Embodiments generally relate to bins having an electronic low profile locking assembly.
The transporting, storing, dispensing, and returning/disposal of medical supplies and medications is a daunting task in view of the complexity of modern healthcare systems. Any system or method for serving this industry must provide security and traceability, as well as provide an easy platform for incorporating the system into the daily routine for healthcare professionals.
Electronically controlled locking bins may be used in a variety of applications, including but not limited to storing medical devices, prescription drugs, jewelry and other small valuables, as well as other articles where access must be monitored and tightly controlled.
The exemplary embodiments herein provide a medical cart having a drawer with a post which extends upwardly from a bottom surface of the drawer. The cart further includes a removable medication delivery module having four sidewalls and a bottom wall as well as a plurality of individually-lockable bins placed above the bottom wall and within the four sidewalls. A lock may be positioned above the bottom wall and below the plurality of individually-lockable bins with an aperture on the lock which engages with the post and a hole in the bottom wall sized to accept the post.
Exemplary embodiments also provide a low profile locking assembly. Each bin may be defined by four tapered side walls and a bottom wall. The tapered side walls may define a gap between adjacent bins and between a bin and the sidewall of a delivery module. The gap may be sized to accept the low profile locking assembly. Each bin may include a lid having a slot for receiving a latch located on a lock. The lock may be rotated about a pivot point such that the latch selectively engages the slot in order to lock and unlock the bin. An electronic signal from a PCB may control the actuator. An actuator spring may be used to bias the lock into the slot. In an exemplary embodiment, the locking assembly is placed on the front wall of the bin and may not be visible or accessible to a user, even when the lid of the bin has been opened. In another exemplary embodiment, the locking assembly is placed on the same side of the bin as the hinge axis.
The foregoing and other features and advantages of the present invention will be apparent from the following more detailed description of the particular embodiments, as illustrated in the accompanying drawings.
A better understanding of an exemplary embodiment will be obtained from a reading of the following detailed description and the accompanying drawings wherein identical reference characters refer to identical parts and in which:
The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
A sleeve 180 extends from the cart and away from the column 70, to provide an envelope for accepting a drawer 101. Preferably, a pair of drawer slides 175 are used to allow the drawer 101 to be translated in/out of the sleeve 180. A delivery module 110 can be inserted/removed from the drawer 101, and preferably contains a plurality of bins 150 which are preferably individually-lockable and trackable. A protrusion 125 preferably extends from the delivery module 110 and out of the drawer 101. The protrusion 125 preferably extends away from the front facia 100 of the drawer 101.
A wireless power transmitter 501 is placed on the cart to communicate with a wireless power receiver 500 as described below. The wireless power transmitter 501 is preferably in electrical connection with the battery 25 and associated electronics found within the base 26. A wireless data transmitter/receiver 551 is also placed on the cart to communicate with a wireless data transmitter/receiver 550 as described below. The wireless data transmitter/receiver 551 is preferably in electrical connection with the computer 10 and its associated processor.
As described further below, the posts 250 should be sized and positioned to engage with the locking mechanism 200 to secure the delivery module 110 within the drawer 101. In an exemplary embodiment, a front facia 100 may be positioned outside of the drawer 101 and on the front surface of the drawer 101, where the facia 100 has a surface area that is larger than the surface area of the front surface of the drawer 101, and where the facia 100 is sized to fit within the sleeve 180.
Another illuminating device 131 may be placed within the front wall of the delivery module 110, so that it can illuminate the opening 128. In the embodiment shown, the illuminating device 131 is positioned behind a portion of the sidewall 127 which, in this embodiment, also runs parallel to the front wall of the delivery module 110. In this situation, it is preferable that the sidewall 127 either contains a physical opening to allow the light to pass through the sidewall 127. Alternatively, the sidewall 127 can be constructed with a translucent, semi-translucent, or transparent material that would allow the light to pass through the sidewall 127. The illuminating device 131 is preferably one or more light emitting diodes (LEDs), ideally a grouping that includes a red, a green, and a blue LED, but can also be an electroluminescent polymer. The illuminating device 131 and the display 126 are preferably in electrical connection with the PCB 300. In some embodiments, where the sidewall portion 127 has adequate strength, a user can utilize the opening 128 in combination with the sidewall portion 127 as a handle for transporting the delivery module 110. In this way, the opening 128 is sized to accept a portion of several fingers of the user, in order to obtain adequate grip of the sidewall portion 127.
