The present invention relates to binder compositions and uses thereof.
More specifically the present invention relates to curable binder composition for use in manufacturing composite products from non or loosely assembled matter and to methods of manufacturing a composite product.
In accordance with one aspect, the present invention provides a method of manufacturing a composite product comprising:
In accordance with another aspect, the present invention provides a binder composition consisting of a binder composition prepared by combining i) Maillard reactants selected from: reducing sugar reactant(s) and nitrogen-containing reactant(s); curable reaction product(s) of reducing sugar reactant(s) and nitrogen-containing reactant(s); and combinations thereof; and ii) a resin; reactants of a resin; and combinations thereof.
Preparation of the binder composition may comprise combining reactants comprising at least 15% by dry weight reducing sugar reactant(s) and at least 2% by dry weight nitrogen-containing reactant(s), notably wherein the nitrogen-containing reactant(s) comprise TPTA triprimary triamine(s), notably wherein the nitrogen-containing reactant(s) comprise at least 5% by dry weight of TPTA triprimary triamine(s).
As used herein, the term “TPTA triprimary triamine(s)” means triprimary triamine(s) selected from:
Any feature described herein in relation to a particular aspect of the invention may be used in relation to any other aspect of the invention.
The non or loosely assembled matter may comprise woven or non-woven fiber material. The non or loosely assembled matter may be selected from fibers, notably selected from inorganic fibers, man-made organic fibers, mineral fibers, stone fibers, glass fibers, aramid fibers, ceramic fibers, metal fibers, carbon fibers, polyimide fibers, polyester fibers, rayon fibers, cellulosic fibers and combinations thereof. The non or loosely assembled matter may be selected from particulates, notably selected from inorganic particles, sand, coal. The non or loosely assembled matter may be selected from flakes, wood shavings, saw dust, wood pulp, paper pulp, ground wood, wood chips, wood strands, wood layers; other natural fibers, such as jute, flax, hemp, straw, and wood veneers, and combinations thereof.
In a preferred embodiment, the composite product is selected from corrugated cardboard, a corrugated board, a corrugated fiberboard, a corrugated box and a cellulosic fiber composition (notably a paper product or a cardboard product). Notably in such cases, the binder composition may be used to bond corrugated flutes to a liner board or liner paper. The composite product may be mineral fiber insulation product, for example glass fiber mat or stone fiber mat. The composite products may be a mineral fiber veil, e.g. glass fiber veil, which may then find application for example in battery separators, as substrate for roofing products, as roofing membranes, as shingles, or as other membranes. The composite product may be prepregs, high pressure laminates, refractory bricks, foundry sands, brake pads or corrugated cardboard. The composite product may be wood board, notably a particle board; an oriented strand board (OSB), plywood or a medium density fiberboard (MDF).
The term “binder composition” as used herein means all ingredients that will be applied to the non or loosely assembled matter and/or present on the non or loosely assembled matter, notably prior to curing, (other than the non or loosely assembled matter itself and any moisture in the non or loosely assembled matter), including reactants, solvents (including water) and additives. The term “dry weight of the binder composition” as used herein means the weight of all components of the binder composition other than any water that is present (whether in the form of liquid water or in the form of water of crystallization). The reactants may make up ≥80%, ≥90% or ≥95% and/or ≤99% or ≤98% by dry weight of the binder composition.
The binder composition applied to the non or loosely assembled matter comprises reactants which cross-link when cured to form a cured binder which holds the non or loosely assembled matter together to form the composite product. The binder composition comprises reactants that will preferably form a thermoset resin upon curing. The resin is preferably a reactant. The combination in the binder composition of the Maillard reactants with the resin (and/or resin reactants) may be used to impart improved weather resistance, water repellence and/or waterproofing properties compared with the resin (and/or resin reactants) when used alone, notably for articles comprising waterproof and/or water-resistant starch based binders.
The binder composition is preferably free of, or comprises no more than 2 wt % or no more than 5 wt % by dry weight of formaldehyde resin, notably formaldehyde resin selected from melamine formaldehyde resin, melamine urea formaldehyde resin, urea formaldehyde resin, phenol formaldehyde resin, melamine phenol formaldehyde resin, ketone formaldehyde resin and combinations thereof. The binder composition may be prepared by combining reactants comprising, consisting essentially of or consisting of the reducing sugar reactant(s) and the nitrogen-containing reactant(s) and the resin (and/or resin reactants). In the form in which it is applied to the non or loosely assembled matter the binder composition may comprise (a) the reducing sugar reactant(s) and the nitrogen-containing reactant(s) and/or (b) curable reaction product(s) of the reducing sugar reactant(s) and the nitrogen-containing reactant(s).
The binder composition may comprise a resin and/or reactants thereof where the resin is selected from latex resin, formaldehyde resin, notably formaldehyde resin selected from melamine formaldehyde resin, melamine urea formaldehyde resin, urea formaldehyde resin, phenol formaldehyde resin, melamine phenol formaldehyde resin, ketone formaldehyde resin, carboxymethyl-cellulose-based resin, starch-based resin, polyurethane resin, polyurea and polyurethane hybrid, rubber resin Bakelite, Diallyl-phthalate resin, epoxy resin, epoxy novolac resin, benzoxazine resins used alone or hybridised with epoxy and/or phenolic resins, polyimide resins, bismaleimide resins cyanate ester resins, polycyanurate resins, furan resins, silicone resins, thiolyte resins, vinyl ester resins, styrene acrylic resins, acrylic resins, vinyl acrylic resins, styrene butadiene resins, vinyl acetate homopolymer resins, ethylene vinyl acetate resins, acrylic vinylidene chloride, resins and blends and/or and combinations thereof. The binder composition may comprise a resin and/or reactants thereof selected from latex resin, carboxymethyl-cellulose-based resin, starch-based resin and combinations thereof. The binder composition may comprise at least 50 wt % or at least 60 wt %, or even at least 70 wt % by dry weight of the resin and/or reactants thereof.
The term “loosely arranged resinated matter” as used herein means that the resinated matter is assembled together with sufficient integrity for the resinated matter to be processed along a production line but without the resinated matter being permanently joined together in a way that is achieved by fully cross-linking the binder composition. Prior to curing, the binder composition preferably provides a stickiness or tackiness which holds that loosely arranged matter together.
As used herein, the term “consist or consisting essentially of” is intended to limit the scope of a statement or claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s) of the invention.
The reducing sugar reactant(s) may comprise: a monosaccharide, a monosaccharide in its aldose or ketose form, a disaccharide, a polysaccharide, a triose, a tetrose, a pentose, xylose, a hexose, dextrose, fructose, a heptose, or mixtures thereof. The reducing sugar reactant(s) may be yielded in situ by carbohydrate reactant(s), notably carbohydrate reactant(s) having a dextrose equivalent of at least about 50, at least about 60, at least about 70, at least about 80 or at least about 90, notably carbohydrate reactant(s) selected from the group consisting of molasses, starch, starch hydrolysate, cellulose hydrolysates, and mixtures thereof. The reducing sugar reactant(s) may comprise or consist of a combination of dextrose and fructose, for example in which the combination of dextrose and fructose makes up at least 80 wt % of the reducing sugar reactant(s) and/or in which the dextrose makes up at least 40 wt % of the reducing sugar reactant(s) and/or in which the fructose makes up at least 40 wt % of the reducing sugar reactant(s); the reducing sugar reactant(s) may comprise or consist of high fructose corn syrup (HFCS). The reducing sugar reactant(s) may comprise or consist of reducing sugar reactant(s) yielded in situ by sucrose. The reducing sugar reactant(s) may comprise reducing sugar reactant(s) selected from the group consisting of xylose, arabinose dextrose, mannose, fructose and combinations thereof, for example making up at least 80 wt % of the reducing sugar reactant(s).
As used herein, the term “nitrogen-containing reactant(s)” means one or more chemical compound which contain(s) at least one nitrogen atom and which is/are capable of reacting with the reducing sugar reactant(s); preferably the nitrogen-containing reactant(s) consist of Maillard reactant(s), that is to say reactant(s) which is/are capable of reacting with the reducing sugar reactant(s) as part of a Maillard reaction.
The nitrogen-containing reactant(s) comprise, and may consist essentially of or consist of, triprimary triamine(s) having spacer groups between each of the three primary amines which consist of carbon chains. The triprimary triamine(s) may be selected from the group consisting of triaminodecanes, triaminononanes, notably 4-(aminomethyl)-1,8-octanediamine, triaminooctanes, triaminoheptanes, notably 1,4,7-triaminoheptane, triaminohexanes, notably 1,3,6-triaminohexane, triaminopentanes, and including isomers and combination thereof.
As used herein the term “triprimary triamine(s)” means organic compound having three and only three amines, each of the three amines being primary amines (—NH2). One, two or each of the primary amine(s) of the triprimary triamine(s) may be present in the form of a salt, e.g as an ammonium group (—NH3+).
As used herein, the term “spacer group” in the terminology “the spacer group(s) separating each of the three primary amines” means a chain separating two primary amines. As used herein, the term “the spacer group(s) separating each primary amines in the molecule consists of carbon chains” means that the spacer group(s) consist only of carbon atoms bonded to hydrogen atoms or bonded to other carbon atoms. The triprimary triamine(s) having spacer groups between each of the three primary amines which consist of carbon chains thus consist of the three primary amines and carbon and hydrogen atoms. For example, when the spacer group(s) separating each primary amine in the molecule consists of carbon chains, no heteroatoms are present in the spacer groups.
The spacer group(s) may be selected from the group consisting of alkanediyls, heteroalkanediyls, alkenediyls, heteroalkenediyls, alkynediyls, heteroalkynediyls, linear alkanediyls, linear heteroalkanediyls, linear alkenediyls, linear heteroalkenediyls, linear alkynediyls, linear heteroalkynediyls, cycloalkanediyls, cycloheteroalkanediyls, cycloalkenediyls, cycloheteroalkenediyls, cycloalkynediyls and cycloheteroalkynediyls, each of which may be branched or unbranched. The spacer group(s) may be selected from the group consisting of alkanediyls, alkenediyls, alkynediyls, linear alkanediyls, linear alkenediyls, linear alkynediyls, cycloalkanediyls, cycloalkenediyls and cycloalkynediyls, each of which may be branched or unbranched. The spacer group may comprise or may be devoid of halogen atoms. The spacer groups may comprise or be devoid of aromatic groups. As used herein: the term “alkanediyl” means a saturated chain of carbon atoms ie without carbon-carbon double or triple bonds; the term “alkenediyl” means a chain of carbon atoms that comprises at least one carbon-carbon double bond; the term “alkynediyl” means a chain of carbon atoms that comprises at least one carbon-carbon triple bond; the term “cyclo” in relation to cycloalkanediyl, cycloalkenediyl and cycloalkynediyl indicates that at least a portion of the chain is cyclic and also includes polycyclic structures; and the term “linear” in relation to alkanediyls, alkenediyls and alkynediyls indicates an absence of a cyclic portion in the chain. As used herein, the term “hetero” in relation to heteroalkanediyls, heteroalkenediyls, heteroalkynediyls, linear heteroalkanediyls, linear heteroalkenediyls, linear heteroalkynediyls, cycloheteroalkanediyls, cycloheteroalkenediyls, and cycloheteroalkynediyls means that the chain comprises at least one polyvalent heteroatom. As used herein, the term heteroatom is any atom that is not carbon or hydrogen. As used herein, the term polyvalent atom means an atom that is able to be covalently bonded to at least 2 other atoms. The polyvalent heteroatom may be oxygen; it may be silicon; it may be sulfur or phosphorus. One, two or preferably each of the spacer groups may have a total number of polyvalent atoms, or a total number of carbon atoms which is ≥3, ≥4 or ≥5 and/or ≤12, ≤10 or ≤9. One, two or preferably each of the spacer groups may have a spacer length which is ≥3, ≥4 or ≥5 and/or ≤12, ≤10 or ≤9. As used herein, the term “spacer length” in relation to a spacer group separating two primary amines means the number of polyvalent atoms which form the shortest chain of covalently bonded atoms between the two primary amines. Each of the spacer groups between the three primary amines of the TPTA triprimary triamine(s) may: consist of an alkanediyl; and/or be linear; and/or be unbranched; and/or have a number of carbon atoms which is ≥3 or ≥4 and/or ≤9 or ≤3; and or have a spacer length which is ≥3 or ≥4 and/or ≤9 or ≤8. The total number of the polyvalent atoms of the TPTA triprimary triamine(s) may be ≥9, ≥11 or ≥12 and/or ≤23, ≤21, ≤19 or ≤17.
