Binding molecules directed against influenza hemagglutinin and uses thereof

Abstract
Multimeric binding molecules that are capable of specifically binding to hemagglutinin (HA) of at least two influenza A virus strains, said strains comprising HA of two different HA subtypes from phylogenetic group 2; or capable of specifically binding to hemagglutinin (HA) of at least one influenza A virus strain from phylogenetic group 1 and at least one influenza A virus strain from phylogenetic group 2; or capable of specifically binding to hemagglutinin (HA) of at least one influenza B virus strain are provided. The binding molecules preferably are also capable of neutralizing at least two influenza A virus strains from phylogenetic group 2; or capable of neutralizing at least one influenza A virus strain from phylogenetic group 1 and at least one influenza A virus strain from phylogenetic group 2; or capable of specifically neutralizing at least one influenza B virus strain.
Description
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

This application contains a sequence listing, which is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file name “Sequence Listing_688097-348U1”, creation date of Mar. 19, 2019, and having a size of 722.7 KB. The sequence listing submitted via EFS-Web is part of the specification and is herein incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to the field of medicine. The invention provides binding molecules, in particular single domain antibodies and multi-domain antibodies binding to influenza hemagglutinin of influenza A and/or B viruses. Preferably, the binding molecules are also capable of neutralizing influenza A and/or B viruses. The invention further provides nucleic acid molecules encoding the single domain antibodies and multi-domain antibodies, as well as compositions comprising the same. The invention further relates to the diagnosis, prophylaxis and/or treatment of an infection caused by influenza A and/or influenza B viruses.


Introduction

Seasonal influenza A is a major public health problem, killing more than 250,000 worldwide each year, while creating an economic burden for millions. Pandemic influenza, which occurs when a new virus emerges and infects people globally that have little or no immunity, represents even a greater threat to human health; for example, the 1918 “Spanish Flu” pandemic caused an estimated 50 million deaths. Of continuing concern is highly pathogenic avian influenza (HPAI) which has demonstrated mortality rates of greater than 50% in infected humans. H5 as well as H7 influenza viruses are endemic in poultry in certain parts of the world. These viruses currently do not appear to be able to transmit readily from person to person, but recent data for avian H5 indicate that only a few amino acid changes are sufficient to enable this virus to spread through aerosol transmission in a mammalian in vivo model system.


To date, less attention has been paid to influenza B viruses. This may be due to the fact that—primarily being restricted to humans as host—influenza B viruses lack the large animal reservoirs that are key to the emergence of pandemic influenza A strains. However, the cumulative impact of annual epidemics exceeds that of pandemics and although the morbidity and mortality rates attributable to influenza B are lower than those of e.g. H3N2 viruses, they are generally higher than those of H1N1 viruses.


Although vaccines are the mainstay of influenza virus infection control, their timely implementation presents several technical challenges. These include (i) prediction of which viral strains will emerge and infect the human population, (ii) the lag period between the appearance of a new viral strain and the availability of a clinically approved vaccine, (iii) poor immunogenicity in certain patient groups, for example the elderly, very young or immune-compromised, and (iv) limited worldwide production capacity.


Anti-viral drugs such as the neuraminidase inhibitors oseltamivir and zanamivir and the M2 inhibitors amantadine and rimantadine are an important addition to the arsenal of treatment options against both seasonal and pandemic influenza. However, these drugs have limited efficacy if administered late in infection and widespread use is likely to result in the emergence of resistant viral strains. Furthermore the use of oseltamivir in adults is associated with adverse effects, such as nausea, vomiting, psychiatric effects and renal events.


Antibodies represent one of the earliest classes of protective agents and the passive transfer of serum from convalescent patients was used successfully during previous influenza pandemics. However, this approach has limited potential for implementation on a global scale due to (i) restricted supply of appropriate sera, (ii) high risk of toxicity, (iii) high lot-to-lot variation, (iv) uncertain dosing and (v) difficulties in administration.


Advances in recombinant monoclonal antibody technology have made this strategy worthy of further investigation, not in the least because unlimited quantities of protective antibodies can be produced and stock-piled to provide immediate protection in a pandemic emergency. For this to be an effective strategy such antibodies would be required to have neutralizing activity across different viral subtypes. This presents a major challenge as the viral coat proteins, in particular hemagglutinin (HA), of influenza viruses are constantly changing.


Hemagglutinin or HA is a trimeric glycoprotein that is anchored to the influenza viral coat and has a dual function: it is responsible for binding to the host cell surface receptor sialic acid and, after uptake, it mediates the fusion of the viral and endosomal membrane leading to release of the viral RNA in the cytosol of the cell. HA comprises a large and variable head domain and a smaller more-conserved stem domain. Most neutralizing antibodies against HA recognize epitopes in the hypervariable regions in the head region and thus interfere with binding to host cells. Recently, however new monoclonal antibodies have been identified that bind to the HA stem region and interfere with membrane fusion (Corti et al., 2011; Dreyfus et al., 2012; Ekiert et al., 2009, Ekiert et al., 2011 and Ekiert et al., 2012; Kashyap et al., 2010; Krause et al., 2012; Lee et al., 2012; Sui et al., 2009; Tan et al., 2012; Throsby et al., 2008; Tsibane et al., 2012; Wang et al., 2010; Yoshida et al., 2009).


At least some of these broadly neutralizing antibodies have shown an unprecedented breadth of cross-reactivity, enabling them to neutralize many different strains within a subtype, phylogenetic group or even between different groups and subtypes of influenza virus. The therapeutic and prophylactic potential of these antibodies has been demonstrated in both mouse and ferret models, and several are now being evaluated in human clinical trials. However, these monoclonal antibodies may also have some inherent limitations which present a major challenge to their broad application in influenza prevention and/or treatment. These limitations may include (i) requirement of parenteral administration; (ii) high cost of goods; (iii) incomplete coverage of circulating influenza strains; (iv) low bioavailability at the site of infection; and (v) risk of emerging drug resistance.


Single domain antibodies (sdAbs) are antibody fragments consisting of a single antigen-binding variable domain. These fragments have several advantages over conventional monoclonal antibodies including; (i) small size (15 kDa), (ii) low cost microbiological production, (iii) simple engineering into multi-specific formats, (iv) high stability with the potential to support non-injectable routes of administration, and/or (iv) potential to access buried or hidden epitopes. These favorable properties make sdAbs an attractive alternative to monoclonal antibodies, especially in the area of infectious disease. Neutralizing sdAbs against several different viruses have been described in literature including HIV, Hepatitis B virus, Respiratory Syncytial virus, Rabies virus, FMDV, Poliovirus and Rotavirus (Vanlandschoot et al., 2011).


HA binding sdAbs that are capable of neutralizing influenza have also been described in literature. Thus, Hultberg et al. (2011) identified an sdAb (Infl-C8) with neutralizing activity against multiple H5N1 viruses. Infl-C8 dimers and trimers showed improved and broadened activity against H5N1 viruses. However, no cross-neutralization of PR8 (H1N1) or X47 (H3N2) influenza viruses was observed.


WO2009/147248 discloses several sdAbs showing heterosubtypic binding activity in ELISA. However, none of these sdAbs, except one, was active in a virus neutralization assay. This one neutralizing sdAb, called IV146, showed phylogenetic group 1 restricted binding in ELISA and was capable of neutralizing 2 different H5 viruses.


Tillib et al. (2013) describe multiple sdAbs with in vitro and in vivo neutralizing activity against the H5N2 strain A/Mallard duck/Pennsylvania/10218/84.


Hufton et al. (2014) identified several sdAbs with cross-subtype neutralizing activity against H1, H2, H5 and/or H9 viruses. None of these sdAbs however was able to neutralize H7N2. Dimerization of one of the sdAbs improved its activity towards H1, H2, H5 and H9 but did not result in cross-group neutralization of H7N2 or H3N2 viruses.


None of the monomeric or multimeric sdAbs identified to date thus are able to neutralize all relevant seasonal (H1N1, H3N2 and B) and pandemic (e.g. H5N1 and H7N9) influenza strains. In view of the severity of respiratory illness caused by influenza A and influenza B viruses, as well has the high economic impact of the seasonal epidemics, and the continuing risk for pandemics, there is an ongoing need for new effective inhibitors with broad activity against influenza A and B viruses and which can be used as medicaments for prevention or treatment of influenza infection.


SUMMARY OF THE INVENTION

The present invention provides novel single domain antibodies (sdAbs) capable of specifically binding to hemagglutinin (HA) of at least two influenza A virus strains, said at least two influenza virus strains comprising HA of two different subtypes from phylogenetic group 2; or capable of specifically binding to at least one influenza A strain from phylogenetic group 1 and at least one influenza A virus strain from phylogenetic group 2; or capable of specifically binding to hemagglutinin (HA) of at least one influenza B virus strain. In certain embodiments, the sdAbs are also capable of neutralizing at least two different influenza A virus strains comprising two HA different subtypes from phylogenetic group 2; or at least one influenza A virus strain from phylogenetic group 1 and at least one influenza A virus strain from phylogenetic group; or at least one influenza B virus strain.


The present invention further provides so-called multi-domain antibodies, i.e. binding molecules comprising at least two, preferably at least three, more preferably at least four, or even more preferably at least five, single domain antibodies as described herein. In certain embodiments, the multi-domain antibodies are capable of neutralizing at least one influenza A virus strain from phylogenetic group 1 and at least one influenza A virus strain from phylogenetic group 2. In certain embodiments, the multi-domain antibodies are capable of neutralizing at least one influenza A virus strain from phylogenetic group 1 and at least one influenza A virus strain from phylogenetic group 2 and at least one influenza B virus strain, preferably at least one influenza B virus strain from the B/Yamagata lineage and at least one influenza virus strain from the B/Victoria lineage. In certain embodiments, the multi-domain antibodies are capable of neutralizing influenza viruses comprising HA of the H1 subtype (such as H1N1 influenza virus strains), influenza viruses comprising HA of the H3 subtype (such as H3N2 influenza virus strains), influenza viruses comprising HA of the H5 subtype (such as H5N1 influenza virus strains), and influenza viruses comprising HA of the H7 subtype (such as H7N9 influenza virus strains), and at least one influenza B virus, preferably at least one influenza B virus strain from the B/Yamagata lineage and at least one influenza virus strain from the B/Victoria lineage.


The invention furthermore provides nucleic acid molecules encoding the sdAbs or multi-domain antibodies, as well as vectors and host cells comprising said nucleic acid molecules.


The invention also provides (pharmaceutical) compositions comprising one or more sdAbs, multi-domain antibodies, nucleic acid molecules and/or vectors as described herein.


According to the present invention, novel influenza hemagglutinin-binding molecules are provided. The binding molecules may be single domain antibodies or multi-domain antibodies. At least some of binding molecules of the present invention are unique in that they are cross-neutralizing between phylogenetic groups, i.e. able to bind to and neutralize at least one influenza A virus strain from phylogenetic group 1 and at least one influenza A virus strain from phylogenetic group 2. In certain embodiment the binding molecules are capable of specifically binding to and neutralizing at least one influenza B virus strain, preferably at least one influenza B virus strain from the B/Yamagata lineage and at least one influenza virus strain from the B/Victoria lineage. The binding molecules and nucleic acid sequences of the present invention are suitable for use as a diagnostic, prophylactic, and/or treatment agents for influenza infections, even irrespective of the causative influenza subtype.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows the analysis of the immune response in llama #3 and #4 by ELISA.



FIG. 2 shows the in vivo efficacy of SD1016, SD1038 and SD1045 against a lethal challenge with A/Puerto Rico/8/1934-MA (H1N1) virus. Survival curves (top) and weight loss (bottom) of mice treated with 0.5 mg/kg sdAb one day before challenge (at day 0) are shown.



FIG. 3 shows the in vivo efficacy of SD1036, SD1046 and SD1048 against a lethal challenge with A/Hong Kong/1/1968-MA (H3N2) virus. Survival curves (top) and weight loss (bottom) of mice treated with 5 or 0.5 mg/kg sdAb one day before challenge (at day 0) are shown.



FIG. 4 shows the in vivo efficacy of SD1083 and SD1084 against a lethal challenge with B/Florida/4/2006 virus. Survival curves (top) and weight loss (bottom) of mice treated with 5 or 0.5 mg/kg sdAb one day before challenge (at day 0) are shown.



FIG. 5 shows the in vivo efficacy of SD1038, MD1211, MD1212 or a 1:1 mixture of SD1038 and SD1036 against a lethal challenge with A/Puerto Rico/8/1934-MA (H1N1) virus. Survival curves (top) and weight loss (bottom) of mice treated with single or multi-domain antibody one day before challenge (at day 0) are shown.



FIG. 6 shows the in vivo efficacy of SD1036, MD1211, MD1212 or a 1:1 mixture of SD1036 and SD1038 against a lethal challenge with A/Hong Kong/1/1968-MA (H3N2) virus. Survival curves (top) and weight loss (bottom) of mice treated with single or multi-domain antibody one day before challenge (at day 0) are shown.



FIGS. 7A-7B show the in vivo efficacy of SD1038 and MD1212 against a lethal challenge with A/Hong Kong/1/1968-MA (H3N2) virus. Survival curves (top) and weight loss (bottom) of mice treated with 5, 1.7, 0.6 or 0.2 mg/kg single or multi-domain antibody one day before challenge (at day 0) are shown.



FIG. 8 shows the in vivo efficacy of MD1221, MD1222 and MD1224 against a lethal challenge with B/Florida/4/2006 virus. Survival curves (top) and weight loss (bottom) of mice treated with 5 or 0.5 mg/kg multi-domain antibody one day before challenge (at day 0) are shown.



FIG. 9 shows the in vivo efficacy of MD1301, MD2601 and CR9114 against a lethal challenge with A/Puerto Rico/8/1934-MA (H1N1) virus. Survival curves (top) and weight loss (bottom) of mice treated with 3 mg/kg (multi-domain) antibody one day before challenge (at day 0) are shown.



FIGS. 10A-10C show the in vivo efficacy of MD1301, MD2601 and CR9114 against a lethal challenge with A/Puerto Rico/8/1934-MA (H1N1) virus. Survival curves (top) and weight loss (bottom) of mice treated with 0.2, 0.05 or 0.01 mg/kg (multi-domain) antibody one day before challenge (at day 0) are shown.



FIGS. 11A-11B show the in vivo efficacy of MD2617 against a lethal challenge with A/Puerto Rico/8/1934-MA (H1N1) virus. Survival curves (top) and weight loss (bottom) of mice treated intranasally (TOP) or intravenously (BOTTOM) with MD2617 one day before challenge (at day 0) are shown.



FIGS. 12A-12B show the in vivo efficacy of MD2617 and CR9114 against a lethal challenge with B/Florida/4/2006 (TOP) or A/Hong Kong/1/1968-MA (BOTTOM) virus. Survival curves (top) and weight loss (bottom) of mice treated intranasally or intravenously with (multi-domain) antibody one day before challenge (at day 0) are shown.



FIGS. 13A-13C show the in vivo efficacy of MD2407, MD3606 and CR9114 against a lethal challenge with B/Florida/4/2006 virus. Survival curves (top) and weight loss (bottom) of mice treated with 0.02, 0.1 or 0.5 mg/kg (multi-domain) antibody one day before challenge (at day 0) are shown.



FIGS. 14A-14B show the in vivo efficacy of MD3606 and CR9114 against a lethal challenge with B/Florida/4/2006 virus. Survival curves (top) and weight loss (bottom) of mice treated with 0.2, 1 or 5 mg/kg (multi-domain) antibody one day before challenge (at day 0) are shown.



FIGS. 15A-15C show the in vivo efficacy of MD2407, MD3606 and CR9114 against a lethal challenge with B/Florida/4/2006 virus. Survival curves (top) and weight loss (bottom) of mice treated with 0.02, 0.1 or 0.5 mg/kg (multi-domain) antibody one day before challenge (at day 0) are shown.



FIGS. 16A-16B show the in vivo efficacy of MD3606 and CR9114 against a lethal challenge with A/Hong Kong/1/1968-MA (H3N2) virus. Survival curves (top) and weight loss (bottom) of mice treated with 0.6, 1.7 or 5 mg/kg (multi-domain) antibody one day before challenge (at day 0) are shown.



FIGS. 17A-17C show the in vivo efficacy of MD2407, MD3606 and CR9114 against a lethal challenge with A/Puerto Rico/8/1934-MA (H1N1) virus. Survival curves (top) and weight loss (bottom) of mice treated with 0.01, 0.05 or 0.25 mg/kg (multi-domain) antibody one day before challenge (at day 0) are shown.



FIGS. 18A-18B show the in vivo efficacy of MD3606 and CR9114 against a lethal challenge with A/Puerto Rico/8/1934-MA (H1N1) virus. Survival curves (top) and weight loss (bottom) of mice treated with 0.6, 1.7 or 5 mg/kg (single domain) antibody one day before challenge (at day 0) are shown.





DEFINITIONS

Some definitions of terms as used in the present invention are given below:


The term “binding molecule” as used herein refers to both single domain antibodies (monomeric binding molecules) and multi-domain antibodies (multimeric binding molecules) according to the invention.


As used herein a single-domain antibody (sdAb) is a binding molecule consisting of a single monomeric variable antibody domain that specifically binds an antigen or epitope independently of other V regions or domains. Single domain antibodies are known in the art and are usually derived from naturally occurring “heavy chain only” antibodies, i.e. heavy chain antibodies devoid of light chains. Such heavy chain only antibodies can be obtained from Camelidae species, for example in camel, llama, dromedary, or alpaca (also referred to as camelid antibodies). The variable region derived from said heavy chain only antibody is generally known as a VHH domain or single domain antibody (sdAb). A single-domain antibody as used herein also refers to an isolated single variable domain (VL or VH) from a conventional immunoglobulin comprising two heavy chains and two light chains. This immunoglobulin is preferably human, but may also comprise immunoglobulins from other mammalian species including rodents.


As used herein the term “multi-domain antibody” refers to a binding molecule comprising at least two single domain antibodies, linked to each other either directly or by a linking sequence.


The term “influenza virus subtype” in relation to influenza A viruses refers to influenza A virus strains that are characterized by various combinations of the hemagglutinin (H) and neuraminidase (N) viral surface proteins. Influenza A virus subtypes may be referred to by their H number, such as for example “influenza virus comprising HA of the H1 or H3 subtype”, or “H1 influenza virus” “H3 influenza virus”, or by a combination of an H number and an N number, such as for example “influenza virus subtype “H3N2” or “H5N1”. The term influenza virus “subtype” specifically includes all individual influenza virus “strains” within such subtype, which usually result from mutations and show different pathogenic profiles, and include natural isolates as well as man-made mutants or reassortants and the like. Such strains may also be referred to as various “isolates” of a viral subtype. Accordingly, as used herein, the terms “strains” and “isolates” may be used interchangeably.


The influenza A virus subtypes can further be classified by reference to their phylogenetic group. Phylogenetic analysis has demonstrated a subdivision of influenza hemagglutinins into two main groups: inter alia the H1, H2, H5 and H9 subtypes in phylogenetic group 1 (“group 1” influenza viruses) and inter alia the H3, H4, H7 and H10 subtypes in phylogenetic group 2 (“group 2” influenza viruses).


The antigenic variation in HA within the influenza type B virus strains is smaller than that observed within the type A strains. Two genetically and antigenically distinct subtypes, or “lineages”, of influenza B virus are circulating in humans, as represented by the B/Yamagata/16/88 (also referred to as B/Yamagata) and B/Victoria/2/87 (B/Victoria) lineages. As used herein the influenza B virus strains are referred to as influenza virus strains derived from the “the B/Yamagata lineage” or the “B/Victoria lineage”.


The term “neutralizing” as used herein in relation to the binding molecules of the invention refers to binding molecules that inhibit an influenza virus from replication, in vitro and/or in vivo within a subject, regardless of the mechanism by which neutralization is achieved. Thus, neutralization can e.g. be achieved by inhibiting the attachment or adhesion of the virus to the cell surface, or by inhibition of the fusion of viral and cellular membranes following attachment of the virus to the target cell, or by inhibiting viral egress from infected cells, and the like. The term “cross-neutralizing” or “cross-neutralization” as used herein in relation to the binding molecules of the invention refers to the ability of the binding molecules of the invention to neutralize different subtypes of influenza A and/or B viruses.


With respect to the binding molecules of the invention, the term “(immuno)specifically binding” refers to binding molecules that bind to an epitopes of a protein of interest, but which do not substantially recognize and bind other molecules in a sample containing a mixture of antigenic biological molecules. The binding may be mediated by covalent or non-covalent interactions or a combination of both.


As used herein, the term “influenza”, or “influenza virus disease” refers to the pathological condition resulting from an infection of a cell or a subject by an influenza A or B virus. In specific embodiments, the term refers to a respiratory illness caused by an influenza A or B virus. As used herein, the term “influenza virus infection” means the invasion by, multiplication and/or presence of an influenza virus in a cell or a subject.


DETAILED DESCRIPTION OF THE INVENTION

In a first aspect of the invention, novel single domain antibodies (sdAbs) capable of specifically binding to hemagglutinin (HA) of at least two influenza A virus strains comprising HA of two different subtypes from phylogenetic group 2 are provided, i.e. sdAbs capable of specifically binding to hemagglutinin (HA) of at least two different influenza A virus strains, said strains comprising HA from two different HA subtypes from phylogenetic group 2. In addition, sdAbs that are capable of binding to HA of at least one influenza A virus strain from phylogenetic group 1 and to HA of at least one influenza A virus strain from phylogenetic group 2 are provided. Furthermore, sdAbs capable of specifically binding to HA of at least one influenza B virus strain are provided. Single domain antibodies that are capable of specifically binding to HA of two different subtypes of influenza A virus strains from phylogenetic group 2, or capable from binding to HA of influenza A virus strains from both phylogenetic group 1 (such as influenza viruses comprising HA of the H1, H2, and/or H5 subtype) and phylogenetic group 2 (such as influenza viruses comprising HA of the H3, H7 and/or H10 subtype) have not been described before. In addition, sdAbs that are capable of specifically binding to HA of influenza B viruses have also not yet been described.


The sdAbs of the invention bind to conserved neutralizing epitopes in HA. In certain embodiments, the sdAbs bind to an epitope in the stem region of the HA protein of an influenza A or B virus. In other embodiments, the sdAbs bind to an epitope in the head region of the HA protein. In certain embodiments, the sdAb binds to an epitope in the head region of the HA protein of an influenza B viruses.


