog magnetic tape, compact disk read only memory (CD-ROM) disks, floppy disks, jump drives, digital cards, multimedia cards, and others. The computer program product may be suitable for loading, by the computer system 380, at least portions of the contents of the computer program product to the secondary storage 384, to the ROM 386, to the RAM 388, and/or to other non-volatile memory and volatile memory of the computer system 380. The processor 382 may process the executable instructions and/or data structures in part by directly accessing the computer program product, for example by reading from a CD-ROM disk inserted into a disk drive peripheral of the computer system 380. Alternatively, the processor 382 may process the executable instructions and/or data structures by remotely accessing the computer program product, for example by downloading the executable instructions and/or data structures from a remote server through the network connectivity devices 392. The computer program product may comprise instructions that promote the loading and/or copying of data, data structures, files, and/or executable instructions to the secondary storage 384, to the ROM 386, to the RAM 388, and/or to other non-volatile memory and volatile memory of the computer system 380.
In some contexts, the secondary storage 384, the ROM 386, and the RAM 388 may be referred to as a non-transitory computer readable medium or a computer readable storage media. A dynamic RAM embodiment of the RAM 388, likewise, may be referred to as a non-transitory computer readable medium in that while the dynamic RAM receives electrical power and is operated in accordance with its design, for example during a period of time during which the computer system 380 is turned on and operational, the dynamic RAM stores information that is written to it. Similarly, the processor 382 may comprise an internal RAM, an internal ROM, a cache memory, and/or other internal non-transitory storage blocks, sections, or components that may be referred to in some contexts as non-transitory computer readable media or computer readable storage media.
While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods may be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted or not implemented.
Also, techniques, systems, subsystems, and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component, whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
5303378 | Cohen | Apr 1994 | A |
5321735 | Breeden et al. | Jun 1994 | A |
5764889 | Ault et al. | Jun 1998 | A |
5796952 | Davis et al. | Aug 1998 | A |
6131024 | Boltz | Oct 2000 | A |
6177860 | Cromer et al. | Jan 2001 | B1 |
6219712 | Mann et al. | Apr 2001 | B1 |
6363150 | Bhagavath et al. | Mar 2002 | B1 |
6477180 | Aggarwal et al. | Nov 2002 | B1 |
6507904 | Ellison et al. | Jan 2003 | B1 |
6614893 | Paiz | Sep 2003 | B1 |
6668322 | Wood et al. | Dec 2003 | B1 |
6691230 | Bardon | Feb 2004 | B1 |
6754784 | North et al. | Jun 2004 | B1 |
6823454 | Hind et al. | Nov 2004 | B1 |
6824064 | Guthery et al. | Nov 2004 | B2 |
6895234 | Laursen et al. | May 2005 | B1 |
7043241 | Sladek et al. | May 2006 | B1 |
7366806 | Milenkovic et al. | Apr 2008 | B2 |
7387240 | Ziegler | Jun 2008 | B2 |
7519824 | Peyravian et al. | Apr 2009 | B1 |
7552467 | Lindsay | Jun 2009 | B2 |
7571364 | Whetsel | Aug 2009 | B2 |
7650645 | Langendorf et al. | Jan 2010 | B1 |
7716720 | Marek et al. | May 2010 | B1 |
7873837 | Lee et al. | Jan 2011 | B1 |
7895642 | Larson et al. | Feb 2011 | B1 |
7921303 | Mauro, II | Apr 2011 | B2 |
8060449 | Zhu | Nov 2011 | B1 |
8073428 | Khetawat et al. | Dec 2011 | B2 |
8086238 | Kosar | Dec 2011 | B1 |
8112794 | Little et al. | Feb 2012 | B2 |
8190919 | Natarajan et al. | May 2012 | B2 |
8204480 | Lindteigen et al. | Jun 2012 | B1 |
8238823 | Maugars et al. | Aug 2012 | B2 |
8271336 | Mikurak | Sep 2012 | B2 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8402543 | Ranjan et al. | Mar 2013 | B1 |
8413229 | Mullick et al. | Apr 2013 | B2 |
8429409 | Wall et al. | Apr 2013 | B1 |
8443420 | Brown et al. | May 2013 | B2 |
8447983 | Beck et al. | May 2013 | B1 |
8494576 | Bye et al. | Jul 2013 | B1 |
8504097 | Cope et al. | Aug 2013 | B1 |
8588749 | Sadhvani et al. | Nov 2013 | B1 |
8631247 | O'Loughlin et al. | Jan 2014 | B2 |
8632000 | Laracey | Jan 2014 | B2 |
8649770 | Cope et al. | Feb 2014 | B1 |
8667607 | Paczkowski et al. | Mar 2014 | B2 |
8707056 | Felton | Apr 2014 | B2 |
8712407 | Cope et al. | Apr 2014 | B1 |
8718554 | Abel | May 2014 | B2 |
8719586 | Paleja et al. | May 2014 | B1 |
8726343 | Borzycki et al. | May 2014 | B1 |
8738333 | Behera et al. | May 2014 | B1 |
8750839 | Paczkowski et al. | Jun 2014 | B1 |
8752140 | Paczkowski et al. | Jun 2014 | B1 |
8762298 | Ranjan et al. | Jun 2014 | B1 |