The nitrogen-containing reactant(s) may comprise reactant(s) selected from the group consisting of: inorganic amines, organic amines, organic amines comprising at least one primary amine, salts of an organic amine comprising at least one primary amine, polyamines, polyprimary polyamines and combinations thereof, any of which may be substituted or unsubstituted. The nitrogen-containing reactant(s) may comprise NH3, NH3 may be used as such (e.g. in form of an aqueous solution), or as an inorganic or organic ammonium salt, for example ammonium sulfate (AmSO4), ammonium phosphate, e.g. diammonium phosphate or ammonium citrate, e.g. triammonium citrate, or as a source of NH3, e.g. urea. As used herein, the term “polyamine” means any organic compound having two or more amine groups and the term “polyprimary polyamine” means an organic compound having two or more primary amines (—NH2). As used herein the term “substituted” means the replacement of one or more hydrogen atoms with other functional groups. Such other functional groups may include hydroxyl, halo, thiol, alkyl, haloalkyl, heteroalkyl, aryl, arylalkyl, arylheteroalkyl, nitro, sulfonic acids and derivatives thereof, carboxylic acids and derivatives thereof.
The polyprimary polyamine may be a diamine, triamine, tetramine, or pentamine. As used herein the term “diamine” means organic compound having two (and only two) amines, “triamine” means organic compound having three (and only three) amines, “tetramine” means organic compound having four (and only four) amines and “pentamine” means organic compound having five (and only five) amines. For example, the polyprimary amine may be: a triamine selected from diethylenetriamine (which is a diprimary triamine, i.e. diethylenetriamine has three amines, two of them being primary amines) or bis(hexamethylene)triamine; a tetramine, notably triethylenetetramine; or a pentamine, notably tetraethylenepentamine. The polyprimary polyamine may comprise or consiste essentially of diprimary diamine, notably 1,6-diaminohexane (hexamethylenediamine, HMDA) or 1,5-diamino-2-methylpentane (2-methyl-pentamethylenediamine). The nitrogen-containing reactant(s) may comprise or consist essentially of TPTA triprimary triamine(s).
The binder composition may comprise, consist essentially of or consist of a binder composition obtained or obtainable by combining reactants wherein:
the reducing sugar reactant(s) make up:
The ratio of carbonyl groups in the reducing sugar reactant(s) to reactive amino groups in the nitrogen-containing reactant(s) may be in the range of 5:1 to 1:2. For example, the ratio of carbonyl groups to reactive amino groups may be in the range of 5:1 to 1:1.8, 5:1 to 1:1.5, 5:1 to 1:1.2, 5:1 to 1:1, 5:1 to 1:0.8 and 5:1 to 1:0.5. Further examples include ratios such as 4:1 to 1:2, 3.5:1 to 1:2, 3:1 to 1:2, 2.5:1 to 1:2, 2:1 to 1:2 and 1.5:1 to 1:2. As used herein, the term “reactive amino group” means any amino group in the nitrogen-containing reactant(s) which is capable of reacting with the reducing sugar reactant(s). Specifically, examples of such reactive amino groups comprise primary and secondary amine(s).
The nitrogen-containing reactant(s) and the reducing sugar reactant(s) are preferably Maillard reactants. The nitrogen-containing reactant(s) and the reducing sugar reactant(s) (or their reaction product(s)) preferably react to form Maillard reaction products, notably melanoidins when cured. The cured binder composition may comprise melanoidin-containing and/or nitrogenous-containing polymer(s). The cured binder composition is preferably a thermoset binder and is preferably substantially water insoluble.
The binder composition and/or the cured binder may comprise ester and/or polyester compounds.
All the reducing sugar reactant(s) and all the nitrogen-containing reactant(s) of the binder composition may be combined in a single preparation step, for example by dissolving the reducing sugar reactant(s) in water and then adding the nitrogen-containing reactant(s). The term “single preparation step” is used herein to differentiate from a “multiple preparation step” preparation in which a first portion of reactants are combined and stored and/or allowed to react for a pre-determined time before addition of further reactants.
Alternatively, the reducing sugar reactant(s) and the nitrogen containing reactant(s) of the binder composition may be combined by:
As used herein “storing the intermediate mixture of reducing sugar reactant(s) and nitrogen containing reactant(s)” means that the intermediate mixture of reducing sugar reactant(s) and nitrogen containing reactant(s) is stored or shipped for a prolonged time, notably without crystallization of the reducing sugar reactant(s) or gelling which would render the binder composition unusable. The intermediate mixture of reducing sugar reactant(s) and nitrogen containing reactant(s) may be stored for a period of at least 30 min, at least 1 h, at least 4 h, at least 12 h, at least 24 h, at least 96 h, at least 1 week, at least 2 weeks, or at least 4 weeks.
Preparation of the binder composition may comprise:
a) combining in a single preparation step: the reducing sugar reactant(s); the nitrogen containing reactant(s) and; a resin and/or reactants thereof;
b) combining a resin and/or reactants thereof with an intermediate mixture of reducing sugar reactant(s) and nitrogen containing reactant(s); or
c) combining a resin and/or reactants thereof with a mixture comprising the totality of the reducing sugar reactant(s) and nitrogen containing reactant(s).
The binder composition may comprise one or more additive, for example one or more additives selected from waxes, dyes dedusting oil, release agents, formaldehyde scavengers (for example urea, tannins, quebracho extract, ammonium phosphate, bisulfite), water repellent agent, silanes, silicones, lignins, lignosulphonates and non-carbohydrate polyhydroxy component selected from glycerol, polyethylene glycol, polypropylene glycol, trimethylolpropane, pentaerythritol, polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, fully hydrolyzed polyvinyl acetate, or mixtures thereof. Such additives are generally not reactants of the binder composition, that is to say they so do not cross-link with the reducing sugar and/or the nitrogen containing reactant(s) (or reaction products thereof) as part of the curing of the binder composition.
The binder composition may be applied to the non or loosely assembled matter in the form of a liquid, notably in the form of an aqueous composition, for example comprising an aqueous solution or dispersion, notably in which the dry weight of the aqueous binder composition makes up: ≥5 wt %, ≥10 wt %, ≥15 wt %, ≥20 wt % or ≥25 wt % and/or ≤95 wt %, ≤90 wt %, ≤85 wt % or ≤80 wt % of the total weight of the aqueous binder composition. Alternatively, the binder composition may be applied to the non or loosely assembled matter in the form of a solid, for example as a powder or as particles. The binder composition may be applied by being sprayed. The binder composition may be applied to the non or loosely assembled matter by passing the non or loosely assembled matter through a spray of the binder composition or by spraying the binder composition over the non or loosely assembled matter. The binder composition may be applied by being spread, for example as a continuous layer or as a discontinuous layer, for example as lines of binder. Other application techniques include roll application, dip coating and dry mixing.
The present disclosure further provides for curable, formaldehyde free binder compositions that impart commercially beneficial properties to finished articles such as corrugated boards, wood and composite boards, and insulation articles. In certain embodiments, these properties include but are not limited to weather resistance, water repellence and waterproofing. In additional embodiments, articles and commercial products comprising the binder compositions disclosed herein are advantageously recyclable and/or repulpable.
Without being bound by theory, it has been found that when introducing a compound capable of forming a carbamate compound, e.g. by bubbling carbon dioxide through a solution comprising a) the reducing sugar reactant(s) and nitrogen-containing reactant(s) and/or b) curable reaction product(s) of reducing sugar reactant(s) and nitrogen-containing reactant(s), the presence of one or more carbamate compounds is capable of delaying or preventing further reaction of the nitrogen-containing reactant(s) and/or curable reaction product(s) of reducing sugar reactant(s) and nitrogen-containing reactant(s) with other components of the binder composition, wherein “further reaction” includes deleterious polymerization and/or cross-linking of the solution components, and further prevents or reduces undesirable viscosity increases of the binder composition during storage and/or shipping under both ideal and non-optimal shipping and/or storage conditions. Subsequent heating, notably during curing of the binder composition, may be used to separate oxygen based components such as carbon dioxide from the binder composition and thus allow the reactants previously stabilized for storage to participate in curing of the binder composition.
Carbon dioxide (CO2) may be injected into the binder composition at a concentration capable of reacting approximately stoichiometrically with the nitrogen containing reactant(s), notably following reaction between the reducing sugar reactant(s) and nitrogen-containing reactant(s) to form curable reaction product(s) of the reducing sugar reactant(s) and nitrogen-containing reactant(s). Carbon dioxide (CO2) may be injected to produce a concentration of about 0.5-5% by weight with respect to the binder composition, notably about 1-2% by weight. The carbon dioxide (CO2) may be introduced to the binder composition using a stainless steel needle; a nano-, micro- or mini-bubbler system; or any bubbler/aerator capable of introducing CO2 into the binder composition.
The binder composition is preferably water soluble; it may have a water-solubility at ambient conditions (e.g. at approximately 20° C. and 1 atm) of 100 g/l or more, 150 g/l or more, 200 g/l or more, 250 g/l or more, 300 g/l or more, 400 g/l or more, 500 g/l or more, and 600 g/l or more.
Preferably the viscosity of the binder composition in solution resists increases by more than 1000 cP when left to stand at ambient temperatures, i.e. at temperatures of about 20-25° C., fora time period of 12, 24, 48, 72 or 96 hours. In further embodiments, the viscosity of the aqueous solution advantageously does not increase by more than 10 000 cP over a time period of 7, 10, 12, 14, 21, 28, 30, 60 or 90 days. According to further embodiments, the amount by which the viscosity of a 70 wt. % aqueous solution of the disclosed composition increases within the first 12 hours when left to stand at 20° C. does not exceed 500, 400, 300, 250, 200, 150, 100, 50, 10 and 5 centiPoise (cP) or less. Preferably, a 70 wt. % aqueous solution of the binder composition does not increase in viscosity by more than 1000 cP within the first 48 hours after its preparation, and notably does not increase by more than 2000 cP within two weeks after its preparation. Excessive viscosity increases for an aqueous solution of the binder composition may result in “gelling,” which may render the binder composition unusable.
In some preferred embodiments, the binder composition allows for one or more reactions of the reducing sugar reactant(s) and nitrogen-containing reactant(s) and/or curable reaction product(s) of reducing sugar reactant(s) and nitrogen-containing reactant(s) of the binder composition following the evolution, removal and/or degassing of carbon dioxide. Accordingly, such reactions allow for further reactions with one or more crosslinkers for producing a polymeric binder. For example, this polymeric binder may contain high molecular weight polymers, e.g. melanoidins, as essentially water insoluble Maillard reaction products. For example, the binder composition may be prepared by mixing a reducing sugar reactant with a nitrogen containing reactant which consists of or comprises hexamethylenediamine (HMDA) and/or 4-(aminomethyl)-1,8-octanediamine (AMOD) and adding CO2. Subsequently, further nitrogen containing reactant, for example further hexamethylenediamine and/or 4-(aminomethyl)-1,8-octanediamine (AMOD), may be added to the binder composition to achieve the high grade of polymerization required in the respective polymerized application.
Preparation of the binder composition may comprise: i) providing the reducing sugar reactant(s); (ii) providing the nitrogen containing reactant(s); (iii) providing carbon dioxide; (iv) mixing in a solvent the reducing sugar reactant(s) and the nitrogen containing reactant(s); (v) cooling, notably at room temperature; and (vi) bubbling carbon dioxide into the mixture obtained in step (iv).
The carbon dioxide may be introduced via direct injection, e.g. through bubbling, into the mixture, notably at a rate of about 0.5 to 50 wt. % based on the total weight of the binder composition, or at a rate of about 1 to about 45 wt. %, about 1 to about 40 wt. %, about 1 to about 35 wt. %, about 1 to about 30 wt. %, about 1 to about 25 wt. %, about 1 to about 20 wt. %, about 1 to about 15 wt. %, about 1 to about 10 wt. %, and about 1 to about 5 wt. %. In alternative embodiments, carbonic acid or “soda water” may be utilized as a source of carbon dioxide to provide all or part of the carbon dioxide for the disclosed binder composition. A preformed carbamate compound produced via reaction with the at least one nitrogen containing reactant(s) may be used.
