BINDER FOR MINERAL AND/OR ORGANIC FIBER MAT, AND PRODUCTS OBTAINED

Information

  • Patent Application
  • 20140127491
  • Publication Number
    20140127491
  • Date Filed
    June 13, 2012
    12 years ago
  • Date Published
    May 08, 2014
    10 years ago
Abstract
The present invention concerns an aqueous binder for a fiber mat, in particular mineral fibers, which comprises, in parts by weight: 20 to 95 parts of at least one lignosulfonic acid salt;5 to 80 parts of at least one oligosaccharide; and5 to 20 parts of a curing catalyst selected from compounds containing phosphorus and sulfates per 100 parts of lignosulfonic acid salt and of oligosaccharide.
Description

The present invention relates to the field of mats comprising mineral and/or organic fibers bonded by a formaldehyde-free organic binder, in particular glass or rock fibers.


More particularly, the invention relates to an aqueous binder that can be heat-cured that comprises at least one lignosulfonic acid salt, at least one oligosaccharide and at least one catalyst for curing said compounds, as well as to mats of such fibers that result therefrom.


Mineral fiber mats (also known as “non-wovens” or “veils”) can be manufactured using known processes operating by means of dry or wet procedures. In the dry procedure, molten mineral matter contained in a furnace is routed to an assembly of dies from which filaments flow under gravity and are stretched by a gaseous fluid. The mineral filaments are harvested on a conveyer where they become entangled, forming a mat.


A binder is applied to the upper face of the mat thus formed using suitable equipment, usually by curtain coating, and the excess binder is eliminated by suction from the opposite face. The mat then enters equipment containing hot air wherein the temperature, of the order of 200° C. to 250° C., can eliminate water and cure the binder over a very short time period, of the order of about ten seconds to 1 minute; the mineral fiber mat is then collected in the form of a roll.


In the wet procedure, the mat is obtained from an aqueous dispersion of cut mineral fibers that is deposited by means of a forming head onto a conveyor provided with perforations; water is extracted through the conveyor by means of a suction box. The cut mineral fibers remaining on the conveyor form a mat that is treated under conditions that are the same as those described for the dry procedure.


In the procedures mentioned above, the binder acts to bind the mineral fibers together and to provide the mat containing them with mechanical properties that are suitable for the desired usage, in particular sufficient rigidity to be able to be handled easily, in particular without running the risk of being torn.


The binder to be applied to the mineral fibers is generally in the form of an aqueous solution comprising at least one thermoset resin and additives such as a curing catalyst for the resin, an adhesion-promoting silane, a water repellent, etc.


The most widely used thermoset resins are resins based on formaldehyde, in particular phenolic resins belonging to the resol family, urea-formaldehyde resins and melamine-formaldehyde resins. Such resins have good curing properties under the thermal conditions mentioned above, are soluble in water, have good affinity for the mineral fibers and are also relatively cheap.


However, such resins tend to contain free formaldehyde, the presence of which is not wanted due to undesirable effects from a human health and environmental standpoint. Environmental protection regulations have been becoming stricter for a number of years; this has obliged resin and fiber mat manufacturers to investigate solutions that can be used to reduce the quantity of free formaldehyde still further.


Solutions that replace formaldehyde-based resins for binding mineral fibers are known and are based on the use of a carboxylic acid polymer, in particular an acrylic acid polymer, in combination with a β-hydroxylamide and a monomeric, at least trifunctional, carboxylic acid (U.S. Pat. No. 5,340,868).


Adhesive compositions have been proposed that comprise a polycarboxylic polymer, a polyol and a catalyst, wherein the catalyst is a phosphorus-containing catalyst (U.S. Pat. No. 5,318,990, U.S. Pat. No. 5,661,213, U.S. Pat. No. 6,331,350, US 2003/0008978), a fluoroborate (U.S. Pat. No. 5,977,232) or a cyanamide, a dicyanamide or a cyanoguanidine (U.S. Pat. No. 5,932,689).


Adhesive compositions have also been described that comprise an alkanolamine comprising at least two hydroxyl groups and a polycarboxylic polymer (U.S. Pat. No. 6,071,994, U.S. Pat. No. 6,099,773, U.S. Pat. No. 6,146,746, US 2002/0091185) associated with a copolymer (U.S. Pat. No. 6,299,936), a cationic, amphoteric or non-ionic surfactant (US 2002/0188055) or a silane (US 2004/0002567).