In this embodiment, a tension spring is attached at one end to the plate 255 and at a second end to the lock 270. It is preferable that the distance from the spring 295 attachment point to the pivot point 272 is substantially the same as the distance from the linkage 280 attachment point to the pivot point 272. In other words, the attachment points for the spring 295 and linkage 280 should be symmetrical about the pivot point 272, although this is not required.
As noted above, the lock 270 preferably contains one or more apertures 275 for accepting a post 250. Here, there are apertures 275 placed on both opposing ends of an elongate lock 270. The apertures 275 are preferably placed above the holes 251 in the plate 255.
From the view of this embodiment, the delivery module 110 could generally be described as having a floor and four sidewalls which define a tray 600, which accepts a plurality of individually lockable bins 150. Preferably, when each bin 150 is closed, it does not extend above the sidewalls 650 of the tray 600. Each bin 150 preferably contains a lid 151 with a hinge 155 that is located on the rear edge of the bin 150 (i.e. opposite the front edge of the delivery module 110 which contains the protrusion 125).
The delivery module 110 includes a PCB 300 which preferably has both a processor and electronic storage. A number of different types of data can be stored on this electronic storage, including but not limited to: destination for the module 110, date/time for the last time the module 110 was opened and which bin 150 was accessed, battery 169 levels, and identifying information data for the module 110 (serial number, model number, customer number, etc.). Any of this data can be stored on the display module 110 and displayed on the display 126, before/after/during delivery or transportation and because of the geometry of the protrusion and drawer, can even display to a user when the module 110 is closed within a drawer. Any of this data can also be transmitted to the processor either on the computer 10 or the cart electronics 25 either once the module 110 has been installed within the drawer and electrical communication between the wireless data transmitter/receivers 550 and 551 is established. Any of this data can also be transmitted to the processor either on the computer 10 or the cart electronics 25 either once the module 110 has been installed within the drawer and electrical communication between the wireless data transmitter/receivers 550 and 551 is established or through the internet/network connection with the computer 10, which can be a wired or wireless connection. Thus, the cart can receive the data for the module 110 through the internet/network connection prior to the module 110 actually being installed within the cart. In this way, the cart knows the modules 110 that are intended for install and when the cart recognized that a module 110 is not intended for the cart and (1) an error message can be displayed and/or (2) the lock 270 can be electronically unlocked when the data for the module 110 does not match the data for a module 110 that is intended for the cart.
Regarding
It is respectfully noted that although power to the delivery module is preferably shown as wireless power 500/501, this is not required, as any person of ordinary skill could also use connectors which would establish an electrical connection when the delivery module is installed within the drawer. Similarly, although electronic data transmission to and from the delivery module is shown as wireless data 550/551, this is not required, as connectors could be used for this as well.
It should be noted that the bins 150 can be used to store and transport any item that requires some type of security. Generally, this would include medications and medical supplies (such as instruments, devices, etc.) but could also apply to any item having value, either from being rare or from a high price point for purchase. Thus, although described as a “medical cart” herein, the structure and teachings can be used for any other small items that require tracking and secure transport.
In this exemplary embodiment, the lock 402 (also referred to herein as the “lock plate”) is located on the front wall 399 of the bin 150. The corresponding slot 152 may be located on the bottom surface of the front portion of the lid 151 or on the front surface of the lid 151 such that the latch 420 may selectively engage the slot 152. The lock 402 may be mounted to the front wall 399 in a rotatable fashion such that the lock 402 may rotate about the pivot point 460. The lock 402 may be rotated between a locked position where the latch 420 engages the slot 152 and an unlocked position whereby the latch 420 is located wholly outside of the slot 152.