8787873 | Hitt et al. | Jul 2014 | B1 |
8793808 | Boccon-Gibod | Jul 2014 | B2 |
8797875 | Garcia Martin et al. | Aug 2014 | B2 |
8811971 | Corda et al. | Aug 2014 | B2 |
8831998 | Cramer et al. | Sep 2014 | B1 |
8839460 | Shirlen et al. | Sep 2014 | B2 |
8850568 | Shirlen et al. | Sep 2014 | B2 |
8856600 | Zadigian et al. | Oct 2014 | B2 |
8862181 | Cope et al. | Oct 2014 | B1 |
8863252 | Katzer et al. | Oct 2014 | B1 |
8881977 | Paczkowski et al. | Nov 2014 | B1 |
8886925 | Qureshi et al. | Nov 2014 | B2 |
8954588 | Bertz et al. | Feb 2015 | B1 |
8984592 | Paczkowski et al. | Mar 2015 | B1 |
8989705 | Katzer et al. | Mar 2015 | B1 |
9015068 | Bertz et al. | Apr 2015 | B1 |
9021585 | Paczkowski et al. | Apr 2015 | B1 |
9027102 | Katzer et al. | May 2015 | B2 |
9049013 | Paczkowski et al. | Jun 2015 | B2 |
9049186 | Paczkowski et al. | Jun 2015 | B1 |
9066230 | Paczkowski et al. | Jun 2015 | B1 |
9069952 | Paczkowski et al. | Jun 2015 | B1 |
9104840 | Paczkowski et al. | Aug 2015 | B1 |
9118655 | Paczkowski et al. | Aug 2015 | B1 |
20010041591 | Carroll | Nov 2001 | A1 |
20020035697 | McCurdy et al. | Mar 2002 | A1 |
20020091569 | Kitaura et al. | Jul 2002 | A1 |
20020095389 | Gaines | Jul 2002 | A1 |
20020156911 | Croman et al. | Oct 2002 | A1 |
20020166070 | Mualem et al. | Nov 2002 | A1 |
20020174344 | Ting | Nov 2002 | A1 |
20020181503 | Montgomery, Jr. | Dec 2002 | A1 |
20020184325 | Killcommons et al. | Dec 2002 | A1 |
20020194361 | Itoh et al. | Dec 2002 | A1 |
20020194496 | Griffin et al. | Dec 2002 | A1 |
20030045273 | Pyhalammi et al. | Mar 2003 | A1 |
20030093667 | Dutta et al. | May 2003 | A1 |
20030110046 | Cofta | Jun 2003 | A1 |
20030126225 | Camble et al. | Jul 2003 | A1 |
20030172163 | Fujita et al. | Sep 2003 | A1 |
20030216143 | Roese et al. | Nov 2003 | A1 |
20030229514 | Brown | Dec 2003 | A2 |
20030237002 | Oishi et al. | Dec 2003 | A1 |
20040158840 | Rothman et al. | Aug 2004 | A1 |
20040202328 | Hara | Oct 2004 | A1 |
20040233844 | Yu et al. | Nov 2004 | A1 |
20040234049 | Melideo | Nov 2004 | A1 |
20040243810 | Rindborg et al. | Dec 2004 | A1 |
20050015601 | Tabi | Jan 2005 | A1 |
20050045719 | Yang | Mar 2005 | A1 |
20050052994 | Lee | Mar 2005 | A1 |
20050091505 | Riley et al. | Apr 2005 | A1 |
20050123596 | Kohane et al. | Jun 2005 | A1 |
20050125396 | Liu | Jun 2005 | A1 |
20050138433 | Linetsky | Jun 2005 | A1 |
20050181796 | Kumar et al. | Aug 2005 | A1 |
20050228892 | Riley et al. | Oct 2005 | A1 |
20050235166 | England et al. | Oct 2005 | A1 |
20050239481 | Seligmann | Oct 2005 | A1 |
20050272445 | Zellner | Dec 2005 | A1 |
20050289355 | Kitariev et al. | Dec 2005 | A1 |
20060030291 | Dawson et al. | Feb 2006 | A1 |
20060036851 | DeTreville | Feb 2006 | A1 |
20060040641 | Dawson et al. | Feb 2006 | A1 |
20060129488 | Vincent | Jun 2006 | A1 |
20060156026 | Utin | Jul 2006 | A1 |
20060164978 | Werner et al. | Jul 2006 | A1 |
20060171537 | Enright | Aug 2006 | A1 |
20060190605 | Franz et al. | Aug 2006 | A1 |
20060212853 | Sutardja | Sep 2006 | A1 |
20060224901 | Lowe | Oct 2006 | A1 |
20060245438 | Sajassi et al. | Nov 2006 | A1 |
20060258289 | Dua | Nov 2006 | A1 |
20060259790 | Asokan et al. | Nov 2006 | A1 |
20060261949 | Kim et al. | Nov 2006 | A1 |
20060277307 | Bernardin et al. | Dec 2006 | A1 |
20060277433 | Largman et al. | Dec 2006 | A1 |
20070011061 | East | Jan 2007 | A1 |
20070038648 | Chetwood et al. | Feb 2007 | A1 |
20070061535 | Xu et al. | Mar 2007 | A1 |
20070078988 | Miloushev et al. | Apr 2007 | A1 |
20070079120 | Bade et al. | Apr 2007 | A1 |
20070094273 | Fritsch et al. | Apr 2007 | A1 |
20070094691 | Gazdznski | Apr 2007 | A1 |
20070118880 | Mauro | May 2007 | A1 |
20070143210 | Yeung et al. | Jun 2007 | A1 |
20070162759 | Buskey et al. | Jul 2007 | A1 |
20070167167 | Jiang | Jul 2007 | A1 |
20070177771 | Tanaka et al. | Aug 2007 | A1 |
20070180120 | Bainbridge et al. | Aug 2007 | A1 |
20070186212 | Mazzaferri et al. | Aug 2007 | A1 |
20070197261 | Humbel | Aug 2007 | A1 |
20070214332 | Sonoda et al. | Sep 2007 | A1 |
20070276969 | Bressy et al. | Nov 2007 | A1 |
20070277223 | Datta et al. | Nov 2007 | A1 |
20080005794 | Inoue et al. | Jan 2008 | A1 |
20080014867 | Finn | Jan 2008 | A1 |
20080020745 | Bae et al. | Jan 2008 | A1 |
20080022374 | Brown et al. | Jan 2008 | A1 |
20080051142 | Calvet et al. | Feb 2008 | A1 |
20080092213 | Wei et al. | Apr 2008 | A1 |
20080097793 | Dicks et al. | Apr 2008 | A1 |
20080108321 | Taaghol et al. | May 2008 | A1 |
20080109662 | Natarajan et al. | May 2008 | A1 |
20080121687 | Buhot | May 2008 | A1 |
20080146280 | Sasse et al. | Jun 2008 | A1 |
20080155271 | Barck et al. | Jun 2008 | A1 |
20080159129 | Songhurst et al. | Jul 2008 | A1 |
20080159131 | Hoeflin et al. | Jul 2008 | A1 |