In US 2005/0215153, the adhesive composition is formed from a pre-binder containing a carboxylic acid polymer and a polyol, with a dextrin as a co-binder.


Further, adhesive compositions based on heat-curable saccharides are known.


In U.S. Pat. No. 5,895,804, the adhesive composition comprises a polycarboxylic polymer containing at least two carboxylic acid functional groups and having a molecular weight of at least 1000, and a polysaccharide with a molecular weight of at least 10 000.


WO 2009/080938 describes a sizing composition for mineral wool or a veil of mineral fibers comprising at least one monosaccharide and/or at least one polysaccharide and at least one polycarboxylic organic acid with a molar mass of 1000 or less.


More particularly, the present invention is concerned with mineral fiber mats in the form of veils that are intended for the manufacture of bituminous roofing membranes.


Thus, the aim of the invention is to provide a binder for mineral and/or organic fibers, in particular glass or rock fibers, which is free of formaldehyde and has good resistance to aging in a moist medium and to the application of molten bitumen, while having satisfactory mechanical properties, in particular good tensile strength.


To this end, the present invention proposes an aqueous binder for fibers, in particular mineral fibers, which comprises, in parts by weight:

    • 20 to 95 parts of at least one lignosulfonic acid salt;
    • 5 to 80 parts of at least one oligosaccharide; and
    • 5 to 20 parts of a curing catalyst selected from compounds containing phosphorus and sulfates per 100 parts of lignosulfonic acid salt and of oligosaccharide;


      said composition being devoid of organic polycarboxylic acid.


The lignosulfonic acid salt is generally a complex mixture of a plurality of lignosulfonic acids in the salt form, generally known as “lignosulfonate”. Lignosulfonates are by-products from the treatment of wood for the manufacture of paper pulp using the so-called “sulfite” process. Depending on the nature of the counter-ion employed, that process, which uses a sulfite or a bisulfite, can be used to produce sodium, calcium, potassium, magnesium or ammonium lignosulfonates. Ammonium lignosulfonate is the preferred lignosulfonic acid salt in the invention.


Lignosulfonates can provide the binder with good fire resistance.


The term “oligosaccharide” as used in the present invention means a sugar comprising 1 to 10 saccharide motifs.


Examples that may be cited are monosaccharides, preferably containing 5 to 7 carbon atoms, in particular glucose, mannose, galactose and fructose;


disaccharides such as saccharose, maltose, cellobiose, trehalose, lactose, gentobiose or melibiose; trisaccharides such as raffinose or gentianose; tetrasaccharides such as stachyose; and fructose polymers, especially fructans and in particular inulins, these fructose polymers being constituted by at most 10 saccharide motifs, as indicated above.


The oligosaccharide may be a mixture comprising a high proportion (at least 40% by weight) of one or more of the oligosaccharides cited above, in particular molasses or a dextrin.


In the binder, the lignosulfonic acid salt preferably represents 30% to 90% of the weight of the mixture constituted by the lignosulfonic acid salt and the oligosaccharide, advantageously 40% to 80% and more preferably 50% to 70%.


The curing catalyst acts to accelerate the formation of ester bonds between the lignosulfonic acid salt and the oligosaccharide under the effect of heat that leads to the production of a polymeric matrix in the final binder. Said polymeric matrix can be used to establish bonds at the junction points of the fibers in the mineral wool. The catalyst can also be used to adjust the binder curing onset temperature.


As already mentioned, the curing catalyst is selected from compounds containing phosphorus and sulfates.


Examples that may be cited are alkali metal hypophosphite salts, alkali metal phosphites, alkali metal polyphosphates, alkali metal hydrogen phosphates, phosphoric acids and alkylphosphonic acids, in which the alkali metal is preferably sodium or potassium; ammonium phosphates, in particular diammonium phosphate; and ammonium sulfate. Sodium hypophosphite, diammonium phosphate and ammonium sulfate are particularly preferred.


Preferably, the quantity of curing catalyst in the binder represents at most 20% of the weight of the lignosulfonic acid salt and of the oligosaccharide, advantageously at most 15% and still more preferably at most 10%.


The binder may also comprise up to 15 parts by weight of a vinyl acetate polymer per 100 parts by weight of mixture constituted by the lignosulfonic acid salt and the oligosaccharide, preferably up to 10 parts.


The vinyl acetate polymer may be a homopolymer or a copolymer, for example at least one hydrophobic monomer such as ethylene, propylene, butylene, styrene or vinyl chloride, in particular an ethylene-vinyl acetate copolymer (EVA).