The invention will now be described by way of example only with reference to the accompanying drawing of which:
The spacer group between primary amines A and B:
An aqueous binder composition (“H3823”—a 38 wt. % binder solids solution obtained by combining, by dry weight, 23 wt. % hexamethylenediamine (HMDA) as the nitrogen containing reactant and HFCS (high fructose corn syrup) as the reducing sugar reactant) was produced and observed to have an initial viscosity of about 15 centiPoise (cP). The initial sample was then divided into two (2) H3823 aliquots, which are exemplified as “Unshaken” (Series 2) and “Shaken” (Series 1) in
The second sample (“Shaken”) was shaken three times a day, at a frequency of one shake approximately every 2-3 hours, on weekdays (Monday-Friday, unshaken on Saturday-Sunday). The temperature of the “Shaken” sample was observed to increase by about 10° F. over room temperature (to a temperature of about 80° F.) and remained at the elevated temperature for about seven (7) days (about 168 hours) and was observed to cool down to room temperature (about 70° F.) at a significantly slower rate. However, both the “Unshaken” and “Shaken” were found to comprise very similar viscosity values (about 18.5 cP) following the seven (7) day trial period. Additionally, both samples (“Shaken” and “Unshaken”) were observed to resist thermal damage when maintained at solution temperatures at or below 80° F.
In a trial separate from that described for the H3823 composition in Example 1, it was observed that a quart of the unmodified tanker batch gelled following overnight storage (a time period of about 10-12 hours) at a temperature of about 102° F. In an effort to extend usability and shelf life for the claimed composition, a separate sample was taken and time-dependent viscosity values were measured at ambient temperature and pressure conditions (about 20-25° F. and about 1 atm) over about 25 days (about 600 hours):
Under ambient conditions, the sample exhibited a commercially viable product shelf life of greater than 3 weeks, with disadvantageous product gelling occurring around 3.5-4 weeks (about 600 to about 684 hours). In a follow-up trial, an additional time dependent assay was performed on an H3823 sample initially maintained under ambient conditions. As shown in Table 2, separate aliquots of the sample were then exposed to 1) a temperature of 98° F. after two days (about 48 hours) for a time period of about 48 hours; and 2) a temperature of 87° F. after four days (about 96 hours) for a time period of about 24 hours:
In an effort to achieve enhanced thermal/temporal stability, a 50 wt. % binder solids binder composition was prepared by mixing, by dry weight, 23 wt. % hexamethylenediamine (HMDA) and 77 wt. % high fructose corn syrup (described herein as “H5023”) and evaluated for shelf life stability as a function of compositional pH. A single aliquot, comprising a pH of about 11.3, was not treated with carbon dioxide (CO2), while five aliquots were subjected to bubbling with sufficient volumes of CO2 to achieve the pH levels disclosed in Table 3 below:
As shown in Table 3, the H5023 sample (comprising 50% binder solids) exhibited a shelf life stability of at least about 110 days, after which no further measurements were recorded. It was observed that the CO2 treated samples (pH of 9.4, 8.6, 8.3, 8.1, and 8.0) exhibited sufficient thermal stability and characteristics associated with sufficient storage/shelf life stability, as well as stability during the transportation and/or processing of the material. For instance, the pH 8.0, CO2 treated aliquot had an initial viscosity of about 25 cP, a viscosity of about 31 cP after 19 days, and a viscosity of about 50 cP after 110 days.
A duplicate H5023 sample was then created and divided into three (3) separate aliquots for determining compositional viscosity following (1) no treatment with CO2; (2) CO2 treatment to produce a compositional pH of 9.33; and (3) CO2 treatment to produce a compositional pH of 8.22. The resulting viscosity values as a function of time and pH are provided in Table 4:
Additional H5023 samples were treated with CO2 to produce the compositional pH values described in Table 5 (below), where commercial viability/stability was observed to be at or greater than about 90 days at pH values of 8.6 and 8.2:
In further efforts to enhance commercial properties two (2) quarts of a 70 wt. % binder solids binder composition were prepared by combining, by dry weight, 30 wt. % hexamethylenediamine (HMDA) and 70 wt. % high fructose corn syrup (described herein as “H7030”). The results for various (CO2 treated and untreated) binder samples as a function of pH and time are shown in
An additional sample comprising 70 wt. % binder solids prepared by combing, by dry weight, 23 wt. % hexamethylenediamine (HMDA) and 70 wt. % high fructose corn syrup (described herein as “H7023”) was produced and evaluated. This sample (comprising a decreased concentration of polyamine) was disadvantageously observed to gel to an increased degree and/or at an enhanced rate versus the H7030 composition, which suggests that the additional polyamine concentration comprising the H7030 sample may provide thermal and/or temporal stability under certain processing, transporting and/or storage conditions versus a sample with a decreased polyamine concentration, e.g. H7023.
In an effort to improve the performance of starch comprising, corrugated cardboard articles and manufacturing processes for producing these articles, a 50 wt. % solids composition was prepared by combining, by dry weight, and 19 wt. % 4-(aminomethyl)-1,8-octanediamine (AMOD)—commercially available as Hexatran™ from Ascend Performance Materials and 81 wt. % high fructose corn syrup, hereinafter referred to as “T5019,” was prepared. It was observed that this composition was stable under ambient temperature/pressure conditions on a benchtop for at least about four (4) months. A batch of T5019 was then treated with a sufficient concentration of CO2 to produce a compositional pH of about 8.8. The resulting composition is hereinafter described as “MaxxLink® Gold”.
The MaxxLink® Gold composition was incorporated in a corrugated produce cardboard box at a concentration of 2.0% (weight/weight) as a waterproofing agent for starch based compositions and compared to a corrugated produce cardboard box comprising MaxxLink® XL-5000, a general purpose, ketone formaldehyde based resin used as a waterproofing agent for starch based compositions (commercially available from MCTRON™ Technologies, Greenville, SC, USA). The performance of the corrugated produce cardboard box was measured via a pin adhesion, alternatively referred to as a “wet pin adhesion” or simply “wet pins” test (see, for example, 1) https://imisrise.tappi.org/TAPPI/Products/01/T/0104T845.aspx; and 2) https://www.westpak.com/page/material-analysis/material-analysis-pin-adhesion). In certain embodiments, an ideal “wet pins” quantitative performance value for the disclosed trial is in the range of about 2 to about 6, including about 4 to about 5. The results are shown in Table 6 below:
In additional trials, the performance of the disclosed binder was evaluated in comparison with N-methylolacrylamide (N-MA; molecular formula: C4H7NO2) and formaldehyde containing formulations. N-MA is used commercially in adhesives, binders, coatings and resins, including its use in latex based compositions. Commercial articles comprising N-MA may comprise significant concentrations, e.g. 200 ppm and greater, of formaldehyde, while generating and emitting significant levels of formaldehyde during manufacturing processes associated with N-MA.
As a potential substitute for a binder composition comprising N-MA and a PVAc resin, a binder comprising Maillard reactants (“H5023” as described herein) and polyvinyl acetate (PVAc) was prepared and compared to 1) an N-MA/PVAc binder; and 2) unmodified PVAc. Physicochemical performance was evaluated, specifically heat (via a “hot stiffness” test, a subjective measure of fabric cutting ease) and solvent resistance, wherein the weight fraction of the composition that dissolves in acetone after an hour is measured (wherein increased percentages of insoluble correlate to increased solvent resistance). As shown in Table 7 below, the Maillard reactants modified PVAc binder demonstrated comparable performance to the N-MA/PVAc binder, as well as improved solvent resistance versus the PVAc control. In addition, the Maillard reactants modified PVAc binder beneficially demonstrates a significant reduction in formaldehyde production as measured by the American Association of Textile Colorants and Chemists (AATCC) Test Method TM112 (https://www.aatcc.org/test/methods/).
In additional experiments, a 54% (final) solids binder was prepared using a pre-mix of water and a H5223 binder solution (52% (initial) binder solids and 25% hexamethylenediamine (HMDA)). A sufficient volume of carbon dioxide (CO2) was then bubbled through the solution to a produce a final CO2 concentration of 2%, which facilitates the partial neutralize of the final solution. This pre-mix was removed from the reactor, mixed with a 70% (volume/volume) aqueous solution of high fructose corn syrup (HFCS), and re-introduced to the reactor, which was maintained at a temperature below 30° C. The resulting binder demonstrated a shelf-life under ambient temperature and pressure conditions of about 90 days, and is highly reactive as a thermosettable binder when cured on a production line at temperatures above 150° C.
In alternative embodiments, latex may further be utilized to enhance the performance of articles such as corrugated cardboard, for applications where performance issues including but not limited to binder failure and low temperature pins are observed.
Number | Date | Country | Kind |
---|---|---|---|
1804908 | Mar 2018 | GB | national |