20080162361 | Sklovsky | Jul 2008 | A1 |
20080176538 | Terrill et al. | Jul 2008 | A1 |
20080188178 | Maugars et al. | Aug 2008 | A1 |
20080201212 | Hammad et al. | Aug 2008 | A1 |
20080201578 | Drake | Aug 2008 | A1 |
20080208681 | Hammad et al. | Aug 2008 | A1 |
20080212503 | Lipford et al. | Sep 2008 | A1 |
20080232259 | Thomson | Sep 2008 | A1 |
20080244758 | Sahita et al. | Oct 2008 | A1 |
20090047923 | Jain et al. | Feb 2009 | A1 |
20090055278 | Nemani | Feb 2009 | A1 |
20090070272 | Jain | Mar 2009 | A1 |
20090075592 | Nystrom et al. | Mar 2009 | A1 |
20090089449 | Day | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090118839 | Accapadi et al. | May 2009 | A1 |
20090144161 | Fisher | Jun 2009 | A1 |
20090147958 | Calcaterra et al. | Jun 2009 | A1 |
20090154348 | Newman | Jun 2009 | A1 |
20090164800 | Johansson et al. | Jun 2009 | A1 |
20090182605 | Lappas et al. | Jul 2009 | A1 |
20090182634 | Park et al. | Jul 2009 | A1 |
20090192915 | Fernandez | Jul 2009 | A1 |
20090193491 | Rao | Jul 2009 | A1 |
20090227290 | Chien | Sep 2009 | A1 |
20090248445 | Harnick | Oct 2009 | A1 |
20090271321 | Stafford | Oct 2009 | A1 |
20090281947 | Erel | Nov 2009 | A1 |
20090300599 | Piotrowski | Dec 2009 | A1 |
20090312011 | Huomo et al. | Dec 2009 | A1 |
20090320028 | Gellerich et al. | Dec 2009 | A1 |
20100031325 | Maigne et al. | Feb 2010 | A1 |
20100052844 | Wesby | Mar 2010 | A1 |
20100075669 | Sparks et al. | Mar 2010 | A1 |
20100077487 | Travis et al. | Mar 2010 | A1 |
20100082977 | Boyle et al. | Apr 2010 | A1 |
20100125904 | Nice et al. | May 2010 | A1 |
20100128598 | Gandhewar et al. | May 2010 | A1 |
20100130170 | Liu et al. | May 2010 | A1 |
20100142517 | Montemurro et al. | Jun 2010 | A1 |
20100146589 | Safa | Jun 2010 | A1 |
20100153721 | Mellqvist | Jun 2010 | A1 |
20100162028 | Frank et al. | Jun 2010 | A1 |
20100190469 | Vanderveen et al. | Jul 2010 | A1 |
20100198943 | Harrang et al. | Aug 2010 | A1 |
20100217709 | Aabye et al. | Aug 2010 | A1 |
20100223348 | Przybysz et al. | Sep 2010 | A1 |
20100228937 | Bae et al. | Sep 2010 | A1 |
20100241847 | van der Horst et al. | Sep 2010 | A1 |
20100246818 | Yao | Sep 2010 | A1 |
20100269156 | Hohlfeld et al. | Oct 2010 | A1 |
20100274726 | Florek et al. | Oct 2010 | A1 |
20100279653 | Poltorak | Nov 2010 | A1 |
20100281139 | Deprun | Nov 2010 | A1 |
20100291896 | Corda | Nov 2010 | A1 |
20100299313 | Orsini et al. | Nov 2010 | A1 |
20100306353 | Briscoe et al. | Dec 2010 | A1 |
20100318802 | Balakrishnan | Dec 2010 | A1 |
20100328064 | Rogel | Dec 2010 | A1 |
20110010720 | Smith et al. | Jan 2011 | A1 |
20110014948 | Yeh | Jan 2011 | A1 |
20110021175 | Florek et al. | Jan 2011 | A1 |
20110035604 | Habraken | Feb 2011 | A1 |
20110050713 | McCrary et al. | Mar 2011 | A1 |
20110055084 | Singh | Mar 2011 | A1 |
20110063093 | Fung et al. | Mar 2011 | A1 |
20110072492 | Mohler et al. | Mar 2011 | A1 |
20110078081 | Pirzadeh et al. | Mar 2011 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110107426 | Yen et al. | May 2011 | A1 |
20110112968 | Florek et al. | May 2011 | A1 |
20110113479 | Ganem | May 2011 | A1 |
20110130635 | Ross | Jun 2011 | A1 |
20110138064 | Rieger et al. | Jun 2011 | A1 |
20110145926 | Dalcher et al. | Jun 2011 | A1 |
20110154032 | Mauro, II | Jun 2011 | A1 |
20110166883 | Palmer et al. | Jul 2011 | A1 |
20110173090 | Miller et al. | Jul 2011 | A1 |
20110202916 | VoBa et al. | Aug 2011 | A1 |
20110208797 | Kim | Aug 2011 | A1 |
20110212707 | Mahalal | Sep 2011 | A1 |
20110216701 | Patel et al. | Sep 2011 | A1 |
20110226853 | Soh et al. | Sep 2011 | A1 |
20110237190 | Jolivet | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110238992 | Jancula et al. | Sep 2011 | A1 |
20110246609 | Kim | Oct 2011 | A1 |
20110251892 | Laracey | Oct 2011 | A1 |
20110254687 | Arponen et al. | Oct 2011 | A1 |
20110258462 | Robertson et al. | Oct 2011 | A1 |
20110276677 | Osuga et al. | Nov 2011 | A1 |
20110281558 | Winter | Nov 2011 | A1 |
20110294418 | Chen | Dec 2011 | A1 |
20120003983 | Sherlock et al. | Jan 2012 | A1 |
20120011572 | Chew et al. | Jan 2012 | A1 |
20120021683 | Ma et al. | Jan 2012 | A1 |
20120023583 | Sallam | Jan 2012 | A1 |
20120028575 | Chen et al. | Feb 2012 | A1 |
20120029997 | Khan et al. | Feb 2012 | A1 |
20120036347 | Swanson et al. | Feb 2012 | A1 |
20120040662 | Rahman et al. | Feb 2012 | A1 |
20120052801 | Kulkarni | Mar 2012 | A1 |
20120072481 | Nandlall et al. | Mar 2012 | A1 |
20120072979 | Cha et al. | Mar 2012 | A1 |
20120084211 | Petrov et al. | Apr 2012 | A1 |
20120084438 | Raleigh et al. | Apr 2012 | A1 |
20120084836 | Mahaffey et al. | Apr 2012 | A1 |
20120089700 | Safruti et al. | Apr 2012 | A1 |
20120102202 | Omar | Apr 2012 | A1 |
20120115433 | Young et al. | May 2012 | A1 |
20120123868 | Brudnicki et al. | May 2012 | A1 |