In certain preferred embodiments, the sdAbs are also capable of neutralizing at least two influenza A virus strains comprising HA of two different subtypes from phylogenetic group 2. In certain embodiments, the sdAbs are capable of neutralizing preferably at least one influenza A virus strain from phylogenetic group 1 (such as e.g. an influenza virus comprising HA of the H1 or H5 subtype) and at least one influenza A virus strain from phylogenetic group 2 (such as e.g. an influenza virus comprising HA of the H3 or H7 subtype); or at least one influenza B virus strain, preferably at least one influenza B virus strain from the B/Yamagata lineage and at least one influenza virus strain from the B/Victoria lineage.


In certain embodiments, the single domain antibody according to the invention is a Camelid VHH domain, i.e. a variable domain of a so-called Camelid (heavy chain only) antibody. In further embodiments, the single domain antibody is a humanized Camelid VHH domain. Humanization of Camelid single domain antibodies requires the introduction and mutagenesis of a limited amount of amino acids in a single polypeptide chain. This is in contrast to humanization of scFv, Fab, (Fab) 2 and IgG, which requires the introduction of amino acid changes in two chains, the light and the heavy chain, and the preservation of the assembly of both chains. Methods for humanization of the camelid VHH domains are known in the art, such as for example described in WO2008/020079, WO2008/142164, WO2010/139808. Humanization of the sdAbs according to the present invention is described in Example 11.


In certain embodiments, a single domain antibody of the invention comprises:


one or more of CDR sequences selected from SEQ ID NO: 227, 228 and 229;


one or more of CDR sequences selected from SEQ ID NO: 230, 231 and 232;


one or more of CDR sequences selected from SEQ ID NO: 233, 234 and 235;


one or more of CDR sequences selected from SEQ ID NO: 236, 237 and 238;


one or more of CDR sequences selected from SEQ ID NO: 239, 240 and 241;


one or more of CDR sequences selected from SEQ ID NO: 242, 243 and 244;


one or more of CDR sequences selected from SEQ ID NO: 245, 246 and 247;


one or more of CDR sequences selected from SEQ ID NO: 248, 249, and 250;


one or more of CDR sequences selected from SEQ ID NO: 251, 252 and 253;


one or more of CDR sequences selected from SEQ ID NO: 254, 255 and 256;


one or more of CDR sequences selected from SEQ ID NO: 257, 258 and 259;


one or more of CDR sequences selected from SEQ ID NO: 260, 261 and 262;


one or more of CDR sequences selected from SEQ ID NO: 263, 264 and 265;


one or more of CDR sequences selected from SEQ ID NO: 266, 267 and 268;


one or more of CDR sequences selected from SEQ ID NO: 269, 270 and 271;


one or more of CDR sequences selected from SEQ ID NO: 272, 273 and 274;


one or more of CDR sequences selected from SEQ ID NO: 275, 276 and 277;


one or more of CDR sequences selected from SEQ ID NO: 278, 279 and 280;


one or more of CDR sequences selected from SEQ ID NO: 281, 282 and 283;


one or more of CDR sequences selected from SEQ ID NO: 284, 285 and 286;


one or more of CDR sequences selected from SEQ ID NO: 287, 288 and 289;


one or more of CDR sequences selected from SEQ ID NO: 290, 291 and 292;


one or more of CDR sequences selected from SEQ ID NO: 293, 122 and 123;


one or more of CDR sequences selected from SEQ ID NO: 124, 125 and 126;


one or more of CDR sequences selected from SEQ ID NO: 127, 128 and 129;


one or more of CDR sequences selected from SEQ ID NO: 130, 131 and 132;


one or more of CDR sequences selected from SEQ ID NO: 133, 134 and 135;


one or more of CDR sequences selected from SEQ ID NO: 136, 137 and 138; or


one or more of CDR sequences selected from SEQ ID NO: 139, 140 and 141.


The term “complementarity determining regions” (CDR) as used herein means sequences within the variable regions of binding molecules, that usually contribute to a large extent to the antigen binding site which is complementary in shape and charge distribution to the epitope recognized on the antigen. The CDR regions can be specific for linear epitopes, discontinuous epitopes, or conformational epitopes of proteins or protein fragments, either as present on the protein in its native conformation or, in some cases, as present on the proteins as denatured, e.g., by solubilization in SDS.


In certain embodiments, the single domain antibody is selected from the group consisting of:


a) a single domain antibody comprising a CDR1 region of SEQ ID NO:227, a CDR2 region of SEQ ID NO: 228, and a CDR3 region of SEQ ID NO: 229;


b) a single domain antibody comprising a CDR1 region of SEQ ID NO:230, a CDR2 region of SEQ ID NO: 231, and a CDR3 region of SEQ ID NO: 232;


c) a single domain antibody comprising a CDR1 region of SEQ ID NO:233, a CDR2 region of SEQ ID NO: 234, and a CDR3 region of SEQ ID NO: 235;


d) a single domain antibody comprising a CDR1 region of SEQ ID NO:236, a CDR2 region of SEQ ID NO: 237, and a CDR3 region of SEQ ID NO: 238;


e) a single domain antibody comprising a CDR1 region of SEQ ID NO:239, a CDR2 region of SEQ ID NO: 240, and a CDR3 region of SEQ ID NO: 241;


f) a single domain antibody comprising a CDR1 region of SEQ ID NO:242, a CDR2 region of SEQ ID NO: 243 and a CDR3 region of SEQ ID NO: 244;


g) a single domain antibody comprising a CDR1 region of SEQ ID NO:245, a CDR2 region of SEQ ID NO: 245, and a CDR3 region of SEQ ID NO: 247;


h) a single domain antibody comprising a CDR1 region of SEQ ID NO:248, a CDR2 region of SEQ ID NO: 249, and a CDR3 region of SEQ ID NO: 250;


i) a single domain antibody comprising a CDR1 region of SEQ ID NO: 251, a CDR2 region of SEQ ID NO: 252, and a CDR3 region of SEQ ID NO: 253;


j) a single domain antibody comprising a CDR1 region of SEQ ID NO:254, a CDR2 region of SEQ ID NO: 255, and a CDR3 region of SEQ ID NO: 256;


k) a single domain antibody comprising a CDR1 region of SEQ ID NO:257, a CDR2 region of SEQ ID NO: 258, and a CDR3 region of SEQ ID NO: 259;


l) a single domain antibody comprising a CDR1 region of SEQ ID NO: 260, a CDR2 region of SEQ ID NO: 261 and a CDR3 region of SEQ ID NO: 262;


m) a single domain antibody comprising a CDR1 region of SEQ ID NO: 263, a CDR2 region of SEQ ID NO: 264, and a CDR3 region of SEQ ID NO: 265;


n) a single domain antibody comprising a CDR1 region of SEQ ID NO: 266, a CDR2 region of SEQ ID NO: 267, and a CDR3 region of SEQ ID NO: 268;


o) a single domain antibody comprising a CDR1 region of SEQ ID NO: 269, a CDR2 region of SEQ ID NO: 270, and a CDR3 region of SEQ ID NO: 271;


p) a single domain antibody comprising a CDR1 region of SEQ ID NO: 272, a CDR2 region of SEQ ID NO: 273, and a CDR3 region of SEQ ID NO: 274;


q) a single domain antibody comprising a CDR1 region of SEQ ID NO: 275, a CDR2 region of SEQ ID NO: 276, and a CDR3 region of SEQ ID NO: 277;


r) a single domain antibody comprising a CDR1 region of SEQ ID NO: 278, a CDR2 region of SEQ ID NO: 279 and a CDR3 region of SEQ ID NO: 280;


s) a single domain antibody comprising a CDR1 region of SEQ ID NO: 281, a CDR2 region of SEQ ID NO: 282, and a CDR3 region of SEQ ID NO: 283;


t) a single domain antibody comprising a CDR1 region of SEQ ID NO: 284, a CDR2 region of SEQ ID NO: 285, and a CDR3 region of SEQ ID NO: 286;


u) a single domain antibody comprising a CDR1 region of SEQ ID NO: 287, a CDR2 region of SEQ ID NO: 288, and a CDR3 region of SEQ ID NO: 289;


v) a single domain antibody comprising a CDR1 region of SEQ ID NO: 290, a CDR2 region of SEQ ID NO: 291, and a CDR3 region of SEQ ID NO: 292;


w) a single domain antibody comprising a CDR1 region of SEQ ID NO: 293, a CDR2 region of SEQ ID NO: 122, and a CDR3 region of SEQ ID NO: 123;


x) a single domain antibody comprising a CDR1 region of SEQ ID NO:124, a CDR2 region of SEQ ID NO: 125 and a CDR3 region of SEQ ID NO: 126;


y) a single domain antibody comprising a CDR1 region of SEQ ID NO: 127, a CDR2 region of SEQ ID NO: 128, and a CDR3 region of SEQ ID NO: 129;


z) a single domain antibody comprising a CDR1 region of SEQ ID NO: 130, a CDR2 region of SEQ ID NO: 131, and a CDR3 region of SEQ ID NO: 132;


aa) a single domain antibody comprising a CDR1 region of SEQ ID NO:133, a CDR2 region of SEQ ID NO: 134, and a CDR3 region of SEQ ID NO: 135;


bb) a single domain antibody comprising a CDR1 region of SEQ ID NO:136, a CDR2 region of SEQ ID NO: 137, and a CDR3 region of SEQ ID NO: 138; and


cc) a single domain antibody comprising a CDR1 region of SEQ ID NO:139, a CDR2 region of SEQ ID NO: 140, and a CDR3 region of SEQ ID NO: 141.


In certain preferred embodiments, the single domain antibody is selected from the group consisting of:


a) a single domain antibody comprising a CDR1 region of SEQ ID NO: 275, a CDR2 region of SEQ ID NO: 276, and a CDR3 region of SEQ ID NO: 277;


b) a single domain antibody comprising a CDR1 region of SEQ ID NO: 284, a CDR2 region of SEQ ID NO: 285, and a CDR3 region of SEQ ID NO: 286;


c) a single domain antibody comprising a CDR1 region of SEQ ID NO:124, a CDR2 region of SEQ ID NO: 125 and a CDR3 region of SEQ ID NO: 126;


d) a single domain antibody comprising a CDR1 region of SEQ ID NO: 127, a CDR2 region of SEQ ID NO: 128, and a CDR3 region of SEQ ID NO: 129;


e) a single domain antibody comprising a CDR1 region of SEQ ID NO: 263, a CDR2 region of SEQ ID NO: 264, and a CDR3 region of SEQ ID NO: 265; and


f) a single domain antibody comprising a CDR1 region of SEQ ID NO: 133, a CDR2 region of SEQ ID NO: 134, and a CDR3 region of SEQ ID NO: 135.


According to a further embodiment, a single domain antibody according to the invention comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or a homologous amino acid sequence. As used herein, a homologous amino acid sequence of the present invention may comprise additions, deletions or substitutions of one or more amino acids, which do not substantially alter the functional characteristics of the binding molecules of the invention. Where homologous sequence indicates sequence identity, it means a sequence which presents a high sequence identity (more than 70%, 75%, 80%, 85%, 90%, 95% or 98% sequence identity) with the parent sequence.


In certain embodiments, one or more amino acids in amino acid sequences described herein may be mutated, i.e. substituted by another amino acid. Such mutations may be introduced to prevent the occurrence of post-translational modifications. The most prevalent modifications include proteolysis, glycosylation, oxidation of methionine, and deamidation of asparagine and glutamine residues. Other modifications include pyroglutamate formation, aspartate isomerization and tryptophan oxidation. The following amino acid residues and sequence motifs are susceptible to post-translational modification and may therefore be altered by site directed mutagenesis: N-terminal glutamic acid or glutamine, N-glycosylation motif Asn-Xxx-Ser/Thr, solvent exposed methionine or tryptophan residues, proteolytic cleavage site Asp-Pro, deamidation motifs Asn-Gly and Gln-Gly and/or Asp isomerization motif Asp-Gly.


In certain embodiments, a sdAb of the invention is humanized. Thus, in certain embodiments, the sdAbs comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 146-226 and 340.


In certain embodiments, the single domain antibody according to the invention comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 13, or a humanized variant thereof selected from the group consisting of SEQ ID NO: 177-187 and SEQ ID NO: 340; SEQ ID NO: 17 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 146-156; SEQ ID NO: 20 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 157-176; SEQ ID NO: 24 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 188-197; SEQ ID NO: 25 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 198-203; and SEQ ID NO: 27 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 204-226.


In certain embodiments, the single domain antibody comprises an amino acid sequence selected from the group consisting of: SEQ ID NO: 187, SEQ ID NO: 340, SEQ ID NO: 155, SEQ ID NO: 176, SEQ ID NO: 197, SEQ ID NO: 203 and SEQ ID NO: 221.


According to second aspect of the present invention so-called multi-domain antibodies, i.e. binding molecules comprising at least two single domain antibodies as described above, are provided. For example, the C-terminal end of a first single domain antibody may be linked to the N-terminal end of a next single domain antibody to form a dimeric binding molecule. In certain embodiments, the multi-domain antibodies comprise at least three, at least four, or at least five single domain antibodies as described above to form a multimer, such as a trimer, tetramer, pentamer, etc. The linked sdAbs can be the same or can be different sdAbs, i.e. sdAbs having different amino acid sequences and epitope specificities.


In certain embodiments, the multi-domain antibodies are single chain molecules. In certain embodiments, the multi-domain antibodies are two-chain molecules, i.e. comprise at least two chains each comprising at least one single-domain antibody. The two chains may be identical or may be different.


The single domain antibodies may be linked to form any of the multi-domain antibodies disclosed herein using any methods known in the art. Thus, the single domain antibodies may be linked by chemical linkage, or may be linked together either directly or by short polypeptide linkers. Such linker sequence may be a naturally occurring sequence or a non-naturally occurring sequence. The linker sequence preferably provides sufficient flexibility to the multi-domain antibody and at the same time is resistant to proteolytic degradation.


In certain embodiment, the at least two single domain antibodies are genetically fused via peptide linkers. Thus, the single domain antibodies are fused genetically at the DNA level, by forming a polynucleotide construct (or nucleic acid sequence) encoding the complete polypeptide construct, i.e. the binding molecule comprising the two or more single domain antibodies.


In certain embodiments, the at least two single domain antibodies are linked by a linking sequence comprising from 1 to 100 amino acids, preferably from 1 to 80 amino acids, or from 1 to 60 amino acids, or from 10 to 60 amino acids. Examples of linkers include, but are not limited to, the linking sequences in Table 15. Thus, in certain embodiments the linking sequence comprises an amino acid sequence selected from SEQ ID NO: 142-145.


In certain embodiments, the multi-domain antibodies comprise at least two sdAbs according to the present invention. The at least two sdAbs may be selected from Table 14 and/or Table 40. In certain embodiments, the at least two sdAbs are selected from the group consisting of SEQ ID NO: 1-29 and SEQ ID NO: 146-226. The at least two sdAbs may be the same (homo-multimer) or may be different (hetero-multimer).


In certain embodiments, the multi-domain antibodies comprise at least two, preferably at least three, more preferably at least four sdAbs selected from the group consisting of


a) a single domain antibody comprising a CDR1 region of SEQ ID NO: 275, a CDR2 region of SEQ ID NO: 276, and a CDR3 region of SEQ ID NO: 277;


b) a single domain antibody comprising a CDR1 region of SEQ ID NO: 284, a CDR2 region of SEQ ID NO: 285, and a CDR3 region of SEQ ID NO: 286;


c) a single domain antibody comprising a CDR1 region of SEQ ID NO:124, a CDR2 region of SEQ ID NO: 125 and a CDR3 region of SEQ ID NO: 126;


d) a single domain antibody comprising a CDR1 region of SEQ ID NO: 127, a CDR2 region of SEQ ID NO: 128, and a CDR3 region of SEQ ID NO: 129;


e) a single domain antibody comprising a CDR1 region of SEQ ID NO: 263, a CDR2 region of SEQ ID NO: 264, and a CDR3 region of SEQ ID NO: 265; and


f) a single domain antibody comprising a CDR1 region of SEQ ID NO: 133, a CDR2 region of SEQ ID NO: 134, and a CDR3 region of SEQ ID NO: 135.


In certain embodiments, the multi-domain antibodies according to the invention comprise at least two, preferably at least three, more preferably at least four sdAbs selected from the group consisting of: SEQ ID NO: 13, or a humanized variant thereof selected from the group consisting of SEQ ID NO: 177-187 and SEQ ID NO: 340; SEQ ID NO: 17 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 146-156; SEQ ID NO: 20 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 157-176; SEQ ID NO: 24 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 188-177; SEQ ID NO: 25 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 198-203; and SEQ ID NO: 27 or a humanized variant thereof selected from the group consisting of SEQ ID NO: 204-226.


In certain embodiments, the multi-domain antibodies according to the invention comprise an amino acid sequence selected from the group consisting of: SEQ ID NO: 30-73.


In certain embodiments, the multi-domain antibodies of the invention are capable of neutralizing at least one influenza A virus strain from phylogenetic group 1 (such as e.g. an influenza virus comprising HA of the H1 and/or H5 subtype) and at least one influenza A virus strain from phylogenetic group 2 (such as e.g. an influenza virus comprising HA of the H3 and/or H7 subtype). In certain embodiments, the multi-domain antibodies of the invention are capable of neutralizing at least one influenza A virus strain from phylogenetic group 1 (such as e.g. an influenza virus comprising HA of the H1 and/or H5 subtype) and at least one influenza A virus strain from phylogenetic group 2 (such as e.g. an influenza virus comprising HA of the H3 and/or H7 subtype) and at least one influenza B virus strain, preferably at least one influenza B virus strain of the B/Yamagata lineage and at least one influenza virus strain of the B/Victoria lineage.


In certain embodiments, the multi-domain antibodies are capable of neutralizing influenza viruses comprising HA of the H1 subtype (such as H1N1 influenza virus strains), influenza viruses comprising HA of the H3 subtype (such as H3N2 influenza virus strains), influenza viruses comprising HA of the H5 subtype (such as H5N1 influenza virus strains), influenza viruses comprising HA of the H7 subtype (such as H7N9 influenza virus strains), and at least one influenza B virus, preferably at least one influenza B virus strain from the B/Yamagata lineage and at least one influenza virus strain from the B/Victoria lineage. The multi-domain antibodies of the present invention thus can suitably be used in the prevention and/or treatment of influenza infections, even irrespective of the causative influenza subtype.


According to the present invention it has been shown that the cross-neutralizing multi-domain antibodies of the invention offer several advantages relative to other small and large anti-influenza molecules. Thus, the affinity and potency of the multi-domain antibodies, as well as the breadth of neutralization are superior to the affinity, potency and breadth of neutralization of the published broadly neutralizing Abs (bnAbs) targeting influenza HA, like e.g. CR9114 (WO2013/007770) and FI6v3 (Corti et al., 2011). In addition, the multi-domain antibodies by targeting multiple independent neutralizing epitopes are less prone to the development of drug resistant influenza strains than CR9114 and FI6v3.


As described herein, the present invention thus provides novel influenza binding and cross-neutralizing binding molecules. The binding molecules may be monomeric, i.e. be single domain antibodies, or multimeric, i.e. multi-domain antibodies. The binding molecules of the invention bind to their target with high affinity and specificity. This is in contrast with small molecule drugs like antivirals which frequently show off-target binding resulting in unwanted side effects. In addition, the binding molecules of the invention bind to a variety of HA epitopes, some of which are inaccessible to conventional antibodies. Influenza HA contains multiple glycosylation sites both in the head and stem region. Carbohydrates attached to these sites render some parts on the HA molecule inaccessible to conventional antibodies. The smaller binding molecules of the invention are still able to target these potentially functionally important epitopes. In addition, the binding molecules of the invention are stable under a wide range of extreme conditions. They are typically resistant to elevated temperatures (up to 100° C.), extremes in pH, denaturing agents and proteolytic degradation. The favorable stability of the binding molecules may yield products that can be kept outside of the cold chain and that have longer shelf-lives than other protein drugs like monoclonal antibodies. Furthermore, the binding molecules of the invention are all single proteins which can be produced and purified following one single process.


Typically, the binding molecules according to the invention bind to HA of an influenza A virus of group 1 (such as H1N1) and/or an influenza A virus of group 2 (such as H3N2), and/or an influenza B virus, and/or fragments thereof, with an affinity constant (Kd-value) that is lower than 1.0×10−6 M, 1.0×10−7 M, preferably lower than 1.0×10−8 M, more preferably lower than 1.0×10−9 M. Affinity constants can for instance be measured using surface plasmon resonance, for example using the BIACORE system (Pharmacia Biosensor AB, Uppsala, Sweden), or as described in Example 8.


In certain embodiments, the binding molecules exhibit neutralization activity against influenza A and/or B viruses. In certain embodiment, the binding molecules of the invention prevent an influenza A or B virus from infecting host cells by at least 99%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, at least 50%, at least 45%, at least 40%, at least 45%, at least 35%, at least 30%, at least 25%, at least 20%, or at least 10% relative to infection of host cells by said influenza virus in the absence of said binding molecules. Neutralizing activity can for instance be measured as described herein. Alternative assays measuring neutralizing activity are described in for instance WHO Manual on Animal Influenza Diagnosis and Surveillance, Geneva: World Health Organisation, 2005, version 2002.5. Typically, the binding molecules according to the invention have a neutralizing activity of 1000 nM or less, preferably 100 nM or less, more preferably a neutralizing activity of 10 nM or less, even more preferably 1 nM or less, as determined in an in vitro virus neutralization assay (VNA), e.g. as described in the Examples.


In certain embodiments, the binding molecules (i.e. the single domain antibodies or multi-domain antibodies) further comprise an Fc tail. Thus, in certain embodiments, the binding molecules, as described above, are linked to an Fc fragment of an antibody, preferably a human antibody, such as the Fc fragment of a human IgG antibody, e.g an IgG1, IgG2, IgG3, IgG4, or IgG4. According to the invention, the monomeric or multimeric binding molecules, as described herein, may be genetically fused to an Fc fragment, either directly or using a linker. In certain embodiments, the binding molecules are linked to the Fc fragment by a linking sequence comprising from 1 to 100 amino acids, preferably from 1 to 80 amino acids, or from 1 to 60 amino acids, or from 10 to 60 amino acids. Examples of linkers include, but are not limited to, the linking sequences in Table 15. Thus, in certain embodiments the linking sequence comprises an amino acid sequence selected from SEQ ID NO: 142-145. In certain embodiments, a sdAb or multi-domain antibody is genetically fused to the C-terminus of an Fc fragment. In further embodiments, a single domain antibody or multi-domain antibody is fused to both the N- and the C-terminus of an Fc fragment.


