The present invention relates to binaural decoding of multi-channel audio signals based on available downmixed signals and additional control data, by means of HRTF filtering.
Recent development in audio coding has made methods available to recreate a multi-channel representation of an audio signal based on a stereo (or mono) signal and corresponding control data. These methods differ substantially from older matrix based solution such as Dolby Prologic, since additional control data is transmitted to control the re-creation, also referred to as up-mix, of the surround channels based on the transmitted mono or stereo channels.
Hence, such a parametric multi-channel audio decoder, e.g. MPEG Surround reconstructs N channels based on M transmitted channels, where N>M, and the additional control data. The additional control data represents a significantly lower data rate than that required for transmission of all N channels, making the coding very efficient while at the same time ensuring compatibility with both M channel devices and N channel devices. [J. Breebaart et al. “MPEG spatial audio coding/MPEG Surround: overview and current status”, Proc. 119th AES convention, New York, USA, October 2005, Preprint 6447].
These parametric surround coding methods usually comprise a parameterization of the surround signal based on Channel Level Difference (CLD) and Inter-channel coherence/cross-correlation (ICC). These parameters describe power ratios and correlation between channel pairs in the up-mix process. Further Channel Prediction Coefficients (CPC) are also used in prior art to predict intermediate or output channels during the up-mix procedure.
Other developments in audio coding have provided means to obtain a multi-channel signal impression over stereo headphones. This is commonly done by downmixing a multi-channel signal to stereo using the original multi-channel signal and HRTF (Head Related Transfer Functions) filters.
Alternatively, it would, of course, be useful for computational efficiency reasons and also for audio quality reasons to short-cut the generation of the binaural signal having the left binaural channel and the right binaural channel.
However, the question is how the original HRTF filters can be combined. Further a problem arises in a context of an energy-loss-affected upmixing rule, i.e., when the multi-channel decoder input signal includes a downmix signal having, for example, a first downmix channel and a second downmix channel, and further having spatial parameters, which are used for upmixing in a non-energy-conserving way. Such parameters are also known as prediction parameters or CPC parameters. These parameters have, in contrast to channel level difference parameters the property that they are not calculated to reflect the energy distribution between two channels, but they are calculated for performing a best-as-possible waveform matching which automatically results in an energy error (e.g. loss), since, when the prediction parameters are generated, one does not care about energy-conserving properties of an upmix, but one does care about having a good as possible time or subband domain waveform matching of the reconstructed signal compared to the original signal.
When one would simply linearly combine HRTF filters based on such transmitted spatial prediction parameters, one will receive artifacts which are especially serious, when the prediction of the channels performs poorly. In that situation, even subtle linear dependencies lead to undesired spectral coloring of the binaural output. It has been found out that this artifact occurs most frequently when the original channels carry signals that are pairwise uncorrelated and have comparable magnitudes.
It is the object of the present invention to provide an efficient and qualitatively acceptable concept for multi-channel decoding to obtain a binaural signal which can be used, for example, for headphone reproduction of a multi-channel signal.
In accordance with the first aspect of the present invention, this object is achieved by a multi-channel decoder for generating a binaural signal from a downmix signal derived from an original multi-channel signal using parameters including an upmix rule information useable for upmixing the downmix signal with an upmix rule, the upmix rule resulting in an energy-error, comprising: a gain factor calculator for calculating at least one gain factor for reducing or eliminating the energy-error, based on the upmix rule information and filter characteristics of a head related transfer function based filters corresponding to upmix channels, and a filter processor for filtering the downmix signal using the at least one gain factor, the filter characteristics and the upmix rule information to obtain an energy-corrected binaural signal.
Further aspects of this invention relate to a computer program having a computer-readable code which implements, when running on a computer, the method of multi-channel decoding.
The present invention is based on the finding that one can even advantageously use up-mix rule information on an upmix resulting in an energy error for filtering a downmix signal to obtain a binaural signal without having to fully render the multichannel signal and to subsequently apply a huge number of HRTF filters. Instead, in accordance with the present invention, the upmix rule information relating to an energy-error-affected upmix rule can advantageously be used for short-cutting binaural rendering of a downmix signal, when, in accordance with the present invention, a gain factor is calculated and used when filtering the downmix signal, wherein this gain factor is calculated such that the energy error is reduced or completely eliminated.