When the lock 402 is in the locked position, the lid 151 may be secured in a closed position. When the lock 402 is in the unlocked position, the lid 151 may be free to move into the opened position. The lid 151 may be biased in the opened or shut position, though such is not required. The pivot point 460 may be located at substantially the midpoint of the lock 402, though any location is contemplated. In exemplary embodiments, the portion of the lock 402 extending above the pivot point 260 may comprise the latch 420 having the rounded tip 421 which interacts with the slot 152, though any shape latch 420 and corresponding slot 152 is contemplated.
The actuator 400 may be configured for horizontal movement which causes the lock 402 to rotate about the pivot point 460. More specifically, the portion of the lock 402 extending below the pivot point 460 may be configured to interact with or be secured to the actuator 400 at the pivot point 465. In this way, the horizontal movement of the actuator 400 may be translated to rotation of the lock 402, thus moving the lock 402 between a locked and an unlocked position. In exemplary embodiments, the actuator 400 may be biased by the actuator spring 450 in a direction that corresponds with the lock 402 in the locked position, though the lock 402 may move independently of the actuator 400, and may only move the lock 402 into the unlocked position when the actuator 400 powered.
A tail 451 may extend from the portion of the lock 402 located below the pivot point 460, though it is contemplated that the tail 451 may extend from any portion of the lock 402. In exemplary embodiments, the tail 451 is comprised of a resiliently deformable material, such as but not limited to plastic, such that the tail 451 may act as a spring. A post 452 may be located on the sidewall 399 of the bin 150 to prevent the tail 451 from extending therebeyond. The tail 451 may be integrally formed with, adhered, or fastened to the lock 402.
When the lock 402 is located in the locked position, the tail 451 may be rotated upward such that is rests against, or is deflected when contacting, the post 452. In this way, the tail 451 may provide springing forces for moving the lock 402 into the unlocked position. Stated another way, the tail 451 may be configured to bias the lock 402 in the unlocked position. However, it is contemplated that the tail 451 and the post 452 may be located and configured to bias the lock 402 in the locked position. In such exemplary embodiments, the tail 451 may instead be located above the post 452, such that the tail 451 is defected when the lock 402 is rotated into the unlocked position.
For example, but not to serve as a limitation, the actuator 400 may be biased by the actuator spring 450 in a direction that corresponds with the lock 402 being located in the locked position. However, the actuator 400 may be periodically powered to move the actuator 400 such that the lock 402 rotated into in the unlocked position. When the actuator 400 is no longer powered, the actuator spring 450 may horizontally translate the actuator 400 to its original position, thereby returning the lock 402 to the locked position. When the actuator 400 is powered and moved such that the lock 402 is placed in the unlocked position, the tail 451 may be rotated with the lock 402 such that the tail 451 contacts the post 452 and likewise biases the lock 402 in the locked position.
A first sensor 453 may be positioned and configured to detect the location of the lid 151, such as but not limited to, whether the lid 151 is in the open or the closed position. For example, without limitation, the first sensor 453 may be positioned to detect the presence or non-presence of the portion of the lid 151 forming the slot 152 in a location that would require the lid 151 be in a closed position. In this way, activation of the first sensor 453 may determine that the lid 151 is shut. Likewise, non-activation of the first sensor 453 may determine that the lid 151 is open.
A second sensor 454 may be positioned and configured to detect the location of the lock 402, such as but not limited to, whether the lock 402 is in the locked or unlocked position. In exemplary embodiments, an arm 455 may extend from the lock 402 such that the arm 455 is rotated or moved with the lock 402. The arm 455 may extend from the portion of the lock 402 located adjacent to the pivot point 460, though any location is contemplated. For example, without limitation, the second sensor 454 may be located to detect the presence or non-presence of the arm 455 or other portion of the lock 402 in a location that would require the lock 402 be in the locked position. In this way, activation of the second sensor 454 may determine that the lock 402 is locked. Likewise, non-activation of the second sensor 454 may determine that the lock 402 is unlocked.