In certain embodiments, the Fc fragment is engineered to have minimal effector functions. Fc fragments with minimal effector function and conserved half-life have been described in the art and include e.g. IgG2, aglycosylated IgG1 (IgG1 agly), IgG4 with S228P/L234A/L235A substitutions (IgG4 ProAlaAla), IgG2 with H268Q/309UA330S/P331S changes (IgG2m4) and an Fc variant of IgG2, designated as IgG2σ, containing V234A/G237A/P238S/H268A/V309UA330S/P331S substitutions. With regard to mutated versions of IgG4, specific affinity for FcγR has been eliminated by the L234A/L245A substitutions.


In certain embodiments, the Fc fragment is engineered to have enhanced effector functions. The binding molecules of the invention thus can be engineered to enhance Fc-mediated effector functions, which in preclinical models of influenza infection have been shown to contribute to drug efficacy. Several mutations in the CH2 domain of human IgG1 associated with enhanced effector function have been described in the art. These mutations include, but are not limited to, alanine mutant at position 333 which increases both ADCC and CDC, a triple mutant (S239D/I332E/A330L) with higher affinity for FcγRIIIa and lower affinity for FcγRIIb resulting in enhanced ADCC, and another triple mutant (S239D/I332E/G236A) with improved FcγRIIIa affinity and FcγRIIa/FcγRIIb ratio that mediates enhanced phagocytosis. Other Fc mutations affecting effector functionality have been described in literature e.g. Strohl, 2009. In certain embodiments, the Fc fragment is engineered to have an extended serum half-life. Several engineered Fc backbones with increased serum half-life are known in the art. These Fc variants include, but are not limited to, hIgG1 Fc with M252Y/S254T/T256E (YTE) mutations, hIgG1 or hIgG2 Fc carrying T250Q/M428L mutations (QL), hIgG1 Fc with N434A mutation, hIgG1 Fc with T307A/E380A/N434A mutations (AAA) or hIgG1 Fc with M428L/N434S (LS) substitutions (Kuo et al., 2011). In further embodiments, the binding molecules (i.e. the single domain antibodies or the multi-domain antibodies according to the invention) are genetically fused to human serum albumin or a single domain antibody binding to serum albumin. In other embodiments, the single domain antibodies or the multi-domain antibodies according to the invention are chemically conjugated to PEG. The binding molecules of the invention thus can be engineered to have serum half-lives ranging from e.g. just a few hours to several weeks or even months. This opens the possibility for single dose treatment of influenza infection instead of a 2× daily regimen as currently used form the neuraminidase inhibitors, such as oseltamivir and zanamivir.


In further embodiments, the single domain antibody or multi-domain antibody as described above may be fused to an Fc tail, preferably an Fc tail which is engineered to promote the formation of a hetero-dimeric Fc molecule. Mutations promoting Fc-heterodimerization have been described in the art (Klein et al., 2012). In certain embodiments, the mutations promoting the FC-heterodimerization are the knobs-into-holes mutations as described in EP0812357B1 and EP0979281B1.


In certain embodiments, the multi-domain antibodies according to the present invention comprise at least one chain comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 74-107, SEQ ID NO: 110-121 and SEQ ID NO: 293-339.


In certain embodiments, the multi-domain antibodies comprise two chains, wherein the amino acid sequence of the two chains is identical. In certain embodiments, the two chains comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 74-105 and SEQ ID NO: 293-298. In certain embodiments, the two amino acid chains comprise an amino acid sequence of SEQ ID NO: 293-298.


In certain embodiments, the multi-domain antibodies comprise two different amino acid chains. In certain embodiments, the two different amino acid chains are selected from the group consisting of:


one chain comprising the amino acid sequence of SEQ ID NO: 299 and one chain comprising the amino acid sequence of SEQ ID NO: 300;


one chain comprising the amino acid sequence of SEQ ID NO: 301 and one chain comprising the amino acid sequence of SEQ ID NO: 302;


one chain comprising the amino acid sequence of SEQ ID NO: 303 and one chain comprising the amino acid sequence of SEQ ID NO: 305;


one chain comprising the amino acid sequence of SEQ ID NO: 306 and one chain comprising the amino acid sequence of SEQ ID NO: 307;


one chain comprising the amino acid sequence of SEQ ID NO: 308 and one chain comprising the amino acid sequence of SEQ ID NO: 309;


one chain comprising the amino acid sequence of SEQ ID NO: 310 and one chain comprising the amino acid sequence of SEQ ID NO: 311;


one chain comprising the amino acid sequence of SEQ ID NO: 312 and one chain comprising the amino acid sequence of SEQ ID NO: 313;


one chain comprising the amino acid sequence of SEQ ID NO: 315 and one chain comprising the amino acid sequence of SEQ ID NO: 315;


one chain comprising the amino acid sequence of SEQ ID NO: 316 and one chain comprising the amino acid sequence of SEQ ID NO: 317;


one chain comprising the amino acid sequence of SEQ ID NO: 318 and one chain comprising the amino acid sequence of SEQ ID NO: 319;


one chain comprising the amino acid sequence of SEQ ID NO: 106 and one chain comprising the amino acid sequence of SEQ ID NO: 317;


one chain comprising the amino acid sequence of SEQ ID NO: 320 and one chain comprising the amino acid sequence of SEQ ID NO: 321;


one chain comprising the amino acid sequence of SEQ ID NO: 322 and one chain comprising the amino acid sequence of SEQ ID NO: 323;


one chain comprising the amino acid sequence of SEQ ID NO: 324 and one chain comprising the amino acid sequence of SEQ ID NO: 325;


one chain comprising the amino acid sequence of SEQ ID NO: 326 one chain comprising the amino acid sequence of SEQ ID NO: 327;


one chain comprising the amino acid sequence of SEQ ID NO: 328 and one chain comprising the amino acid sequence of SEQ ID NO: 329;


one chain comprising the amino acid sequence of SEQ ID NO: 330 and one chain comprising the amino acid sequence of SEQ ID NO: 331;


one chain comprising the amino acid sequence of SEQ ID NO: 332 and one chain comprising the amino acid sequence of SEQ ID NO: 333;


one chain comprising the amino acid sequence of SEQ ID NO: 334 and one chain comprising the amino acid sequence of SEQ ID NO: 335;


one chain comprising the amino acid sequence of SEQ ID NO: 336 and one chain comprising the amino acid sequence of SEQ ID NO: 337; and


one chain comprising the amino acid sequence of SEQ ID NO: 338 and one chain comprising the amino acid sequence of SEQ ID NO: 339.


In certain embodiments, the two different amino acid chains are selected from the group consisting of:


one chain comprising the amino acid sequence of SEQ ID NO: 301 and one chain comprising the amino acid sequence of SEQ ID NO: 302;


one chain comprising the amino acid sequence of SEQ ID NO: 310 and one chain comprising the amino acid sequence of SEQ ID NO: 311;


one chain comprising the amino acid sequence of SEQ ID NO: 322 and one chain comprising the amino acid sequence of SEQ ID NO: 323; and


one chain comprising the amino acid sequence of SEQ ID NO: 330 and one chain comprising the amino acid sequence of SEQ ID NO: 331.


In yet another aspect, the present invention further provides nucleic acid molecules (also referred to as nucleic acid sequences) encoding the single domain antibodies or multi-domain antibodies as described above. Preferably, the nucleic acid sequences encode binding molecules comprising one or more of the CDR regions as described above.


In certain embodiments, the nucleic acid sequences encode a single domain antibody comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-29, or a homologous amino acid sequence.


In certain embodiments, the nucleic acid sequences encode a single domain antibody comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 146-226 and SEQ ID NO: 340, or a homologous amino acid sequence.


In certain embodiments, the nucleic acid sequences encode a multi-domain antibody comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 30-107, SEQ ID NO: 110-121 and SEQ ID NO: 293-339, or a homologous amino acid sequence.


A nucleic acid sequence according to the invention refers to a polymeric form of nucleotides and includes RNA, mRNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. A nucleotide refers to a ribonucleotide, deoxynucleotide or a modified form of either type of nucleotide. The term also includes single- and double-stranded forms of DNA. The skilled man will appreciate that functional variants of these nucleic acid molecules are also intended to be a part of the present invention. Functional variants are nucleic acid sequences that can be directly translated, using the standard genetic code, to provide an amino acid sequence identical to that translated from the parental nucleic acid molecules.


In preferred embodiments, the nucleic acid molecules encoding the binding molecules according to the invention are codon-optimized for expression in yeast cells or mammalian cells, such as human cells. Methods of codon-optimization are known and have been described previously (e.g. WO 96/09378). A sequence is considered codon-optimized if at least one non-preferred codon as compared to a wild type sequence is replaced by a codon that is more preferred. Herein, a non-preferred codon is a codon that is used less frequently in an organism than another codon coding for the same amino acid, and a codon that is more preferred is a codon that is used more frequently in an organism than a non-preferred codon. The frequency of codon usage for a specific organism can be found in codon frequency tables, such as in http://www.kazusa.or.jp/codon. Preferably more than one non-preferred codon, preferably most or all non-preferred codons, are replaced by codons that are more preferred. Preferably the most frequently used codons in an organism are used in a codon-optimized sequence. Replacement by preferred codons generally leads to higher expression.


It will also be understood by a skilled person that numerous different nucleic acid molecules can encode the same polypeptide as a result of the degeneracy of the genetic code. It is also understood that skilled persons may, using routine techniques, make nucleotide substitutions that do not affect the amino acid sequence encoded by the nucleic acid molecules to reflect the codon usage of any particular host organism in which the polypeptides are to be expressed. Therefore, unless otherwise specified, a “nucleic acid sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleic acid sequences can be cloned using routine molecular biology techniques, or generated de novo by DNA synthesis, which can be performed using routine procedures by service companies having business in the field of DNA synthesis and/or molecular cloning (e.g. GeneArt, GenScript, Life Technologies, Eurofins).


The invention also provides vectors comprising at least one nucleic acid sequence as described above. The term “vector” refers to a nucleic acid molecule into which a second nucleic acid molecule can be inserted for introduction into a host cell where it will be replicated, and in some cases expressed. In other words, a vector is capable of transporting a nucleic acid molecule to which it has been linked. Cloning vectors as well as expression vectors are contemplated by the term “vector”, as used herein. Certain vectors are capable of autonomous replication in a host into which they are introduced (e.g., vectors having a bacterial origin of replication can replicate in bacteria). Other vectors can be integrated into the genome of a host upon introduction into the host cell, and thereby are replicated along with the host genome. Vectors according to the invention can easily be made by methods well known to the person skilled in the art.


In certain embodiments, vectors comprising one or more nucleic acid molecules according to the invention operably linked to one or more expression-regulating nucleic acid sequences are provided. The term “expression-regulating nucleic acid sequence” as used herein refers to nucleic acid sequences necessary for and/or affecting the expression of an operably linked coding sequence in a particular host organism. The expression-regulating nucleic acid sequences, such as inter alia appropriate transcription initiation, termination, promoter, enhancer sequences; repressor or activator sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (e.g., ribosome binding sites); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion, can be any nucleic acid sequence showing activity in the host organism of choice and can be derived from genes encoding proteins, which are either homologous or heterologous to the host organism. The identification and employment of expression-regulating sequences is routine to the person skilled in the art. Suitable vectors according to the invention are e.g. adenovectors, such as e.g. Ad26 or Ad35, adenoassociated vectors (AAV), lentivirus, alphavirus, paramyxovirus, vaccinia virus, herpes virus, retroviral vectors etc.


In certain embodiments, the vectors are used for gene therapy purposes, as for example described by Adam et al. (2014), Johnson et al. (2009) and Suscovich and Alter (2015).


The invention further provides host cells comprising a nucleic acid sequence encoding a single domain antibody or a multi-domain antibody as described herein. “Host cells”, as used herein, refers to cells into which a vector such as a cloning vector or an expression vector has been introduced. The host cells can be prokaryotic or eukaryotic.


The present invention further provides pharmaceutical compositions comprising one or more single domain antibodies, multi-domain antibodies, nucleic acid molecules and/or vectors as described above. The pharmaceutical compositions of the invention may further comprise at least one pharmaceutically acceptable excipient. By “pharmaceutically acceptable excipient” is meant any inert substance that is combined with an active molecule such as a binding molecule according to the invention for preparing a suitable composition. The pharmaceutically acceptable excipient is an excipient that is non-toxic to recipients at the used dosages and concentrations, and is compatible with other ingredients of the formulation. Pharmaceutically acceptable excipients are widely applied and known in the art. The pharmaceutical composition according to the invention may further comprise at least one other therapeutic, prophylactic and/or diagnostic agent. Said further therapeutic and/or prophylactic agents may for example be agents that are also capable of preventing and/or treating an influenza virus infection, such as for example M2 inhibitors (e.g., amantidine, rimantadine) and/or neuraminidase inhibitors (e.g., zanamivir, oseltamivir). These can be used in combination with the binding molecules of the invention. “In combination” herein means simultaneously, as separate formulations, or as one single combined formulation, or according to a sequential administration regimen as separate formulations, in any order.


In a further aspect, the present invention provides single domain antibodies, multi-domain antibodies, nucleic acid molecules, and/or vectors as described herein for use in the diagnosis, prevention and/or treatment of an influenza infection. The invention furthermore provides the use of the single domain antibodies, multi-domain antibodies, nucleic acid molecules, and/or vectors as described herein in the manufacture of a medicament for the diagnosis, prevention and/or treatment of an influenza infection. Such infections can occur in small populations, but can also spread around the world in seasonal epidemics or, worse, in global pandemics where millions of individuals are at risk. The invention provides binding molecules that can neutralize the infection of influenza strains that cause such seasonal epidemics, as well as potential pandemics. Importantly, protection and treatment can be envisioned now with the binding molecules of the present invention irrespective of the causative influenza virus, as it has been disclosed that the binding molecules of the present invention are capable of cross-neutralizing various influenza subtypes of both phylogenetic group 1, encompassing e.g. H1, H2, H5, H6, H8, H9 and H11 subtypes, and phylogenetic group 2, encompassing e.g. H3, H4, H7 and H10 subtypes, as well as influenza B subtypes.


The invention further provides methods for preventing and/or treating influenza in a subject, comprising administering a therapeutically effective amount of a single domain antibody, multi-domain antibody, nucleic acid molecule, and/or vector as described herein to a subject in need thereof. The term “therapeutically effective amount” refers to an amount of the binding molecule or nucleic acid molecule as defined herein that is effective for preventing, ameliorating and/or treating a condition resulting from infection with an influenza virus. Ameloriation as used in herein may refer to the reduction of visible or perceptible disease symptoms, viremia, or any other measurable manifestation of influenza infection. Prevention encompasses inhibiting or reducing the spread of influenza virus or inhibiting or reducing the onset, development or progression of one or more of the symptoms.


Prevention and/or treatment may be targeted at patient groups that are susceptible to influenza infection. Such patient groups include, but are not limited to e.g., the elderly (e.g. ≥50 years old, ≥60 years old, and preferably ≥65 years old), the young (e.g. ≤5 years old, ≤1 year old), hospitalized patients and already infected patients who have been treated with an antiviral compound but have shown an inadequate antiviral response.


Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic response). A suitable dosage range may for instance be 0.01-100 mg/kg body weight, preferably 0.1-50 mg/kg body weight, preferably 0.01-15 mg/kg body weight. Furthermore, for example, a single bolus may be administered, several doses may be administered over time, or the dose may be proportionally reduced or increased as deemed necessary.


The binding molecules, nucleic acid molecules and/or vectors according to the invention may be administered to a subject for example intravenously, intranasally, via oral inhalation, pulmonary, subcutaneously, intradermally, intravitreally, orally, intramuscularly etc. The optimal route of administration will be influenced by several factors including the physicochemical properties of the active molecules, the urgency of the clinical situation and the relationship of the plasma concentrations of the active molecules to the desired therapeutic effect.


The high stability of binding molecules of the invention opens up the possibility for alternative, needle-free delivery, such as by intranasal administration using nose drops or nasal spray or via inhalation using a nebulizer or dry-powder inhaler. In certain embodiments, a nucleic acid molecule or vector encoding at least one single or multi-domain antibody according to the invention thus is administered intranasally, as described for example by Limberis et al. (2013).


Unlike conventional antibodies and many other biopharmaceuticals, the binding molecules of the invention can be produced very efficiently in microbial systems. Examples of microbial host cells used in large-scale manufacturing are for example yeast (P. pastoris) and E. coli. These microbial systems are considered as the most cost-effective option for biopharmaceutical manufacturing. Low COGs is a prerequisite for broad use of anti-flu drugs in influenza prophylaxis and treatment. In certain embodiments, the present invention thus provides methods for producing the binding molecules (i.e. the single domain antibodies or multi-domain antibodies) according to the invention, comprising culturing a host cell as described herein under conditions conducive to the expression of the binding molecule, and optionally, recovering the expressed binding molecule. Methods to recover the binding molecules from culture media are well known to the man skilled in the art.


In certain embodiment, the host cells are microbial cells, such as, but not limited to, yeast cells or E. coli.


In further embodiments, the host cells are mammalian cells, such as, but not limited to, CHO cells, HEK cells or PER.C6 cells.


The present invention further pertains to a method of detecting an influenza virus in a sample, wherein the method comprises the steps of a) contacting said sample with a diagnostically effective amount of a binding molecule according to the invention, and b) determining whether the binding molecule specifically binds to a molecule in the sample. The sample may be a biological sample including, but not limited to blood, serum, tissue or other biological material from (potentially) infected subjects. The (potentially) infected subjects may be human subjects, but also animals that are suspected as carriers of influenza virus might be tested for the presence of influenza virus using the binding molecules of the invention. Preferably, the binding molecules of the invention are contacted with the sample under conditions which allow the formation of an immunological complex between the binding molecules and the influenza virus or antigenic components thereof that may be present in the sample. The formation of an immunological complex, if any, indicating the presence of influenza virus in the sample, can then detected and measured by suitable means. Such methods include, inter alia, homogeneous and heterogeneous binding immunoassays, such as radioimmunoassays (RIA), ELISA, immunofluorescence, immunohistochemistry, FACS, BIACORE and Western blot analyses. The present invention is further illustrated in the following, non-limiting Examples.


EXAMPLES
Example 1: Immunizations

With the aim to induce a heavy-chain antibody dependent immune response, four llamas (Lama glama) were immunized with influenza virus antigens (commercial vaccine Inflexal® and recombinant protein) in the presence of Freund's adjuvant according to the scheme described in Table 1.









TABLE 1







Llama immunization scheme.



















Large

Large

Large

Final



Immu.
Immu.
bleed
Immu.
bleed
Immu.
bleed
Immu.
bleed



1
2
A (1)
3
B (2)
4
C (3)
5
D (4)









Day

















1
14
28
28
42
42
63
102
112





4
Inflexa
Inflexa
250
Inflexa
250
rH7
100
rH7 +
250


Llamas
1
1
mL
1
mL
(100
mL
rH2
mL



(1
(1

(1

μg)

(2 × 50 ug)




dose)
dose)

dose) +

SC,

SC,




SC,
SC,

rH7

IFA

IFA




CFA
IFA

(50 μg)











SC,











IFA





Inflexal 09/10: A/Brisbane/59/2007(H1N1), A/Brisbane/10/2007 (H3N2) B/Brisbane/60/2008;


H1N1 virus: A/New Caledonia/20/99;


rH: recombinant HA protein from Protein Sciences;


rH1: A/New Caledonia/20/99;


rH7: A/Netherlands/219/03;


rH2: A/Japan/305/1957;


B1: B/Florida/04/06;


B2: B/Brisbane/60/08;


Immu.: Immunization;


SC: subcutaneous;


CFA: Complete Freund Adjuvant;


IFA: Incomplete Freund Adjuvant






Peripheral blood was collected from the Llamas by venipuncture in citrate anti-coagulation sample tubes at the indicated time points after the 2nd, 3rd, 4th, and 5th immunization (Table 1).


The homologues and heterologous immune response in each animal was analyzed by comparing the antigen specific serum titers of a sample collected prior to immunization (day 0) and a serum sample collected after antigen administrations (day 28 and day 112) in an HA ELISA. To this end, recombinant HA protein was captured in a Maxisorp 96-well microtiter plates. After blocking, serial dilutions of serum samples were added, and bound llama IgG was detected by addition of goat anti-llama IgG-HRP. Results are shown in FIG. 1. These data show that all immunized animals generated a good homologous and heterologous immune response against HA.


Example 2: Phage Library Construction

Peripheral Blood Mononuclear Cells (PBMC) were isolated from fresh blood using Ficoll-Paque plus (GE Healthcare) according to manufacturer's instructions. Total RNA extracted from PBMC served as starting material for RT-PCR to amplify the VHH encoding gene fragments. These fragments were cloned via SfiI and NotI restriction sites into M13 phagemid vector pDV-LucStuffer (pDV-C06 derived; as described in WO 02/103012) to create a fusion of VHH domain with the pIII protein of the M13 phage (including an AMBER stop codon between the two proteins). Ligated vectors were transformed into TG-1 bacteria (Agilent) and 100-150 single colonies where analysed via PCR to determine the quality of each library. Insert frequency and completeness were typically more than 95%. The characteristics of the constructed libraries are shown in Table 2. Phage libraries from individual animals were prepared by using CT helper phages essentially as described (WO 02/103012), sterile filtered, and used for selections. As shown herein, complex phage libraries could be generated from all immunized llamas.









TABLE 2







Characteristics of VHH phage libraries.