20120130839 | Koh et al. | May 2012 | A1 |
20120131178 | Zhu et al. | May 2012 | A1 |
20120137117 | Bosch et al. | May 2012 | A1 |
20120137119 | Doerr et al. | May 2012 | A1 |
20120143703 | Wall et al. | Jun 2012 | A1 |
20120147750 | Pelletier et al. | Jun 2012 | A1 |
20120149327 | Raboisson et al. | Jun 2012 | A1 |
20120149338 | Roundtree | Jun 2012 | A1 |
20120150601 | Fisher | Jun 2012 | A1 |
20120154413 | Kim et al. | Jun 2012 | A1 |
20120158467 | Hammad et al. | Jun 2012 | A1 |
20120159163 | von Behren et al. | Jun 2012 | A1 |
20120159612 | Reisgies | Jun 2012 | A1 |
20120163206 | Leung et al. | Jun 2012 | A1 |
20120168494 | Kim | Jul 2012 | A1 |
20120178365 | Katz et al. | Jul 2012 | A1 |
20120178366 | Levy et al. | Jul 2012 | A1 |
20120190332 | Charles | Jul 2012 | A1 |
20120191536 | Chen et al. | Jul 2012 | A1 |
20120196529 | Huomo et al. | Aug 2012 | A1 |
20120196586 | Grigg et al. | Aug 2012 | A1 |
20120198519 | Parla et al. | Aug 2012 | A1 |
20120202423 | Tiedemann et al. | Aug 2012 | A1 |
20120207165 | Davis | Aug 2012 | A1 |
20120226582 | Hammad | Sep 2012 | A1 |
20120226772 | Grube et al. | Sep 2012 | A1 |
20120238206 | Singh et al. | Sep 2012 | A1 |
20120252480 | Krutt et al. | Oct 2012 | A1 |
20120255016 | Sallam | Oct 2012 | A1 |
20120258690 | Chen et al. | Oct 2012 | A1 |
20120259722 | Mikurak | Oct 2012 | A1 |
20120266076 | Lockhart et al. | Oct 2012 | A1 |
20120266220 | Brudnicki et al. | Oct 2012 | A1 |
20120272306 | Benaloh et al. | Oct 2012 | A1 |
20120282924 | Tagg et al. | Nov 2012 | A1 |
20120284195 | McMillen et al. | Nov 2012 | A1 |
20120291095 | Narendra et al. | Nov 2012 | A1 |
20120295588 | Chen et al. | Nov 2012 | A1 |
20120297187 | Paya et al. | Nov 2012 | A1 |
20120303961 | Kean et al. | Nov 2012 | A1 |
20120304286 | Croll et al. | Nov 2012 | A1 |
20120309345 | Wake et al. | Dec 2012 | A1 |
20120324293 | Grube et al. | Dec 2012 | A1 |
20120329425 | Velusamy et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130019323 | Arvidsson et al. | Jan 2013 | A1 |
20130031374 | Thom et al. | Jan 2013 | A1 |
20130034081 | Ban et al. | Feb 2013 | A1 |
20130035056 | Prasad et al. | Feb 2013 | A1 |
20130047197 | Saroiu et al. | Feb 2013 | A1 |
20130054474 | Yeager | Feb 2013 | A1 |
20130062417 | Lee et al. | Mar 2013 | A1 |
20130067552 | Hawkes et al. | Mar 2013 | A1 |
20130074067 | Chowdhry | Mar 2013 | A1 |
20130086385 | Poeluev | Apr 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097302 | Khedouri et al. | Apr 2013 | A9 |
20130097657 | Cardamore et al. | Apr 2013 | A1 |
20130105565 | Kamprath | May 2013 | A1 |
20130109307 | Reisgies et al. | May 2013 | A1 |
20130111095 | Mehrotra et al. | May 2013 | A1 |
20130117186 | Weinstein et al. | May 2013 | A1 |
20130124583 | Ferguson et al. | May 2013 | A1 |
20130125114 | Frascadore | May 2013 | A1 |
20130136126 | Wang et al. | May 2013 | A1 |
20130138521 | Want et al. | May 2013 | A1 |
20130138959 | Pelly et al. | May 2013 | A1 |
20130140360 | Graylin | Jun 2013 | A1 |
20130143489 | Morris et al. | Jun 2013 | A1 |
20130145429 | Mendel et al. | Jun 2013 | A1 |
20130159021 | Felsher | Jun 2013 | A1 |
20130159186 | Brudnicki et al. | Jun 2013 | A1 |
20130159710 | Khan | Jun 2013 | A1 |
20130160120 | Malaviya et al. | Jun 2013 | A1 |
20130174147 | Sahita et al. | Jul 2013 | A1 |
20130175984 | Yamazaki et al. | Jul 2013 | A1 |
20130191632 | Spector et al. | Jul 2013 | A1 |
20130212704 | Shablygin et al. | Aug 2013 | A1 |
20130262264 | Karstoft | Oct 2013 | A1 |
20130263212 | Faltyn et al. | Oct 2013 | A1 |
20130290709 | Muppidi et al. | Oct 2013 | A1 |
20130305333 | Katzer et al. | Nov 2013 | A1 |
20130310003 | Sadhvani Rita et al. | Nov 2013 | A1 |
20130332456 | Arkin | Dec 2013 | A1 |
20130343181 | Stroud et al. | Dec 2013 | A1 |
20130345530 | McRoberts et al. | Dec 2013 | A1 |
20130347064 | Aissi | Dec 2013 | A1 |
20130347103 | Veteikis et al. | Dec 2013 | A1 |
20140007182 | Qureshi et al. | Jan 2014 | A1 |
20140007222 | Qureshi et al. | Jan 2014 | A1 |
20140047548 | Bye et al. | Feb 2014 | A1 |
20140059642 | Deasy et al. | Feb 2014 | A1 |
20140074508 | Ying et al. | Mar 2014 | A1 |
20140089243 | Oppenheimer | Mar 2014 | A1 |
20140089699 | O'Connor et al. | Mar 2014 | A1 |
20140104287 | Nalluri et al. | Apr 2014 | A1 |
20140106709 | Palamara et al. | Apr 2014 | A1 |
20140141718 | Stromberg et al. | May 2014 | A1 |
20140155025 | Parker et al. | Jun 2014 | A1 |
20140173747 | Govindaraju | Jun 2014 | A1 |
20140188738 | Huxham | Jul 2014 | A1 |
20140215196 | Berlin | Jul 2014 | A1 |
20140245444 | Lutas et al. | Aug 2014 | A1 |
20140254381 | Racz et al. | Sep 2014 | A1 |
20140267332 | Chhabra et al. | Sep 2014 | A1 |
20140279558 | Kadi et al. | Sep 2014 | A1 |
20140281544 | Paczkowski et al. | Sep 2014 | A1 |