Particularly, the gain factor not only depends on the information on the upmix rule such as the prediction parameters, but, importantly, also depends on head related transfer function based filters corresponding to upmix channels, for which the upmix rule is given. Particularly, these upmix channels never exist in the preferred embodiment of the present invention, since the binaural channels are calculated without firstly rendering, for example, three intermediate channels. However, one can derive or provide HRTF based filters corresponding to the upmix channels although the upmix channels themselves never exist in the preferred embodiment. It has been found out that the energy error introduced by such an energy-loss-affected upmix rule not only corresponds to the upmix rule information which is transmitted from the encoder to the decoder, but also depends on the HRTF based filters so that, when generating the gain factor, the HRTF based filters also influence the calculation of the gain factor.
In view of that, the present invention accounts for the interdependence between upmix rule information such as prediction parameters and the specific appearance of the HRTF based filters for the channels which would be the result of upmixing using the upmix rule.
Thus, the present invention provides a solution to the problem of spectral coloring arising from the usage of a predictive upmix in combination with binaural decoding of parametric multi-channel audio.
Preferred embodiments of the present invention comprise the following features: an audio decoder for generating a binaural audio signal from M decoded signals and spatial parameters pertinent to the creation of N>M channels, the decoder comprising a gain calculator for estimating, in a multitude of subbands, two compensation gains from P pairs of binaural subband filters and a subset of the spatial parameters pertinent to the creation of P intermediate channels, and a gain adjuster for modifying, in a multitude of subbands, M pairs of binaural subband filters obtained by linear combination of the P pairs of binaural subband filters, the modification consisting of multiplying each of the M pairs with the two gains computed by the gain calculator.
The present invention will now be described by way of illustrative examples, not limiting the scope or spirit of the invention, with reference to the accompanying drawings, in which:
a illustrates the setup from
b illustrates an upmix rule as determined by the
a illustrates a first embodiment of the inventive multi-channel decoder having a scaling stage after HRTF-based filtering without gain correction;
b illustrates an inventive device having adjusted HRTF-based filters which result in a gain-adjusted filter output signal; and
Before discussing the inventive gain adjusting aspect in detail, a combination of HRTF filters and usage of HRTF-based filters will be discussed in connection with
In order to better outline the features and advantages of the present invention a more elaborate description is given first. A binaural synthesis algorithm is outlined in
The HRTF convolution can be performed in the time domain, but it is often preferred to perform the filtering in the frequency domain due to computational efficiency. In that case, the summation as shown in
In principle, the binaural synthesis method as outlined in
A binaural synthesis scheme in combination with an MPEG surround decoder is shown in
There are however at least three disadvantages of such a cascade of an MPEG surround decoder and a binaural synthesis module:
The spatial encoder is shown in
The parameters resulting from the ‘TTT’ encoder typically consist of a pair of prediction coefficients for each parameter band, or a pair of level differences to describe the energy ratios of the three input signals. The parameters of the ‘OTT’ encoders consist of level differences and coherence or cross-correlation values between the input signals for each frequency band.
In
The corresponding binaural decoder as seen from a conceptual point of view is shown in
The TTT decoder can be described as the following matrix operation:
with matrix entries mXY dependent on the spatial parameters. The relation of spatial parameters and matrix entries is identical to those relations as in the 5.1-multichannel MPEG surround decoder. Each of the three resulting signals L, R, and C are split in two and processed with HRTF parameters corresponding to the desired (perceived) position of these sound sources. For the center channel (C), the spatial parameters of the sound source position can be applied directly, resulting in two output signals for center, LB(C) and RB(C):
For the left (L) channel, the HRTF parameters from the left-front and left-surround channels are combined into a single HRTF parameter set, using the weights wlf and wrf. The resulting ‘composite’ HRTF parameters simulate the effect of both the front and surround channels in a statistical sense. The following equations are used to generate the binaural output pair (LB, RB) for the left channel:
In a similar fashion, the binaural output for the right channel is obtained according to:
Given the above definitions of LB(C), RB(C), LB(L), RB(L), LB(R) and RB(R), the complete LB and RB signals can be derived from a single 2 by 2 matrix given the stereo input signal:
The Hx(Y) filters can be expressed as parametric weighted combinations of parametric versions of the original HRTF filters. In order for this to work, the original HRTF filters are expressed as a
Hence, the HRTF filters for the left and right ear given the center channel input signal is expressed as:
where Pl(C) is the average level for a given frequency band for the left ear, and φ(C) is the phase difference.