#
# intact
% intact
of which
CDR3 length
Complexity



clones
ORF
ORF
% unique
amino acids
Cfu





L01
104
100
96
98
5-21 AA
6.8E+06


L02
117
114
97
95
5-27 AA
1.4E+07


L03
111
109
98
98
6-28 AA
1.7E+07


L04
111
109
98
96
5-23 AA
1.6E+07









Example 3: Selections of Single Domain Antibodies Against Influenza HA

Antibody fragments were selected using the VHH phage display libraries described above and general phage display technology and MABSTRACT® technology essentially as described in U.S. Pat. No. 6,265,150, in WO 98/15833, and in “Phage display, A Laboratory Manual” by T. Kuhlman, 2001 (which are incorporated by reference herein). Furthermore, the methods and helper phages as described in WO 02/103012 (which is incorporated by reference herein) were used in the present invention.


Selections of specific binders were performed with hemagglutinin (HA) of influenza A (H1 A/California/07/2009, H1 A/New Caledonia/20/1999, H2 A/Japan/305/1957, H3 A/Brisbane/10/2007, H7 A/Netherlands/219/2003) and/or influenza B (Victoria clade B/Brisbane/60/2008, Yamagata clade B/Florida/04/2006) as target protein. The target protein source was either insect cell produced recombinant protein (Protein Sciences, Connecticut, USA) or HA expressed on the surface of influenza infected and fixed (3% paraformaldehyde) MDCK cells. Various selection conditions were used and are summarized in Table 3. “SD” refers to single domain antibody. If not mentioned otherwise, selections were performed at pH 7.4 and with 5 μg/ml HA protein. CR8033 and CR8071 are monoclonal antibodies (IgG) binding to the head and neck of influenza B HA (Dreyfus et al. 2012).









TABLE 3







Phage display selection conditions











Single






domain
Library
Selection 1
Selection 2
Selection 3





SD1014
L03
H1 A/New Cal/20/99
H7 A/Neth/219/03,






pH5



SD1016
L04
H1 A/New Cal/20/99,
H7 A/Neth/219/03,





10 μg/mL
2 μg/mL



SD1017
L03
H1 A/New Cal/20/99,
H5 A/Vietnam/1203/04,





10 μg/mL
2 μg/mL



SD1018
L03
H1 A/New Cal/20/99,
H7 A/Neth/219/03





10 μg/mL




SD1025
L03
H1 A/New Cal/20/99
H7 A/Neth/219/03,






pH5



SD1027
L04
H1 A/New Cal/20/99
H7 A/Neth/219/03,






pH5



SD1034
L04
H3 A/Brisbane/10/07
H1 A/New Cal/20/99,






pH5



SD1035
L03
H3 A/Brisbane/10/07
H1 A/New Cal/20/99,






pH5



SD1036
L03
H3 A/Brisbane/10/07
H1 A/New Cal/20/99,






pH5



SD1038
L04
H3 A/Brisbane/10/07
H1 A/New Cal/20/99,






pH5



SD1045
L01
H1 A/New Cal/20/99,
H3 A/Brisbane/10/07,






pH5



SD1046
L01
H3 A/Brisbane/10/07
H1 A/California/07/09,






pH5



SD1047
L01
H3 A/Brisbane/10/07
H1 A/California/07/09,






pH5



SD1048
L02
H3 A/Brisbane/10/07
H1 A/California/07/09,






pH5



SD1049
L02
H3 A/Brisbane/10/07
H1 A/California/07/09,






pH5



SD1069
L03
H7 A/Netherl/219/03
H2 A/Japan/305/57,






pH5



SD1070
L03
H7 A/Netherl/219/03
H2 A/Japan/305/57,






pH5



SD1071
L04
H5 A/Vietnam/1203/04
H3 A/Uruguay/716/07,






pH5



SD1072
L04
H7 A/Netherl/219/03
H2 A/Japan/305/57,






5 μg/mL, pH5



SD1073
L04
H7 A/Netherl/219/03
H2 A/Japan/305/57,






pH5



SD1074
L04
H7 A/Netherl/219/03
H2 A/Japan/305/57,






pH5



SD1076
L07
H7 A/Netherl/219/03
H2 A/Japan/305/1957,






pH5



SD1083
L03
B/Brisbane/60/08
B/Florida/04/06 block with






CR8033 and CR8071



SD1084
L03
B/Brisbane/60/08
B/Florida/04/06 block with






CR8033 and CR8071



SD1085
L04
B/Brisbane/60/08
B/Florida/04/06



SD1086
L04
B/Brisbane/60/08
B/Florida/04/06



SD1087
L04
B/Brisbane/60/08
B/Florida/04/06



SD2020
L03
MDCK infected with H3
H3 A/Brisbane/10/07





A/Wisconsin/67/05
block with CR8057



SD2086
L03
B/Brisbane/60/08
B/Florida/04/06 block with
H3 A/Brisbane/10/07





CR8033 and CR8071
block with CR8057









For first round selections immunotubes were coated overnight with HA (5.0 μg/mL diluted in PBS) and washed with block buffer (2% non-fat dry milk (ELK) in PBS). Aliquots (5-10 μL) of the phage display libraries were blocked in 2 mL blocking buffer (5% non-heat inactivated fetal bovine serum (FBS), 1% mouse serum, and 2% ELK in PBS) and added to the immunotubes. After 2 h incubation at room temperature (RT) tubes were washed (5 to 15 times with 0.05% Tween-20 in PBS and 3 to 5 times with PBS). Bound phages were eluted for 10 min with triethylamine (100 mM) and the pH adjusted to 7.5. E. coli XL1-Blue were infected with eluted phages, plated, and incubation over night at 37° C. Colonies were counted (between 1E+04 and 1E+06 CFU) and scraped from the plates to prepare an enriched phage library (as described in WO 02/103012).


Second round selections were carried out using the phages rescued from the first round and followed essentially the same protocol with the exception of altered antigens, pH and or the addition of epitope blocking monoclonal antibodies. Variant panning strategies were applied with the aim to select strong binders specifically targeting the conserved stem region of HA. To select for cross-reactive single domain clones, also lower amounts of different HA antigens, compared to the first round selection were used. A low pH wash step was introduced in the protocol to increase the chance for selecting phages that can bind to the stem and block the conformational change of HA occurring at pH 5.0 (Brandenburg et al. 2013). Hereto the HA coated immunotubes were incubated for 10 min with 5 times diluted Tryple Select (recombinant trypsin; Invitrogen) to cleave the coated HA0 (into HA1-HA2) followed by washing and blocking steps. After incubation with the phages, the tubes were washed as described earlier, followed by 20 minutes incubation in citric acid sodium phosphate buffer at pH 5.1. After three PBS wash steps phage elution continued as described above. The addition of IgG1 antibodies (10 μg/mL) during selections blocks immune dominant epitopes at the head or neck of HA and can also increases the chance for selecting single domain phages binding to stem of HA. Antibodies CR8033 and CR8071 (Dreyfus et al. 2012) were added during blocking of HA coated immunotubes and during incubation with the phage libraries.


Two or three consecutive rounds of selections were performed before isolation of individual sdAbs. Each selection output was sequence analysed for enrichment factor and the best selections were chosen for further analysis. Individual E. coli colonies were picked to prepare periplasmic extracts containing crude monoclonal sdAbs. In brief, eluted phages were used to infect E. coli strain SF110′ cultures (2YT medium, 10 μg/mL tetracycline, 4% glucose), individual colonies where picked and grown in 96 deep well plates (1 mL 2YT-ATG medium). VHH domain expression was induced by adding IPTG (1 mM). Periplasmic extracts were prepared by dissolving bacteria pellets in 150 μL TES-buffer (100 mM Tris-HCl, 1 mM EDTA, 500 mM sucrose, pH 8.0) for 30 min on ice. The osmotic shock releases the periplasmic fraction and the cleared and sterile filtered sdAb containing supernatant was used for functional screening (see Example 4).


SdAbs from small scale productions (1 mL in 96 deep well plates) were purified and concentrated by using Ni-NTA 96-well spin plates according to manufacturer's instructions.


In parallel to periplasmic extract generations the remaining culture of individual clones were used to create glycerol stocks and to isolate plasmid DNA for sequencing of VHH genes. Unique sequences were further tested.


Cross-selections using HA proteins from influenza group 1, group 2 or B, as well as stringent wash steps at low pH allowed for the isolation of broadly HA binding phages. Periplasmic extractions of small scale E. coli productions resulted in reproducible protein levels suitable for functional screening.


Example 4: Functional Screening for Influenza Virus Neutralizing Single Domain Antibodies

SdAb containing periplasmic extracts were analyzed in a virus neutralization assay (VNA) for their ability to prevent influenza virus infection of mammalian cells. For this purpose, MDCK cells (ATCC, cat # CCL-34) were seeded in 96-well plates (4E+04 cells/well) and 4 h later incubated with a mixture of influenza virus (100 TCID50/well) and sterile filtered periplasmic extract (15 μL/well or dilutions thereof). After 3 days of incubation at 37° C. and 10% CO2, the amount of newly produced virus in the cell culture supernatant was assessed by hemagglutination of 1% turkey red blood cells (TRBC) in V-bottom plates (neutralizing sdAbs reduce viral load in the supernatant resulting in prevention of hemagglutination of TRBC). Since the sdAb input concentration is unknown for the periplasmic extracts, samples were only scored positive or negative for viral neutralization. Multiple influenza strains were tested in parallel to select preferably broad neutralizing sdAbs (see Table 3a).


In conclusion, functional screening resulted in sdAbs which can be classified as neutralizing A group 1, A group 2, A group 1 and 2, or influenza B viruses.









TABLE 3a







Functional screening for influenza neutralizing single domain antibodies (‘+’


represents neutralization, ‘−’ represents no neutralization, A g1 refers to influenza A group 1,


A g2 refers to influenza A group2, B refers to influenza B; empty cells mean ‘not tested’)


























A/








A/




NIBRG/








Puerto




60







A/New
Rico/
A/PR8
A/
A/
A/HK/
(A/







Caledonia/
8/34-
H5N1
Vietnam/
Brisbane/
1/68-
mallard/
B/
B/
B/




20/99
MA
HK97
1194/04
10/2007
MA
NL/12/00)
Brisbane/
Florida/
Lee/














Single
A group 1
A group 2
60/08
04/06
40
















Class
domain
H1N1
H1N1
H5N1
H5N1
H3N2
H3N2
H7N3
B





















A g1
SD1016
+
+
+
+








A g1
SD1018
+


+








A g1
SD1027
+


+








A g1
SD1071
+


+








A g1
SD1072
+


+








A g1
SD1074
+


+








A g1
SD1076
+
+
+
+








A g1
SD1034
+
+

+








A g1
SD1035
+











A g2
SD1014




+

+





A g2
SD1017





+
+





A g2
SD1025




+

+





A g2
SD1036




+
+
+





A g2
SD1046




+
+
+





A g2
SD1047






+





A g2
SD1048




+
+
+





A g2
SD1049




+
+
+





A g2
SD1070




+

+





A g2
SD2020




+







A g1 + g2
SD1038
+
+
+
+
+
+
+





A g1 + g2
SD1045
+
+
+
+
+







A g1 + g2
SD1069
+
+
+
+


+





A g1 + g2
SD1073
+
+
+
+


+





B
SD1083







+
+
+


B
SD1084







+
+



B
SD1085







+
+



B
SD1086







+

+


B
SD1087







+

+


B
SD2086









+









Example 5: Single Domain Antibody Expression and Purification

Relevant sdAb sequences were cloned into a standard eukaryotic expression vector suitable for use in Expi293 suspension cells. Production runs were performed for 5-6 days. Expressed sdAbs are secreted in cell culture media. Before complete depletion of glucose from the medium, the culture supernatant was harvested, centrifuged, and sterile filtered. SdAbs were purified using an anti-His resin containing nickel ions (cOmplete HIS-Tag column; Roche, cat #06781543001) and eluted using a high concentration of Imidazole (300 mM). The eluate was buffer exchanged to its final formulation buffer (20 mM NaAc, 75 mM NaCl, 5% Sucrose pH5.5) using a desalting column (HiPrep 26/10 desalting column, GEHC cat #17-5087) and concentrated using Amicon Ultra 3K spin filter (Millipore, cat # UFC900324). After concentration determination, pure sdAbs aliquots were further characterization by SDS-PAGE, HPSEC, SEC-MALS and endotoxin determination. A minimum yield of 5 mg of purified sdAb out of a transfection volume of 600 mL was obtained for all constructs. Only sdAb batches with more than 95% monomeric content and correct molecular mass where used for further characterization.


For selected applications sdAbs without tags (e.g. HIS-tag) were desired. Non-tagged sdAbs were purified via multi-step Ion Exchange Chromatography (IEX). The cleared and filtered supernatant was diluted two-fold in dH2O to lower the conductivity, the pH set to 8.0, and the sample was loaded onto a positively charged Capto Q Impress resin (GEHC, cat #17-5470-02). Non-charged sdAbs remained in the flow through which was then adjusted to pH 3.5. Now positively charged sdAbs were captured on a negatively charged HiTrap Capto SP ImpRes column (GEHC, cat #17-5468-55) and eluted using a high concentration of sodium chloride. The pI of a sdAb can vary greatly and this method was used for molecules with a negative to +1.0 charge at pH 8 and at least a charge of more than +10 in the range of pH 3 to 5. Eluted sdAbs were further treated as described above.


As shown herein, Expi293 cell expression and purification strategies based on HIS-tag and on ion-exchange for tag-less constructs yielded high quantity and quality of monomeric sdAb constructs.


Example 6: Characterization of Single Domain Antibodies

Breadth of Influenza Virus Neutralization


Neutralizing titers of purified sdAbs were assessed by testing a range of concentrations on a large panel of influenza virus strains using the virus neutralization assay as described in Example 4. Titers are reported in Table 4-7. Based on their activity, sdAbs can be divided in influenza A group 1 (encompassing of H1, H5, H2, H6, H11, H9, H8, and H12 viruses) neutralizing molecules, influenza A group 2 (encompassing of H3, H4, H14, H7, and H10 viruses) neutralizing molecules, and influenza B (encompassing Yamagata, Victoria, and Predecessor/Old viruses) neutralizing molecules. Interestingly, some of the sdAbs were capable of neutralizing influenza A viruses from both group 1 and group 2 (Table 6).









TABLE 4







Average neutralization titers (nM) for A group 1 class single domain antibodies


(empty cells mean ‘not tested’)

















Subtype
Influenza virus strain
SD1016
SD1018
SD1027
SD1034
SD1035
SD1071
SD1072
SD1074
SD1076




















H1N1
A/California/07/09
9.1







3.1



A/New Caledonia/20/99
7.1
>1000
862.0
160.6
74.8
1256.4
78.5
112.9
22.1



A/Puerto Rico/8/34-MA
15.7


756.1




8.7


H5N1
A/PR8 H5N1 HK97
27.8







66.8



A/Vietnam/1194/04
29.3
614.6
>1000
721.5
>1000
111.1
443.9
638.4
84.7


H2N2
A/Guiyang/1/57








>1000



A/WF/HK/MPU3156/05








38.5


H3N2
A/Brisbane/10/07
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000



A/HK/1/68-MA
>1000


>1000




>1000



A/Panama/2007/99
>1000











A/Wisconsin/67/05
>1000







>1000


H4
A/WF/HK/MPA892/06
>1000







>1000


H7N3
A/NIBRG/60
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000



(A/mallard/NL/12/00)











H7N7
A/PR8 H7N7-NY
>1000










H10N7
A/Chick/Germany/N/49
>1000







>1000


Victoria
B/Brisbane/60/08
>1000










Yamagata
B/Florida/04/06
>1000
















TABLE 5







Average neutralization titers (nM) for A group 2 class single domain antibodies


(empty cells mean ‘not tested’)


















Subtype
Influenza virus strain
SD1014
SD1017
SD1025
SD1036
SD1046
SD1047
SD1048
SD1049
SD1070
SD2020





















H1N1
A/California/07/09
>1000
>1000

>1000
>1000

>1000
>1000
>1000




A/New Caledonia/20/99
>1000
>1000
>1000
>1000
>1000

>1000
>1000
>1000




A/Puerto Rico/8/34-MA
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000




A/Brisbane/59/07
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000





A/Mississippi/03/01 274H



>1000









A/Solomon Islands/3/2006



>1000









(IVR 145)













A/WSN/33



>1000









A/HK/54/98



>1000









A/Christchurch/16/10



>1000








H1N2
A/Env/HK/MPU3156/05



>1000








H5N1
A/PR8 H5N1 HK97



>1000
>1000

>1000






A/Vietnam/1194/04
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000



A/Indonesia/5/05



>1000








H5N2
A/Eurasian



>1000









Wigeon/MPF461/07













A/Eurasian



>1000









Wigeon/HK/MPF333/07












H2N2
A/Guiyang/1/57



>1000









A/AnnArbor/23/57



>1000









A/Env/HK/MPU3156/05



>1000








H6N1
A/Eurasian



>1000









Wigeon/MPG1884/09













A/Taiwan/2/2013



>1000








H6N8
A/Eurasian



>1000









Wigeon/MPD411/07












H11N9
A/Northern



>1000









Pintail/MPC2085/07












H9N2
A/Ck/HK/SSP176/09



>1000









A/Great



677.4









Cormorant/MP2934/04













A/HK/466419/09



>1000








H8N4
A/Eurasian



>1000









Wigeon/MPH571/08












H8N2
A/Env/MPJ1258/09



>1000








H12N5
A/Env/MPK659/09



>1000








H3N2
A/Brisbane/10/07
>1000
>1000
>1000
86.7
6.6

19.5
19.1
15.3
9.3



A/HK/1/68



114.6
202.0








A/HK/1/68 (D375N, I395V)



>1000
>1000








A/HK/1/68 (E443K)



>1000
202.0








A/HK/1/68 (G379R)



>1000
570.7








A/HK/1/68 (I395V)



>1000
>1000








A/HK/1/68 (L331I, E443K)



>1000
202.0








A/HK/1/68 (N85, E443K)



>1000
202.0








A/HK/1/68 (R201G, L331I,



>1000
339.3








E443K)













A/HK/1/68-MA
>1000
>1000
>1000
73.2
26.4
>1000
110.4
76.1





A/Panama/2007/99



>1000
>1000

>1000






A/Wisconsin/67/05
>1000
>1000

>1000
>1000

>1000
>1000
>1000
304.0



A/Fukui/45/04



>1000









A/Aichi/2/68



6.5









A/Hiroshima/52/05



>1000









A/Johannesburg/33/94



600.6









A/Perth/16/09



76.4









A/Victoria/210/09



540.2









A/HK/1174/99



>1000








H3N?
A/Env/MPJ193/09



41.0








H4
A/WF/HK/MPA892/06



40.4
34.3

34.3





H4N1
A/Northern



80.7









Pintail/MPB1368/06












H4N6
A/Great



44.5









Cormorant/MPB1683/06












H14N5
A/Mallard/Astrakhan/263/



16.2









1982












H7N3
A/N1BRG/60
136.8
34.7
52.0
10.9
26.4
509.7
20.6
114.6
366.2
>1000



(A/mallard/NL/12/00)












H7N7
A/PR8 H7N7-NY



8.8
25.9

93.0






A/Northern



44.7









Shoveler/MPF518/08













A/Netherlands/219/2003



28.9









A/Common Teal/MPF139/07



18.3








H7N9
A/Anhui/1/13



65.9
46.1








A/Shanghai/1/13



101.2









A/Shanghai/2/13



33.0








H10N7
A/Chick/Germany/N/49



22.2
34.3

34.3





H10N8
A/Jiangxi/346/2013



83.9








H10N3
A/Common Teal/MPH11/08



28.9








H10N9
A/Northern



19.9









Shoveler/MPE2531/08












Victoria
B/Brisbane/60/08



>1000
>1000

>1000





Yamagata
B/Florida/04/06



>1000
>1000

>1000

>1000
















TABLE 6







Average neutralization titers (nM) for A group 1 and 2 class single domain


antibodies (empty cells mean ‘not tested’)












Subtype
Sample
SD1038
SD1045
SD1069
SD1073















H1N1
A/California/07/09
17.5
85.9
3.3
30.3



A/New Caledonia/20/99
10.1
165.6
20.8
98.9



A/Puerto Rico/8/34-MA
8.8
206.4
12.8
89.6



A/Brisbane/59/07
3.1






A/Mississippi/03/01 274H
4.7






A/Solomon Islands/3/2006 (IVR
4.1






145)







A/WSN/33
5.0






A/HK/54/98
16.5






A/Christchurch/16/10
2.6





H1N2
A/Env/HK/MPU3156/05
40.5





H5N1
A/PR8 H5N1 HK97
9.7
117.2
241.7
179.1



A/Vietnam/1194/04
30.1
63.5
74.0
223.9



A/Indonesia/5/05
32.8





H5N2
A/Eurasian Wigeon/MPF461/07
18.8






A/Eurasian
11.0






Wigeon/HK/MPF333/07






H2N2
A/Guiyang/1/57
101.7






A/WF/HK/MPU3156/05
31.4






A/AnnArbor/23/57
33.0






A/Env/HK/MPU3156/05
23.2





H6N1
A/Eurasian Wigeon/MPG1884/09
16.2






A/Taiwan/2/2013
15.3





H6N8
A/Eurasian Wigeon/MPD411/07
13.2





H11N9
A/Northern Pintail/MPC2085/07
160.0





H9N2
A/Ck/HK/SSP176/09
90.8






A/Great Cormorant/MP2934/04
104.6






A/HK/466419/09
700.0





H8N4
A/Eurasian Wigeon/MPH571/08
53.4





H8N2
A/Env/MPJ1258/09
58.7





H12N5
A/Env/MPK659/09
>1000





H3N2
A/Brisbane/10/07
19.0
640.9
>1000
>1000



A/HK/1/68
40.2
>1000
>1000
>1000



A/Fukui/45/04
632.5






A/Aichi/2/68
127.2






A/Johannesburg/33/94
442.7






A/Perth/16/09
253.0






A/Victoria/210/09
253.0





H3N?
A/Env/MPJ193/09
185.4





H4
A/WF/HK/MPA892/06
>1000
492.4
>1000
>1000


H4N1
A/Northern Pintail/MPB1368/06
484.7





H4N6
A/Great Cormorant/MPB1683/06
275.2





H14N5
A/Mallard/Astrakhan/263/1982
253.0





H7N3
A/NIBRG/60
>1000
>1000
>1000
135.1



(A/mallard/NL/12/00)






H7N7
A/PR8 H7N7-NY
80.6
>1000





A/Northern Shoveler/MPF518/08
441.4






A/Netherlands/219/2003
180.6






A/Common Teal/MPF139/07
359.1





H7N9
A/Anhui/1/13
253.0






A/Shanghai/1/13
503.0






A/Shanghai/2/13
239.1





H10N7
A/Chick/Germany/N/49
468.6
984.7
>1000
316.6


H10N8
A/Jiangxi/346/2013
239.1





H10N3
A/Common Teal/MPH11/08
300.6





H10N9
A/Northern Shoveler/MPE2531/08
327.0





Victoria
B/Brisbane/60/08
>1000
>1000




Yamagata
B/Florida/04/06
>1000
>1000
















TABLE 7







Average neutralization titers (nM) for B class single domain antibodies (empty cells


mean ‘not tested’).