The binder may also comprise up to 50 parts by weight of a polysaccharide with a molar mass of 100 000 g/mol or more, for example a starch, per 100 parts by weight of lignosulfonic acid salt and of oligosaccharide.


The binder of the invention may also comprise the conventional additives given below in the following proportions, calculated on a base of 100 parts by weight of lignosulfonic acid salt and of oligosaccharide:

    • 0 to 1 part by weight of silane, in particular an aminosilane, preferably 0.1 to 0.5 parts;
    • 0 to 5 parts by weight of a silicone, a vegetable oil or a fluorinated compound, preferably 0.1 to 1 part; and
    • 0 to 5 parts by weight of a plasticizer, in particular glycerol.


The role of additives is known and will be briefly summarized here: the silane is a coupling agent between the fibers and the binder and also acts as an anti-aging agent; the silicone, vegetable oil or fluorinated compound are water repellents that function to reduce absorption of water by the mineral fiber mat.


The binder is in the form of a solution, an emulsion or an aqueous dispersion.


The binder is intended to be applied to fiber mats of any nature, whether mineral and/or organic, preferably mineral. The present invention also provides mats of fibers bonded by the binder of the invention.


The mineral fibers may be constituted by glass or a rock, in particular basalt, preferably glass.


Conventionally, the binder is deposited on the mineral fiber mat (formed by the dry or wet procedure), then the mat is treated at a temperature that allows curing of the binder, which then becomes infusible. Curing of the binder of the invention is carried out at a temperature comparable to that of a conventional resin containing formaldehyde, which is generally in the range 200° C. to 220° C., and for a very short duration, of the order of a few seconds to 1 minute.


The mineral fibers can be filaments as well as threads composed of a multitude of filaments bound together, in particular using a size, and assemblies of such threads.


Thus, in a first embodiment, the mineral fiber mat is composed of discontinuous mineral filaments with a length that can be up to 150 mm, preferably in the range 20 to 100 mm and advantageously in the range 50 to 70 mm, and with a diameter that may vary widely, for example from 5 to 30 μm.


In a second embodiment, the mineral fiber mat is composed of mineral threads.


The mineral threads may be threads composed of a multitude of mineral filaments (or base threads) or of said base threads assembled into rovings.


The threads cited above may be untwisted threads or twisted (textile) threads, preferably untwisted.


The mineral threads, in particular glass, are generally cut to a length that may be up to 100 mm, preferably in the range 6 to 30 mm, advantageously 8 to 20 mm and more preferably 10 to 18 mm.


The diameter of the glass filaments constituting the threads may vary widely, for example from 5 to 30 μm. In the same manner, there may be large variations in the linear density of the thread, which may be from 34 to 1500 tex.


The glass constituting the filaments may be of any type, for example C, E, R or AR (alkali-resistant). C glass is preferred.


The organic fibers may be synthetic fibers or natural fibers.


Examples of synthetic fibers that may be cited are fibers based on an olefin such as polyethylene or polypropylene, an alkylene polyterephthalate such as ethylene polyterephthalate, or a polyester.


Examples of natural fibers that may be cited are vegetable fibers, in particular cotton, coconut, sisal, hemp or linen, and animal fibers, in particular silk or wool.


If necessary, the mat may be reinforced with continuous fibers that are generally deposited on the mat conveying device, in the direction of advance of the mat, and distributed over all or a portion of the width of the mat. Such fibers are generally deposited in the thickness of the mat of fibers, especially mineral, before application of the binder.


The reinforcing fibers may be mineral and/or organic fibers of the same chemical nature as the fibers cited above constituting the fiber mat of the invention.


Glass reinforcing fibers are preferred.


The mat of fibers, in particular mineral, generally has a mass per unit area in the range 10 to 1100 g/m2, preferably 30 to 350 g/m2, advantageously 35 to 60 g/m2.


The binder generally represents 5% to 40% of the weight of the mat of fibers, in particular mineral, preferably 10% to 30%.


As a general rule, the fibers constituting the mat of the invention are constituted by more than 50% by weight mineral fibers, preferably more than 75% and advantageously 100%. Particularly preferably, the fibers are formed from glass.


Although it is more particularly intended for the production of roofing membranes, the mineral fiber mat of the present invention may also be used in other applications, for example as a coating, for painting or otherwise, for application to walls and/or ceilings, as a surface coating or for joining plaster or cement panels, as a surface coating for thermal insulation and/or sound insulation products such as a mineral wool or a foam intended more particularly for the insulation of roofs, or to produce a floor covering, in particular an acoustic sub-layer.