The first sensor 453 and the second sensor 454 may be in electrical connection with a printed circuit board (PCB) 301. The PCB 301 may be located on the front wall 399 of the bin 150, though any location is contemplated. The PCB 301 may also be in electrical communication with the actuator 400. The PCB 301 may further be in communication with an illumination element 350 located on the PCB 301 or located on or adjacent to the bottom wall of the bin 150, though any location is contemplated. The illumination element 350 may be a light emitting diode (LED), luminescent polymer, or the like. The lid 151 may be transparent or translucent, so that the luminance from the illumination element 350 may be visible through the lid 151 without having to open the bin 150.
In exemplary embodiments, the lock 402 and related components are configured to be located in the gap between adjacent bins 150 and the gap between the bins 150 and the delivery module 110. Such related components may include, but are not limited to: the actuator 400, the pivot point 465, the actuator spring 450, the tail 451, the post 452, the pivot point 460, the latch 420 and rounded tip 421, the first sensor 453, and the second sensor 454.
Having shown and described a preferred embodiment of the invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention and still be within the scope of the claimed invention. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.
This application is a continuation in part of U.S. Non-Provisional patent application Ser. No. 15/374,436 filed Dec. 9, 2016, which claims priority to U.S. Provisional Application No. 62/358,957 filed on Jul. 6, 2016. This application also claims the benefit of U.S. Provisional Application No. 62/358,957 filed on Jul. 6, 2016. The disclosures of each of the foregoing are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5069511 | Swets et al. | Dec 1991 | A |
5205628 | Swets et al. | Apr 1993 | A |
5314244 | Swets et al. | May 1994 | A |
5745366 | Highman et al. | Apr 1998 | A |
5805456 | Highman et al. | Sep 1998 | A |
5883806 | Meador et al. | Mar 1999 | A |
5905653 | Highman et al. | May 1999 | A |
7426425 | Meek, Jr. | Sep 2008 | B2 |
7502666 | Siegel | Mar 2009 | B2 |
7630791 | Nguyen et al. | Dec 2009 | B2 |
7909418 | McFarland | Mar 2011 | B2 |
8061790 | Anikhindi et al. | Nov 2011 | B2 |
8332066 | Weber | Dec 2012 | B2 |
8332664 | Farrar et al. | Dec 2012 | B2 |
8335588 | Rahilly et al. | Dec 2012 | B2 |
8457784 | Rahilly et al. | Jun 2013 | B2 |
8662606 | Santmyer et al. | Mar 2014 | B2 |
8700211 | Shoenfeld | Apr 2014 | B2 |
8701931 | Santmyer et al. | Apr 2014 | B2 |
8983664 | Rahilly | Mar 2015 | B2 |
9078520 | Shoenfeld | Jul 2015 | B2 |
9600634 | Bell et al. | Mar 2017 | B2 |
20030105554 | Eggenberger | Jun 2003 | A1 |
20030201697 | Richardson | Oct 2003 | A1 |
20030222548 | Richardson et al. | Dec 2003 | A1 |
20040108795 | Meek, Jr. et al. | Jun 2004 | A1 |
20060163977 | Meek, Jr. | Jul 2006 | A1 |
20090108016 | Brown et al. | Apr 2009 | A1 |
20110101018 | Shafir | May 2011 | A1 |
20120004772 | Rahilly et al. | Jan 2012 | A1 |
20120187128 | Weber et al. | Jul 2012 | A1 |
20120191241 | Rahilly et al. | Jul 2012 | A1 |
20120203377 | Paydar et al. | Aug 2012 | A1 |
20120262039 | Daugbjerg et al. | Oct 2012 | A1 |
20140300116 | Hellwig et al. | Oct 2014 | A1 |
20180008498 | Sciacchitano | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
0455862 | Nov 1991 | EP |
2010141204 | Dec 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20180010366 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62358957 | Jul 2016 | US | |
62358957 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15374436 | Dec 2016 | US |
Child | 15643116 | US |