This application is a U.S. national counterpart application of International Application Serial No. PCT/EP2019/057803, filed Mar. 27, 2019, under 35 U.S.C. § 371, which claims priority to GB Application Serial No. 1804908.0, filed Mar. 27, 2018, and to U.S. Application Ser. No. 62/662,494, filed Apr. 25, 2018, the disclosures of which are hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/057803 | 3/27/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/185762 | 10/3/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1801052 | Meigs | Apr 1931 | A |
1801053 | Meigs | Apr 1931 | A |
1886353 | Novotny et al. | Nov 1932 | A |
1902948 | Castle | Mar 1933 | A |
1964263 | Krenke | Jun 1934 | A |
2198874 | Leighton | Apr 1940 | A |
2215825 | Wallace et al. | Sep 1940 | A |
2261295 | Schlack | Nov 1941 | A |
2362086 | Eastes et al. | Nov 1944 | A |
2371990 | Hanford | Mar 1945 | A |
2392105 | Sussman | Jan 1946 | A |
2442989 | Sussman | Jun 1948 | A |
2500665 | Courtright | Mar 1950 | A |
2518956 | Sussman | Aug 1950 | A |
2875073 | Gogek | Feb 1959 | A |
2894920 | Ramos | Jul 1959 | A |
2965504 | Gogek | Dec 1960 | A |
3038462 | Bohdan | Jun 1962 | A |
3138473 | Floyd et al. | Jun 1964 | A |
3222243 | Gaston et al. | Dec 1965 | A |
3231349 | Stalego | Jan 1966 | A |
3232821 | Banks et al. | Feb 1966 | A |
3297419 | Eyre, Jr. | Jan 1967 | A |
3513001 | Woodhead et al. | May 1970 | A |
3551365 | Matalon | Dec 1970 | A |
3784408 | Jaffe et al. | Jan 1974 | A |
3791807 | Etzel et al. | Feb 1974 | A |
3802897 | Bovier et al. | Apr 1974 | A |
3809664 | Burr et al. | May 1974 | A |
3826767 | Hoover et al. | Jul 1974 | A |
3856606 | Fan et al. | Dec 1974 | A |
3867119 | Takeo et al. | Feb 1975 | A |
3907724 | Higginbottom | Sep 1975 | A |
3911048 | Nistri et al. | Oct 1975 | A |
3919134 | Higginbottom | Nov 1975 | A |
3922466 | Bell et al. | Nov 1975 | A |
3955031 | Jones et al. | May 1976 | A |
3956204 | Higginbottom | May 1976 | A |
3961081 | McKenzie | Jun 1976 | A |
3971807 | Brack | Jul 1976 | A |
4014726 | Fargo | Mar 1977 | A |
4028290 | Reid | Jun 1977 | A |
4048127 | Gibbons et al. | Sep 1977 | A |
4054713 | Sakaguchi et al. | Oct 1977 | A |
4085076 | Gibbons et al. | Apr 1978 | A |
4097427 | Aitken et al. | Jun 1978 | A |
4107379 | Stofko | Aug 1978 | A |
4109057 | Nakamura et al. | Aug 1978 | A |
4144027 | Habib | Mar 1979 | A |
4148765 | Nelson | Apr 1979 | A |
4183997 | Stofko | Jan 1980 | A |
4184986 | Krasnobajew et al. | Jan 1980 | A |
4186053 | Krasnobajew et al. | Jan 1980 | A |
4201247 | Shannon | May 1980 | A |
4201857 | Krasnobajew et al. | May 1980 | A |
4217414 | Walon | Aug 1980 | A |
4233432 | Curtis, Jr. | Nov 1980 | A |
4246367 | Curtis, Jr. | Jan 1981 | A |
4259190 | Fahey | Mar 1981 | A |
4265963 | Matalon | May 1981 | A |
4278573 | Tessler | Jul 1981 | A |
4296173 | Fahey | Oct 1981 | A |
4301310 | Wagner | Nov 1981 | A |
4310585 | Shannon | Jan 1982 | A |
4322523 | Wagner | Mar 1982 | A |
4330443 | Rankin | May 1982 | A |
4333484 | Keritsis | Jun 1982 | A |
4357194 | Stofko | Nov 1982 | A |
4361588 | Herz | Nov 1982 | A |
4379101 | Smith | Apr 1983 | A |
4393019 | Geimer | Jul 1983 | A |
4396430 | Matalon | Aug 1983 | A |
4400496 | Butler et al. | Aug 1983 | A |
4464523 | Neigel et al. | Aug 1984 | A |
4506684 | Keritsis | Mar 1985 | A |
4520143 | Jellinek | May 1985 | A |
4524164 | Viswanathan et al. | Jun 1985 | A |
4631226 | Jellinek | Dec 1986 | A |
4654259 | Stofko | Mar 1987 | A |
4668716 | Pepe et al. | May 1987 | A |
4692478 | Viswanathan et al. | Sep 1987 | A |
4714727 | Hume, III | Dec 1987 | A |
4720295 | Bronshtein | Jan 1988 | A |
4734996 | Kim et al. | Apr 1988 | A |
4754056 | Ansel et al. | Jun 1988 | A |
4761184 | Markessini | Aug 1988 | A |
4780339 | Lacourse et al. | Oct 1988 | A |
4828643 | Newman et al. | May 1989 | A |
4845162 | Schmitt et al. | Jul 1989 | A |
4906237 | Johansson et al. | Mar 1990 | A |
4912147 | Pfoehler et al. | Mar 1990 | A |
4918861 | Carpenter et al. | Apr 1990 | A |
4923980 | Blomberg | May 1990 | A |
4950444 | Deboufie et al. | Aug 1990 | A |
4988780 | Das et al. | Jan 1991 | A |
4992519 | Mukherjee | Feb 1991 | A |
5001202 | Denis et al. | Mar 1991 | A |
5013405 | Izard | May 1991 | A |
5032431 | Conner et al. | Jul 1991 | A |
5037930 | Shih | Aug 1991 | A |
5041595 | Yang et al. | Aug 1991 | A |
5089342 | Dhein et al. | Feb 1992 | A |
5095054 | Lay et al. | Mar 1992 | A |
5106615 | Dikstein | Apr 1992 | A |
5114004 | Isono et al. | May 1992 | A |
5123949 | Thiessen | Jun 1992 | A |
5124369 | Vandichel et al. | Jun 1992 | A |
5128407 | Layton et al. | Jul 1992 | A |
5143582 | Arkens et al. | Sep 1992 | A |
5151465 | Le-Khac | Sep 1992 | A |
5167738 | Bichot et al. | Dec 1992 | A |
5198492 | Stack | Mar 1993 | A |
5217741 | Kawachi et al. | Jun 1993 | A |
5218048 | Abe et al. | Jun 1993 | A |
5240498 | Matalon et al. | Aug 1993 | A |
5244474 | Lorcks et al. | Sep 1993 | A |
5278222 | Stack | Jan 1994 | A |
5300144 | Adams | Apr 1994 | A |
5300192 | Hansen et al. | Apr 1994 | A |
5308896 | Hansen et al. | May 1994 | A |
5318990 | Strauss | Jun 1994 | A |
5336753 | Jung et al. | Aug 1994 | A |
5336755 | Pape | Aug 1994 | A |
5336766 | Koga et al. | Aug 1994 | A |
5340868 | Strauss et al. | Aug 1994 | A |
5352480 | Hansen et al. | Oct 1994 | A |
5367849 | Bullock | Nov 1994 | A |
5371194 | Ferretti | Dec 1994 | A |
5387665 | Misawa et al. | Feb 1995 | A |
5389716 | Graves | Feb 1995 | A |
5393849 | Srinivasan et al. | Feb 1995 | A |
5416139 | Zeiszler | May 1995 | A |
5421838 | Gosset et al. | Jun 1995 | A |
5424418 | Duflot | Jun 1995 | A |
5434233 | Kiely et al. | Jul 1995 | A |
5447977 | Hansen et al. | Sep 1995 | A |
5470843 | Stahl et al. | Nov 1995 | A |
5480973 | Goodlad et al. | Jan 1996 | A |
5492756 | Seale et al. | Feb 1996 | A |
5498662 | Tanaka et al. | Mar 1996 | A |
5503920 | Alkire et al. | Apr 1996 | A |
5534612 | Taylor et al. | Jul 1996 | A |
5536766 | Seyffer et al. | Jul 1996 | A |
5538783 | Hansen et al. | Jul 1996 | A |
5543215 | Hansen et al. | Aug 1996 | A |
5545279 | Hall et al. | Aug 1996 | A |
5547541 | Hansen et al. | Aug 1996 | A |
5547745 | Hansen et al. | Aug 1996 | A |
5550189 | Qin et al. | Aug 1996 | A |
5554730 | Woiszwillo et al. | Sep 1996 | A |
5562740 | Cook et al. | Oct 1996 | A |
5571618 | Hansen et al. | Nov 1996 | A |
5578678 | Hartmann et al. | Nov 1996 | A |
5580856 | Prestrelski et al. | Dec 1996 | A |
5582682 | Ferretti | Dec 1996 | A |
5583193 | Aravindakshan et al. | Dec 1996 | A |
5589256 | Hansen et al. | Dec 1996 | A |
5589536 | Golino et al. | Dec 1996 | A |
5607759 | Hansen et al. | Mar 1997 | A |
5608011 | Eck et al. | Mar 1997 | A |
5609727 | Hansen et al. | Mar 1997 | A |
5614570 | Hansen et al. | Mar 1997 | A |
5620940 | Birbara et al. | Apr 1997 | A |
5621026 | Tanaka et al. | Apr 1997 | A |
5633298 | Arfaei et al. | May 1997 | A |
5641561 | Hansen et al. | Jun 1997 | A |
5643978 | Darwin et al. | Jul 1997 | A |
5645756 | Dubin et al. | Jul 1997 | A |
5660904 | Andersen et al. | Aug 1997 | A |
5661213 | Arkens et al. | Aug 1997 | A |
5670585 | Taylor et al. | Sep 1997 | A |
5672418 | Hansen et al. | Sep 1997 | A |
5672659 | Shalaby et al. | Sep 1997 | A |
5690715 | Schiwek | Nov 1997 | A |
5691060 | Levy | Nov 1997 | A |
5693411 | Hansen et al. | Dec 1997 | A |
5719092 | Arrington | Feb 1998 | A |
5719228 | Taylor et al. | Feb 1998 | A |
5733624 | Syme et al. | Mar 1998 | A |
5756580 | Natori et al. | May 1998 | A |
5763524 | Arkens et al. | Jun 1998 | A |
5788243 | Harshaw et al. | Aug 1998 | A |
5788423 | Perkins | Aug 1998 | A |
5807364 | Hansen | Sep 1998 | A |
5855987 | Margel et al. | Jan 1999 | A |
5863985 | Shalaby et al. | Jan 1999 | A |
5885337 | Nohr et al. | Mar 1999 | A |
5895804 | Lee et al. | Apr 1999 | A |
5905115 | Luitjes et al. | May 1999 | A |
5916503 | Rettenbacher | Jun 1999 | A |
5919528 | Huijs et al. | Jul 1999 | A |
5919831 | Philipp | Jul 1999 | A |
5922403 | Tecle | Jul 1999 | A |
5925722 | Exner et al. | Jul 1999 | A |
5929184 | Holmes-Farley et al. | Jul 1999 | A |
5929196 | Kissel | Jul 1999 | A |
5932344 | Ikemoto et al. | Aug 1999 | A |
5932665 | DePorter et al. | Aug 1999 | A |
5932689 | Arkens et al. | Aug 1999 | A |
5942123 | McArdle | Aug 1999 | A |
5954869 | Elfersy et al. | Sep 1999 | A |
5977224 | Cheung et al. | Nov 1999 | A |
5977232 | Arkens et al. | Nov 1999 | A |
5981719 | Woiszwillo et al. | Nov 1999 | A |
5983586 | Berdan, II et al. | Nov 1999 | A |
5990216 | Cai et al. | Nov 1999 | A |
5993709 | Bonomo et al. | Nov 1999 | A |
6022615 | Rettenbacher | Feb 2000 | A |
6067821 | Jackson et al. | May 2000 | A |
6071549 | Hansen | Jun 2000 | A |
6071994 | Hummerich et al. | Jun 2000 | A |
6072086 | James et al. | Jun 2000 | A |
6077883 | Taylor et al. | Jun 2000 | A |
6090925 | Woiszwillo et al. | Jul 2000 | A |
6114033 | Ikemoto et al. | Sep 2000 | A |
6114464 | Reck et al. | Sep 2000 | A |
6133347 | Vickers, Jr. et al. | Oct 2000 | A |
6136916 | Arkens et al. | Oct 2000 | A |
6139619 | Zaretskiy et al. | Oct 2000 | A |
6143243 | Gershun et al. | Nov 2000 | A |
6171444 | Nigam | Jan 2001 | B1 |
6171654 | Salsman et al. | Jan 2001 | B1 |
6180037 | Andersen et al. | Jan 2001 | B1 |
6194512 | Chen et al. | Feb 2001 | B1 |
6210472 | Kwan et al. | Apr 2001 | B1 |
6221958 | Shalaby et al. | Apr 2001 | B1 |
6221973 | Arkens et al. | Apr 2001 | B1 |
6231721 | Quick et al. | May 2001 | B1 |
6274661 | Chen et al. | Aug 2001 | B1 |
6281298 | Papsin, Jr. | Aug 2001 | B1 |
6299677 | Johnson et al. | Oct 2001 | B1 |
6299936 | Reck et al. | Oct 2001 | B1 |
6307732 | Tsubaki et al. | Oct 2001 | B1 |
6310227 | Sarama et al. | Oct 2001 | B1 |
6313102 | Colaco et al. | Nov 2001 | B1 |
6319683 | James et al. | Nov 2001 | B1 |
6331350 | Taylor et al. | Dec 2001 | B1 |
6331513 | Zaid et al. | Dec 2001 | B1 |
6340411 | Hansen et al. | Jan 2002 | B1 |
6348530 | Reck et al. | Feb 2002 | B1 |
6365079 | Winkler et al. | Apr 2002 | B1 |
6372077 | Tecle | Apr 2002 | B1 |
6379739 | Formanek et al. | Apr 2002 | B1 |
6379814 | Dupre et al. | Apr 2002 | B1 |
6395856 | Petty et al. | May 2002 | B1 |
6403665 | Sieker et al. | Jun 2002 | B1 |
6407225 | Mang et al. | Jun 2002 | B1 |
6410036 | De Rosa et al. | Jun 2002 | B1 |
6440204 | Rogols et al. | Aug 2002 | B1 |