Using a mat in accordance with the present invention as a surface coating for insulation products based on mineral wool has proved to be particularly advantageous.


The following examples serve to illustrate the invention without in any way limiting its scope.


In these examples, the breaking stress of a 5 cm×25 cm sample fixed by one end to a draw rig was measured at a continuous elongation of 40 mm/minute. The breaking stress was expressed in N/5 cm.


The breaking stress was measured after (initial) manufacture and after the sample had been treated under the following conditions: (a) accelerated aging in a vessel heated to 50° C. at 98% relative humidity for 3 days; (b) treatment in water at 80° C. for 10 minutes; (c) treatment at 200° C. for 15 seconds. The results are expressed as the percentage retention, which is equal to: (breaking stress after treatment/initial breaking stress)×100.







EXAMPLES 1 TO 15

These examples were designed to compare the binders.


Binders comprising the constituents shown in Table 1 were prepared in quantities expressed in parts by weight of solid matter.


The binders were prepared by introducing the various constituents into a receptacle containing water at ambient temperature, with moderate agitation.


The quantity of solid matter (dry extract) of the binders was equal to 30%.


A glass fiber microfilter (Whatman GF/A, 50 g/m2, supplied by Whatman) was immersed in the binder for 30 seconds, then the excess was eliminated by suction. The microfilter was then treated in an oven at 200° C. for 135 seconds. When finished, the microfilter contained 45% of binder.


The properties of each microfilter are given in Table 1.


Examples 8, 10, 5 and 1 performed the best: a high initial tensile strength and after accelerated ageing, leading to a high retention percentage.


EXAMPLES 16 to 19

a) Preparation of Binders


Binders comprising the constituents appearing in Table 2 were prepared in quantities expressed in parts by weight of solid matter under the conditions of Examples 1 to 15.


The quantity of solid matter (dry extract) of the binders was equal to 20%.


b) Manufacture of Mats


A 68 g/m2 mat of C glass fibers was manufactured in a 1.3 m wide industrial unit using the dry procedure, said mat being collected in the form of a 200 m long roll. The binder was applied by curtain coating and represented 29% of the weight of the finished mat.


By way of comparison, a mat was also prepared under the conditions cited above, using a binder comprising a traditional urea-formaldehyde resin (Prefere® 71400 J supplied by Dynea) containing 20% solid matter (reference). The mat obtained contained 22.5% by weight of binder.


Two series of 5 cm×25 cm samples were cut out, one in the “machine direction” (the length being disposed in the direction of advance of the mat) and the other in the “transverse direction” (90° to the preceding direction). The results mentioned in Table 2 were calculated using the following relationship:





(BSm+BS)/2×(68/x)


in which


BSm is the breaking stress in the machine direction, in N/5 cm;


BS is the breaking stress in the transverse direction, in N/5 cm;


68 is the target grammage, in g/m2;


x is the measured grammage, in g/m2.


The properties of each mat are given in Table 2.

























TABLE 1







Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Ex. 7
Ex. 8
Ex. 9
Ex. 10
Ex. 11
Ex. 12
Ex. 13
Ex. 14
Ex. 15































Composition of binder

















Ammonium
70
60
50
50
50
40
30
50
50
50
50
50
50
50
50


lignosulfonate(1)


Oligosaccharide


saccharose
30
40
50
50
50
60
70










glucose







50
50
50







fructose










50
50





raffinose












50
50



inulin














50


Catalyst

















diammonium phosphate
10
10
5
10
15
10
10
5
10
15
5
10
5
10
5


Properties of microfilter


Breaking stress (N/5 cm)


initial
120.0
101.0
97.1
110.2
85.7
116.0
116.0
112.1
107.1
115.9
110.9
101.0
104.2
90.4
83.1


after accelerated ageing(a)
n.d.
n.d.
50.6
44.2
43.5
n.d.
n.d.
43.0
50.4
40.2
39.4
89.5
15.0
58.1
15.5


% retention
n.d.
n.d.
52
40
51
n.d.
n.d.
38
47
35
36
89
14
64
19






(1)supplied by TEMBEC with reference T5



n.d.: not determined



















TABLE 2







Ex. 16
Ex. 17
Ex. 18
Ex. 19
Ref.





