Hence, the HRTF parameter processing simply consists of a multiplication of the signal with Pl and Pr corresponding to the sound source position of the center channel, while the phase difference is distributed symmetrically. This process is performed independently for each QMF band, using the mapping from HRTF parameters to QMF filterbank on the one hand, and mapping from spatial parameters to QMF band on the other hand.
Similarly the HRTF filters for the left and right ear given the left channel and right channel are given by:
HL(L)=√{square root over (wlf2Pl2(Lf)+wls2Pl2(Ls))}{square root over (wlf2Pl2(Lf)+wls2Pl2(Ls))},
HR(L)=e−j(w
HL(L)=e+j(w
HR(R)=√{square root over (wrf2Pr2(Rf)+wrs2Pr2(Rs))}{square root over (wrf2Pr2(Rf)+wrs2Pr2(Rs))}
Clearly, the HRTFs are weighted combinations of the levels and phase differences for the parameterized HRTF filters for the six original channels.
The weights wlf and wls depend on the CLD parameter of the ‘OTT’ box for Lf and Ls:
And the weights wrf and wrs depend on the CLD parameter of the ‘OTT’ box for Rf and Rs:
The above approach works well for short HRTF filters that sufficiently accurate can be expressed as an average level per frequency band, and an average phase difference per frequency band. However, for long echoic HRTFs this is not the case.
The present invention teaches how to extend the approach of a 2 by 2 matrix binaural decoder to handle arbitrary length HRTF filters. In order to achieve this, the present invention comprises the following steps:
This is achieved by replacing the six complex gains HY(X) for Y=L0,R0 and X=L,R,C with six filters. These filters are derived from the ten filters HY(X) for Y=L0,R0 and X=Lf,Ls,Rf,Rs,C, which describe the given HRTF filter responses in the QMF domain. These QMF representations can be achieved according to the method described below.
The morphing of the front and surround channel filters is performed with a complex linear combination according to
HY(X)=gwf exp(−jφXYws2)HY(Xf)+gws exp(jφXYwf2)HY(Xs).
The phase parameter φXY can be defined from the main delay time difference τXY between the front and back HRTF filters and the subband index n of the QMF bank via
The role of this phase parameter in the morphing of filters is twofold. First, it realizes a delay compensation of the two filters prior to superposition which leads to a combined response which models a main delay time corresponding to a source position between the front and the back speakers. Second, it makes the necessary gain compensation factor g much more stable and slowly varying over frequency than in the case of simple superposition with φXY=0.
The gain factor g is determined by the same incoherent addition power rule as for the parametric HRTF case,
PY(X)2=wf2PY(Xf)2+ws2PY(Xs)2,
where
PY(X)2=g2(wf2PY(Xf)2+wx2PY(Xs)2+2wfwsPY(Xf)PY(Xs)ρXY)
and ρXY is the real value of the normalized complex cross correlation between the filters
exp(−jφXY)HY(Xf) and HY(Xs).
In the case of simple superposition with φXY=0, the value of ρXY varies in an erratic and oscillatory manner as a function of frequency, which leads to the need for extensive gain adjustment. In practical implementation it is necessary to limit the value of the gain g and a remaining spectral colorization of the signal cannot be avoided.
In contrast, the use of morphing with a delay based phase compensation as taught by the present invention leads to a smooth behavior of ρXY as a function of frequency. This value is often even close to one for natural HRTF derived filter pairs since they differ mainly in a delay and amplitude, and the purpose of the phase parameter is to take the delay difference into account in the QMF filterbank domain.