Subtype
Sample
SD1083
SD1084
SD1085
SD1086
SD1087
SD2086

















Victoria
B/Brisbane/60/08
178.5
20.5
40.7
826.6
10.2
934.2



B/Malaysia/2506/04
293.8
34.9
66.3
>1000
79.1
546.1


Yamagata
B/Florida/04/06
219.7
68.8
186.9
>1000
>1000
814.7



B/Harbin/7/94
258.9
240.0
631.2
>1000
503.0
963.8



B/Massachusetts/02/12

40.0






Old
B/Lee/40
216.7
>1000


6.5
273.1










Breadth of Binding to HA


The biolayer interferometry platform Octet Red384 (Forté Bio, Pall) was used for label free real time binding analysis of protein—protein interactions in a fast dip and read method on the surface of specific sensors. The shift in detected mass at the tip of a functionalized sensor allowed for studying the binding of sdAbs to recombinant HA. When done over a range of concentrations, not only a general binding but also the KD of sdAbs was determined.


Purified sdAbs with a C-terminal HIS tag were capture on an anti-His sensor (loading phase, Anti-Penta-His sensors, Forté Bio, cat #18-0020). Subsequently the sdAb loaded sensors was incubated with different HA subtypes (20 μg/mL) to test for binding (association phase). The last step of the assay is incubating the sensors in kinetic buffer to determine the dissociation rate of the HA-sdAb complex. Binding capabilities of tested sdAbs are listed in Table 8. Often, sdAbs bind HAs of more strains than they are able to neutralize. The broader binding spectrum is related to their individual affinity for HA (see also Table 9 with KD values).









TABLE 8







Label free detection of sdAb binding to HA (‘+’ represents binding to HA, ‘−’


represents no binding, A g1 refers to influenza A group 1, A g2 refers to influenza A group2,


refers to influenza B; empty cells mean ‘not tested’).






























A/








A/






NIBRG/







A/
Puerto






60







New
Rico/

A/
A/



(A/







Caledonia/
8/
A/
PR8
Vietnam/
A/
A/
A/
mallard/







20/
34-
Brisbane/
H5N1
1194/
Brisbane/
HK/
Wisconsin/
NL/
B/
B/
B/




99
MA
59/07
HK97
04
10/07
1/68
67/05
12/00)
Brisbane/
Florida/
Lee/














Single
A group 1
A group 2
60/08
04/06
40


















Class
domain
H1N1
H1N1
H1N1
H5N1
H5N1
H3N2
H3N2
H3N2
H7N3
B























A g1
SD1016
+
+
+
+
+









A g1
SD1018
+



+









A g1
SD1071
+



+









A g1
SD1072
+



+









A g1
SD1074
+



+









A g1
SD1076
+
+
+
+
+









A g1
SD1035
+

+











A g2
SD1017





+
+

+





A g2
SD1025





+


+





A g2
SD1070





+


+





A g2
SD2020





+








Ag1 + g2
SD1014
+



+
+
+

+





Ag1 + g2
SD1027
+



+
+


+





Ag1 + g2
SD1034
+
+
+

+
+
+







Ag1 + g2
SD1036
+



+
+
+

+





Ag1 + g2
SD1038
+
+
+
+
+
+
+

+





Ag1 + g2
SD1045
+
+
+
+
+
+








Ag1 + g2
SD1046
+

+

+
+
+

+





Ag1 + g2
SD1047
+



+

+

+





Ag1 + g2
SD1048
+



+
+
+

+





Ag1 + g2
SD1049
+



+
+
+

+





Ag1 + g2
SD1069
+
+
+
+
+
+


+





Ag1 + g2
SD1073
+
+

+
+



+





B
SD1083









+
+
+


B
SD1084









+
+



B
SD1085









+
+



B
SD1086









+
+
+


B
SD1087









+
+
+









Label free biolayer interferometry was also used to determine the equilibrium dissociation constants (KD values) as measure of the binding potencies between the sdAbs and recombinant HA molecules of different Influenza strains. The KD values were determined by fitting the binding responses of a sdAb concentration range at steady state (average binding response of the last 10 seconds measured at the plateau in association phase) to obtain the concentration at 50% of the saturation, which reflects the KD value (R=Rmax*[sdAb]/(KD+[sdAb])). Serial dilutions were measured in duplicate and geometric mean KD values are reported in Table 9.









TABLE 9





Affinity of selected sdAbs. Geometric mean KD values (nM) of sdAb binding to HA


(empty cells mean ‘not tested’)





















H1N1







A/New
H1N1
H3N2
H3N2
H3N2



Caledonia/20/1999
A/Brisbane/59/07
A/HK/1/68
A/Wisconsin/67/05
A/Brisbane/10/2007





SD1036
230
290
 2
122
10


SD1038
 4
 3
44
 42
14


SD1016
 6






SD1045
 5






SD1046




 2


SD1048




 3


SD1083







SD1084
















H7N3






A/NIBRG/60
H7N9
Victoria




(A/mallard/NL/12/00)
A/Hangzhou/1/2013
B/Brisbane/60/08






SD1036
 2
 3




SD1038
88
57




SD1016






SD1045






SD1046
 3





SD1048
 3





SD1083


 3



SD1084


109










Competition of Single Domain Antibodies with Other HA Binders


Binding competition studies were designed to screen sdAbs for competition amongst themselves and against other HA binding proteins, including well characterized monoclonal antibodies (IgG) with known epitopes on HA. If competition was observed it is assumed that both molecules bind to a similar or at least overlapping epitope at the surface of HA.


Hereto an AlphaLISA competition assay (Perkin Elmer) was established which relied on biotinylated HA (Protein Sciences, 10 μL, 0.5 nM final concentration in 50 μL) bound by IgGs or His-tagged sdAbs (Perkin Elmer, 10 μL, 0.3 nM final concentration in 50 μL). The interaction between HA and the binder was detected after 1 h incubation at RT with two beads, a streptavidin donor bead recognizing HA (10 μL of 10 μg/mL) and an anti Fc or anti His acceptor bead (10 μg/mL) recognizing either the IgGs or sdAbs used. If after an additional hour of incubation the excited donor bead (680 nm) and acceptor bead are in close proximity, an energy transfer (singlet oxygen) can be measured as a luminescence signal of the acceptor bead. The signal intensity in this homogeneous assay format is directly proportional to the binding strength (affinity/avidity) between both binding partners. A competitor, depending on its affinity and concentration (usually tested in a range from 100 nM to 0.5 pM) can disrupt the AlphaLISA signal leading to a sigmoidal inhibitor curve which is fitted with a standard four parameter logistic nonlinear regression model in SPSS. Averages of calculated pIC50 values are shown in Table 10 and 11.


Table 10 and 11 show the average of AlphaLISA pIC50 values (negative log of half maximal inhibitory concentration, higher values indicate exponentially greater potency). ‘H1_Cal_HA’ refers to H1N1 A/California/07/2009, ‘H1_NCa_HA’ refers to HA of H1N1 A/New Caledonia/20/1999, ‘H5_Vie_HA’ refers to HA of H5N1 A/Vietnam/1203/2004, ‘H3_Bri_HA’ refers to HA of H3N2 A/Brisbane/10/2007, ‘H3_Wis_HA’ refers to HA of A/Wisconsin/67/2005, ‘H7_Net_HA’ refers to the HA of H7N7 A/Netherlands/219/2003; B_Bri_HA’ refers to HA of B/Brisbane/60/2008; ‘B_Flo_HA’ refers to HA of B/Florida/04/2006 ‘CR8033’, ‘CR8071’ and ‘CR9114’ are HA binding IgGs characterized by Dreyfus et al. 2012. ‘2D1’ refers to an IgG binding to the receptor binding site of HA characterized by Xu et al. (2010). ‘CR8020’ is an IgG binding to the stem of HA characterized by Ekiert et al. (2011). ‘39.29’ is an IgG binding to the stem of HA characterized in WO2014078268. All SDxxxx possess a His tag used for detection except for indicated ‘tagless’ versions. Empty cells mean ‘not tested’.









TABLE 10







SdAb competition for binding to influenza A HA.
















SD1014
SD1016
SD1036
SD1038
SD1046
SD1083
SD1084
SD1087


















H1_Cal_HA_2D1


<7
<7
<7


<7


H1_Cal_HA_CR9114
<7
10.3
<7
9.9
<7


<7


H1_NCa_HA_CR9114
<7
9.9
<7
10.1






H1_Cal_HA_SD1038


<7
9.9

<7
<7
<7


H5_Vie_HA_CR9114
<7
9.6
<7
9.3






H3_Bri_HA_CR8020
7.2
<7
9.2
7.8
9.6





H3_Bri_HA_CR8057
<7
<7
<7
<7
<7





H3_Bri_HA_CR9114
7.8
<7
9.4
8.6
9.9


<7


H3_Bri_HA_SD1036


9.1
7.9



<7


H3_Bri_HA_SD1038


9.3
8.3

<7
<7
<7


H3_Bri_HA_39.29


9.2
8.3



<7


H3_Wis_HA_CR9114
<7
<7
7.8
8.0






H3_Wis_HA_CR8020
<7
<7
7.2
7.2






H3_Wis_HA_CR8057
<7
<7
<7
<7






H7_Net_HA_CR9114
9.2
<7
9.3
7.5






H7_Net_HA_SD1038





<7
<7
















TABLE 11







SdAb competition for binding to influenza B HA.
















SD1014
SD1036
SD1038
SD1083
SD1084
SD1085
SD1086
SD1087


















B_Bri_HA_CR8071



<7
<7

<7
<7


B_Bri_HA_CR9114
<7
<7
<7
9.4
7.4

8.6
7.5


B_Bri_HA_SD1083

<7

8.9






B_Bri_HA_SD1084

<7

<7
9.7





B_Bri_HA_SD1085

<7

8.7






B_Bri_HA_SD1086

<7

9.1






B_Bri_HA_SD1087

<7

9.0
<7





B_Flo_HA_CR8033



<7
8.5
<7
<7
<7


B_Flo_HA_CR8071



<7
<7

<7



B_Flo_HA_CR9114



9.3
8.0

8.0
8.8


B_Flo_HA_SD1083

<7

9.0






B_Flo_HA_SD1084

<7

<7






B_Flo_HA_SD1085

<7

8.9






B_Flo_HA_SD1086

<7

9.2






B_Flo_HA_SD1087

<7

9.1










Block of Receptor Binding—Hemagglutination Inhibition


The hemagglutination inhibition assay, a common variation of the HA assay, was used to test sdAbs for the ability to bind near the top of the HA head-region and physically block the interaction with sialic acid receptors on target cells, here red blood cells. If an sdAb at sufficient concentration blocks the interaction with sialic acid then “agglutination” (red blood cells clumping together) is inhibited. A serial dilution of sdAbs was prepared in PBS (25 μL/well) and 25 μL of 8 HAU/50 μL virus dilution was added and mixed. After incubation for 1 h at 37° C., 50 μL of 1% turkey red blood cells (TRBC) were added and mixed. After incubation for 30 to 60 min at RT the agglutination pattern is scored visually (tear formation). Besides quadruplicate samples and positive control antibodies, a back titration of the input virus is taken along. The hemagglutination inhibition titer, the minimal concentration at which all interaction of virus with sialic acid receptors on TRBC is blocked was calculated using the Spearman-Karber formula.


The results are shown in Table 12. All influenza A binding sdAbs were negative (i.e. having HI titers>50 μg/mL).









TABLE 12







Hemagglutination inhibition titers (μg/mL) of single domain antibodies


(empty cells mean ‘not tested’).










B
H5N1













B/Brisbane/
B/Florida/
B/Harbin/

A/Vietnam/



60/08
04/06
7/94
B/Lee/40
1194/04















SD1083
>50
>50
>50
>50
>50


SD1084
0.07
0.42
1.10

>50


SD1087
>50
>50
>50
>50
>50









In conjunction with its binding and neutralization profile, SD1084 was shown to be a potent HA head binder and prevents the binding to sialic acid receptors.


Inhibition of Conformational Change of HA by Stem Binding sdAbs


To prove that stem binding sdAbs, similarly to the antibodies they compete with, prevent the conformational change of HA and thereby block viral fusion and subsequent infection, an assay has been developed which measures the presents of the HA head (HA1) after low pH treatment and reduction of the connecting disulfide bridge between HA1 and HA2 (Brandenburg et al. 2013).


The conformational change assay is based on label-free detection and performed using the biolayer interferometry platform Octet Red384 (Forté Bio, Pall). First a batch of C-terminally biotinylated recombinant HA is cleaved (250 μg of HA incubated with 10 μL 0.05% Trypsin-EDTA for 20 min at 37° C. then 30 μL DTI are added to stop the Trypsin activity). The HA (2 μg/mL) is then captured on streptavidin sensors (Forté Bio, cat #18-5020) in the Octet subsequently incubated with the binding partner (sdAbs, positive and negative control antibodies at up to 50 nM). After this incubation step, the sensors will be exposed to a pH range (pH6.5 to 5.0 in 0.2 pH steps). If the binding partner does not stabilize and arrest HA it will undergo conformational change; the HA1 head domain moves away while the HA2 domain, encompassing the fusion machinery, refolds and protrudes the fusion peptide outwards. HA1 will now only be connected to HA2 via a disulfide bridge that can be reduced by DTT exposure in the final assay step (50 mM DTT in PBS). HA1 will then dissociate from the biotinylated HA2 domain, resulting in the detection of a significant loss of mass on the detector. Results are summarized in Table 13.









TABLE 13







Prevention of conformational change of HA by single domain antibodies.













H1
H3
H7





A/
A/
A/NIBRG/60
H7
Victoria



Brisbane/
HK/1/
(A/mallard/
A/Hangzhou/
B/Brisbane/



59/07
68-MA
NL/12/00)
1/2013
60/08





SD1036

++
++
++



SD1038
++
+
+/−
+/−



SD1046
+
++





SD1069
++
++





SD1083




++


SD1084







SD1087




++





‘++’ refers to strong and ‘+’ to medium inhibition of conformational change of HA.


‘−’ refers to no inhibition.


Empty cells mean ‘not tested’.






The results show that the HA stem binding sdAbs are capable of preventing the conformational change of HA according to their neutralization profile. This ability requires the sdAb to stay bound at low pH similar to the conditions in late endosomes. The level of block of the conformational change is positively correlated with their neutralization titer on the respective influenza strains.


Single Domain Antibody Sequences


The sequences of selected and characterized sdAbs according to the invention are listed in Table 14. The sequences of the CDR regions are listed in Table 14a.









TABLE 14







Sequences of single domain antibodies according to the invention.











Single

SEQ ID


Class
domain
Sequence
NO:













A g1
SD1018
EVQLVESGGGLVQAGGSLRLSCAASGQTYHMGWFRQTPGNERESVAAVTWSGAVTRYADSVKGRFTISR
1




DNAKNTVYLQMNSLVPEDTAIYYCAATRSMAPIIQLSPGSYDYWGPGTQVTVSS





A g1
SD1071
EVQLVESGGGLVQTGESLRLSCAFSGFTYSTYWMYWVRQGPEKGLKWVSSTNAAGTVTYYAANVRDRFT
2




ASKDNAKNTLYLQMNRLKPEDTGLYYCASKDGLIVAATLDDYDYRGQGTQVTVSS





A g1
SD1035
EVQLVESGGGLVQAGGTLRLSCAASGSAVSISRMAWYRQAPGKQRELVADIFSGGGTNYADSVKGRFTI
3




SRDNAKNTVDLQMNSLKPEDTAVYYCSARSAVAAIHWDQYDYWGQGTQVTVSS





A g1
SD1016
EVQLVESGGGLVQAGGSLRLSCVASGMFFGIAAMGWYRQAPGKQRELVANITSDFSTNYADSVKDRFTI
4




SRDNAENTVYLQMNSLKPEDTAVYYCAADSLGTGWRHYYYWGQGTQVTVSS





A g1
SD1072
EVQLVESGGGLVEAGGSLRLSCAVSGRTFSMYATGWFRQAPGKEREFVAAINSSGDKTTYADSVEGRFT
5




ISRDIGTVYLQMNNLNPEDTAVYYCAAARTLAVVTIPGGYEYWGQGTQVTVSS





A g1
SD1074
EVQLVESGGGLVQAGGSLRLSCAASRNFDAIGAMGWYRQAPGKQRELVAEITSDGSTNYTDSVKGRFTI
6




SRDNALRTMYLQMNALEPEDTAVYYCKADISIYGLTNFPYWGQGTQVTVSS





A g1
SD1076
EVQLVESGGGLVQAGGSLTLSCAGSGFAFSIATMGWYRQAPGKQRELVADITSGGSTNYADSVKGRFTI
7




SRDNAKNTVYLQMNSLKPEDTAVYYCNADSLATGWRQYSYWGKGTQVTVSS





A g2
SD1017
EVQLVESGGGLVQAGGSLRLSCAASGRTYAMAWFRQAPGKEREFVAHINALGTRAYYSDSVEGRFTISR
8




DNAKNTGYLQMNSLEPEDTAVYVCAAGGQWRAAPVADAAQYDFWGQGTQVTVSS





A g2
SD1025
EVQLVESGGGLVQAGGSLRLSCAASGRTYAMAWFRQAPGKEREFVAHINALGTRTYYSDSVQGRFTISR
9




DNAKNTEYLQMNSLKPEDTAVYYCAAGGQWRAAPVADAAQYDFWGQGTQVTVSS





A g2
SD1070
EVQLVESGGGLVQAGGSLRISCAASGRTFSIYSMGWFRQAPGKEREFVATIGWNSGRTFYADSMKERFT
10




ISADNARNTLYLQMNSLKFEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSS





A g2
SD2020
EVQLVESGGGLVQPGGSLRLSCAAAGGAFNRQLVAWFRQAPGKKREFVATVTTSGGSSYYADSVKGRFT
11




ISRDTAKNTVALQMNSLKAEDAAVYYCAARDSFTVAPYYPPESYAYWGQGTQVTVSS





A g1 + g2
SD1069
EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTI
12




SRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVTVSS





A g1 + g2
SD1046
EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFT
13




ISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSS





A g1 + g2
SD1048
EVQLVESGGGVVQPGGSLRLSCVASGRTSSMYSIGWFRQAPGKEREFVAVIGWYSGRTFYTDSMKGRFT
14




ISRDNARNTVYLQMNSLKPEDTAVYYCAAANGPLRLSNQADYWGQGTQVTVSS





A g1 + g2
SD1049
EVQLVESGGGLVQAGGSLRLSCAASGRTLSLYSVGWFRQAPGKEREFVATIGWNSGRTFYVDSMKGRFT
15




ISRDNAKNTVYLQMNDLKVEDTAVYYCAAAKGPLRLSNQADYWGQGTQVTVSS





A g1 + g2
SD1027
EVQLVESGGGMVQAGGSLRLSCAASGGTFSLYHMGWFRQAPGEEREFVAAISGSGGNTYYADSVKGRFT
16




ISRDNNKNTVYLQMSSLEPEDTAVYFCAAMKWPGILRDANAYDYWGQGTQVTVSS





A g1 + g2
SD1036
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISR
17




DNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSS





A g1 + g2
SD1014
EVQLVESGGGLVQAGGSLTLSCAASGRTYAMAWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISR
18




DNAKNTEYLQMNSLNPEDTAVYYCAAGGQWRAAPVADAAQYDFWGQGTQVTVSS





A g1 + g2
SD1047
EVQLVESGGGLVQAGGSLRISCAASGRTYAMAWFRQAPGKEREFVAHINALGTRTYYSDSVKDRFTISR
19




DNAKNTEYLQMNSLKPEDTAVYYCVAGGQWRAAPVAAAESYDFWGQGTQVTVSS





A g1 + g2
SD1038
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTI
20




SRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSS





A g1 + g2
SD1045
EVQLVESGGGLVQAGGSLRLSCAASGSSFSINVMGWYRQAPGKQREMVATITYGGSTNYVDSVKGRFTI
21




SRDNAKNTVYLQMNSLKPEDTAVYYCNSRLAQINYWGQGTQVTVSS





A g1 + g2
SD1073
EVQLVESGGGLVQAGGSLRLSCAASGSAFSIAAMGWYRQAPGKQRELVATITTGGSTNYADSVKGRFTI
22




SRDNSKNTAYLQMNSLKPEDTAVYYCTAKSVVAETFGDLYNYWGQGTQVTVSS





A g1 + g2
SD1034
EVQLVESGGGLVQAGGSLRLSCAASGTIFGIRVNTMGWYRQAPGEQRELVATITRSGGTNYADSVKDRF
23




TISGDFAKDTVYLQMMHLKPEDTAVYYCNGRWALTDYWGQGTQVTVSS





B
SD1083
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFT
24




ISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSS





B
SD1084
EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTI
25




SRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





B
SD1085
EVQLVESGGGLVQAGDSLRLSCVISGLSLDTYAVGWFRQAPGKEREGITCISSGHGMTYYADSVKGRFT
26




VSTDNAKNTVYLQMNGLQPEDTARYYCATESRYYCSDNWPAPQRYIYWGQGTQVTVSS





B
SD1087
EVQLVESGGGLVQPGGSLRLSCVISGLSLDTYAVGWFRQAPGKEREGITCISSGHGMTYYADSVKGRFT
27




VSTDNAKNTVYLQMNGLQPEDTARYYCATESRYYCSDNWPAPQRYIYWGQGTQVTVSS





B
SD1086
EVQLVESGGGLVQAGGSLRLSCTASGSISSIDYMRWYRQYPGKHRELVATITSGGAADSRDSVKGRFTV
28




SRGNAANTMYLQMNNLKPEDTAVYYCNAYGLEIGAHWGRGTQVTVSS





B
SD2086
EVQLVESGGGLVQAGGSLRLSCATSGQTFSSYAMGWFRQAPGKEREFVAAISWNGGSTYYADSVKGRFT
29




ISRESPENLVYLQMNSLKPEDTAVYYCAARGAYYTGSYYLGSTYDYWGQGTQVTVSS
















TABLE 14a







Sequences of CDR regions of single domain antibodies


according to the invention











CDR1 (SEQ ID NO)
CDR2 (SEQ ID NO)
CDR3 (SEQ ID NO)














