The present invention relates to bimini tops, which are able to be selectively deployed from a stowed position to provide shade and/or shelter for occupants of boats or other vessels or structures.
In at least one existing bimini top 20 (
The bimini top 20 can be deployed and/or stowed by hand or by a powered or automated system (i.e., a hydraulic actuator). In many instances, regardless of whether the bimini top 20 is power-operated, a user may have to manually pivot the auxiliary bows 24B away from each other and towards the respective main bows 24A during retraction of the bimini top 20 in order to have them assume the proper stowed orientation. To prevent the need for manually stacking the auxiliary bows 24B, bungee cords 26 may be provided between the main bows 24A and the respective auxiliary bows 24B. Each bungee cord 26 extends from a first attachment point 28 on the auxiliary bow 24B through an opening 30 in the corresponding main bow 24A to a second attachment point 32. The bungee cords 26 are pre-tensioned by this arrangement such that there is a biasing force present to keep the auxiliary bows 24B stacked next to the respective main bows 24A when they are in the stowed position. When the bimini top 20 is deployed, the tension in the bungee cords 26 increases further, proportional to the length that they are stretched. In this arrangement, the bungee cords 26 are subject to destructive chafing at the openings 30 where the cords 26 pass though the main bows 24A, even with the use of a grommet or the like in the opening 30, due to the tensile force in the bungee cords 26 and the sharp angle that must be followed. Furthermore, the exposed portions of the bungee cords 26 are subject to damage from any number of sources including, but not limited to UV exposure and incidental contact with sharp objects. If one of the bungee cords 26 breaks, it is not contained and may release its stored energy in an unpredictable manner.
With respect to the bungee cords 26 themselves, it is known to use conventional fabric-covered latex cords, which have a maximum stretchability or allowable elongation of about 50 percent to 100 percent (i.e., stretching to a length between about 1.5 times and 2 times the nominal or unstretched length). The fabric cover or jacket encloses many elastic strands and acts as an over-stretch protector and exposure protector for the strands. These thin elastic strands combine for a particularly high amount of exposed surface area and thus, are particularly sensitive to oxygen exposure, which will ultimately harden and break down the material and make the bungee cords 26 lose their functionality. Because of the limited amount of allowable elongation percentage, a large length of the material must be used (larger than the actual distance between one of the main bows 24A and one of the auxiliary bows 24B) in order to obtain the required amount of overall elongation, which is determined by the difference in the distance between the main and auxiliary bows 24A, 24B in the respective stowed and deployed orientations. This necessitates the arrangement of having the bungee cords 26 pass inside the main bows 24A, which has certain disadvantages as discussed above.
In one embodiment, the invention provides a retractable bimini top movable between stowed and deployed orientations. The retractable bimini top includes a frame having a first bow and a second bow movable relative to the first bow. A cover of the retractable bimini top is positioned over at least a portion of each of the first and second bows. A first elastic cord has a first end coupled to the first bow and a second end coupled to the second bow such that the first elastic cord is under tension at least when the retractable bimini top is in the deployed orientation. The first elastic cord has an allowable percent elongation of at least 200 percent.
In another embodiment, the invention provides a retractable bimini top movable between stowed and deployed orientations. The retractable bimini top includes a collapsible frame including a forward main bow, an aft main bow, a forward auxiliary bow coupled to the forward main bow, and an aft auxiliary bow coupled to the aft main bow. A cover of the retractable bimini top is positioned over at least a portion of each of the forward main bow, the forward auxiliary bow, the aft main bow, and the aft auxiliary bow. The cover includes a plurality of sleeves. A first elastic cord extends through a first one of the plurality of sleeves in the cover and has a first end coupled to the forward main bow and a second end coupled to the forward auxiliary bow such that the first elastic cord is under tension at least when the retractable bimini top is in the deployed orientation. A second elastic cord extends through a second one of the plurality of sleeves in the cover and has a first end coupled to the aft main bow and a second end coupled to the aft auxiliary bow such that the second elastic cord is under tension at least when the retractable bimini top is in the deployed orientation. Each of the first and second elastic cords has an allowable percent elongation of at least 200 percent.
In yet another embodiment, the invention provides a retractable bimini top movable between stowed and deployed orientations. The retractable bimini top includes a collapsible frame including a forward main bow, an aft main bow, a forward auxiliary bow coupled to the forward main bow, and an aft auxiliary bow coupled to the aft main bow. A cover of the retractable bimini top is positioned over at least a portion of each of the forward main bow, the forward auxiliary bow, the aft main bow, and the aft auxiliary bow. A first elastic cord has a first end coupled to the forward main bow and a second end coupled to the forward auxiliary bow such that the first elastic cord is under tension at least when the retractable bimini top is in the deployed orientation. A second elastic cord has a first end coupled to the aft main bow and a second end coupled to the aft auxiliary bow such that the second elastic cord is under tension at least when the retractable bimini top is in the deployed orientation. Each of the first and second elastic cords exhibits between about zero percent and about 50 percent elongation in the stowed orientation of the retractable bimini top and exhibits between about 200 percent and about 300 percent elongation in the deployed orientation of the retractable bimini top.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
It should be noted that the bimini top 50 may include more or fewer bows 54 having similar or alternate sizes, shapes, or overall arrangements as the bows 54A-54D illustrated herein. The bimini top 50 may be moved back and forth between the stowed and deployed orientations either manually or automatically (with one or more powered actuators, such as hydraulic actuators).