An alternative beneficial choice of phase parameter φXY is given by computing the phase angle of the normalized complex cross correlation between the filters
All signals considered below are subband samples from a modulated filter bank or windowed FFT analysis of discrete time signals or discrete time signals. It is understood that these subbands have to be transformed back to the discrete time domain by corresponding synthesis filter bank operations.
In the text which follows, the mathematical description of the inventive gain compensation will be outlined. For discrete complex signals x,y, the complex inner product and squared norm (energy) is defined by
where
The original multichannel signal consists of N-channels, and each channel has a binaural HRTF related filter pair associated to it. It will however be assumed here that the parametric multichannel signal is created with an intermediate step of predictive upmix from the M transmitted channels to P predicted channels. This structure is used in MPEG Surround as described by
where the star denotes convolution in the time direction. The subband filters can be given in form of finite impulse response (FIR) filters, infinite impulse response (IIR) or derived from a parameterized family of filters.
In the encoder, the downmix is formed by the application of a M×P downmix matrix D to a column vector of signals formed by xp p=1,2, . . . ,P and the prediction in the decoder is performed by the application of a P×M prediction matrix C to the column vector of signals formed by the M transmitted downmixed channels zm m=1, . . . ,M,
Both matrices are known at the decoder, and ignoring the effects of coding the downmixed channels, the combined effect of prediction can be modeled by
where ap,q are the entries of the matrix product A=CD.
A straightforward method for producing a binaural output at the decoder is to simply insert the predicted signals {circumflex over (x)}p in (2) resulting in
In terms of computations, the binaural filtering is combined with the predictive upmix beforehand such that (5) can be written as
with the combined filters defined by
This formula describes the action of the linear combiner 301 which combines the coefficients cp,m derived from spatial parameters with the binaural subband domain filters bn,p. When the original P signals xp have a numerical rank essentially bounded by M, the prediction can be designed to perform very well and the approximation {circumflex over (x)}p≈xp is valid. This happens for instance if only M of the P channels are active, or if important signal components originate from amplitude panning. In that case the decoded binaural signal (5) is a very good match to the reference (2). On the other hand, in the general case and especially in case the original P signals xp are uncorrelated, there will be a substantial prediction loss and the output from (5) can have an energy that deviates considerably from the energy of (2). As the deviation will be different in different frequency bands, the final audio output suffers from spectral coloring artifacts as described by
{tilde over (y)}n=gn·ŷn· (8)
In terms of computations, the gain compensation is advantageously performed by altering the combined filters according to the gain adjuster 303, {tilde over (h)}n,m(k)=gnhn,m(k). The modified combined filtering then becomes
The optimal values of the compensating gains in (8) are
The purpose of the gain calculator 302 is to estimate these gains from the information available in the decoder. Several tools for this end will now be outlined. The available information is represented here by the matrix entries ap,q and the HRTF related subband filters bn,p. First, the following approximation will be assumed for the inner product between signals x,y that have been filtered by HRTF related subband filters b,d,
b*x,d*y≈b,dx,y (11)
This approximation relies on the fact that often most energy of the filters is concentrated in a dominant single tap, which in turn presupposes that the time step of the applied time frequency transform is sufficiently large in comparison to the main delay differences of HRTF filters. Applying the approximation (11) in combination with (2) leads to
The next approximation consists of assuming that the original signals are uncorrelated, that is xp,xq=0 for p≠q. Then (12) reduces to
For the decoded energy the result corresponding to (12) is
Inserting the predicted signals (4) in (14) and applying the assumption that the original signals are uncorrelated gives
What remains in order to be able to calculate the compensation gain given by the quotient (10) is to estimate the energy distribution ∥xp∥2, p=1,2, . . . ,P of the original channels up to an arbitrary factor. The present invention teaches to do this by computing, as a function of the energy distribution, the prediction matrix Cmodel corresponding to the assumption that these channels are uncorrelated and that the encoder aims at minimizing the prediction error. The energy distribution is then estimated by solving the nonlinear system of equations Cmodel=C if possible. For prediction parameters that lead to a system of equations without solutions, the gain compensation factors are set to gn=1. This inventive procedure will be detailed in the following section in the most important special case.