Composition of binder







Ammonium
50
50
50
50



lignosulfonate(1)


Oligosaccharide


saccharose
50
50





maltose


50




lactose



50



arabinose







catalyst


diammonium phosphate
10

10
10



ammonium sulfate

10





Properties of mat


Breaking stress (N/5 cm)


initial
175.3
107.8
85.0
86.3
136.2


after treatment in water(b)
111.6
67.9
83.0
56.8
42.9


% retention
63.5
62.9
97.7
65.8
31.5


after heat treatment(c)
153.3
117.7
96.0
100.9
n.d.


% retention
87.4
109.1
118.7
129.4
n.d.





n.d.: not determined



(1)supplied by TEMBEC with reference T5






Claims
  • 1: An aqueous binder, comprising, in parts by weight: from 20 to 95 parts of at least one lignosulfonic acid salt;from 5 to 80 parts of at least one oligosaccharide; andfrom 5 to 20 parts of a curing catalyst selected from the group consisting of phosphorous-comprising compounds and sulfates per 100 parts of lignosulfonic acid salt and of oligosaccharide; andwherein the binder is devoid of organic polycarboxylic acid.
  • 2: The binder of claim 1, wherein the at least one lignosulfonic acid salt is a sodium, calcium, potassium, magnesium, or ammonium lignosulfonate.
  • 3: The binder of claim 1, wherein the oligosaccharide is a monosaccharide, a disaccharide, a trisaccharide, a tetrasaccharide, or a fructose polymer.
  • 4: The binder of claim 3, wherein the oligosaccharide is glucose, mannose, galactose, fructose, saccharose, maltose, cellobiose, trehalose, lactose, gentobiose, melibiose, raffinose, gentianose, stachyose, or an inulin.
  • 5: The binder of claim 1, wherein the lignosulfonic acid salt is from 30% to 90% by weight of a mixture of the at least one lignosulfonic acid salt and the at least one oligosaccharide.
  • 6: The binder of claim 1, wherein the curing catalyst is an alkali metal hypophosphite salt, an alkali metal phosphite, an alkali metal polyphosphate, an alkali metal hydrogen phosphate, a phosphoric acid, an alkylphosphonic acid, an ammonium phosphate, or ammonium sulfate.
  • 7: The binder of claim 6, wherein an alkali metal of the curing catalyst is sodium or potassium.
  • 8: The binder of claim 6, wherein the curing catalyst is sodium hypophosphite, diammonium phosphate, or ammonium sulfate.
  • 9: The binder of claim 1, wherein a quantity of curing catalyst is at most 20% of a weight of the at least one lignosulfonic acid salt and of the at least one oligosaccharide.
  • 10: The binder of claim 1, further comprising greater than zero and up to 15 parts by weight of a vinyl acetate polymer per 100 parts by weight of mixture constituted by the at least one lignosulfonic acid salt and the at least one oligosaccharide.
  • 11: The binder of claim 10, wherein the vinyl acetate polymer is a homopolymer or a copolymer of at least one hydrophobic monomer selected from the group consisting of ethylene, propylene, butylene, styrene, and vinyl chloride.
  • 12: The binder of claim 1, further comprising greater than zero and up to 50 parts by weight of a polysaccharide with a molar mass of 100,000 g/mol or more per 100 parts by weight of the at least one lignosulfonic acid salt and of the at least one oligosaccharide.
  • 13: The binder of claim 1, further comprising, based on 100 parts by weight of the at least one lignosulfonic acid salt and of the at least one oligosaccharide: greater than 0 and up to 1 part by weight of silane;greater than 0 and up to 5 parts by weight of a silicone, a vegetable oil or a fluorinated compound; andgreater than 0 and up to 5 parts by weight of a plasticizer.
  • 14: A fiber-based mat comprising a mat of fibers and the binder of claim 1.
  • 15: The mat of claim 14, wherein the fibers are mineral fibers.
  • 16: The mat of claim 14, wherein the fibers are discontinuous mineral filaments, mineral threads comprising a plurality of mineral filaments, or mineral filament-comprising base threads assembled into rovings.
  • 17: The mat of claim 14, wherein the mat has a mass per unit area of from 10 to 1100 g/m2.
  • 18: The mat of claim 14, wherein the binder is from 5% to 40% of a weight of the mat of fibers.
  • 19: The mat of claim 14, wherein more than 50% by weight of the fibers are mineral fibers.
  • 20: The mat of claim 19, wherein the fibers comprise glass.
Priority Claims (1)
Number Date Country Kind
1155325 Jun 2011 FR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/FR2012/051321 6/13/2012 WO 00 12/13/2013