6441122 | DeMott et al. | Aug 2002 | B1 |
6461553 | Hansen et al. | Oct 2002 | B1 |
6468442 | Bytnar | Oct 2002 | B2 |
6468730 | Fujiwara et al. | Oct 2002 | B2 |
6469120 | Elfersy et al. | Oct 2002 | B1 |
6475552 | Shah et al. | Nov 2002 | B1 |
6482875 | Lorenz et al. | Nov 2002 | B2 |
6495656 | Haile et al. | Dec 2002 | B1 |
6521339 | Hansen et al. | Feb 2003 | B1 |
6525009 | Sachdev et al. | Feb 2003 | B2 |
6538057 | Wildburg et al. | Mar 2003 | B1 |
6547867 | Rogols et al. | Apr 2003 | B2 |
6555616 | Helbing et al. | Apr 2003 | B1 |
6559302 | Shah et al. | May 2003 | B1 |
6562267 | Hansen et al. | May 2003 | B1 |
6596103 | Hansen et al. | Jul 2003 | B1 |
6613378 | Erhan et al. | Sep 2003 | B1 |
6638882 | Helbing et al. | Oct 2003 | B1 |
6638884 | Quick et al. | Oct 2003 | B2 |
6699945 | Chen et al. | Mar 2004 | B1 |
6706853 | Stanssens et al. | Mar 2004 | B1 |
6719862 | Quick et al. | Apr 2004 | B2 |
6730730 | Hansen et al. | May 2004 | B1 |
6753361 | Kroner et al. | Jun 2004 | B2 |
6818694 | Hindi et al. | Nov 2004 | B2 |
6821547 | Shah et al. | Nov 2004 | B2 |
6852247 | Bytnar | Feb 2005 | B2 |
6858074 | Anderson et al. | Feb 2005 | B2 |
6861495 | Barsotti et al. | Mar 2005 | B2 |
6864044 | Ishikawa et al. | Mar 2005 | B2 |
6878800 | Husemoen et al. | Apr 2005 | B2 |
6884849 | Chen et al. | Apr 2005 | B2 |
6955844 | Tagge et al. | Oct 2005 | B2 |
6962714 | Hei et al. | Nov 2005 | B2 |
6989171 | Portman | Jan 2006 | B2 |
6992203 | Trusovs | Jan 2006 | B2 |
7018490 | Hansen et al. | Mar 2006 | B2 |
7029717 | Ojima et al. | Apr 2006 | B1 |
7067579 | Taylor et al. | Jun 2006 | B2 |
7083831 | Koch et al. | Aug 2006 | B1 |
7090745 | Beckman et al. | Aug 2006 | B2 |
7141626 | Rodrigues et al. | Nov 2006 | B2 |
7144474 | Hansen et al. | Dec 2006 | B1 |
7195792 | Boston et al. | Mar 2007 | B2 |
7201778 | Smith et al. | Apr 2007 | B2 |
7201825 | Dezutter et al. | Apr 2007 | B2 |
7202326 | Kuroda et al. | Apr 2007 | B2 |
7241487 | Taylor et al. | Jul 2007 | B2 |
7458235 | Beaufils et al. | Dec 2008 | B2 |
7514027 | Horres et al. | Apr 2009 | B2 |
7655711 | Swift et al. | Feb 2010 | B2 |
7772347 | Swift et al. | Aug 2010 | B2 |
7795354 | Srinivasan et al. | Sep 2010 | B2 |
7803879 | Srinivasan et al. | Sep 2010 | B2 |
7807771 | Swift et al. | Oct 2010 | B2 |
7842382 | Helbing | Nov 2010 | B2 |
7854980 | Jackson et al. | Dec 2010 | B2 |
7883693 | Sehl et al. | Feb 2011 | B2 |
7888445 | Swift et al. | Feb 2011 | B2 |
7947765 | Swift et al. | May 2011 | B2 |
8114210 | Hampson et al. | Feb 2012 | B2 |
8182648 | Swift et al. | May 2012 | B2 |
8211923 | Wagner et al. | Jul 2012 | B2 |
8372900 | Shooshtari et al. | Feb 2013 | B2 |
8377564 | Shooshtari et al. | Feb 2013 | B2 |
8501838 | Jackson et al. | Aug 2013 | B2 |
8680224 | Zhang et al. | Mar 2014 | B2 |
8691934 | Helbing et al. | Apr 2014 | B2 |
8900495 | Pacorel et al. | Dec 2014 | B2 |
20010017427 | Rosthauser et al. | Aug 2001 | A1 |
20010046824 | Nigam | Nov 2001 | A1 |
20020000100 | Burg et al. | Jan 2002 | A1 |
20020025435 | Hansen et al. | Feb 2002 | A1 |
20020026025 | Kuo et al. | Feb 2002 | A1 |
20020028857 | Holy | Mar 2002 | A1 |
20020032253 | Lorenz et al. | Mar 2002 | A1 |
20020042473 | Trollsas et al. | Apr 2002 | A1 |
20020091185 | Taylor et al. | Jul 2002 | A1 |
20020096278 | Foster et al. | Jul 2002 | A1 |
20020123598 | Sieker et al. | Sep 2002 | A1 |
20020130439 | Kroner et al. | Sep 2002 | A1 |
20020161108 | Schultz et al. | Oct 2002 | A1 |
20020197352 | Portman | Dec 2002 | A1 |
20030005857 | Minami et al. | Jan 2003 | A1 |
20030040239 | Toas et al. | Feb 2003 | A1 |
20030044513 | Shah et al. | Mar 2003 | A1 |
20030066523 | Lewis et al. | Apr 2003 | A1 |
20030071879 | Swenson | Apr 2003 | A1 |
20030116294 | Kehrer et al. | Jun 2003 | A1 |
20030134945 | Capps | Jul 2003 | A1 |
20030148084 | Trocino | Aug 2003 | A1 |
20030153690 | Husemoen et al. | Aug 2003 | A1 |
20030185991 | Wigger et al. | Oct 2003 | A1 |
20030203117 | Bartkowiak et al. | Oct 2003 | A1 |
20040002567 | Chen et al. | Jan 2004 | A1 |
20040019168 | Soerens et al. | Jan 2004 | A1 |
20040024170 | Husemoen et al. | Feb 2004 | A1 |
20040033269 | Hei et al. | Feb 2004 | A1 |
20040033747 | Miller et al. | Feb 2004 | A1 |
20040034154 | Tutin et al. | Feb 2004 | A1 |
20040038017 | Tutin et al. | Feb 2004 | A1 |
20040048531 | Belmares et al. | Mar 2004 | A1 |
20040077055 | Fosdick et al. | Apr 2004 | A1 |
20040079499 | Dezutter et al. | Apr 2004 | A1 |
20040087024 | Bellocq et al. | May 2004 | A1 |
20040087719 | Rautschek et al. | May 2004 | A1 |
20040122166 | O'Brien-Bernini et al. | Jun 2004 | A1 |
20040131874 | Tutin et al. | Jul 2004 | A1 |
20040144706 | Beaufils et al. | Jul 2004 | A1 |
20040152824 | Dobrowolski | Aug 2004 | A1 |
20040161993 | Tripp et al. | Aug 2004 | A1 |
20040209851 | Nelson et al. | Oct 2004 | A1 |
20040213930 | Halabisky | Oct 2004 | A1 |
20040220368 | Li et al. | Nov 2004 | A1 |
20040249066 | Heinzman et al. | Dec 2004 | A1 |
20040254285 | Rodrigues et al. | Dec 2004 | A1 |
20040260082 | Van Der Wilden et al. | Dec 2004 | A1 |
20050001198 | Bytnar | Jan 2005 | A1 |
20050017394 | Hochsmann et al. | Jan 2005 | A1 |
20050027283 | Richard et al. | Feb 2005 | A1 |
20050033037 | Trusovs | Feb 2005 | A1 |
20050048212 | Clamen et al. | Mar 2005 | A1 |
20050059770 | Srinivasan et al. | Mar 2005 | A1 |
20050171085 | Pinto et al. | Aug 2005 | A1 |
20050196421 | Hunter et al. | Sep 2005 | A1 |
20050202224 | Helbing | Sep 2005 | A1 |
20050208852 | Weber | Sep 2005 | A1 |
20050215153 | Cossement et al. | Sep 2005 | A1 |
20050245669 | Clungeon et al. | Nov 2005 | A1 |
20050275133 | Cabell et al. | Dec 2005 | A1 |
20050288479 | Kuroda et al. | Dec 2005 | A1 |
20060005580 | Espiard et al. | Jan 2006 | A1 |
20060009569 | Charbonneau et al. | Jan 2006 | A1 |
20060044302 | Chen | Mar 2006 | A1 |
20060099870 | Garcia et al. | May 2006 | A1 |
20060111480 | Hansen et al. | May 2006 | A1 |
20060124538 | Morcrette et al. | Jun 2006 | A1 |
20060135433 | Murray et al. | Jun 2006 | A1 |
20060141177 | Ligtenberg et al. | Jun 2006 | A1 |
20060179892 | Horres et al. | Aug 2006 | A1 |
20060188465 | Perrier et al. | Aug 2006 | A1 |
20060198954 | Frechem et al. | Sep 2006 | A1 |
20060231487 | Bartley et al. | Oct 2006 | A1 |
20060252855 | Pisanova et al. | Nov 2006 | A1 |
20060281622 | Maricourt et al. | Dec 2006 | A1 |
20070006390 | Clamen et al. | Jan 2007 | A1 |
20070009582 | Madsen et al. | Jan 2007 | A1 |
20070027281 | Michl et al. | Feb 2007 | A1 |
20070039520 | Crews et al. | Feb 2007 | A1 |
20070082983 | Crews et al. | Apr 2007 | A1 |
20070123679 | Swift et al. | May 2007 | A1 |
20070123680 | Swift et al. | May 2007 | A1 |
20070129522 | Burckhardt et al. | Jun 2007 | A1 |
20070142596 | Swift et al. | Jun 2007 | A1 |
20070158022 | Heep et al. | Jul 2007 | A1 |
20070184740 | Keller et al. | Aug 2007 | A1 |
20070191574 | Miller et al. | Aug 2007 | A1 |
20070270070 | Othman | Nov 2007 | A1 |
20070287018 | Tutin et al. | Dec 2007 | A1 |
20070292618 | Srinivasan et al. | Dec 2007 | A1 |
20070292619 | Srinivasan et al. | Dec 2007 | A1 |
20070298274 | Eriksson et al. | Dec 2007 | A1 |
20080009209 | Clamen et al. | Jan 2008 | A1 |
20080009616 | Frank et al. | Jan 2008 | A1 |
20080051539 | Kelly | Feb 2008 | A1 |
20080060551 | Crews et al. | Mar 2008 | A1 |
20080081138 | Moore et al. | Apr 2008 | A1 |
20080108741 | Van Herwijnen et al. | May 2008 | A1 |
20080160260 | Wada et al. | Jul 2008 | A1 |
20080160302 | Asrar et al. | Jul 2008 | A1 |
20080194738 | Crews et al. | Aug 2008 | A1 |
20090169867 | Kelly | Jul 2009 | A1 |
20090170978 | Kelly | Jul 2009 | A1 |
20090227732 | Glockner et al. | Sep 2009 | A1 |
20090301972 | Hines et al. | Dec 2009 | A1 |
20090304919 | Huenig et al. | Dec 2009 | A1 |
20090306255 | Patel et al. | Dec 2009 | A1 |
20090324915 | Swift et al. | Dec 2009 | A1 |
20100029160 | Srinivasan et al. | Feb 2010 | A1 |
20100058661 | Jackson et al. | Mar 2010 | A1 |
20100080976 | Jackson et al. | Apr 2010 | A1 |
20100084598 | Jackson et al. | Apr 2010 | A1 |
20100086726 | Jackson et al. | Apr 2010 | A1 |
20100087571 | Jackson et al. | Apr 2010 | A1 |
20100098947 | Inoue et al. | Apr 2010 | A1 |
20100117023 | Dopico et al. | May 2010 | A1 |
20100129640 | Kelly | May 2010 | A1 |
20100130649 | Swift et al. | May 2010 | A1 |
20100175826 | Huenig et al. | Jul 2010 | A1 |
20100210595 | Wagner et al. | Aug 2010 | A1 |
20100222459 | Kelly et al. | Sep 2010 | A1 |
20100222463 | Brady et al. | Sep 2010 | A1 |
20100222566 | Fosdick et al. | Sep 2010 | A1 |
20100282996 | Jaffrennou et al. | Nov 2010 | A1 |
20100301256 | Hampson et al. | Dec 2010 | A1 |
20100320113 | Swift | Dec 2010 | A1 |
20110021672 | Crews et al. | Jan 2011 | A1 |
20110039111 | Shooshtari | Feb 2011 | A1 |
20110040010 | Shooshtari | Feb 2011 | A1 |
20110042303 | Shooshtari et al. | Feb 2011 | A1 |
20110045966 | Shooshtari et al. | Feb 2011 | A1 |
20110060095 | Tutin | Mar 2011 | A1 |
20110089074 | Jackson et al. | Apr 2011 | A1 |
20110135937 | Swift et al. | Jun 2011 | A1 |
20110190425 | Swift | Aug 2011 | A1 |
20110220835 | Swift et al. | Sep 2011 | A1 |
20110256790 | Toas et al. | Oct 2011 | A1 |
20110260094 | Hampson et al. | Oct 2011 | A1 |
20110262648 | Lee et al. | Oct 2011 | A1 |
20110263757 | Rand et al. | Oct 2011 | A1 |
20110306726 | Bailey et al. | Dec 2011 | A1 |
20120133073 | Pacorel et al. | May 2012 | A1 |
20120156954 | Eckert et al. | Jun 2012 | A1 |
20130029150 | Appley et al. | Jan 2013 | A1 |
20130032749 | Jaffrennou et al. | Feb 2013 | A1 |
20130047888 | Mueller et al. | Feb 2013 | A1 |
20130059075 | Appley et al. | Mar 2013 | A1 |
20130082205 | Mueller et al. | Apr 2013 | A1 |
20130174758 | Mueller | Jul 2013 | A1 |
20130234362 | Swift et al. | Sep 2013 | A1 |
20130236650 | Swift et al. | Sep 2013 | A1 |
20130237113 | Swift et al. | Sep 2013 | A1 |
20130244524 | Swift et al. | Sep 2013 | A1 |
20130323492 | Finch et al. | Dec 2013 | A1 |
20140091247 | Jackson et al. | Apr 2014 | A1 |
20140134909 | Guo et al. | May 2014 | A1 |
20140357787 | Jobber et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