The computation load imposed by (15) can be reduced in the case where P=M+1 by applying the expansion (see for instance PCT/EP2005/011586),
xp,xq={circumflex over (x)}p,{circumflex over (x)}q+ΔE·vp·vq, (16)
where v is a unit vector with components vp such that Dv=0, and ΔE is the prediction loss energy,
The computation of (15) is then advantageously replaced by the application of (16) in (14), leading to
Subsequently, a preferred specialization to prediction of three channels from two channels will be discussed. The case where M=2 and P=3 is used in MPEG Surround. The signals are a combined left x1=l, a combined right x2=r and a (scaled) combined center/lfe channel x3 C. The downmix matrix is
and the prediction matrix is constructed from two transmitted real parameters c1,c2, according to
Under the assumption that the original channels are uncorrelated the prediction matrix realizing the minimal prediction error is given by
Equating Cmodel=C leads to the (unnormalized) energy distribution taught by the present invention
where α=(1−c1)/3, β=(1−c2)/3, σ=α+β, and p=αβ. This holds in the viable range defined by
α>0,β>0,σ<1, (23)
in which case the prediction error can be found in the same scaling from
ΔE=3p(1−σ) (24)
Since P=3=2+1=M+1, the method outlined by (16)-(18) is applicable. The unit vector is [v1,v2,v3]=[1,1,−1]/√{square root over (3)} and with the definitions
ΔEnB=p(1−σ)∥bn,1+bn,2−bn,3∥2, (25)
and
EnB=β(1−σ)∥bn,1∥2+α(1−σ)∥bn,2∥2+p∥bn,3∥2, (26)
the compensation gain for each ear n=1,2 as computed in a preferred embodiment of the gain calculator 302 can be expressed by
Here ε>0 is a small number whose purpose is to stabilize the formula near the edge of the viable parameter range and gmax is an upper limit on the applied compensation gain. The gains of (27) are different for the left and right ears, n=1,2. A variant of the method is to use a common gain g0=g1=g, where
The inventive correction gain factor can be brought into coexistence with a straight-forward multichannel gain compensation available without any HRTF related issues.
In MPEG Surround, compensation for the prediction loss is already applied in the decoder by multiplying the upmix matrix C by a factor 1/ρ where 0<ρ≦1 is a part of the transmitted spatial parameters. In that case the gains of (27) and (28) have to be replaced by the products ρgn and ρg respectively. Such compensation is applied for the binaural decoding studied in
In addition, since the case where ρ=1 corresponds to a successful prediction, a more conservative variant of the gain compensation taught by the present invention will disable the binaural gain compensation for ρ=1.
Furthermore, the present invention is used together with a residual signal. In MPEG Surround, an additional prediction residual signal z3 can be transmitted which makes it possible to reproduce the original P=3 signals xp more faithfully. In this case the gain compensation is to be replaced by a binaural residual signal addition which will now be outlined. The predictive upmix enhanced by a residual is formed according to
where [w1,w2,w3]=[1,1,−1]/3. Substituting {tilde over (x)}p for {circumflex over (x)}p in (5) yields the corresponding combined filtering,
where the combined filters hn,m are defined by (7) for m=1,2, and the combined filters for the residual addition are defined by
The overall structure of this mode of decoding is therefore also described by
a shows a head of a listener having a left ear or a left binaural point and having a right ear or a right binaural point. When
However, since the present invention is directed to a multi-channel binaural decoder, filters illustrated by 15, 16, 17, 18 are not pure HRTF filters, but are HRTF-based filters, which not only reflect HRTF properties but which also depend on the spatial parameters and, particularly, as discussed in connection with
The same is true for the HRTFs 3 and 4 for the left channel, since the relations of both ears to the left channel L are different. This also applies for all other HRTFs, although as becomes clear from
As stated above, these HRTFs have been determined for model heads and can be downloaded for any specific “average head”, and loudspeaker setup.