20140298026 | Isozaki et al. | Oct 2014 | A1 |
20150106805 | Melander et al. | Apr 2015 | A1 |
20150169885 | Paczkowski et al. | Jun 2015 | A1 |
20150172928 | Katzer et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
WO2011025433 | Mar 2011 | WO |
WO2012064171 | May 2012 | WO |
2013170228 | Nov 2013 | WO |
2014004590 | Jan 2014 | WO |
2014018575 | Jan 2014 | WO |
2014025687 | Feb 2014 | WO |
WO2014158431 | Oct 2014 | WO |
Entry |
---|
Foreign Communication from a Related Counterpart—International Search Report and Written Opinion, dated Jul. 11, 2014, PCT/US14/16651, filed on Feb. 16, 2014. |
Cope, Warren B., et al., “Electronic Purchase Transaction Trust Infrastructure”, filed May 29, 2012, U.S Appl. No. 13/482,731. |
Katzer, Robin D., et al., “Secure Placement of Centralized Media Controller Application in Mobile Access Terminal”, filed Nov. 11, 2011, U.S. Appl. No. 13/294,177. |
Paczkowski, Lyle W., et al., “Trusted Policy and Charging Enforcement Function”, filed Jun. 27, 2012, U.S. Appl. No. 13/533,969. |
Bye, Stephen James, et al., “Trusted Signaling in Long Term Evolution (LTE) 4G Wireless Communication”, filed Feb. 7, 2013, U.S. Appl. No. 13/762,319. |
Cope, Warren B., et al., “Extended Trusted Security Zone Radio Modem”, filed Nov. 26, 2013, U.S. Appl. No. 14/090,667. |
Katzer, Robin D., et al., “Trusted Access to Third Party Applications Systems and Methods”, filed Jul. 25, 2012, U.S. Appl. No. 13/557,213. |
Paczkowski, Lyle W., et al., “Trusted Security Zone Access to Peripheral Devices”, filed Jan. 6, 2014, U.S. Appl. No. 14/148,714. |
Paczkowski, Lyle W., et al., Enablement of a Trusted Security Zone Authentication for Remote Mobile Device Management Systems and Methods, filed Mar. 15, 2013, U.S. Appl. No. 13/844,357. |
Paczkowski, Lyle W., et al., “Trusted Security Zone Communication Addressing on an Electronic Device”, filed Mar. 15, 2013, U.S. Appl. No. 13/844,14. |
Bye, Stephen James, et al., “Protection for Multimedia Files Pre-Downloaded to a Mobile Device”, filed Apr. 15, 2013, U.S. Appl. No. 13/863,376. |
Paczkowski, Lyle W., et al., “Point-of-Sale and Automated Teller Machine Transactions Using Trusted Mobile Access Device”, filed Mar. 13, 2013, U.S. Appl. No. 13/802,383. |
Bertz, Lyle T., et al., “Framework for Real-Time Brokering of Digital Content Delivery,” filed Aug. 25, 2012, U.S. Appl. No. 13/594,777. |
Bertz, Lyle T., et al.,“Reservations in Real-Time Brokering of Digital Content Delivery,” filed Aug. 25, 2012, U.S. Appl. No. 13/594,778. |
Bertz, Lyle T., et al., “File Retrieval in Real-Time Brokering of Digital Content Delivery,” filed Aug. 25, 2012, U.S. Appl. No. 13/594,779. |
Paczkowski, Lyle W., et al., “Trusted Security Zone Watermark”, filed Mar. 5, 2013, U.S. Appl. No. 13/786,450. |
Paczkowski, Lyle W., et al., “Trusted Security Zone Re-Provisioning and Re-Use Capability for Refurbished Mobile Devices”, filed Mar. 14, 2013, U.S. Appl. No. 13/831,486. |
Paczkowski, Lyle W., et al., “Trusted Security Zone Enhanced with Trusted Hardware Drivers”, filed Mar. 13, 2013, U.S. Appl. No. 13/802,404. |
Paczkowski, Lyle W., et al., “Method for Enabling Hardware Assisted Operating System Region for Safe Execution of Untrusted Code Using Trusted Transitional Memory”, filed May 20, 2013, U.S. Appl. No. 13/898,435. |
Kunkel, Philip M., et al., “Secure Peer-to-Peer Call Forking Facilitated by Trusted 3rd Party Voice Server Provisioning”, filed Oct. 29, 2013, U.S. Appl. No. 14/066,661. |
Paczkowski, Lyle W., et al., “Restricting Access of a Portable Communication Device to Confidential Data or Applications via a Remote Network Based on Event Triggers Generated by the Portable Communication Device”, filed Mar. 15, 2013, U.S. Appl. No. 13/844,282. |
Paczkowski, Lyle W., et al., “JTAG Fuse Vulnerability Determination and Protection Using a Trusted Execution Environment”, filed Mar. 15, 2013, U.S. Appl. No. 13/844,325. |
Paczkowski, Lyle W., et al., “Trusted Security Zone Containers for the Protection and Confidentiality of Trusted Service Manager Data”, filed Mar. 14, 2013, U.S. Appl. No. 13/831,463. |
Paczkowski, Lyle W., et al., “Trusted Security Zone Containers for the Protection and Confidentiality of Trusted Service Manager Data”, filed Feb. 16, 2014, PCT Application No. PCT/US14/16651. |
Paczkowski, Lyle W., et al., “Verifying Applications Using a Trusted Security Zone”, filed Aug. 12, 2013, U.S. Appl. No. 13/964,112. |
Bye, Stephen James, et al., “Delivering Digital Content to a Mobile Device via a Digital Rights Clearing House”, filed Apr. 10, 2013, U.S. Appl. No. 13/860,338. |
Paczkowski, Lyle W., et al., “Trusted Processing Location Within a Graphics Processing Unit”, filed Jul. 10, 2013, U.S. Appl. No. 13/939,175. |