8538765 | Aug 1985 | AU |
9640921 | Jul 1997 | AU |
1090026 | Nov 1980 | CA |
2037214 | Sep 1991 | CA |
2232334 | Nov 1998 | CA |
2458333 | Dec 1999 | CA |
2278946 | Jan 2000 | CA |
2470783 | Dec 2004 | CA |
1251738 | May 2000 | CN |
1905054 | Aug 1969 | DE |
4142261 | Jun 1993 | DE |
4233622 | Apr 1994 | DE |
4308089 | Sep 1994 | DE |
102004033561 | Sep 2005 | DE |
102005023431 | Nov 2006 | DE |
0044614 | Jan 1982 | EP |
0099801 | Feb 1984 | EP |
354023 | Feb 1990 | EP |
0375235 | Jun 1990 | EP |
0461995 | Dec 1991 | EP |
0524518 | Jan 1993 | EP |
0547819 | Jun 1993 | EP |
0583086 | Feb 1994 | EP |
0714754 | Jun 1996 | EP |
796681 | Sep 1997 | EP |
0826710 | Mar 1998 | EP |
856494 | Aug 1998 | EP |
0873976 | Oct 1998 | EP |
878135 | Nov 1998 | EP |
0882756 | Dec 1998 | EP |
0911361 | Apr 1999 | EP |
915811 | May 1999 | EP |
936060 | Aug 1999 | EP |
976866 | Feb 2000 | EP |
0990729 | Apr 2000 | EP |
1038433 | Sep 2000 | EP |
1193288 | Apr 2002 | EP |
1084167 | Sep 2002 | EP |
1268702 | Jan 2003 | EP |
1382642 | Jan 2004 | EP |
1486547 | Dec 2004 | EP |
1522642 | Apr 2005 | EP |
1698598 | Sep 2006 | EP |
1767566 | Apr 2007 | EP |
2223941 | Sep 2010 | EP |
2253663 | Nov 2010 | EP |
2614388 | Oct 1988 | FR |
770561 | Mar 1957 | GB |
809675 | Mar 1959 | GB |
926749 | May 1963 | GB |
1391172 | Apr 1975 | GB |
1469331 | Apr 1977 | GB |
1512066 | May 1978 | GB |
1525541 | Sep 1978 | GB |
2047258 | Nov 1980 | GB |
2078805 | Jan 1982 | GB |
2173523 | Oct 1986 | GB |
2251438 | Jul 1992 | GB |
53113784 | Oct 1978 | JP |
57101100 | Jun 1982 | JP |
5811193 | Jan 1983 | JP |
61195647 | Aug 1986 | JP |
3-173680 | Jul 1991 | JP |
05186635 | Jul 1993 | JP |
7-034023 | Feb 1995 | JP |
09157627 | Jun 1997 | JP |
10234314 | Sep 1998 | JP |
11035491 | Feb 1999 | JP |
11181690 | Jul 1999 | JP |
2000327841 | Nov 2000 | JP |
2002293576 | Sep 2002 | JP |
2003147276 | May 2003 | JP |
2003238921 | Aug 2003 | JP |
2004060058 | Feb 2004 | JP |
2005306919 | Nov 2005 | JP |
549563 | Jan 2008 | NZ |
1765996 | Aug 1995 | RU |
374400 | Mar 1973 | SU |
9007541 | Jul 1990 | WO |
9212198 | Jul 1992 | WO |
9534517 | Dec 1995 | WO |
9749646 | Dec 1997 | WO |
9936368 | Jul 1999 | WO |
9947765 | Sep 1999 | WO |
9960042 | Nov 1999 | WO |
9960043 | Nov 1999 | WO |
0058085 | Oct 2000 | WO |
0114491 | Mar 2001 | WO |
0159026 | Aug 2001 | WO |
0200429 | Jan 2002 | WO |
0206178 | Jan 2002 | WO |
03029496 | Apr 2003 | WO |
03071879 | Sep 2003 | WO |
03106561 | Dec 2003 | WO |
2004007615 | Jan 2004 | WO |
2004076734 | Sep 2004 | WO |
2005087837 | Sep 2005 | WO |
2006044302 | Apr 2006 | WO |
2006136614 | Dec 2006 | WO |
2007014236 | Feb 2007 | WO |
2007024020 | Mar 2007 | WO |
2007050964 | May 2007 | WO |
2007112335 | Oct 2007 | WO |
2008089847 | Jul 2008 | WO |
2008089851 | Jul 2008 | WO |
2008141201 | Nov 2008 | WO |
2009019235 | Feb 2009 | WO |
2009129084 | Oct 2009 | WO |
2010027937 | Mar 2010 | WO |
2010139899 | Dec 2010 | WO |
2011019590 | Feb 2011 | WO |
2011019593 | Feb 2011 | WO |
2011019597 | Feb 2011 | WO |
2011019598 | Feb 2011 | WO |
2011022224 | Feb 2011 | WO |
2011022226 | Feb 2011 | WO |
2011022227 | Feb 2011 | WO |
2011138458 | Nov 2011 | WO |
2011138459 | Nov 2011 | WO |
2013150123 | Oct 2013 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/EP2019/057803 (11 pages), completed Jun. 19, 2019. |
International Search Report and Written Opinion for PCT/US2008/059730, completed Sep. 22, 2008. |
International Search Report and Written Opinion for PCT/US2008/069046, completed Sep. 25, 2008. |
International Search Report and Written Opinion for PCT/EP2011/059317, completed Jul. 15, 2011. |
International Search Report for PCT/EP2008/060185, completed Oct. 23, 2008. |
International Search Report for PCT/EP2011/057363, completed Sep. 5, 2011. |
Ames, J.M., “The Maillard Browning Reaction—an Update,” Chemistry & Industry, No. 17, 1988, 4 pages. |
“Gamma-aminopropyltrimethoxysilane,” Hawley's Condensed Chemical Dictionary, 14th Edition, John Wiley & Sons, Inc., 2002, 1 page. |
Hodge, J.E., Chemistry of Browning Reactions in Model Systems, 1953, J. Agric. Food Chem., vol. 1, No. 15, pp. 928-943. |
Agyei-Aye et al., “The Role of Anion in the Reaction of Reducing Sugars with Ammonium Salts,” Carbohydrate Research 2002, 337: 2273-2277. |
Laroque et al., “Kinetic study on the Maillard reaction. Consideration of sugar reactivity,” Food Chemistry 2008, 111: 1032-1042. |
Bjorksten et al., “Polyester Resin—Glass Fiber Laminates,” Industrial and Engineering Chemistry (1954). |
Dow Corning, “A Guide to Silane Solutions,” 2005. |
Knauf Data Sheet, 2006. |
Molasses Corporation, United States Sugar Corporation, http://www.suga-lik.com/molasses/composition.html (Sep. 29, 2003). |
Clamen, Guy, “Acrylic Thermosets: A Safe Alternative to Formaldehyde Resins,” Nonwovens World, Apr.-May 2004, pp. 96-102. |
Opposition to AU 2006272595, Amended Statement of Grounds and Particulars, issued from Australian Patent Office, Jul. 6, 2012, 22 pages. |
Decision re Opposition to AU 2006272595, issued from Australian Patent Office, Aug. 14, 2015, 25 pages. |
Opposition to EP 1732968, Notice of Opposition: Prior Art, Scope of the Patent, Reasons for the Opposition, issued from European Patent Office, Mar. 8, 2012, 18 pages. |
Decision re Opposition to EP 1732968, issued from the European Patent Office, Nov. 14, 2014, 5 pages. |
Opposition to EA 019802, submitted to Eurasian Patent Office on Dec. 26, 2014, 36 pages. |
Decision re Opposition to EA 019802, issued by Eurasian Patent Office on Aug. 18, 2015, 15 pages. |
Owens Corning Retiree Update: What Goes Around, Comes Around: A tale of Natural Binders, revised Mar. 20, 2013 p. 4. |
A.P. Bryant, “The Terminology of Sugars,” Industrial and Engineering Chemistry, vol. 26, No. 2, p. 231, Feb. 1934. |
Food Flavor Chemistry, p. 162, Mar. 21, 2009 (English Abstract). |
Viswanathan, T., “Chapter 28: Thermosetting Adhesive Resins from Whey and Whey Byproducts,” in Adhesives from Renewable Resources, ACS Symposium Series, Hemingway, R.W., et al. (Eds.), American Chemical Society, Washington, DC (1989). |
Viswanathan, T., and Richardson, T., “Thermosetting Adhesive Resins from Whey and Whey Byproducts,” Ind. Eng. Chem. Prod. Res. Dev. 23:644-47, American Chemical Society, United States (1984). |
Residential Energy Conservation: vol. 1, Congress of the U.S., Office of Technology Assessment (Ed.), 357 pages (Jan. 1, 1979). |
Office action for co-pending U.S. Appl. No. 12/524,502 (9 pages)—dated Sep. 21, 2012. |
Office action for co-pending U.S. Appl. No. 12/524,502 (9 pages)—dated Apr. 4, 2013. |
Office action for co-pending U.S. Appl. No. 12/524,512 (7 pages)—dated Aug. 6, 2012. |
Office action for co-pending U.S. Appl. No. 12/524,512 (9 pages)—dated Apr. 1, 2013. |
Office action for co-pending U.S. Appl. No. 12/524,512 (14 pages)—dated Nov. 12, 2014. |
Office action for co-pending U.S. Appl. No. 12/524,512 (9 pages)—dated Jul. 10, 2015. |
Office action for co-pending U.S. Appl. No. 12/524,512 (10 pages)—dated Mar. 23, 2016. |
Office action for co-pending U.S. Appl. No. 12/524,512 (13 pages)—dated Oct. 5, 2016. |
Office action for co-pending U.S. Appl. No. 12/524,512 (13 pages)—dated Apr. 6, 2018. |
Office action for co-pending U.S. Appl. No. 12/524,512 (15 pages)—dated Jan. 17, 2019. |
Office action for co-pending U.S. Appl. No. 12/524,469 (7 pages)—dated Jun. 7, 2012. |
Office action for co-pending U.S. Appl. No. 12/524,469 (8 pages)—dated Jan. 29, 2013. |
Office action for co-pending U.S. Appl. No. 12/524,469 (7 pages)—dated Aug. 20, 2013. |
Office action for co-pending U.S. Appl. No. 12/524,469 (9 pages)—dated Jun. 9, 2014. |
Office action for co-pending U.S. Appl. No. 12/524,469 (9 pages)—dated Oct. 17, 2014. |
Office action for co-pending U.S. Appl. No. 12/524,469 (9 pages)—dated Jul. 23, 2015. |
Office action for co-pending U.S. Appl. No. 12/524,539 (13 pages)—dated Jun. 21, 2012. |
Office action for co-pending U.S. Appl. No. 12/524,539 (13 pages)—dated Jun. 6, 2013. |
Office action for co-pending U.S. Appl. No. 12/524,539 (12 pages)—dated Dec. 17, 2014. |
Office action for co-pending U.S. Appl. No. 12/524,539 (7 pages)—dated Jul. 15, 2015. |
Office action for co-pending U.S. Appl. No. 12/524,539 (7 pages)—dated Mar. 23, 2016. |
Office action for co-pending U.S. Appl. No. 12/524,539 (7 pages)—dated Dec. 29, 2016. |
Office action for co-pending U.S. Appl. No. 12/524,522 (4 pages)—dated Oct. 11, 2011. |
Office action for co-pending U.S. Appl. No. 12/667,718 (5 pages)—dated Sep. 3, 2013. |
Office action for co-pending U.S. Appl. No. 12/667,718 (6 pages)—dated Sep. 9, 2014. |
Office action for co-pending U.S. Appl. No. 12/671,922 (10 pages)—dated Oct. 7, 2011. |
Office action for co-pending U.S. Appl. No. 12/671,922 (10 pages)—dated May 10, 2012. |
Office action for co-pending U.S. Appl. No. 12/671,922 (9 pages)—dated Sep. 23, 2014. |
Office action for co-pending U.S. Appl. No. 12/671,922 (5 pages)—dated Apr. 4, 2016. |
Office action for co-pending U.S. Appl. No. 13/388,408 (5 pages)—dated Aug. 15, 2013. |
Office action for co-pending U.S. Appl. No. 13/371,829 (9 pages)—dated Dec. 20, 2012. |
Office action for co-pending U.S. Appl. No. 13/371,829 (6 pages)—dated Jul. 12, 2013. |
Office action for co-pending U.S. Appl. No. 13/371,829 (6 pages)—dated Aug. 12, 2014. |
Office action for co-pending U.S. Appl. No. 13/637,794 (8 pages)—dated Aug. 12, 2013. |
Office action for co-pending U.S. Appl. No. 13/637,794 (9 pages)—dated Mar. 26, 2014. |
Office action for co-pending U.S. Appl. No. 13/696,439 (11 pages)—dated Jan. 8, 2014. |
Office action for co-pending U.S. Appl. No. 13/696,452 (7 pages)—dated Jan. 13, 2015. |
Office action for co-pending U.S. Appl. No. 13/696,452 (9 pages)—dated Oct. 27, 2015. |
Office action for co-pending U.S. Appl. No. 13/702,144 (6 pages)—dated Jan. 10, 2014. |
Office action for co-pending U.S. Appl. No. 13/702,144 (7 pages)—dated Jul. 29, 2014. |
Office action for co-pending U.S. Appl. No. 13/823,818 (9 pages)—dated Mar. 26, 2015. |
Office action for co-pending U.S. Appl. No. 13/866,368 (16 pages)—dated Aug. 29, 2013. |