SD1018
QTYHMG (227)
AVTWSGAV (228)
AATRSMAPIIQLSPGSYDY (229)





SD1071
FTYSTYWMY (230)
STNAAGTV (231)
ASKDGLIVAATLDDYDY (232)





SD1035
SAVSISRMA (233)
DIFSGGG (234)
SARSAVAAIHWDQYDY (235)





SD1016
MFFGIAAMG (236)
NITSDFS (237)
AADSLGTGWRHYYY (238)





SD1072
RTFSMYATG (239)
AINSSGDK (240)
AAARTLAVVTIPGGYEY (241)





SD1074
NFDAIGAMG (242)
EITSDGS (243)
KADISIYGLTNFPY (244)





SD1076
FAFSIATMG (245)
DITSGGS (246)
NADSLATGWRQYSY (247)





SD1017
RTYAMA (248)
HINALGTR (249)
AAGGQWRAAPVADAAQYDF (250)





SD1025
RTYAMA (251)
HINALGTR (252)
AAGGQWRAAPVADAAQYDF (253)





SD1070
RTFSIYSMG (254)
TIGWNSGR (255)
AAAKGPLRLSSQADY (256)





SD2020
GAFNRQLVA (257)
TVTTSGGS (258)
AARDSFTVAPYYPPESYAY (259)





SD1069
PTFGMSAMG (260)
AISGLGN (261)
AQRKVYHVQGGDRPQAYDY (262)





SD1046
RTLSIYSMG (263)
TIGWNSGR (264)
AAAKGPLRLSSQADY (265)





SD1048
RTSSMYSIG (266)
VIGWYSGR (267)
AAANGPLRLSNQADY (268)





SD1049
RTLSLYSVG (269)
TIGWNSGR (270)
AAAKGPLRLSNQADY (271)





SD1027
GTFSLYHMG (272)
AISGSGGN (273)
AAMKWPGILRDANAYDY (274)





SD1036
RTYAMG (275)
HINALGTR (276)
TAQGQWRAAPVAVAAEYEF (277)





SD1014
RTYAMA (278)
HINALGTR (279)
AAGGQWRAAPVADAAQYDF (280)





SD1047
RTYAMA (281)
HINALGTR (282)
VAGGQWRAAPVAAAESYDF (283)





SD1038
SIFDIYAMD (284)
TSFRDGS (285)
HVSLYRDPLGVAGGMGVY (286)





SD1045
SSFSINVMG (287)
TITYGGS (288)
NSRLAQINY (289)





SD1073
SAFSIAAMG (290)
TITTGGS (291)
TAKSVVAETFGDLYNY (292)





SD1034
TIFGIRVNTMG
TITRSGG (122)
NGRWALTDY (123)



(293)





SD1083
FTLENKAIG (124)
CISKSGSW (125)
ATTTAGGGLCWDGTTFSRLASS (126)





SD1084
FTFSTSWMY (127)
VINTDGG (128)
AKDWGGPEPT (129)





SD1085
LSLDTYAVG (130)
CISSGHGM (131)
ATESRYYCSDNWPAPQRYIY (132)





SD1087
LSLDTYAVG (133)
CISSGHGM (134)
ATESRYYCSDNWPAPQRYIY (135)





SD1086
SISSIDYMR (136)
TITSGGA (137)
NAYGLEIGAH (138)





SD2086
QTFSSYAMG (139)
AISWNGGS (140)
AARGAYYTGSYYLGSTYDY (141)









In conclusion, virus neutralization assays performed with purified, monomeric sdAb constructs confirmed the four different classes of sdAbs: influenza A group 1, A group 2, A group 1 and group 2, or influenza B neutralizing sdAbs. Nevertheless, binding studies indicate that many A group 1 or A group 2 neutralizing sdAb can also bind HA belonging to the group they fail to neutralize. This results in a significantly larger number of A group 1 and A group 2 binding sdAbs. SdAb which can neutralize or at least bind influenza A and B where not found. SdAbs capable of broadly binding and neutralizing where selected for further characterization (including SD1038, SD1036, SD1083, and SD1084). Determination of the affinity towards HA shows a positive correlation between binding strength and neutralization titer of selected sdAbs. Epitope mapping via competition assays with known HA binding molecules revealed that all but SD1084 bind to the conserved stem of HA. The concentration at which the competition occurred is positively correlated with the neutralization titer meaning that stronger binding and competition results in lower neutralization titers. SD1084 on the other hand binds near or at the sialic acid binding site of the HA head, as demonstrated in the hemagglutination inhibition assay, and can prevent the cellular entry of influenza virus by blocking the receptor binding. All other selected sdAbs can bind HA1 and HA2 in the stem of HA and prevent the conformational change of HA during the fusion process as demonstrated in the conformational change assay.


Example 7: Generation and Characterization of sdAb Homo- and Heterodimers

Generation of sdAb Homo- and Heterodimers


For the creation of sdAb homo- and heterodimers the sdAb coding sequences were either cloned together or the full-length gene was directly synthesized (Genscript) and ligated into the eukaryotic expression vector. In the sdAb dimer constructs the C-terminus of the first sdAb (front) was linked to the N-terminus of the second sdAb (back). The linker sequences of different length (10, 15, 35, and 57 amino acids) consist of amino acids glycine (G) and serine (S). When cloned together, a restriction site (NotI) directly following the first sdAb results in three additional alanine (A) residues. Linker sequences are shown in Table 15 and complete amino acid sequences of the sdAb dimers are shown in Table 16 (influenza A targeting constructs) and in Table 17 (influenza B targeting constructs). The position of sdAbs (front or back) was varied in constructs to allow for the most optimal combination. Expression and purification were performed as described in Example 5.









TABLE 15







Linker sequences for generation of


multi-domain antibody constructs.








Type
Sequence





10GS-linker
GGGGS GGGGS (SEQ ID NO: 142)





15GS-linker
GGGGS GGGGS GGGGS (SEQ ID NO: 143)





35GS-linker
GGGGS GGGGS GGGGS GGGGS GGGGS GGGGS



GGGGS (SEQ ID NO: 144)





57GS-linker
GGGGS GGGGS GGGGS GGGGS GGGGGGS GGGGS



GGGGS GGGGS GGGGS GGGGS GGGGS



(SEQ ID NO: 145)
















TABLE 16







Sequences of SD1036 and SD1038 homo- and heterodimers.









Construct
Sequence
SEQ ID NO:





MD1213
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISR
30



DNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAAGGGGSGGGGSGG



GGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFT



ISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSS





MD1209
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISR
31



DNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAAGGGGSGGGGSGG



GGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVA



HINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQ



GTQVTVSS





MD1215
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISR
32



DNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAAGGGGSGGGGSGG



GGSGGGGSGGGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAA



SGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYC



TAQGQWRAAPVAVAAEYEFWGQGTQVTVSS





MD1214
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTI
33



SRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSG



GGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRF



TISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSS





MD1211
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTI
34



SRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSG



GGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFV



AHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWG



QGTQVTVSS





MD1210
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISR
35



DNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAAGGGGSGGGGSGG



GGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRD



LVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWG



KGALVTVSS





MD1212
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTI
36



SRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSG



GGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQR



DLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYW



GKGALVTVSS





MD1216
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTI
37



SRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSG



GGGSGGGGSGGGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCA



ASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYY



CTAQGQWRAAPVAVAAEYEFWGQGTQVTVSS
















TABLE 17







Sequences of SD1083 and SD1084 homo- and heterodimers.









Construct
Sequence
SEQ ID NO:





MD1221
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFT
38



ISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAAGGGGSG



GGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQT



PGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDG



TTFSRLASSWGQGTQVTVSS





MD1222
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFT
39



ISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAAGGGGSG



GGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQA



PGKGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQG



TQVTVSS





MD1223
EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTI
40



SRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAAGGGGSGGGGSGGGGSGGGG



SGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISK



SGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQG



TQVTVSS





MD1224
EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTI
41



SRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAAGGGGSGGGGSGGGGSGGGG



SGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINT



DGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS










Influenza Neutralization by sdAb Homo- and Heterodimers


Purified sdAb homo- and heterodimers were tested in influenza virus neutralization assays as described in Example 6 and showed improved potency and breadth when compared to sdAb building blocks. Results are shown for influenza A neutralizing dimers in Table 18 and for influenza B neutralizing dimers in Table 19.









TABLE 18







Influenza neutralization titers of SD1036 and SD1038 homo- and


heterodimers (titers of sdAbs SD1036 and SD1038 are also listed


for comparison, empty cells mean ‘not tested’).












H1N1
H1N1
H5N1
H3N2



A/California/
A/Puerto Rico/
A/Vietnam/
A/Wisconsin/


Construct
07/09
8/34-MA
1194/04
67/05














SD1036
<1000
<1000
<1000
<1000


SD1038
17.5
8.8
30.1
<1000


MD1213
2.4
27.8
<1000
18.6


MD1209
10.1
221.2
<1000
109.1


MD1215
4.1
39.6
917.9
34.1


MD1212
3.7
11.7
14.8
49.5


SD1036 +

6.8
19.3
<1000


SD1038






MD1214
1.4
7.5
0.9
12.5


MD1211
4.0
9.9
7.6
19.3


MD1210
2.5
21.9
21.4
118.3


MD1216
1.4
9.7
3.4
12.1
















TABLE 19







Influenza neutralization titers of SD1083 and SD1084 homo- and


heterodimers (titers of sdAbs SD1083 and SD1084 are also listed for


comparison, empty cells mean ‘not tested’).











Victoria
Yamagata
Old













B/Brisbane/
B/Malaysia/
B/Florida/
B/Harbin/
B/Lee/


Construct
60/08
2506/04
04/06
7/94
40















SD1083
178.5
293.8
219.7
258.9
216.7


SD1084
20.5
34.9
68.8
240.0
<1000


MD1221
23.4

76.4

32.5


MD1222
3.0
3.6
2.1
7.2
12.7


MD1223


2.3

18.0


MD1224
4.1
2.7
0.8
4.5
33.0










HA Binding of sdAb Homo- and Heterodimers


Purified sdAb homo- and heterodimers were tested in binding assays as described in Example 6 and showed improved binding strength (avidity) when compared to sdAb building blocks. Results are shown for influenza A neutralizing dimers in Table 20.









TABLE 20







Geomean KD values (nM) of SD1036 and SD1038 homo- and


heterodimers (empty cells mean ‘not tested’).












H1N1


H7N3



A/New
H3N2
H3N2
A/NIBRG/60



Caledonia/
A/Wisconsin/
A/Brisbane/
(A/mallard/



20/1999
67/05
10/2007
NL/12/00)














MD1210
0.7

1.7
1.2


MD1212
1.4
0.8
2.3
1.5


MD1211
1.7
0.9
1.8
2.1


MD1209
1.9

1.8
1.4









Example 8: Generation and Characterization of Multi-Domain Antibody Constructs

Generation of sdAb Multimers


For the creation of sdAb multimers (trimers, tetramers and pentamers) the sdAb coding sequences were either cloned together or the full-length gene was directly synthesized (Genscript) and ligated into the eukaryotic expression vector. The linker sequences of different length (10 or 35 amino acids) consist of amino acids glycine (G) and serine (S). When cloned together, a restriction site (Not) directly following the first sdAb results in three additional alanine (A) amino acids and 2 consecutive restriction sites (PacI and XhoI) directly following the second sdAb results in five additional amino acids (LINLE). Linker sequences are shown in Table 15 and complete amino acid sequences of sdAb trimers are shown in Table 23 and of sdAb tetramers and pentamers in Table 24. The position of sdAbs within constructs was varied to allow for the most optimal combination. Expression and purification were performed as described in Example 5.









TABLE 23







Sequences of trimeric multi-domain antibody constructs.








Construct



(SEQ ID


NO:)
Sequence





MD1301
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKN


(42)
TLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGS



GGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFT



ISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGSGGGGSGGGG



SGGGGSGGGGSGGGGSGGGGSPAGEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCIS



KSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVS



S





MD1302
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKN


(43)
TLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGS



GGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFT



ISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGSGGGGSGGGG



SGGGGSGGGGSGGGGSGGGGSPAGEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVIN



TDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD2301
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAE


(44)
NTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQ



PGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPED



TAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAM



GWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVA



AEYEFWGQGTQVTVSS





MD2302
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKN


(45)
TLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSL



RLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVY



YCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAM



GWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVA



AEYEFWGQGTQVTVSS





MD2303
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKN


(46)
TLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSL



KLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCT



AQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWF



RQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFS



RLASSWGQGTQVTVSS





MD2304
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAE


(47)
NTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQ



PGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPED



TAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDI



YAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVA



GGMGVYWGKGALVTVSS





MD2305
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKN


(48)
TLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSL



RLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVY



YCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDI



YAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVA



GGMGVYWGKGALVTVSS





MD2306
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKN


(49)
TLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSL



RLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYL



CHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGW



FRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTF



SRLASSWGQGTQVTVSS





MD2307
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAE


(50)
NTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQ



AGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPE



DTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDSLRLSCAASGPTFGMSA



MGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRP



QAYDYWGQGTQVTVSS





MD2308
EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNAR


(51)
NTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRL



SCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYC



ATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDSLRLSCAASGPTFGMSA



MGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRP



QAYDYWGQGTQVTVSS





MD2309
EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNAR


(52)
NTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDSLRL



SCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVYYCA



QRKVYHVQGGDRPQAYDYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWF



RQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFS



RLASSWGQGTQVTVSS





MD2310
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAE


(53)
NTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQ



AGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPED



TAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLS



IYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLS



SQADYWGQGTQVTVSS





MD2311
EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRN


(54)
TVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGS



LRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAV



YYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDSLRISCAASGRTLS



IYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYCAAAKGPLRLS



SQADYWGQGTQVTVSS





MD2312
EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRN


(55)
TVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDS



LRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAV



YYCAAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWF



RQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFS



RLASSWGQGTQVTVSS





MD2313
EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNAR


(56)
NTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDSLRI



SCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYC



AAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQT



PGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLA



SSWGQGTQVTVSS





MD2314
EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRN


(57)
TVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDS



LRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYSDDVKGRFTISRENGRNTVYLQMNSLKPEDTAVY



YCAQRKVYHVQGGDRPQAYDYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAI



GWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGT



TFSRLASSWGQGTQVTVSS





MD2317
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKN


(58)
TLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGDSL



RISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVY



YCAAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFR



QTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSR



LASSWGQGTQVTVSS





MD2320
EVQLVESGGGLVQAGDSLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNAR


(59)
NTLYLQMNNLRPEDTAVYYCAAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRL



SCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCH



VSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFR



QTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSR



LASSWGQGTQVTVSS





MD2322
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKN


(60)
TLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSL



RLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYL



CHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDW



YRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGV



YWGKGALVTVSS
















TABLE 24







Sequences of tetrameric and pentameric multi-domain antibody constructs.








Construct



(SEQ ID


NO:)
Sequence





MD2401
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(61)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGG



GSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKG



RFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGSGGGGS



GGGGSGGGGSGGGGSGGGGSGGGGSPAGEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREG



VLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQG



TQVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLE



NKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGL



CWDGTTFSRLASSWGQGTQVTVSS





MD2402
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(62)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGG



GSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKG



RFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGSGGGGS



GGGGSGGGGSGGGGSGGGGSGGGGSPAGEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREG



VLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQG



TQVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFS



TSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPT



RGQGTQVTVSS





MD2403
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(63)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGG



GSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKG



RFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGSGGGGS



GGGGSGGGGSGGGGSGGGGSGGGGSPAGEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEW



VSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAAGGG



GSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGS



EREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASS



WGQGTQVTVSS





MD2404
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(64)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGG



GSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKG



RFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSLINLEGGGGSGGGGS



GGGGSGGGGSGGGGSGGGGSGGGGSPAGEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEW



VSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAAGGG



GSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGK



GLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD2405
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(65)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGGSGGGGSGGGGSGGG



GSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSV



KGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSLINLEGGGGSGGGG



SGGGGSGGGGSGGGGSGGGGSGGGGSPAGEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLE



WVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAAGG



GGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPG



KGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD2406
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(66)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGG



SLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTA



VYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIY



AMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVA



GGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLV



ATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVS



S





MD2407
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(67)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGG



SLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVY



YCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKA



IGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWD



GTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKG



LEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD3401
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(68)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGG



SLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTA



VYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENK



AIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCW



DGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGK



GLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD3402
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(69)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGD



SLRISCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDT



AVYYCAAAKGPLRLSSQADYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAI



GWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDG



TTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGL



EWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD3403
EVQLVESGGGLVQAGDSLRLSCAASGPTFGMSAMGWFRQAPGKEREFVAAISGLGNPNYADDVKGRFTISREDGR


(70)
NTVYLQMNSLKPEDTAVYYCAQRKVYHVQGGDRPQAYDYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAG



GSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAV



YYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENK



AIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCW



DGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGK



GLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD3404
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(71)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGG



SLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVY



YCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCVISGLSLDTYA



VGWFRQAPGKEREGITCISSGHGMTYYADSVKGRFTVSTDNAKNTVYLQMNGLQPEDTARYYCATESRYYCSDNW



PAPQRYIYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLE



WVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD3405
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(72)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGG



SLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVY



YCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLRLSCATSGQTFSSYA



MGWFRQAPGKEREFVAAISWNGGSTYYADSVKGRFTISRESPENLVYLQMNSLKPEDTAVYYCAARGAYYTGSYY



LGSTYDYWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEW



VSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD2501
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAK


(73)
NTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQPGG



SLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTA



VYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMG



WFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVA



AEYEFWGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVL



CISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQ



VTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYA



DSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS










Influenza Neutralization by Multi-Domain Antibodies


Purified multi-domain antibodies were tested in influenza virus neutralization assays as described in Example 6 and showed improved potency and breadth when compared to sdAb building blocks. Results are shown for influenza neutralizing trimers in Table 25 and for tetramers and pentamers in Table 26.









TABLE 25







Average neutralization titers (nM) of trimeric multi-domain antibody constructs


(empty cells mean 'not tested’).
















H1N1
H5N1
H2N2
H3N2
H7N3
H7N7
H7H9
B



















A/New

A/
A/


A/
A/NIBRG/60
A/PR8
A/
B/



Caledonia/
A/Puerto Rico/
Vietnam/
Guiyang/
A/WF/HK/
A/Brisbane/
Wisconsin/
(A/mallard/
H7N7-
Anhui/
Florida/


Construct
20/99
8/34-MA
1194/04
1/57
MPU3156/05
10/07
67/05
NL/12/00)
NY
1/13
04/06





















MD2301
14.7





34.7



412.3


MD2302
14.7





34.7



412.3


MD2303
7.2
9.1
9.1


12.8
15.0
10.2
18.2

412.3


MD2304
20.6





18.2






MD2305
4.3





21.7






MD2306
6.1

4.7


10.7
5.4
15.4





MD2307


21.6


30.4

18.1





MD2308


21.6


15.3

12.8





MD2309


12.8


12.8

9.1





MD2310


21.6


25.5

30.4





MD2311


12.8


21.6

15.3





MD2312


5.8
<1000
21.6
18.1

7.7

43.2



MD2313


>1000


7.7

6.5

21.7



MD2314


6.5


>1000

>1000





MD2317






12.8
12.8
12.8




MD2320






>1000
15.3
15.3




MD2322






7.3
6.1
14.7
















TABLE 26





Average neutralization titers (nM) of tetrameric and pentameric multi-domain


antibody constructs (empty cells mean ‘not tested’).






















Type
Virus strain
MD2401
MD2402
MD2404
MD2406
MD2407
MD2408





H1N1
A/California/07/09




3.4



H1N1
A/New Caledonia/20/99




5.7



H1N1
A/Puerto Rico/8/34-MA
14.7
12.8
12.2

7.3



H1N1
A/Brisbane/59/07




3.7



H1N1
A/Mississippi/03/01 274H




4.8



H1N1
A/Solomon Islands/3/2006 (IVR 145)




5.4



H1N1
A/WSN/33




4.8



H1N1
A/HK/54/98




10.3



H1N1
A/Christchurch/16/10




1.3



H1N2
A/Env/HK/MPU3156/05




25.6



H5N1
A/PR8 H5N1 HK97




3.6



H5N1
A/Vietnam/1194/04
27.7
23.8
20.4

9.2



H5N1
A/Indonesia/5/05




16.2



H5N2
A/Eurasian Wigeon/MPF461/07




16.6



H5N2
A/Eurasian Wigeon/HK/MPF333/07




26.0



H2N2
A/Guiyang/1/57




125.6



2N2
A/AnnArbor/23/57




101.2



2N2
A/Env/HK/MPU3156/05




19.2



H6N1
A/Eurasian Wigeon/MPG1884/09




20.6



H6N1
A/Taiwan/2/2013
36.3







H6N8
A/Eurasian Wigeon/MPD411/07




20.9



H11N9
A/Northern Pintail/MPC2085/07




34.5



H9N2
A/Ck/HK/SSP176/09




23.0



H9N2
A/Great Cormorant/MP2934/04




19.6



H9N2
A/HK/466419/09




53.9



H8N4
A/Eurasian Wigeon/MPH571/08




15.1



H8N2
A/Env/MPJ1258/09




8.8



H12N5
A/Env/MPK659/09




>1000



H3N2
A/Brisbane/10/07




10.6
6.8


H3N2
A/HK/1/68-MA
27.7
28.3
57.7

25.9



H3N2
A/Panama/2007/99




14.9



H3N2
A/Wisconsin/67/05



4.6
19.1



H3N2
A/Fukui/45/04




19.2



H3N2
A/Aichi/2/68




9.9



H3N2
A/Hiroshima/52/05




10.5



H3N2
A/Johannesburg/33/94




11.6



H3N2
A/Perth/16/09




8.1



H3N2
A/Victoria/210/09




6.5



H3N2
A/HK/1174/99




76.0



H3N?
A/Env/MPJ193/09




24.5



H4
A/WF/HK/MPA892/06




6.8



H4N1
A/Northern P intail/MPB 1368/06




8.2



H4N6
A/Great Cormorant/MPB1683/06




4.8



H14N5
A/Mallard/Astrakhan/263/1982




19.2



H7N3
A/NIBRG/60
27.7
33.6
34.3
4.6
13.8




(A/mallard/Netherlands/12/00)








H7N7
A/PR8 H7N7-NY



11.0
22.3
27.2


H7N7
A/Northern Shoveler/MPF518/08




36.1



H7N7
A/Netherlands/219/2003




33.0



H7N7
A/Common Teal/MPF139/07




57.4



H7N9
A/Anhui/1/13




64.6



H7N9
A/Shanghai/1/13 (R292K Tamiflu




87.1




escape mutant)








H7N9
A/Shanghai2/13




54.2



H10N7
A/Chick/Germany/N/49




13.2



H10N8
A/JiangM/346/2013




30.4



H10N3
A/Common Teal/MPH11/08




19.3



H10N9
A/Northern Shoveler/MPE2531/08




35.0



Victoria
B/Brisbane/60/08




4.1
27.2


Victoria
B/Malaysia/2506/04




9.2
38.4


Yamagata
B/Florida/04/06
277.1
14.1
2.1

7.6
64.6


Yamagata
B/Harbin/7/94




6.4
27.2


Yamagata
B/Massachusens/02/12




3.0



Old
B/Lee/40
164.8
35.4
30.3

18.4
32.3


















Type
MD2409
MD2410
MD2411
MD2412
MD2413
MD2501






H1N1





3.0



H1N1





4.8



H1N1





8.5



H1N1





3.0



H1N1





4.9



H1N1





3.9



H1N1





2.9



H1N1









H1N1





1.3



H1N2









H5N1





4.9



H5N1





6.5



H5N1









H5N2









H5N2









H2N2





19.9



2N2









2N2









H6N1





16.0



H6N1









H6N8









H11N9





16.0



H9N2









H9N2









H9N2





16.0



H8N4





16.0



H8N2









H12N5









H3N2
13.6
19.2
6.8
11.5
9.7
9.6



H3N2





19.0



H3N2





18.1



H3N2





14.1



H3N2





21.2



H3N2





12.6



H3N2





6.5



H3N2





11.6



H3N2





5.7



H3N2





5.8



H3N2









H3N?