McCracken, Billy Gene, Jr., et al. “Mobile Communication Device Profound Identity Brokering Framework”, filed Jun. 6, 2013, U.S. Appl. No. 13/912,190. |
Urbanek, Robert E., Subscriber Identity Module Virtualization:, filed Nov. 20, 2013, U.S. Appl. No. 14/085,474. |
Paczkowski, Lyle W., et al., “Trusted Display and Transmission of Digital Ticket Documentation”, filed Jan. 24, 2014, U.S. Appl. No. 14/163,047. |
Loman, Clint H., et al., “Verification of Mobile Device Integrity During Activation”, filed Mar. 28, 2014, U.S. Appl. No. 14/229,532. |
Paczkowski, Lyle W., et al., “Network Based Temporary Trust Extension to a Remote or Mobile Device Enabled via Specialized Cloud Services”, filed Jul. 29, 2014, U.S. Appl. No. 14/446,330. |
Cordes, Kevin R., et al., “Digest of Biographical Information for an Electronic Device with Static and Dynamic Portions”, filed Apr. 4, 2013, U.S. Appl. No. 13/857,141. |
Cordes, Kevin R., et al., “Radio Frequency Identity (RFID) Chip Electrically and Communicatively Coupled to Motherboard of Mobile Communication Device”, filed Apr. 4, 2013, U.S. Appl. No. 13/857,139. |
Cordes, Kevin R., et al., “System for Managing a Digest of Biographical Information Stored in a Radio Frequency Identity Chip Coupled to a Mobile Communication Device”, filed Apr. 4, 2013, U.S. Appl. No. 13/857,138. |
Faipp Pre-Interview Communication dated Mar. 20, 2014, U.S. Appl. No. 13/482,731, filed May 29, 2012. |
Notice of Allowance dated May 27, 2014, U.S. Appl. No. 13/482,731, filed May 29, 2012. |
Faipp Pre-Interview Communication dated Oct. 24, 2012, U.S. Appl. No. 13/463,797, filed May 3, 2012. |
Notice of Allowance dated Mar. 1, 2013, U.S. Appl. No. 13/463,797, filed May 3, 2012. |
Faipp Pre-Interview Communication dated Jun. 12, 2013, U.S. Appl. No. 13/440,980, filed Apr. 5, 2012. |
Final Office Action dated Sep. 9, 2013, U.S. Appl. No. 13/440,980, filed Apr. 5, 2012. |
Notice of Allowance dated Nov. 29, 2013, U.S. Appl. No. 13/440,980, filed Apr. 5, 2012. |
Faipp Pre-Interview Communication dated Oct. 24, 2012, U.S. Appl. No. 13/463,801, filed May 3, 2012. |
Notice of Allowance dated Mar. 14, 2013, U.S. Appl. No. 13/463,801, filed May 3, 2012. |
Faipp Pre-Interview Communication dated Jul. 25, 2013, U.S. Appl. No. 13/470,203, filed May 11, 2012. |
Final Office Action dated Mar. 27, 2014, U.S. Appl. No. 13/470,203, filed May 11, 2012. |
Advisory Action dated May 29, 2014, U.S. Appl. No. 13/470,203, filed May 11, 2012. |
Faipp Pre-Interview Communication dated May 12, U.S. Appl. No. 13/294,177, filed Nov. 11, 2011. |
Faipp Pre-Interview Communication dated Jun. 6, 2013, U.S. Appl. No. 13/571,348, filed Aug. 10, 2012. |
Office Action dated Sep. 25, 2013, Application U.S. Appl. No. 13/571,348, filed Aug. 10, 2012. |
Final Office Action dated Apr. 10, 2014, U.S. Appl. No. 13/571,348, filed Aug. 10, 2012. |
Advisory Action dated Jun. 23, 2014, U.S. Appl. No. 13/571,348, filed Aug. 10, 2012. |
Notice of Allowance dated Aug. 30, 2013; U.S. Appl. No. 13/540,437, filed Jul. 2, 2012. |
Restriction Requirement dated Nov. 1, 2013, U.S. Appl. No. 13/557,213, filed Jul. 25, 2012. |
Office Action dated Dec. 19, 2013, U.S. Appl. No. 13/557,213, filed Jul. 25, 2012. |
Notice of Allowance dated Jun. 4, 2014, U.S. Appl. No. 13/557,213 filed, Jul. 25, 2012. |
Faipp Pre-Interview Communication dated Nov. 27, 2013, U.S. Appl. No. 13/610,856, filed Sep. 11, 2012. |
Notice of Allowance date Jan. 31, 2014, U.S. Appl. No. 13/610,856, filed Sep. 11, 2012. |
Faipp Pre-Interview Communication dated Jun. 5, 2013, U.S. Appl. No. 13/556,200, filed Jul. 24, 2012. |
First Action Interview Office Action dated Aug. 19, 2013, U.S. Appl. No. 13/556,200, filed Jul. 24, 2012. |
Notice of Allowance dated Oct. 16, 2013, U.S. Appl. No. 13/556,200, filed Jul. 24, 2012. |
Faipp Pre-Interview Communication dated Aug. 4, 2014, U.S. Appl. No. 13/844,357, filed Mar. 15, 2013. |
Faipp Pre-Interview Communication dated Apr. 3, 2014, U.S. Appl. No. 13/802,383, filed Mar. 13, 2013. |
First Action Interview Office Action dated May 23, 2014, U.S. Appl. No. 13/802,383, filed Mar. 13, 2013. |
Notice of Allowance dated Jul. 8, 2014, U.S. Appl. No. 13/802,383, filed Mar. 13, 2013. |
Restriction Requirement dated Aug. 14, 2014, U.S. Appl. No. 13/594,777, filed Aug. 25, 2012. |
Faipp Pre-Interview Communication dated Jul. 17, 2014, U.S. Appl. No. 13/594,778, filed Aug. 25, 2012. |
Faipp Pre-Interview Communication dated Jul. 17, 2014, U.S. Appl. No. 13/594,779, filed Aug. 25, 2012. |
Office Action dated May 5, 2014, U.S. Appl. No. 13/786,450, filed Mar. 5, 2013. |
Faipp Pre-Interview Communication dated Aug. 6, 2014, U.S. Appl. No. 13/831,486, filed Mar. 14, 2013. |
First Action Interview Pre-Interview Communication dated Dec. 27, 2011, U.S. Appl. No. 12/486,873, filed Jun. 18, 2009. |