Office action for co-pending U.S. Appl. No. 13/866,368 (11 pages)—dated Apr. 16, 2014. |
Office action for co-pending U.S. Appl. No. 13/866,368 (8 pages)—dated Aug. 21, 2014. |
Office action for co-pending U.S. Appl. No. 13/866,419 (14 pages)—dated Sep. 20, 2013. |
Office action for co-pending U.S. Appl. No. 13/866,419 (10 pages)—dated Apr. 25, 2014. |
Office action for co-pending U.S. Appl. No. 13/866,419 (8 pages)—dated Oct. 9, 2014. |
Office action for co-pending U.S. Appl. No. 13/866,419 (8 pages)—dated Sep. 25, 2015. |
Office action for co-pending U.S. Appl. No. 13/868,233 (23 pages)—dated Aug. 13, 2013. |
Office action for co-pending U.S. Appl. No. 13/868,233 (12 pages)—dated Apr. 15, 2014. |
Office action for co-pending U.S. Appl. No. 13/868,233 (8 pages)—dated Oct. 7, 2014. |
Office action for co-pending U.S. Appl. No. 13/868,233 (8 pages)—dated Jul. 16, 2015. |
Office action for co-pending U.S. Appl. No. 13/868,238 (8 pages)—dated Jul. 16, 2014. |
Office action for co-pending U.S. Appl. No. 12/976,379 (7 pages)—dated Jan. 10, 2012. |
Office action for co-pending U.S. Appl. No. 12/976,379 (6 pages)—dated Jul. 27, 2012. |
Office action for co-pending U.S. Appl. No. 12/976,379 (9 pages)—dated Mar. 7, 2013. |
Office action for co-pending U.S. Appl. No. 12/976,379 (8 pages)—dated Aug. 20, 2013. |
Office action for co-pending U.S. Appl. No. 12/599,858 (8 pages)—dated May 11, 2011. |
Office action for co-pending U.S. Appl. No. 13/341,542 (8 pages)—dated Dec. 26, 2012. |
Office action for co-pending U.S. Appl. No. 13/341,542 (7 pages)—dated Feb. 10, 2014. |
Office action for co-pending U.S. Appl. No. 14/026,394 (6 pages)—dated Aug. 14, 2014. |
Office action for co-pending U.S. Appl. No. 14/272,556 (14 pages)—dated Nov. 20, 2014. |
Office action for co-pending U.S. Appl. No. 14/272,556 (12 pages)—dated Sep. 17, 2015. |
Office action for co-pending U.S. Appl. No. 14/342,069 (17 pages)—dated Dec. 29, 2015. |
Office action for co-pending U.S. Appl. No. 14/342,069 (22 pages)—dated Sep. 2, 2016. |
Office action for co-pending U.S. Appl. No. 14/342,069 (21 pages)—dated Sep. 26, 2017. |
Office action for co-pending U.S. Appl. No. 14/342,069 (21 pages)—dated Jun. 6, 2018. |
Office action for co-pending U.S. Appl. No. 14/390,445 (14 pages)—dated Dec. 3, 2015. |
Office action for co-pending U.S. Appl. No. 14/649,277 (9 pages)—dated Jul. 22, 2016. |
Office action for co-pending U.S. Appl. No. 14/686,915 (8 pages)—dated Nov. 18, 2016. |
Office action for co-pending U.S. Appl. No. 14/810,765 (7 pages)—dated Jan. 29, 2016. |
Office action for co-pending U.S. Appl. No. 14/828,916 (8 pages)—dated Nov. 25, 2016. |
Office action for co-pending U.S. Appl. No. 14/867,502 (9 pages)—dated Nov. 18, 2016. |
Office action for co-pending U.S. Appl. No. 15/172,432 (16 pages)—dated Apr. 17, 2017. |
Office action for co-pending U.S. Appl. No. 15/702,087 (5 pages)—dated Nov. 9, 2018. |
Office action for co-pending U.S. Appl. No. 15/177,442 (17 pages)—dated May 19, 2017. |
Office action for co-pending U.S. Appl. No. 15/378,159 (18 pages)—dated Mar. 2, 2017. |
Office action for co-pending U.S. Appl. No. 15/222,122 (8 pages)—dated Nov. 20, 2017. |
Office action for co-pending U.S. Appl. No. 15/310,837 (13 pages)—dated Jun. 21, 2018. |
Office action for co-pending U.S. Appl. No. 15/411,972 (9 pages)—dated Mar. 28, 2017. |
Office action for co-pending U.S. Appl. No. 15/411,972 (8 pages)—dated Nov. 29, 2017. |
Office action for co-pending U.S. Appl. No. 15/411,972 (9 pages)—dated Jun. 14, 2018. |
Office action for co-pending U.S. Appl. No. 15/116,254 (8 pages)—dated Apr. 26, 2018. |
Office action for co-pending U.S. Appl. No. 15/116,254 (10 pages)—dated Aug. 15, 2018. |
Office action for co-pending U.S. Appl. No. 15/116,254 (12 pages)—dated Nov. 3, 2021. |
Office action for co-pending U.S. Appl. No. 15/333,670 (5 pages)—dated Dec. 8, 2017. |
Office Action for co-pending U.S. Appl. No. 14/116,048 (10 pages)—dated Jun. 23, 2017. |
Office action for co-pending U.S. Appl. No. 15/959,131 (8 pages)—dated Nov. 8, 2019. |
Office action for co-pending U.S. Appl. No. 15/822,102 (6 pages)—dated Dec. 6, 2019. |
Office action for co-pending U.S. Appl. No. 15/690,623 (7 pages)—dated May 24, 2019. |
Office action for co-pending U.S. Appl. No. 15/690,623 (6 pages)—dated Jan. 9, 2020. |
Office action for co-pending U.S. Appl. No. 16/357,320 (7 pages)—dated Jun. 10, 2021. |
Office action for co-pending U.S. Appl. No. 16/357,320 (9 pages)—dated Dec. 29, 2021. |
Office action for co-pending U.S. Appl. No. 16/357,320 (9 pages)—dated Apr. 14, 2022. |
Other Information—Narrative of verbal disclosure of Brian Swift (1 page)—May 13, 2014. |
Petition for Inter Partes Review of U.S. Pat. No. 8,114,210 (52 pages, filed Jun. 12, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Declaration of Dr. Frederick J. Hirsekorn Regarding U.S. Pat. No. 8,114,210 (58 pages, filed Jun. 12, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with Petition for Inter Partes Review of U.S. Pat. No. 8,114,210). |
1st Petition for Inter Partes Review of U.S. Pat. No. D. 631,670 (68 pages, filed Jun. 19, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
2nd Petition for Inter Partes Review of U.S. Pat. No. D. 631,670 (62 pages, filed Nov. 2, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Decision of PTAB regarding Institution of Inter Partes Review for U.S. Pat. No. D. 631,670 (33 pages)—Jan. 12, 2016. |
Decision2 of PTAB regarding Institution of Inter Partes Review for U.S. Pat. No. D. 631,670 (27 pages)—May 9, 2016. |
Final Written Decision of PTAB regarding Inter Partes Review of U.S. Pat. No. D. 631,670 based on 1st Petition (56 pages)—dated Jan. 11, 2017. |
Final Written Decision of PTAB regarding Inter Partes Review of U.S. Pat. No. D. 631,670 based on 2nd Petition (55 pages)—dated May 8, 2017. |
Court of Appeals for Federal Circuit Judgment from Appeal of PTAB Decisions in Inter Partes Reviews of U.S. Pat. No. D. 631,670 (2 pages)—Jul. 13, 2018. |
1st Petition for Inter Partes Review of U.S. Pat. No. 8,940,089 (61 pages, filed Jul. 1, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Declaration of Dr. Frederick J. Hirsekorn Regarding U.S. Pat. No. 8,940,089 (70 pages, filed Jul. 1, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 1st Petition for Inter Partes Review of U.S. Pat. No. 8,940,089). |
2nd Petition for Inter Partes Review of U.S. Pat. No. 8,940,089 (56 pages, filed Jul. 10, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Declaration of Dr. Frederick J. Hirsekorn Regarding U.S. Pat. No. 8,940,089 (67 pages, filed Jul. 10, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 2nd Petition for Inter Partes Review of U.S. Pat. No. 8,940,089). |
3rd Petition for Inter Partes Review of U.S. Pat. No. 8,940,089 (62 pages, filed Jul. 17, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Declaration of Dr. Frederick J. Hirsekorn Regarding U.S. Pat. No. 8,940,089 (76 pages, filed Jul. 17, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 3rd Petition for Inter Partes Review of U.S. Pat. No. 8,940,089). |
Declaration of Dr. Elam Leed (11 pages, filed July 1, Jul. 10, and Jul. 17, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 1st, 2nd and 3rd Petition for Inter Partes Review of U.S. Pat. No. 8,940,089, respectively). |
Declaration of Dr. Jonathan Vickers (10 pages, filed July 1, Jul. 10, and Jul. 17, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 1st, 2nd and 3rd Petition for Inter Partes Review of U.S. Pat. No. 8,940,089, respectively). |
1st Petition for Inter Partes Review of U.S. Pat. No. 9,039,827 (60 pages, filed Jul. 29, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Declaration of Dr. Frederick J. Hirsekorn Regarding U.S. Pat. No. 9,039,827 (72 pages, filed Jul. 29, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 1st Petition for Inter Partes Review of U.S. Pat. No. 9,039,827). |
2nd Petition for Inter Partes Review of U.S. Pat. No. 9,039,827 (51 pages, filed Aug. 5, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Declaration of Dr. Frederick J. Hirsekorn Regarding U.S. Pat. No. 9,039,827 (65 pages, filed Aug. 5, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 2nd Petition for Inter Partes Review of U.S. Pat. No. 9,039,827). |
3rd Petition for Inter Partes Review of U.S. Pat. No. 9,039,827 (57 pages, filed Aug. 7, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Declaration of Dr. Frederick J. Hirsekorn Regarding U.S. Pat. No. 9,039,827 (75 pages, filed Aug. 7, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 3rd Petition for Inter Partes Review of U.S. Pat. No. 9,039,827). |
Declaration of Dr. Elam Leed (11 pages, filed Jul. 29, August 5, and Aug. 7, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 1st, 2nd and 3rd Petition for Inter Partes Review of U.S. Pat. No. 9,039,827, respectively). |
Declaration of Dr. Jonathan Vickers (10 pages, filed Jul. 29, Aug. 5, and Aug. 7, 2015 by Petitioners Johns Manville Corporation and Johns Manville, Inc. in connection with 1st, 2nd and 3rd Petition for Inter Partes Review of U.S. Pat. No. 9,039,827, respectively). |
Petition for Inter Partes Review of U.S. Pat. No. 9,469,747 (67 pages, filed Mar. 20, 2018 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Petition for Inter Partes Review of U.S. Pat. No. 9,828,287 (86 pages, filed Mar. 23, 2018 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Petition for Inter Partes Review of U.S. Pat. No. 9,464,207 (78 pages, filed Mar. 28, 2018 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Petition for Inter Partes Review of U.S. Pat. No. 9,926,464 (74 pages, filed Mar. 30, 2018 by Petitioners Johns Manville Corporation and Johns Manville, Inc.). |
Office Action Granting Ex Parte Reexamination of U.S. Pat. No. 7,888,445, dated Dec. 24, 2013, in Control No. 90/013,029, 11 pages. |
Office Action Granting Ex Parte Reexamination of U.S. Pat. No. 7,772,347, dated Dec. 24, 2013, in Control No. 90/013,030, 14 pages. |
Office Action Granting Ex Parte Reexamination of U.S. Pat. No. 7,854,980, dated Apr. 15, 2014, in Control No. 90/013,156, 20 pages. |