H4





3.9



H4N1









H4N6









H14N5





15.6



H7N3





13.8



H7N7
19.2
27.1
19.3
19.3
16.3
14.0



H7N7









H7N7









H7N7









H7N9





73.8



H7N9





63.0



H7N9





36.5



H10N7





14.9



H10N8









H10N3









H10N9









Victoria
64.6
22.8
38.6
38.6
19.3
5.0



Victoria
38.4
38.3
38.6
38.6
38.7
8.8



Yamagata
108.7
91.2
38.6
38.6
38.7
8.3



Yamagata
64.6
19.2
22.9
38.6
19.3
4.3



Yamagata





4.0



Old
38.4
19.2
38.6
45.9
38.7
14.6










Multi-Domain Antibody Binding to HA


Label free biolayer interferometry was also used to determine the equilibrium dissociation constants (KD values) as measure of the binding potencies between the multi-domain antibodies and recombinant HA molecules of different Influenza strains at pH 7.4. The KD values were determined by fitting the binding responses of a MD concentration range at steady state (average binding response of the last 10 seconds measured in the plateau of the association phase) to obtain the concentration at 50% of the saturation, which reflects the KD value (R=Rmax*[sdAb]/(KD+[sdAb])). Serial dilutions were measured in duplicate and geometric mean KD values are reported in Table 27.









TABLE 27







Geometric mean KD values (nM) of multi-domain antibody constructs binding to


HA at pH 7.4 (empty cells mean ‘not tested’).


















H7N3






H1N1
H3N2
H3N2
A/NIBRG/60
H7N9
Victoria
Yamagata



A/Brisbane/59/07
A/HK/1/68-MA
A/Wisconsin/67/05
(A/mallard/NL/12/00)
A/Hangzhou/1/2013
B/Brisbane/60/08
B/Florida/04/06





MD1221





1.7
1.9


MD2407
2.8
2.2
0.5
1.2
1.7
3.1



MD3606
2.2
1.4
0.6
1.1
1.2
3.8










Inhibition of Conformational Change of HA by Stem Binding sdAbs


To prove that multi-domain antibodies containing HA stem binding sdAb building blocks, similarly to the antibodies they compete with, prevent the conformational change of HA and thereby block viral fusion and subsequent infection, an assay was performed as described in Example 6. Results are summarized in Table 29.









TABLE 29







Prevention of conformational change of HA by multi-domain antibodies.













H1N1

H7N3
H7N9
Victoria



A/
H3N2
A/NIBRG/60
A/
B/



Brisbane/
A/HK/
(A/mallard/NL/
Hangzhou/
Brisbane/



59/07
1/68
12/00)
1/2013
60/08





MD2407
++
++
++
++
+


MD1221




++


MD3606
++
++


+





‘++’ refers to strong and ‘+’ to medium inhibition of conformational change of HA.


‘−’ refers to no inhibition.


Empty cells mean ‘not tested’.






Linking 3 or more sdAbs together can significantly improve potency and breadth of neutralization compared to the individual building blocks. Thus, influenza strains which could not be neutralized by any of the sdAbs individually can reliably be neutralized by multimeric constructs of the same sdAbs. The combination of sdAbs neutralizing influenza A group 1, A group 2, or B resulted in multi-domains capable of neutralizing virtually all tested strains. The increase in breadth of neutralization is related to the underlying breadth of binding of used sdAbs. The increase in avidity for HA in addition to possible other neutralization mechanisms related to the bivalent nature of the constructs are thought to be responsible for the described improvements. Blocking of viral fusion as the mechanism of viral neutralization was confirmed for tested dimers and multi-domains.


Example 9: Generation and Characterization of Fc-Fusion Constructs

Generation of Fc-Fusion Constructs


SdAbs and sdAb multimers can be fused to the Fc region of antibodies. The Fc region is defined as part of an antibody, e.g. a human IgG1 molecule, containing the hinge region followed by the CH2 and CH3 domain. Different Fc fusion constructs have been generated and compared with sdAb multimers and monoclonal antibodies with regard to HA binding, in vitro neutralization and in vivo efficacy.


SdAbs or sdAb multimers were fused with or without additional linkers as shown in Table 15 to the C- and/or N-terminus of Fc fragments. The Fc-fusion constructs were expressed in mammalian cells and secreted into the medium as dimeric Fc molecules. Complete amino acid sequences of the Fc fusion constructs are shown in Table 30. The position of the sdAbs or sdAb multimers within constructs was varied to allow for the most optimal combination. Homodimeric as well as heterodimeric Fc-fusion molecules were generated. Heterodimeric Fc fusions were generated by introducing single point mutations in the CH3 domain as described by Labrijn et al. (2013). These mutations are K409R and F405L and the Fc chains containing these mutations are, respectively, referred to as FcGa and FcGb.


Fc-fusion constructs were expressed in suspension Expi293 cells. DNA constructs containing the sequences for heterodimeric Fc constructs with the K409R or F405L mutations were transfected as single vector containing the two sequential open reading frames. Transient transfection and expression were performed according to the supplier's instructions and were similar to previously reported conditions for the production of human IgG constructs (Dreyfus et al., 2012). Possible aggregates and impurities were removed by preparative gel filtration (Superdex 75 μg or Superdex 200 μg column, GE Healthcare). Samples were analyzed on SDS-PAGE and fractions corresponding to the expected molecular weight were pooled and concentrated using Amicon Ultra 30K centrifugal filters. All production runs resulted in dimeric Fc fusion molecules that were stably linked by disulfide bridges in the hinge region. In case both FcGa and FcGb were transfected into the same cells the purified Fc fusion protein was subjected to controlled reducing conditions in vitro that separates the Fc-fusion into half-molecules and allow reassembly and reoxidation to form a pure heterodimeric Fc fusion molecule as described by Labrijn et al. (2013).









TABLE 30







Sequences of Fc-fusion constructs.











SEQ ID


Construct
Sequence
NO:












MD2605
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
74



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN



STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL



TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH



NHYTQKSLSLSPGK





MD2606
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
75



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSAA



ADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNA



KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR



EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF



SCSVMHEALHNHYTQKSLSLSPGK





MD2607
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
76



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTH



TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR



EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK



NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM



HEALHNHYTQKSLSLSPGK





MD2608
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
77



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGG



GGSAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGV



EVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT



LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQ



QGNVFSCSVMHEALHNHYTQKSLSLSPGK





MD2609
EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFT
78



ISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAADKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK





MD2610
EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFT
79



ISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSGGGGSGGGGSAAADKTHTCP



PCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ



YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQV



SLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA



LHNHYTQKSLSLSPGK





MD2601
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
80



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGG



SGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPG



SEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGT



TFSRLASSWGQGTQVTVSSLINLEAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC



VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV



LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





MD2602
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
81



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAAGGGGSGGGG



SGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPG



KGLEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGT



QVTVSSLINLEAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK



FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ



PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL



TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





MD2603
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
82



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAAGGGG



SGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWY



RQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLG



VAGGMGVYWGKGALVTVSSLINLEAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC



VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV



LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





MD2604
EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFT
83



ISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAAGGGGSGGGGSGGGGSGG



GGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVAT



SFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGA



LVTVSSLINLEAAADKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVK



FNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQ



PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKL



TVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





MD2611
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
84



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTI



SRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTHTC



PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE



QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ



VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE



ALHNHYTQKSLSLSPGK





MD2612
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
85



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGG



GGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKG



RFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAADKTHTC



PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE



QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ



VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHE



ALHNHYTQKSLSLSPGK





MD2613
EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFT
86



ISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSGGGGSGGGGSEVQLVESGGG



LVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTL



YLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPCPAPELLGGPS



VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT



VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS



DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL



SPGK





MD2614
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
87



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTIS



RDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAADKTHTCPPCPAPELLGGPS



VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT



VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS



DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL



SPGK





MD2615
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
88



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN



STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL



TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH



NHYTQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSE



REGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTF



SRLASSWGQGTQVTVSS





MD2616
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
89



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTH



TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR



EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK



NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM



HEALHNHYTQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQ



APGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVA



GGMGVYWGKGALVTVSS





MD2617
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
90



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN



STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL



TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH



NHYTQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKG



LEWVSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQV



TVSS





MD2618
EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFT
91



ISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAADKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSF



RDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALV



TVSS





MD2626
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
92



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSAAADKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN



STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL



TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH



NHYTQKSLSLSPGKGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAA



TGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTA



VYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSS





MD2619
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
93



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGG



GGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKG



RFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGG



SEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTI



SRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAADKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN



STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL



TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH



NHYTQKSLSLSPGK





MD2620
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
94



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTI



SRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGG



SEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTI



SRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAADKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN



STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL



TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH



NHYTQKSLSLSPGK





MD2621
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
95



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD



NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLV



ESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRD



NAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN



STYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSL



TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH



NHYTQKSLSLSPGK





MD2628
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
96



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD



NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAADKTHTCPPCPAP



ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY



RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL



VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREG



VLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRL



ASSWGQGTQVTVSS





MD2629
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
97



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTH



TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR



EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK



NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM



HEALHNHYTQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQ



APGKQRDLVATSFRDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVA



GGMGVYWGKGALVTVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKE



REFVAHINALGTRTYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAE



YEFWGQGTQVTVSS





MD2641
EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
98



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGG



GGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD



RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSF



RDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALV



TVSSGGGGSGGGGSEVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTR



TYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVS



S





MD2642
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
99



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD



NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELL



GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV



SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG



FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLC



ISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASS



WGQGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEW



VSVINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVS



S





MD3606
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
100



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD



NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLV



ESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRD



NAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTIS



RDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSDKTHTCPPCPAPELLGGPSVFL



FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH



QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG



K





MD3609
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
101



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD



NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQLV



ESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRD



NAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFTIS



RDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSAAADKTHTCPPCPAPELLGGPS



VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT



VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS



DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL



SPGK





MD2631
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
102



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS



RDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQL



VESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNA



KNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVIN



TDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSGGGG



SGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTD



SMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSS





MD2632
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
103



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS



RDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQL



VESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNA



KNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCIS



KSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWG



QGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVS



VINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD2633
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTIS
104



RDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQ



LVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR



DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLV



ESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDN



AKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVIN



TDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSGGGG



SGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTD



SMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSS





MD2634
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTIS
105



RDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQ



LVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR



DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLV



ESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDN



AKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCIS



KSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWG



QGTQVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVS



VINTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD2622
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
106



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD



NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSAAADKTHTCPPCPAP



ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY



RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL



VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
107



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSAAADKTH



TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPR



EEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK



NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVM



HEALHNHYTQKSLSLSPGK





MD2643
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
110



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS



RDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQL



VESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNA



KNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK



EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
111



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGG



GGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD



RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK





MD2644
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
112



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTIS



RDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQL



VESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRDNA



KNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK



EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFT
113



ISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSGGGGSGGGGSEVQLVESGGG



LVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENT



VYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK





MD2645
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTIS
114



RDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQ



LVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR



DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLV



ESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDN



AKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK



EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
115



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGG



GGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD



RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK





MD2646
EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTIS
116



RDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQ



LVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR



DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEVQLV



ESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISRDN



AKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK



EVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKDRFT
117



ISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSGGGGSGGGGSEVQLVESGGG



LVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRFTISRDNAENT



VYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK





MD2647
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
118



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAP



ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY



RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL



VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREG



VLCISKSGSWTYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRL



ASSWGQGTQVTVSS



EVQLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTIS
119



RDNAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSGGGGSGGGGSEVQ



LVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFTISR



DNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSDKTHTCPPCPAPELL



GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV



SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG



FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGKGGGGSGGGGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSV



INTDGGTYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSS





MD2649
EVQLVESGGGLVQPGGSLRLSCAVSSIIFDIYAMDWYRQAPGKQRDLVATSFRDGSTNYADSVKGRFT
120



ISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPLGVAGGMGVYWGKGALVTVSSGGGGSGGGGSEV



QLVESGGGLVQAGGSLKLSCAASGRTYAMGWFRQAPGKEREFVAHINALGTRTYYSDSVKGRFTISRD



NAKNTEYLEMNNLKPEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTQVTVSSDKTHTCPPCPAPELL



GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV



SVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKG



FYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAATGFTLENKAIGWFRQTPGSEREGVLCISKSGSWTYYTDSMRGRF
121



TISRDNAENTVYLQMDSLKPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTQVTVSSGGGGSGG



GGSEVQLVESGGGLVQPGGSLKLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKD



RFTISRDNAKDTLYLQMSSLKSEDTAVYYCAKDWGGPEPTRGQGTQVTVSSDKTHTCPPCPAPELLGG



PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSV



LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFY



PSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK










Influenza Neutralization by Fc-Containing Multi-Domain Antibodies


Purified Fc-containing single- and multi-domain antibody constructs were tested in influenza virus neutralization assays as described in Example 6 and showed improved potency and breadth when compared to sdAb building blocks. Results are shown for influenza neutralizing Fc fusion constructs in Tables 31-37.









TABLE 31







Average neutralization titers (nM) of sdAb Fc fusion constructs (empty cells mean


‘not tested’).















Virus strain
MD2605
MD2606
MD2607
MD2608
MD2609
MD2610

















H1N1
A/Puerto Rico/8/34-MA


1262.6





H5N1
A/Vietnam/1194/04
8.4
5.8






H2N2
A/Guiyang/1/57
23.7







H2N2
A/WF/HK/MPU3156/05
13.3







H3N2
A/Brisbane/10/07
25.1
22.1






H3N2
A/Wisconsin/67/05
37.8
27.7







A/NIBRG/60








H7N3
(A/mallard/Netherlands/12/00)
97.5
70.0






H7N7
A/PR8 H7N7-NY
508.6
1255.6






H7N9
A/Anhui/1/13
189.7







Yamagata
B/Florida/04/06


252.5
248.6
1.4
1.4
















TABLE 32







Average neutralization titers (nM) of sdAb dimer Fc fusion constructs (empty cells


mean ‘not tested’).


















MD260
MD260
MD260
MD260
MD261
MD261
MD261
MD261



Virus strain
1
2
3
4
1
2
3
4



















H1N1
A/New
23.5
20.2
78.9
34.0
17.3
49.0
42.2
21.1



Caledonia/20/99










H1N1
A/Puerto Rico/8/34-MA
9.5
22.9
53.9
51.5






H5N1
A/Vietnam/1194/04
16.6



10.3





H3N2
A/Brisbane/10/07
50.9
72.0
634.1
271.6
41.8
277.2
142.0
142.0


H3N2
A/HK/1/68-MA
245.5
479.7
491.0
102.8






H3N2
A/Wisconsin/67/05
503.3
551.5
>1000
685.3
147.0
>1000
>1000
285.3


H7N3
A/NIBRG/60
669.6
>1000
>1000
>1000
247.2
>1000
>1000
>1000



(A/mallard/NL/12/00)










H7N7
A/PR8 H7N7-NY
>1000
>1000
>1000
>1000
>1000
>1000
>1000
>1000


Yamagata
B/Florida/04/06
476.2
6.4
194.5
1.1
329.7
329.7
0.6
11.9


Old
B/Lee/40
360.3
317.3
202.5
126.4
















TABLE 33







Average neutralization titers (nM) of sdAb dimer-Fc fusion constructs (empty cells


mean ‘not tested’).














Virus strain
MD2615
MD2616
MD2617
MD2618
MD2626
















H1N1
A/California/07/09


1.8




H1N1
A/New Caledonia/20/99
12.2
20.6
8.4




H1N1
A/Puerto Rico/8/34-MA


6.3




H5N1
A/Vietnam/1194/04
14.5

4.7




H2N2
A/Guiyang/1/57


31.8




H6N1
A/Eurasian


25.1





Wigeon/MPG1884/09







H11N9
A/Northern


21.1





Pintail/MPC2085/07







H9N2
A/HK/466419/09


25.1




H8N4
A/Eurasian


12.5





Wigeon/MPH571/08







H3N2
A/Brisbane/10/07
26.8
932.3
27.5
>1000



H3N2
A/HK/1/68-MA


117.7




H3N2
A/Wisconsin/67/05
39.5
932.3
498.7
>1000
47.8


H4
A/WF/HK/MPA892/06


35.5




H7N3
A/NIBRG/60
83.2
932.3
72.1
>1000
95.6



(A/mallard/Netherlands/12/00)







H7N7
A/PR8 H7N7-NY
397.9
932.3
301.2
>1000
321.4


H7N9
A/Anhui/1/13


380.0




H7N9
A/Shanghai/1/13 (R292K


1900.0





Tamiflu escape mutant)







H7N9
A/Shanghai/2/13


390.8




H10N7
A/Chick/Germany/N/49


21.1




Victoria
B/Brisbane/60/08


2.1




Victoria
B/Malaysia/2506/04


8.3




Yamagata
B/Florida/04/06
164.8
233.1
2.5
0.8



Yamagata
B/Harbin/7/94


7.5




Old
B/Lee/40


1.4
















TABLE 34







Average neutralization titers (nM) of sdAb trimer Fc fusion constructs (empty cells


mean ‘not tested’).














Virus strain
MD2619
MD2620
MD2621
MD2628
MD2629
















H1N1
A/California/07/09



3.2
5.5


H1N1
A/New Caledonia/20/99
26.2
15.5
13.1




H5N1
A/Vietnam/1194/04



6.3
13.1


H3N2
A/Brisbane/10/07
32.7
23.1
9.7
21.3
18.4


H3N2
A/HK/1/68-MA



30.1
11.0


H3N2
A/Wisconsin/67/05
45.9
30.0
26.6
22.1
22.3


H7N3
A/NIBRG/60
19.4
11.5
8.2
8.7
10.6



(A/mallard/Netherlands/12/00)







H7N7
A/PR8 H7N7-NY
32.7
23.1
16.3
15.8
8.1


Victoria
B/Brisbane/60/08



116.6
260.8


Yamagata
B/Florida/04/06
261.3
261.3
738.9
213.0
73.7


Old
B/Lee/40



106.5
260.8
















TABLE 35







Average neutralization titers (nM) of sdAb tetramer Fc fusion constructs (empty


cells mean ‘not tested’).