First Action Interview Office Action dated Feb. 13, 2012, Appl. U.S. No. 12/486,873, filed Jun. 18, 2009. |
Office Action dated Jul. 5, 2012, U.S. Appl. No. 12/486,873, filed Jun. 18, 2009. |
Final Office Action dated Feb. 1, 2013, U.S. Appl. No. 12/486,873, filed Jun. 18, 2009. |
Notice of Allowance dated Jan. 28, 2014, U.S. Appl. No. 12/486,873, filed Jun. 18, 2009. |
Zimmerman, Ann, “Check Out the Future of Shopping”, The Wall Street Journal, Business, May 18, 2011, http://online.wsj.com/article/SB10001424052748703421204576329253050634700.html. |
Garry, Michael, Kroger Test Prepares for Mobile Future:, SN, Supermarket News, Jun. 13, 2011, http://supermarketnews.com/technology/kroger-test-prepares-mobile-future. |
Jones, Sally, “Industry Trends in POS Hardware for Mobile Devices”, Aug. 31, 2011, http://pointofsale.com/20110831734/Mobile-POS-News/industry-trends-in-pos-hardware-for-mobile-devices.html. |
Foreign Communication from a Related Counterpart—International Search Report and Written Opinion, dated Dec. 2, 2013, PCT/US13/40673, filed on May 10, 2013. |
Giesecke & Devrient, “The OTA Platform in the World of LTE”, Jan. 2011, http://www.gi-de.com/gd—media/media/en/documents/brochures/mobile—security—2/cste—1/OTA-and-LTE.pdf. |
Pesonen, Lauri, “Development of Mobile Payment Ecosystem—NFC Based Payment Services”, Aug. 27, 2008. |
Foreign Communication from a Related Counterpart—International Search Report and Written Opinion, dated Feb. 4, 2014, PCT/US13/47729, filed on Jun. 25, 2013. |
Foreign Communication from a Related Counterpart—International Search Report and Written Opinion, dated Feb. 4, 2014, PCT/US13/51750, filed on Jul. 24, 2013. |
Foreign Communication from a Related Counterpart—International Search Report and Written Opinion, dated Apr. 22, 2014, PCT/US13/53617, filed on Aug. 5, 2013. |
Ahmed, Farid, et al., “Correlation-based Watermarking Method for Imagine Authentication Applications”, Society of Photo-Optical Instrumentation Engineers, Feb. 17, 2004, pp. 1834-1838. |
Office Action dated Aug. 29, 2014, U.S. Appl. No. 13/470,203, filed May 11, 2012. |
Notice of Allowance dated Oct. 8, 2014, U.S. Appl. No. 13/294,177, filed Nov. 11, 2011. |
Faipp Pre-Interview Communication dated Sep. 25, 2014, U.S. Appl. No. 13/533,969, filed Jun. 27, 2012. |
Notice of Allowance dated Oct. 6, 2014, U.S. Appl. No. 13/844,357, filed Mar. 15, 2013. |
Faipp Pre-Interview Communication dated Nov. 12, 2014, U.S. Appl. No. 13/844,145, filed Mar. 15, 2013. |
Notice of Allowance dated Sep. 19, 2014, U.S. Appl. No. 13/594,778, filed Aug. 25, 2012. |
Final Office Action dated Nov. 7, 2014, U.S. Appl. No. 13/786,450, filed Mar. 5, 2013. |
Notice of Allowance dated Sep. 26, 2014, U.S. Appl. No. 13/831,486, filed Mar. 14, 2013. |
Faipp Pre-Interview Communication dated Nov. 7, 2014, U.S. Appl. No. 13/802,404, filed Mar. 13, 2013. |
Faipp Pre-Interview Communication dated Oct. 29, 2014, U.S. Appl. No. 13/844,282, filed Mar. 15, 2013. |
Faipp Pre-Interview Communication dated Oct. 21, 2014, U.S. Appl. No. 13/844,325, filed Mar. 15, 2013. |
Foreign Communication from a Related Counterpart—International Preliminary Report on Patentability, dated Nov. 20, 2014, PCT/US13/40673, filed on May 10, 2013. |
Perrig, Adrian, et al., “SPINS: Security Protocols for Sensor Networks,” ACM, Sep. 2002, vol. 8, pp. 521-534. |
Clark, CJ., et al. “Anti-tamper JTAG TAP design enables DRM to JTAG registers and P1687 on-chip instruments”, 2010 IEEE, International Symposium on Hardware-Oriented Security and Trust (HOST). Pub. Date: 2010. Relevant pp. 19-24. http://ieeexplore. ieee. org/stamp/stamp.jsp?tp=&arnumber=5513119. |
Lee, Jeremy, et al., “A Low-Cost Solution for Protecting IPs Against Scan-Based Side Channel Attacks,” 24th IEEE VLSI Test Symposium. Pub. Date: 2006. http://ieeexplore. ieee. org/stamp/stamp.jsp?tp=&arnumber= 1617569. |
Notice of Allowance dated Dec. 22, 2014, U.S. Appl. No. 13/470,203, filed May 11, 2012. |
Notice of Allowance dated Feb. 5, 2015, U.S. Appl. No. 13/533,969, filed Jun. 27, 2012. |
Office Action dated Dec. 15, 2014, U.S. Appl. No. 13/571,348, filed Aug. 10, 2012. |
Restriction Requirement dated Jan. 2, 2015, U.S. Appl. No. 13/762,319, filed Feb. 7, 2013. |
Faipp Pre-Interview Communication dated Feb. 12, 2015, U.S. Appl. No. 14/066,661, filed Oct. 29, 2013. |
Notice of Allowance dated Dec. 3, 2014, U.S. Appl. No. 13/594,777, filed Aug. 25, 2012. |
First Action Interview Office Action dated Dec. 3, 2014, U.S. Appl. No. 13/594,779, filed Aug. 25, 2012. |
Notice of Allowance dated Feb. 26, 2015, U.S. Appl. No. 13/786,450, filed Mar. 5, 2013. |
Faipp Pre-Interview Communication dated Dec. 16, 2014, U.S. Appl. No. 13/898,435, filed May 20, 2013. |
Notice of Allowance dated Feb. 20, 2015, U.S. Appl. No. 13/898,435, filed May 20, 2013. |