Declaration of Jan Rud Andersen submitted in Ex parte Reexamination Control No. 90/013,030, as Document OTH-C, Oct. 10, 2013, 4 pages. |
Final Rejection in Ex Parte Reexamination of U.S. Pat. No. 7,888,445 (20 pages)—dated Jul. 24, 2015. |
Final Rejection in Ex Parte Reexamination of U.S. Pat. No. 7,772,347 (23 pages)—dated Jul. 24, 2015. |
Final Rejection in Ex Parte Reexamination of U.S. Pat. No. 7,854,980 (31 pages)—dated Aug. 18, 2015. |
Advisory Action in Ex Parte Reexamination of U.S. Pat. No. 7,888,445 (4 pages)—dated Oct. 6, 2015. |
Advisory Action in Ex Parte Reexamination of U.S. Pat. No. 7,772,347 (4 pages)—dated Oct. 6, 2015. |
Advisory Action in Ex Parte Reexamination of U.S. Pat. No. 7,854,980 (4 pages)—dated Nov. 18, 2015. |
Examiner's Answer in Ex Parte Reexamination of U.S. Pat. No. 7,888,445 (8 pages)—dated Mar. 23, 2016. |
Examiner's Answer in Ex Parte Reexamination of U.S. Pat. No. 7,772,347 (8 pages)—dated Mar. 23, 2016. |
Examiner's Answer in Ex Parte Reexamination of U.S. Pat. No. 7,854,980 (8 pages)—dated Mar. 22, 2016. |
Decision of PTAB in Ex Parte Reexamination of U.S. Pat. No. 7,888,445 (17 pages)—Sep. 29, 2016. |
Decision of PTAB in Ex Parte Reexamination of U.S. Pat. No. 7,772,347 (18 pages)—Sep. 29, 2016. |
Decision of PTAB in Ex Parte Reexamination of U.S. Pat. No. 7,854,980 (22 pages)—Sep. 30, 2016. |
Court of Appeals for Federal Circuit Judgment from Consolidated Appeal of PTAB Decisions in Ex Parte Reexamination of U.S. Pat. No. 7,888,445, U.S. Pat. No. 7,772,347 and U.S. Pat. No. 7,854,980 (5 pages)—Mar. 9, 2018. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 7,772,347 (4 pages)—Oct. 24, 2018. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 7,888,445 (4 pages)—Dec. 7, 2018. |
Notice of Intent to Issue Inter Partes Reexamination Certificate for U.S. Pat. No. 7,888,445 (14 pages)—Sep. 24, 2020. |
Notice of Intent to Issue Inter Partes Reexamination Certificate for U.S. Pat. No. 7,772,347 (13 pages)—Sep. 25, 2020. |
Decision of USPTO to Reopen Prosecution in Ex Parte Reexamination of U.S. Pat. No. 7,854,980 (7 pages)—Jan. 7, 2019. |
Non-final Office Action from Reopened Prosecution in Ex Parte Reexamination of U.S. Pat. No. 7,854,980 (26 pages)—dated Apr. 3, 2019. |
Final Office Action from Reopened Prosecution in Ex Parte Reexamination of U.S. Pat. No. 7,854,980 (11 pages)—dated Aug. 8, 2019. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 7,854,980 (3 pages)—Oct. 29, 2019. |
Notice of Intent to Issue Inter Partes Reexamination Certificate for U.S. Pat. No. 7,807,771 (4 pages)—Jan. 30, 2014. |
Notice of Intent to Issue Inter Partes Reexamination Certificate for U.S. Pat. No. 7,854,980 (6 pages)—Aug. 31, 2017. |
Decision of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,888,445 (34 pages)—May 1, 2015. |
Decision of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,772,347 (36 pages)—May 1, 2015. |
Decision of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,854,980 (25 pages)—Jul. 30, 2015. |
Remand Order of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,888,445 (5 pages)—Dec. 9, 2015. |
Remand Order of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,772,347 (5 pages)—Dec. 9, 2015. |
Examiner's Determination on Patent Owner Response/Requester Comments after Board Decision in Inter Partes Reexamination of U.S. Pat. No. 7,888,445 (22 pages)—Oct. 17, 2016. |
Examiner's Determination on Patent Owner Response/Requester Comments after Board Decision in Inter Partes Reexamination of U.S. Pat. No. 7,772,347 (17 pages)—Oct. 17, 2016. |
Court of Appeals for Federal Circuit Opinion/Judgment from Appeal of PTAB Decision in Inter Partes Reexamination of U.S. Pat. No. 7,854,980 (13 pages)—Feb. 27, 2017. |
Final Decision of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,888,445 (25 pages)—Sep. 8, 2017. |
Final Decision of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,772,347 (24 pages)—Sep. 8, 2017. |
Decision of PTAB re Request for Rehearing in Inter Partes Reexamination of U.S. Pat. No. 7,888,445 (7 pages)—Feb. 12, 2018. |
Decision of PTAB re Request for Rehearing in Inter Partes Reexamination of U.S. Pat. No. 7,772,347 (7 pages)—Feb. 12, 2018. |
Court of Appeals for Federal Circuit Decision re Consolidated Appeal of PTAB Decision in Inter Partes Reexamination of U.S. Pat. No. 7,772,347 and U.S. Pat. No. 7,888,445 (14 pages)—Oct. 15, 2019. |
Remand Order of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,888,445 (3 pages)—Jul. 1, 2020. |
Remand Order of PTAB in Inter Partes Reexamination of U.S. Pat. No. 7,772,347 (3 pages)—Jul. 1, 2020. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 8,114,210 (11 pages)—Apr. 9, 2020. |
Decision1 of PTAB declining Institution of Inter Partes Review for U.S. Pat. No. 8,940,089 (16 pages)—Dec. 17, 2015. |
Decision2 of PTAB declining Institution of Inter Partes Review for U.S. Pat. No. 8,940,089 (19 pages)—Dec. 17, 2015. |
Decision3 of PTAB declining Institution of Inter Partes Review for U.S. Pat. No. 8,940,089 (14 pages)—Dec. 17, 2015. |
Decision1 of PTAB declining Institution of Inter Partes Review for U.S. Pat. No. 9,039,827 (16 pages)—Jan. 4, 2016. |
Decision2 of PTAB declining Institution of Inter Partes Review for U.S. Pat. No. 9,039,827 (19 pages)—Jan. 4, 2016. |
Decision3 of PTAB declining Institution of Inter Partes Review for U.S. Pat. No. 9,039,827 (14 pages)—Jan. 4, 2016. |
Decision of PTAB denying Institution of Inter Partes Review for U.S. Pat. No. 9,926,464 (29 pages)—Oct. 2, 2018. |
Decision of PTAB denying Institution of Inter Partes Review for U.S. Pat. No. 9,464,207 (28 pages)—Oct. 2, 2018. |
Decision of PTAB denying Institution of Inter Partes Review for U.S. Pat. No. 9,469,747 (29 pages)—Oct. 3, 2018. |
Decision of PTAB denying Institution of Inter Partes Review for U.S. Pat. No. 9,828,287 (22 pages)—Oct. 16, 2018. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,828,287 (13 pages)—Jul. 17, 2020. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,464,207 (14 pages)—Jul. 31, 2020. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,926,464 (18 pages)—Aug. 5, 2020. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 8,940,089 (17 pages)—Oct. 16, 2020. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,039,827 (16 pages)—Oct. 16, 2020. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,469,747 (16 pages)—Nov. 9, 2020. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,464,207 (19 pages)—Aug. 27, 2021. |
Office Action in Ex Parte Reexamination of U.S. Pat. No. 9,464,207 (14 pages)—dated Sep. 9, 2022. |
Notice of Intent to Issue Ex Parte Re-examination Certificate re U.S. Pat. No. 9,464,207 (9 pages)—Jun. 8, 2023. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,926,464 (16 pages)—Sep. 7, 2021. |
Office Action in Ex Parte Reexamination of U.S. Pat. No. 9,926,464 (15 pages)—dated Mar. 21, 2023. |
Notice of Intent to Issue Ex Parte Re-examination Certificate re U.S. Pat. No. 9,926,464 (6 pages)—Jul. 25, 2023. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,469,747 (10 pages)—Sep. 16, 2021. |
Office Action in Ex Parte Reexamination of U.S. Pat. No. 9,469,747 (9 pages)—dated Feb. 28, 2023. |
Notice of Intent to Issue Ex Parte Re-examination Certificate re U.S. Pat. No. 9,469,747 (6 pages)—Jul. 25, 2023. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 8,114,210 (13 pages)—Dec. 1, 2021. |
Office Action in Ex Parte Reexamination of U.S. Pat. No. 8,114,210 (11 pages)—dated Mar. 27, 2023. |
Notice of Intent to Issue Ex Parte Re-examination Certificate re U.S. Pat. No. 8, 114,210 (6 pages)—Aug. 8, 2023. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 8,940,089 (13 pages)—Jan. 28, 2022. |
Office Action in Ex Parte Reexamination of U.S. Pat. No. 8,940,089 (11 pages)—dated Jul. 17, 2023. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,828,287 (11 pages)—Feb. 1, 2022. |
Office Action in Ex Parte Reexamination of U.S. Pat. No. 9,828,287 (9 pages)—dated Feb. 28, 2023. |
Notice of Intent to Issue Ex Parte Re-examination Certificate re U.S. Pat. No. 9,828,287 (6 pages)—Jul. 25, 2023. |
Decision of USPTO Granting Ex Parte Re-exam of U.S. Pat. No. 9,039,827 (13 pages)—Feb. 1, 2022. |
Office Action in Ex Parte Reexamination of U.S. Pat. No. 9,039,827 (11 pages)—dated Aug. 16, 2023. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 8,114,210 (4 pages)—May 27, 2021. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 9,464,207 (4 pages)—Apr. 19, 2021. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 9,828,287 (5 pages)—May 5, 2021. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 9,926,464 (5 pages)—May 5, 2021. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 9,469,747 (8 pages)—May 21, 2021. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 9,039,827 (3 pages)—Jul. 2, 2021. |
Notice of Intent to Issue Ex Parte Reexamination Certificate for U.S. Pat. No. 8,940,089 (4 pages)—Jul. 13, 2021. |
Petition for Post Grant Review of U.S. Pat. No. 10,968,629 (50 pages, filed Jan. 6, 2022 by Petitioner Rockwool International A/S). |
Denial of Petition for Post Grant Review of U.S. Pat. No. 10,968,629 entered by Patent Trial and Appeal Board (19 pages)—Jul. 6, 2022. |
Statement of Revocation Grounds re GB2496951—Claimant Rockwool International (May 21, 2018, 22 pages). |
Statement of Revocation Grounds re GB2451719—Claimant Rockwool International (May 18, 2018, 22 pages). |
Expert Report re Revocation of GB2451719 and GB2496951—Claimant Rockwool International (Nov. 12, 2018, 11 pages). |
United Kingdom Intellectual Property Office, Decision in Rockwool International v. Knauf Insulation Limited, Application under Section 72 for revocation of patents GB2451719 and GB2496951 (May 28, 2019—18 pages). |
Decision of EPO Board of Appeal re Added Matter vis-à-vis EP06788492.4 (Jul. 17, 2019—14 pages). |
Gogek Attorney Comments re U.S. Pat. No. 2,965,504—Apr. 6, 1960 (3 pages). |
Gogek Affidavit Under Rule 132 re U.S. Pat. No. 2,965,504—Feb. 26, 1960 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20210130560 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62662494 | Apr 2018 | US |