Now, as becomes clear at 171 and 172 in
As outlined before, a phase factor can also be applied when combining HRTFs, which phase factor is defined by time delays or unwrapped phase differences between the to be combined HRTFs. However, this phase factor does not depend on the transmitted parameters.
Thus, HRTFs 11, 12, 13 and 14 are not true HRTFs filters but are HRTF-based filters, since these filters not only depend from the HRTFs, which are independent from the transmitted signal. Instead, HRTFs 11, 12, 13 and 14 are also dependent on the transmitted signal due to the fact that the channel level difference parameters cldl and cldr are used for calculating these HRTFs 11, 12, 13 and 14.
Now, the
To this end, HRTFs 11, 5, 13 are combined using a left upmix rule, which becomes clear from the upmix matrix in
As outlined in block 176, the same HRTFs 11, 5, 13 are combined, but now using the right upmix rule, i.e., in the
Thus, HRTF 15 and HRTF 17 are generated. Analogously HRTF 12, HRTF 6 and HRTF 14 of
Again, it is emphasized that, while original HRTFs in
To finally obtain a binaural left channel LB and a binaural right channel RB, the outputs of filters 15 and 17 have to be combined in an adder 130a. Analogously, the output of the filters 16 and 18 have to be combined in an adder 130b. These adders 130a, 130b reflect the superposition of two signals within the human ear.
Subsequently,
Naturally, when the original multi-channel signal was only a three-channel signal, cldl or cldr are not transmitted and the only parametric side information will be information on the upmix rule which, as outlined before, is such an upmix rule which results in an energy-error in the upmixed signal. Thus, although the waveforms of the upmixed signals when a non-binaural rendering is performed, match as close as possible the original waveforms, the energy of the upmixed channels is different from the energy of the corresponding original channels.
In the preferred embodiment of
Irrespective of such a preferred embodiment for the upmix rule information, any upmix rule information is sufficient as long as an upmix to generate an energy-loss affected set of upmixed channels is possible, which is waveform-matched to the corresponding set of original signals.
The inventive multi-channel decoder includes a gain factor calculator 180 for calculating at least one gain factor gl, gr or g, for reducing or eliminating the energy-error. The gain factor calculator calculates the gain factor based on the upmix rule information and filter characteristics of HRTF-based filters corresponding to upmix channels which would be obtained, when the upmix rule would be applied. However, as outlined before, in the binaural rendering, this upmix does not take place. Nevertheless, as discussed in connection with
As discussed before, the gain factor calculator 180 can calculate different gain factors gl and gr as outlined in equation (27), when, instead of n, l or r is inserted. Alternatively, the gain factor calculator could generate a single gain factor for both channels as indicated by equation (28).
Importantly, the inventive gain factor calculator 180 calculates the gain factor based not only on the upmix rule, but also based on the filter characteristics of the HRTF-based filters corresponding to upmix channels. This reflects the situation that the filters themselves also depend on the transmitted signals and are also affected by an energy-error. Thus, the energy-error is not only caused by the upmix rule information such as the prediction parameters CPC1, CPC2, but is also influenced by the filters themselves.
Therefore, for obtaining a well-adapted gain correction, the inventive gain factor not only depends on the prediction parameter but also depends on the filters corresponding to the upmix channels as well.
The gain factor and the downmix parameters as well as the HRTF-based filters are used in the filter processor 182 for filtering the downmix signal to obtain an energy-corrected binaural signal having a left binaural channel LB and having a right binaural channel RB.
In a preferred embodiment, the gain factor depends on a relation between the total energy included in the channel impulse responses of the filters corresponding to upmix channels to a difference between this total energy and an estimated upmix energy error ΔE. ΔE can preferably be calculated by combining the channel impulse responses of the filters corresponding to upmix channels and to then calculating the energy of the combined channel impulse response. Since all numbers in the relations for GL and GR in
a illustrates a preferred embodiment of the filter processor 182 of
Alternatively, the filter processor can be constructed as shown in
Generally, as has been outlined in connection with equation 16, equation 17 and equation 18, the gain calculation takes place using the estimated upmix error ΔE. This approximation is especially useful for the case where the number of upmix channels is equal to the number of downmix channels +1. Thus, in case of two downmix channels, this approximation works well for three upmix channels. Alternatively, when one would have three downmix channels, this approximation would also work well in a scenario in which there are four upmix channels.