Notice of Allowance dated Dec. 19, 2014, U.S. Appl. No. 13/844,325, filed Mar. 15, 2013. |
Notice of Allowance dated Jan. 2, 2015, U.S. Appl. No. 13/831,463, filed Mar. 14, 2013. |
Faipp Pre-Interview Communication dated Feb. 25, 2015, U.S. Appl. No. 14/163,047, filed Jan. 24, 2014. |
Restriction Requirement dated Jan. 5, 2015, U.S. Appl. No. 13/857,139, filed Apr. 4, 2013. |
Foreign Communication from a Related Counterpart—International Preliminary Report on Patentability, dated Jan. 8, 2015, PCT/US13/47729, filed on Jun. 25, 2013. |
Foreign Communication from a Related Counterpart—International Preliminary Report on Patentability, dated Feb. 19, 2015, PCT/US13/53617, filed on Aug. 5, 2013. |
Foreign Communication from a Related Counterpart—International Preliminary Report on Patentability, dated Feb. 5, 2015, PCT/US13/51750, filed on Jul. 24, 2013. |
Katzer, Robin D., et al., “Web Server Bypass of Backend Process on Near Field Communications and Secure Elements Chips”, filed Feb. 26, 2015, U.S. Appl. No. 14/632,850. |
Neson, Tracy L., et al., “Mated Universal Serial Bus (USB) Wireless Dongles Configured with Destination Addresses”, filed Jan. 26, 2015, U.S. Appl. No. 14/606,011. |
Paczkowski, Lyle W., et al., “Trusted Code Generation and Verification to Prevent Fraud from Maleficent External Devices that Capture Data”, filed Jan. 14, 2015, U.S. Appl. No. 14/592,218. |
Faipp Pre-Interview Communication dated Mar. 25, 2015, U.S. Appl. No. 13/532,588, filed Jun. 25, 2012. |
Faipp Pre-Interview Communication dated Mar. 10, 2015, U.S. Appl. No. 13/762,319, filed Feb. 7, 2013. |
Faipp Pre-Interview Communication dated May 21, 2015, U.S. Appl. No. 14/090,667, filed Nov. 26, 2013. |
Final Office Action dated Apr. 7, 2015, U.S. Appl. No. 13/844,145, filed Mar. 15, 2013. |
First Action Interview Office Action dated Apr. 7, 2015, U.S. Appl. No. 13/802,404, filed Mar. 13, 2013. |
Faipp Pre-Interview Communication dated Mar. 26, 2015, U.S. Appl. No. 13/939,175, filed Jul. 10, 2013. |
Final Office Action dated Mar. 24, 2015, U.S. Appl. No. 13/844,282, filed Mar. 15, 2013. |
Faipp Pre-Interview Communication dated Mar. 24, 2015, U.S. Appl. No. 13/964,112, filed Aug. 12, 2013. |
Faipp Pre-Interview Communication dated Apr. 15, 2015, U.S. Appl. No. 14/085,474, filed Nov. 20, 2013. |
Notice of Allowance dated Apr. 9, 2015, U.S. Appl. No. 14/163,047, filed Jan. 24, 2014. |
Faipp Pre-Interview Communication dated Mar. 2, 2015, U.S. Appl. No. 13/857,138, filed Apr. 4, 2013. |
First Action Interview Office Action dated Apr. 20, 2015, U.S. Appl. No. 13/857,138, filed Apr. 4, 2013. |
Bertz, Lyle T., et al., “Framework for Real-Time Brokering of Digital Content Delivery,” filed Mar. 17, 2015, U.S. Appl. No. 14/659,614. |
Marquard, et al., “Infrastructure for Secure Short Message Transmission,” filed Apr. 7, 2015, U.S. Appl. No. 14/681,077. |
Notice of Allowance dated May 29, 2015, U.S. Appl. No. 14/085,474, filed Nov. 20, 2013. |
FAIPP Pre-Interview Communication dated Jul. 2, 2015, U.S. Appl. No. 14/632,850, filed Feb. 26, 2015. |
Notice of Allowance dated Jun. 17, 2015, U.S. Appl. No. 13/571,348, filed Aug. 10, 2012. |
Notice of Allowance dated Jun. 9, 2015, U.S. Appl. No. 13/762,319, filed Feb. 7, 2013. |
Notice of Allowance dated Aug. 4, 2015, U.S. Appl. No. 14/090,667, filed Nov. 26, 2013. |
Notice of Allowance dated Jul. 6, 2015, U.S. Appl. No. 13/844,145, filed Mar. 15, 2013. |
Notice of Allowance dated Jul. 6, 2015, U.S. Appl. No. 14/066,661, filed Oct. 29, 2013. |
Notice of Allowance dated Aug. 14, 2015, U.S. Appl. No. 13/594,779, filed Aug. 25, 2012. |
Final Office Action dated Aug. 27, 2015, U.S. Appl. No. 13/802,404, filed Mar. 13, 2013. |
Notice of Allowance dated Jul. 7, 2015, U.S. Appl. No. 13/939,175, filed Jul. 10, 2013. |
Advisory Action dated Jun. 10, 2015, U.S. Appl. No. 13/844,282, filed Mar. 15, 2013. |
Office Action dated Aug. 24, 2015, U.S. Appl. No. 13/844,282, filed Mar. 15, 2013. |
Notice of Allowance dated Aug. 3, 2015, U.S. Appl. No. 13/964,112, filed Aug. 12, 2013. |
Notice of Allowance dated Jul. 22, 2015, U.S. Appl. No. 14/229,532, filed Mar. 28, 2014. |
Notice of Allowance dated Aug., 28, 2015, U.S. Appl. No. 14/446,330, filed Jul. 29, 2014. |
FAIPP Pre-Interview Communication dated Aug. 5, 2015, U.S. Appl. No. 13/857,141, filed Apr. 4, 2013. |
FAIPP Pre-Interview Communication dated Jun. 2, 2015, U.S. Appl. No. 13/857,139 filed Apr. 4, 2013. |
Notice of Allowance dated Jun. 11, 2015, U.S. Appl. No. 13/857,138, filed Apr. 4, 2013. |
Henderson, Tristan, et al., “On the Wire, Congestion Pricing: Paying Your Way in Communications Networks,” University College London, Sep./Oct. 2001, retrieved from: http://tristan.host.cs.st-andrews.ac.uk!research/pubs/ieeeic01.pdf. |