The present invention will be better understood with reference to the following detailed description of certain specific embodiments thereof.
Silica sand cores are made from sand grains bound by a suitable binder which provides a strong bond between such sand grains in such a manner and with a sufficiency to withstand the handling of the cores and the assembled molds without losing the precise dimensions and form needed for impressing the desired geometry and surface quality to the casting under the temperature and pressure of the molten metal used to form said casting.
Currently, sand cores are shaped by mixing sand and a binder, blowing the binder-sand mixture into a mold having the desired shape, and curing or hardening the binder in the mold so that the mold geometry is fixed in the cores after their removal from said mold.
There are a variety of synthetic resins used as binders as is well known in the art. According to the present invention, a water-based binder and a method for forming the sand cores provide a number of advantages over the current state-of-the-art binders regarding manufacturing costs and core qualities.
The binder of the invention is mainly composed of starch. Though starch has been utilized as an additive to prior-art binders, mostly in proportions of less than 20% of the binder composition, to the best of applicants' knowledge it has not previously been effectively used as the main constituent of a sand core-making binder in mass production foundries. According to a preferred embodiment of the present invention, two additives are added to the starch, in the proportions and in the form explained below, which in combination with the starch, provide the desired qualities to the formed cores. These additives are sodium tripolyphosphate and silicon or Silres BS 16. More broadly, the separate functions of the two additives with certain starches may be found in only one single additive.
There are several types of starch suitable to be utilized as the basis of the binder composition of the invention. One difference among them is the amount of starch needed to achieve the same mechanical strength. For example potato requires more than 2% weight (based on sand) and for maize close to 2% weight. However, when using Tapioca starch, the core needs significantly less starch content to achieve the same strength.
Tapioca starch is thus preferably used but other varieties of starch can also be utilized according to broader aspects of the invention. There are two types of tapioca starch: (a) native (i.e. unmodified) starch and (b) artificially-modified starch. Both types have proven effective as binders for the particular application of core making. The method of the invention may have some differences depending on which type of tapioca starch is utilized.
The core-making method of this embodiment of the invention will be described first as applied to the utilization of artificially-modified tapioca starch. With reference to
Referring now to
Water 16 is also preferably heated to a temperature of about 70° C. in order to preserve as much as possible the temperature of the sand above about 70° C. The amount of water 16 added at this mixing step should be sufficient to reach a humidity level in the range from about 2% to about 4% of the humid sand weight.
The rest of the method illustrated in
It is of course to be understood that in the above specification, only certain specific embodiments have been included for purposes of illustrating the principles of the invention and that the invention is not intended to be limited thereto. It will also be evident that numerous changes may be made to the embodiments herein described without departing from the spirit and scope of the invention which is limited only to the extent set forth in the appended claims.