However, it is to be noted that the calculation of the gain factor based on an estimation of the upmix error can also be performed for scenarios in which for example, five channels are predicted using three downmix channels. Alternatively, one could also use a prediction-based upmix from two downmix channels to four upmix channels. Regarding the estimated upmix energy-error ΔE, one can not only directly calculate this estimated error as indicated in equation (25) for the preferred case, but one could also transmit some information on the actually occurred upmix error in a bit stream. Nevertheless, even in other cases than the special case as illustrated in connection with equations (25) to (28), one could then calculate the value EnB based on the HRTF-based filters for the upmix channels using prediction parameters. When equation (26) is considered, it becomes clear that this equation can also easily be applied to a 2/4 prediction upmix scheme, when the weighting factors for the energies of the HRTF-based filter impulse responses are correspondingly adapted.
In view of that, it becomes clear that the general structure of equation (27), i.e., calculating the gain factor based on relation of EB/(EB−ΔEB) also applies for other scenarios.
Subsequently,
A downmixer 191 receives five original channels or, alternatively, three original channels as illustrated by (Ls and Rs). The downmixer 191 can work based on a pre-determined downmix rule. In that case, the downmix rule indication as illustrated by line 192 is not required. Naturally, the error-minimizer 193 could vary the downmix rule as well in order to minimize the error between reconstructed channels at the output of an upmixer 194 with respect to the corresponding original input channels.
Thus, the error-minimizer 193 can vary the downmix rule 192 or the upmixer rule 196 so that the reconstructed channels have a minimum prediction loss ΔE. This optimization problem is solved by any of the well-known algorithms within the error-minimizer 193, which preferably operates in a subband-wise way to minimize the difference between the reconstruction channels and the input channels.
As stated before, the input channels can be original channels L, Ls, R, Rs, C. Alternatively the input channels can only be three channels L, R, C, wherein, in this context, the input channels L, R, can be derived by corresponding OTT boxes illustrated in
The present invention therefore, provides an efficient way of performing binaural decoding of multi-channel audio signals based on available downmixed signals and additional control data by means of HRTF filtering. The present invention provides a solution to the problem of spectral coloring arising from the combination of predictive upmix with binaural decoding.
Depending on certain implementation requirements of the inventive methods, the inventive methods can be implemented in hardware or in software. The implementation can be performed using a digital storage medium, in particular a disk, DVD or a CD having electronically readable control signals stored thereon, which cooperate with a programmable computer system such that the inventive methods are performed. Generally, the present invention is, therefore, a computer program product with a program code stored on a machine readable carrier, the program code being operative for performing the inventive methods when the computer program product runs on a computer. In other words, the inventive methods are, therefore, a computer program having a program code for performing at least one of the inventive methods when the computer program runs on a computer.
While the foregoing has been particularly shown and described with reference to particular embodiments thereof, it will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope thereof. It is to be understood that various changes may be made in adapting to different embodiments without departing from the broader concepts disclosed herein and comprehended by the claims that follow.
This application claims priority to U.S. patent application Ser. No. 60/803,819 filed Jun. 2, 2006 which is incorporated herein in its entirety by this reference made thereto.
Number | Name | Date | Kind |
---|---|---|---|
5610986 | Miles | Mar 1997 | A |
7394903 | Herre et al. | Jul 2008 | B2 |
20060165237 | Villemoes et al. | Jul 2006 | A1 |
20080187484 | Diefenbacher et al. | Aug 2008 | A1 |
20090225991 | Oh et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
2006-500817 | Jan 2006 | JP |
WO 2004028204 | May 2000 | WO |
WO2005036925 | Apr 2005 | WO |
WO2006045371 | May 2006 | WO |
WO 2006048203 | May 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070280485 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60803819 | Jun 2006 | US |