The bimini top 50 includes an integrated retraction-aiding system. The retraction-aiding system operates to bias the auxiliary bows 54B, 54C towards the respective main bows 54A, 54D during retraction of the bimini top 50 from the deployed orientation to the stowed orientation. When the bimini top 50 is moved into the deployed orientation, the auxiliary bows 54B, 54C deploy or pivot out from the respective main bows 54A, 54D automatically as the main bows 54A, 54D extend away from each other and the cover 58 is stretched taut. However, without dedicated retraction means such as the retraction-aiding system described in greater detail below, one or more of the auxiliary bows 54B, 54C may remain deployed or semi-deployed simply by gravity and/or interference with the cover 58, even when the main bows 54A, 54D are moved together. The retraction-aiding system eliminates the need for manipulating or “stacking” the auxiliary bows 54B, 54C manually, which may otherwise be necessary, even with a powered bimini top 50.
As shown in at least
When the bimini top 50 is in the deployed orientation (
In one construction, the first elastic cord 64 is constructed of hollow latex tubing having a maximum allowable elongation of at least about 200 percent (stretching to a length about 3 times its original length). In the illustrated construction, the first elastic cord 64 has a maximum allowable elongation of at least about 300 percent (stretching to a length about 4 times its original length) and a tensile spring coefficient of about 1.4 pounds per foot, which is maintained substantially constant even above 200 percent elongation. In some constructions, the first elastic cord 64 maintains a substantially constant tensile spring coefficient throughout substantially the entire range of allowable elongation. In some constructions, the first elastic cord 64 is constructed of mandrel-dipped latex having one or more concentric layers formed by multiple dipping operations, as opposed to an extrusion process.
As shown in
As shown in at least
The material properties of the second elastic cord 82 are substantially identical to that of the first elastic cord 64 described above. In the illustrated construction, the nominal and deployed lengths of the second elastic cord 82 are substantially identical to that of the first elastic cord 64. Thus, the second elastic cord 82 has a nominal length of about 9 inches and a length of about 35 inches in the deployed orientation of the bimini top 50. As described in further detail below, the second elastic cord 82 may be stretched a relatively small amount when the bimini top 50 is in the stowed orientation, as shown in
As shown in the figures and described above, the first and second elastic cords 64, 82 are similar or substantially identical in many respects and both are positioned along a longitudinal centerline of the bimini top 50. However, variations from this particular configuration are optional. For example, a different arrangement of bows may require the first and second elastic cords 64, 82 to have different lengths or be positioned differently within the bimini top 50. Also, multiple sets of elastic cords 64, 82 may be employed.
In addition to the first and second elastic cords 64, 82, a third elastic cord 98 extends between the forward auxiliary bow 54B and the aft auxiliary bow 54C. As with the first and second elastic cords 64, 82, the third elastic cord 98 is positioned substantially entirely within a pocket or sleeve 102 (
As shown in
In order to couple the elastic cords 64, 82, 98 (and the interconnected elastic cord unit 106 as a whole) to the bows 54A-54D, screws 116 (
Each of the first and second elastic cords has a percent elongation between about zero percent and about 50 percent (1-1.5 times its nominal length) in the stowed orientation of the bimini top and has a percent elongation of at least 200 percent (3 times its nominal length), and in some constructions, about 300 percent (4 times its nominal length) in the deployed orientation of the bimini top 50.
As shown in
Thus, the invention provides, among other things, an easily-assembled and long-lasting retraction aiding system for a bimini top in which at least one elastic cord with a large allowable elongation is utilized and is substantially enclosed within a portion of a cover of the bimini top. Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1289265 | Richard et al. | Dec 1918 | A |
3316012 | Thier | Apr 1967 | A |
3354892 | Frieder | Nov 1967 | A |
3399687 | Frieder | Sep 1968 | A |
3955732 | Boschen | May 1976 | A |
4683900 | Carmichael | Aug 1987 | A |
5441066 | Harris | Aug 1995 | A |
5520139 | King et al. | May 1996 | A |
5697320 | Murray | Dec 1997 | A |
6223680 | Frink et al. | May 2001 | B1 |
6763650 | Snow | Jul 2004 | B1 |
6968800 | Becht | Nov 2005 | B1 |
7159530 | Shearer et al. | Jan 2007 | B1 |
7210726 | Merlot, Jr. et al. | May 2007 | B2 |
7325856 | Merlot, Jr. et al. | Feb 2008 | B2 |
20070095272 | Shearer et al. | May 2007 | A1 |
20070287614 | Fuller | Dec 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090229508 A1 | Sep 2009 | US |