Virus strain
MD2641
MD2642
MD3606
MD3609















H1N1
A/California/07/09
2.1
3.6
1.8
5.5


H1N2
A/New Caledonia/20/99
9.2
6.3
2.6
13.0


H1N3
A/Puerto Rico/8/34-MA
21.9
7.9
3.3
9.2


H1N4
A/Brisbane/59/07

2.7
5.3
5.5


H1N5
A/Mississippi/03/01 274H

5.3
4.7
6.5


H1N6
A/Solomon Islands/3/2006 (IVR 145)

4.8
1.6
6.5


H1N7
A/WSN/33

4.2
2.0
5.5


H1N8
A/HK/54/98


5.0



H1N9
A/Christchurch/16/10

2.1
1.0



H1N2
A/Env/HK/MPU3156/05


2.6



H5N1
A/PR8 H5N1 HK97

4.7
6.5
6.5


H5N2
A/Vietnam/1194/04
13.0
7.5
5.7
15.5


H5N3
A/Indonesia/5/05


11.5



H5N2
A/Eurasian Wigeon/MPF461/07


9.2



H5N3
A/Eurasian Wigeon/HK/MPF333/07


7.0



H2N2
A/Guiyang/1/57
152.7
21.2
26.7



H2N3
A/AnnArbor/23/57


13.2



H2N4
A/Env/HK/MPU3156/05


9.3



H6N1
A/Eurasian Wigeon/MPG1884/09

11.5
11.6
16.3


H6N2
A/Taiwan/2/2013


14.5



H6N8
A/Eurasian Wigeon/MPD411/07


9.7



H11N9
A/Northern Pintail/MPC2085/07

8.2
7.2
27.3


H9N2
A/Ck/HK/SSP176/09


9.0



H9N3
A/Great Cormorant/MP2934/04


9.7



H9N4
A/HK/466419/09

7.0
5.3
14.0


H8N4
A/Eurasian Wigeon/MPH571/08

7.0
3.7
14.0


H8N2
A/Env/MPJ1258/09


3.9



H12N5
A/Env/MPK659/09


>1000



H3N2
A/Brisbane/10/07

13.5
4.1
14.2


H3N3
A/HK/1/68-MA
13.0
20.3
14.3
36.8


H3N4
A/Panama/2007/99

21.9
40.5
26.0


H3N5
A/Wisconsin/67/05
15.5
12.5
6.5
30.9


H3N6
A/Fukui/45/04

21.9
40.5
21.9


H3N7
A/Aichi/2/68

11.0
32.2
10.9


H3N8
A/Hiroshima/52/05

16.2
6.5
16.2


H3N9
A/Johannesburg/33/94

16.2
8.1
16.2


H3N10
A/Perth/16/09

11.1
5.7
12.9


H3N11
A/Victoria/210/09

9.7
6.5
8.1


H3N12
A/HK/1174/99


23.0



H3N?
A/Env/MPJ193/09


11.8



H4
A/WF/HK/MPA892/06
2.4
5.2
3.0
6.5


H4N1
A/Northern Pintail/MPB1368/06


2.6



H4N6
A/Great Cormorant/MPB1683/06


3.1



H14N5
A/Mallard/Astrakhan/263/1982

10.6
12.9
13.0


H7N3
A/NIBRG/60

14.2
12.9
21.9



(A/mallard/Netherlands/12/00)






H7N7
A/PR8 H7N7-NY
11.0
15.7
8.1
26.0


H7N8
A/Northern Shoveler/MPF518/08


18.4



H7N9
A/Netherlands/219/2003


20.4



H7N10
A/Common Teal/MPF139/07


26.3



H7N9
A/Anhui/1/13
26.7
30.4
38.2



H7N10
A/Shanghai/1/13 (R292K Tamiflu escape

54.8
32.2
77.3



mutant)






H7N11
A/Shanghai/2/13
17.4
24.7
22.8



H10N7
A/Chick/Germany/N/49
6.9
11.9
10.2
30.9


H10N8
A/Jiangxi/346/2013


18.3



H10N3
A/Common Teal/MPH11/08


11.3



H10N9
A/Northern Shoveler/MPE2531/08


20.7



Victoria
B/Brisbane/60/08

1.5
1.0
4.1


Victoria
B/Malaysia/2506/04
5.5
3.5
2.6
5.5


Yamagata
B/Florida/04/06
1.7
1.8
1.0
5.5


Yamagata
B/Harbin/7/94
1.2
1.1
1.0
1.4


Yamagata
B/Massachusetts/02/12

1.0
1.0



Old
B/Lee/40

8.4
3.3
21.9
















TABLE 36







Average neutralization titers (nM) of sdAb pentamer-Fc fusion constructs (empty


cells mean ‘not tested’).













Virus strain
MD2631
MD2632
MD2633
MD2634















H1N1
A/California/07/09
1.5
1.5
1.2
2.1


H1N1
A/New Caledonia/20/99
6.6
4.7
3.9
9.3


H1N1
A/Puerto Rico/8/34-MA
9.3
9.3
9.3
11.1


H5N1
A/Vietnam/1194/04
9.3
6.6
6.6
7.9


H2N2
A/Guiyang/1/57
10.5

20.9



H6N1
A/Eurasian Wigeon/MPG1884/09
6.0





H11N9
A/Northern Pintail/MPC2085/07
13.9





H9N2
A/HK/466419/09
6.0





H8N4
A/Eurasian Wigeon/MPH571/08
6.0





H3N2
A/HK/1/68-MA
13.2
18.7
4.7
9.3


H3N2
A/Wisconsin/67/05
11.1
11.1
15.7
22.2


H4
A/WF/HK/MPA892/06
7.0
7.0
2.5
2.5


H7N7
A/PR8 H7N7-NY
13.2
11.1
3.3
6.6


H7N9
A/Anhui/1/13
54.2

127.8



H7N9
A/Shanghai/1/13 (R292K Tamiflu
46.7






escape mutant)






H7N9
A/Shanghai/2/13
35.3

36.1



H10N7
A/Chick/Germany/N/49
5.0
8.3
4.2
5.9


Victoria
B/Malaysia/2506/04
6.6
4.7
4.7
3.3


Yamagata
B/Florida/04/06
1.8
1.2
2.1
1.5


Yamagata
B/Harbin/7/94
2.3
2.0
1.0
1.4
















TABLE 37







Average neutralization titers (nM) of heterodimeric Fc fusion constructs (empty


cells mean ‘not tested’).

















MD262
MD262
MD264
MD264
MD264
MD264
MD264



Virus strain
2
3
3
4
5
6
7


















H1N1
A/California/07/09


2.8
2.3
2.3
1.6
2.0


H1N1
A/New Caledonia/20/99


7.4
7.4
14.8
14.8
12.4


H1N1
A/Puerto Rico/8/34-MA


14.8
14.8
14.8
14.8
14.8


H5N1
AVietnam/1194/04


12.4
14.8
14.8
14.8
14.8


H2N2
A/Guiyang/1/57



18.2

36.1



H6N1
A/Eurasian



22.0






Wigeon/MPG1884/09









H11N9
A/Northern Pintail/MPC2085/07



13.1





H9N2
A/HK/466419/09



9.0





H8N4
A/Eurasian Wigeon/MPH571/08



9.0





H3N2
A/Brisbane/10/07
28.3
8.4







H3N2
A/HK/1/68-MA


29.6
29.6
29.6
20.9
20.9


H3N2
A/Wisconsin/67/05
28.3
10.0
12.4
20.9
29.6
29.6
83.6


H4
A/WF/HK/MPA892/06


9.3
6.6
2.8
3.3
2.8


H7N3
A/NIBRG/60
28.3
8.4








(A/mallard/Netherlands/12/00)









H7N7
A/PR8 H7N7-NY
40.0
11.9
29.6
24.9
12.4
17.6
20.9


H7N9
A/Anhui/1/13



144.2

225.5



H7N9
A/Shanghai/1/13 (R292K



147.8






Tamiflu escape mutant)









H7N9
A/Shanghai/2/13



60.6

61.3



H10N7
A/Chick/Germany/N/49


22.2
15.7
6.6
5.5
11.1


Victoria
B/Malaysia/2506/04


12.4
7.4
8.8
7.4
29.6


Yamagata
B/Florida/04/06


2.8
2.8
2.8
3.3
22.2


Yamagata
B/Harbin/7/94


5.2
4.4
3.7
3.7
35.2










Functional Fc-Receptor Binding (Antibody Dependent Cellular Cytotoxicity)


Functional binding to cell expressed human FcγRIIIa (CD16a) was measured using an ADCC (antibody dependent cellular cytotoxicity) Reporter Bioassay (Promega). Target A549 cells were infected with B/Brisbane/60/2008 or B/Florida/04/2006, or transfected with a plasmid encoding H3N2 A/Wisconsin/67/2005 HA using Lipofectamine 2000 (Invitrogen) in OPTI-MEM I (Gibco). After 24 hours, HA expressing target cells were seeded into white 96-wells plates and incubated for 30 min with serial dilutions of Fc fusion constructs or IgG control antibodies. As additional negative controls constructs bearing the LALA point mutations in the Fc-fragment were used. The LALA point mutations (L234A, L235A as described by Hessel et al. 2007) show significantly reduced binding to human Fcγ receptors and induction of ADCC. Last, Jurkat effector T-cells (stably expressing FcγRIIIa V158 and NFAT-RE Luciferase) were added to the target cells and incubated for 6 h. Bio-Glo Luciferase Assay Substrate solution (Promega) was added to the wells and luminescence (in RLUs) was measured with a luminescence plate reader (Perkin Elmer). RLU data were fitted using a standard four parameter logistic nonlinear regression model in SPSS.


All SD/MD Fc-fusion constructs (except for the LALA versions) show robust induction of ADCC indicating that binding to the stem epitopes on influenza HA at the surface of cells allows for productive interaction with FcγRIIIa receptor expressing cells. Results are summarized in Table 38.









TABLE 38







Functional Fc-receptor binding (ADCC induction).









ADCC induction











A/Wisconsin/
B/



Construct
67/2005
Brisbane/60/2008
B/Florida/04/2006





MD2606





MD2608

++
++


MD2610

+
+


MD2407





MD3606
++
++
++


MD3607
+




CR9114
++
++
++


(+control mAb)





CR9114-LALA





CRJB





(−control mAb)





“++” refers to an EC50 < 0.1 μg/mL,


“+” refers to an EC50 < 0.5 μg/mL,


“−” refers to an EC50 > 0.5 μg/mL,


empty cells mean ‘not tested’.






Fusing sdAbs or sdAb multimers to the Fc fragment of human IgG1 results in HA binding molecules which preserve the potency and breadth of neutralization of the used individual sdAb or multi-domain building blocks. The sdAb building blocks can be fused to the N- as well as the C-terminus of the Fc fragment. During expression two Fc chains form a bivalent antibody-like molecule. It is therefore also possible to express in the same cell two different Fc chain constructs varying in their sdAb or multi-domain part and to create a bispecific antibody-like molecule. Homodimeric and heterodimeric Fc fusion constructs with sdAb and/or multi-domains attached to the N- and/or C-terminus of the Fc fragment have been successfully created and their breadth in neutralization spanning influenza A and B demonstrated. In addition to direct neutralization by the sdAb or multi-domain part, the Fc part of the fusion construct, when bound to HA at the surface of infected or transfected cells, can promote productive interaction with FcγRIIIa (CD16a) receptors at the surface of effector cells. This can in vivo lead to activation of NK cells and subsequent to induction of ADCC. Next to the induction of effector functions the Fc portion can also interact with neonatal Fc receptor resulting in prolonged in vivo half-life.


Example 10: In Vivo Efficacy of Single Domain and Multi-Domain Antibodies

In Vivo Efficacy of Influenza A Group 1 Single Domain Antibodies


The exemplary influenza A group 1 single domain antibodies SD1016, SD1038 and SD1045 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with SD1016, SD1038 or SD1045 at a single dose of 0.5 mg/kg. Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Puerto Rico/8/1934-MA (H1N1). Survival and body weight were monitored for 21 days after infection. Administration of both SD1038 and SD1016 resulted in a statistically significant improvement in survival proportion compared to the vehicle control group whereas administration of SD1045 only resulted in an improvement in survival time (see FIG. 2).


In Vivo Efficacy of Influenza A Group 2 Single Domain Antibodies


The exemplary influenza A group 2 single domain antibodies SD1036, SD1046 and SD1048 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with SD1046 or SD1048 at a dose of 5 mg/kg or with SD1036 at 2 doses (0.5 mg/kg or 5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Hong Kong/1/1968-MA (H3N2). Survival and body weight were monitored for 21 days after infection. This study shows that intranasal administration of SD1036, SD1046 or SD1048 provides full protection against a lethal challenge of A/Hong Kong/1/1968-MA virus (see FIG. 3).


In Vivo Efficacy of Influenza B Single Domain Antibodies


The exemplary influenza B single domain antibodies SD1083 and SD1084 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with SD1084 at a single dose of 5 mg/kg or with SD1083 at 2 doses (0.5 mg/kg or 5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain B/Florida/4/2006. Survival and body weight were monitored for 21 days after infection. This study shows that sdAb SD1084 provide 100% protection against a lethal challenge with B/Florida/4/2006, whereas SD1083 only provides partial protection at the highest dose of 5 mg/kg. The lower dose of SD 1083 only resulted in an improvement in survival time (FIG. 4).


In Vivo Efficacy of Influenza A Single and Multi-Domain Antibodies in H1N1 Model


The exemplary influenza A sdAb SD1038 and the exemplary influenza A multi-domain antibodies MD1211 and MD1212 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with MD1211 or MD1212 at a dose of 1 mg/kg or with SD1038 either alone (0.5 mg/kg) or mixed 1:1 with SD1036 (total dose=1 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Puerto Rico/8/1934-MA (H1N1). Survival and body weight were monitored for 21 days after infection. This study shows that intranasal administration of SD1038, MD1211, MD1212 or a 1:1 mixture of SD1038 and SD1036 provides full protection against a lethal challenge of A/Puerto Rico/8/1934-MA virus. The body weight curves indicate that the efficacy of MD1211 and MD1212 is superior to that of the sdAb (mixture) (FIG. 5).


In Vivo Efficacy of Influenza A Single and Multi-Domain Antibodies in H3N2 Model


The exemplary influenza A sdAb SD1036 and the exemplary influenza A multi-domain antibodies MD1211 and MD1212 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with MD1211 or MD1212 at a dose of 5 mg/kg or with SD1036 either alone (2.5 mg/kg) or mixed 1:1 with SD1038 (total dose=5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Hong Kong/1/1968-MA (H3N2). Survival and body weight were monitored for 21 days after infection. This study shows that intranasal administration of SD1036, MD1211, MD1212 or a 1:1 mixture of SD1036 and SD1038 provides full protection against a lethal challenge of A/Hong Kong/1/1968-MA virus. The body weight curves indicate that the efficacy of MD1211 and MD1212 is superior to that of the sdAb (mixture) (FIG. 6).


Comparison of In Vivo Efficacy of SD1038 Monomer and Dimer in H3N2 Model


The exemplary influenza A single domain antibody SD1038 and the exemplary influenza A multi-domain antibody MD1212 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with SD1038 or MD1212 at 4 doses (5 mg/kg, 1.7 mg/kg, 0.6 mg/kg or 0.2 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Hong Kong/1/1968-MA (H3N2). Survival and body weight were monitored for 21 days after infection. This study shows that SD1038 only provides partial protection against a lethal challenge of A/Hong Kong/1/1968-MA virus and that the level of protection is dose-dependent. In contrast, dimeric SD1038 (MD1212) provides 100% protection in all 4 dose groups (FIGS. 7A-7B).


In Vivo Efficacy of Influenza B Multi-Domain Antibodies


The exemplary influenza B multi-domain antibodies MD1221, MD1222 and MD1224 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with MD1221 or MD1224 at a single dose of 5 mg/kg or MD1222 at 2 doses (0.5 mg/kg or 5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain B/Florida/4/2006. Survival and body weight were monitored for 21 days after infection. This study shows that all 3 multi-domain antibodies provide 100% protection against a lethal challenge with B/Florida/4/2006 (FIG. 8).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibodies Against H1N1 after i.v. Administration


The exemplary influenza A & B multi-domain antibodies MD1301 and MD2601 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intravenously with MD1301 or MD2601 at a single dose of 3 mg/kg. CR9114 was taken along as positive control. Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Puerto Rico/8/1934-MA (H1N1). Survival and body weight were monitored for 21 days after infection. This study shows that the Fc-containing multi-domain antibody MD2601 provides full protection after i.v. administration while Fc-less MD1301 has no effect on survival. Control antibody CR9114 only provides partial protection against a lethal challenge with A/Puerto Rico/8/1934-MA (H1N1) (FIG. 9).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibodies Against H1N1 after i.n. Administration


The exemplary influenza A & B multi-domain antibodies MD1301 and MD2601 and reference antibody CR914 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with MD1301, MD2601 or reference antibody CR9114 at 3 doses (0.2, 0.05 or 0.01 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Puerto Rico/8/1934-MA (H1N1). Survival and body weight were monitored for 21 days after infection. This study shows that the minimum effective dose (defined as the lowest dose providing 100% protection) is 0.05 mg/kg for the Fc-containing antibodies MD2601 and CR9114 and 0.2 mg/kg for Fc-less MD1301. Mice receiving 0.05 mg/kg CR9114 showed a larger drop in body weight than mice receiving the same dose of MD2601 (FIGS. 10A-10C).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibody MD2617 Against H1N1


The exemplary multi-domain antibody MD2617 was selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed with MD2617 either intranasally at 0.2 mg/kg, 0.05 mg/kg or 0.01 mg/kg or intravenously at 3, 1 or 0.3 mg/kg. Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of A/Puerto Rico/8/1934-MA (H1N1). Survival and body weight were monitored for 21 days after infection. Administration of MD2617 at a dose 0.2 mg/kg i.n. or 3 mg/kg i.v. resulted in a statistically significant improvement in survival proportion compared to the vehicle control group (FIGS. 11A-11B).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibody MD2617 Against H3N2 and B Florida


The exemplary multi-domain antibody MD2617 was selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed with MD2617 either intranasally at 0.5 mg/kg or intravenously at 2 mg/kg. CR9114 dosed intravenously at 2 mg/kg was taken along as positive control. Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of A/Hong Kong/1/1968-MA (H3N2) or B/Florida/4/2006. Survival and body weight were monitored for 21 days after infection. Intranasal as well as intravenous administration of MD2617 resulted in a statistically significant improvement in survival proportion compared to the vehicle control group.


In Vivo Efficacy of Influenza A & B Multi-Domain Antibodies MD2407 and MD3606 Against B Florida after i.n. Administration


The exemplary multi-domain antibodies MD2407 and MD3606 and reference antibody CR9114 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with MD2407, MD3606 or CR9114 at 3 doses (0.02 mg/kg, 0.1 mg/kg or 0.5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain B/Florida/4/2006. Survival and body weight were monitored for 21 days after infection. Administration of 0.02, 0.1 and 0.5 mg/kg MD2407 and MD3606 resulted in a statistically significant improvement in survival proportion compared to the vehicle control group whereas administration of CR9114 only resulted in an improvement in survival proportion at 0.1 and 0.5 mg/kg (FIGS. 13A-13C).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibody MD3606 Against B Florida after i.v. Administration


The exemplary multi-domain antibody MD3606 and reference antibody CR9114 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intravenously with MD3606 or CR9114 at 3 doses (0.2 mg/kg, 1 mg/kg or 5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain B/Florida/4/2006. Survival and body weight were monitored for 21 days after infection. This study shows that MD3606 provides full protection against B/Florida/4/2006 down to a dose of 1 mg/kg. In contrast reference antibody CR9114 only provides partial protection at the highest dose of 5 mg/kg (FIGS. 14A-14B).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibodies MD2407 and MD3606 Against H3N2 after i.n. Administration


The exemplary multi-domain antibodies MD2407, MD3606 and reference antibody CR9114 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with MD2407, MD3606 and CR9114 at 3 doses (0.02 mg/kg, 0.1 mg/kg or 0.5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Hong Kong/1/1968-MA (H3N2). Survival and body weight were monitored for 21 days after infection. This study shows that MD2407 and CR9114 provide full protection against A/Hong Kong/1/1968-MA down to a dose of, respectively, 0.1 and 0.5 mg/kg. MD3606 provides full protection even at the lowest dose of 0.02 mg/kg (FIGS. 15A-15C).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibody MD3606 Against H3N2 after i.v. Administration


The exemplary multi-domain antibody MD3606 and reference antibody CR9114 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intravenously with MD3606 or CR9114 at 3 doses (0.6 mg/kg, 1.7 mg/kg or 5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Hong Kong/1/1968-MA (H3N2). Survival and body weight were monitored for 21 days after infection. Administration of MD3606 and CR9114 down to a dose 1.7 mg/kg resulted in a statistically significant improvement in survival proportion compared to the vehicle control group. Mice treated with 5 or 1.7 mg/kg MD3606 showed a smaller drop in body weight than mice treated with the same doses of CR9114 (FIGS. 16A-16B).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibodies MD2407 and MD3606 Against H1N1 after i.n. Administration


The exemplary multi-antibodies MD2407, MD3606 and reference antibody CR9114 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intranasally with MD2407, MD3606 or CR9114 at 3 doses (0.02 mg/kg, 0.1 mg/kg or 0.5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Puerto Rico/8/1934-MA (H1N1). Survival and body weight were monitored for 21 days after infection. Administration of 0.25 and 0.05 mg/kg MD2407 or CR9114 resulted in a statistically significant improvement in survival proportion compared to the vehicle control group, while for MD3606 this improvement was significant down to the lowest dose of 0.01 mg/kg (FIGS. 17A-17C).


In Vivo Efficacy of Influenza A & B Multi-Domain Antibody MD3606 Against H1N1 after i.v. Administration


The exemplary multi-domain antibody MD3606 and reference antibody CR9114 were selected for in vivo influenza neutralization studies using Balb/C mice. Briefly, 6-8 week old female Balb/C mice (n=8) were dosed intravenously with MD3606 or CR9114 at 3 doses (0.6 mg/kg, 1.7 mg/kg or 5 mg/kg). Another group of 8 mice receiving buffer solution only served as a vehicle control group. One day post-administration mice were challenged intranasally with 25×LD50 of influenza strain A/Puerto Rico/8/1934-MA (H1N1). Survival and body weight were monitored for 21 days after infection. Administration of 1.7 and 5 mg/kg MD3606 and 5 mg/kg CR9114 resulted in a statistically significant improvement in survival proportion compared to the vehicle control group (FIGS. 18A-18B).


Example 11: sdAb Humanization

Protein sequences of sdAbs SD1036, SD1038, SD1046, SD1083, SD1084 and SD1087 were blasted against the IMGT human V genes database (http://www.imgt.org). Each sdAb was subsequently aligned with the most homologous human V gene sequence. The FR4 sequence of each sdAb was aligned with the human J consensus sequence WGQGTLVTVSS. Amino acid differences in the sdAb framework regions (FRs) relative to the aligned human V and J sequences are indicated in table 39.









TABLE 39





Amino acid differences in framework regions relative to


the closest human V gene sequence and consensus J sequence






















FR1
CDR1
FR2
CDR2







SD1083
EVQLVESGGGLVQPGGSLRLSCAATG
FTLENKAIG
WFRQTPGSEREGVL
CISKSGSW



3-23*01
EVQLLESGGGLVQPGGSLRLSCAASG
FTFSSYAMS
WVRQAPGKGLEWVS
AISGSGGS




....V...................T.

.F..T..SER.G.L







SD1038
EVQLVESGGGLVQPGGSLRLSCAVSI
SIFDIYAMD
WYRQAPGKQRDLVA
TSF-RDGS



NL1*01
QVQLVESGGGWQPGGSLRLSCAASG
FTFSSYGMH
WVRQAPGKGLEWVS
VIYSGGSS




E.........L............V.I

.Y......QRDL.A







SD1036
EVQLVESGGGLVQAGGSLKLSCAASG
RT---YAMG
WFRQAPGKEREFVA
HINALGTR



3-23*01
EVQLLESGGGLVQPGGSLRLSCAASG
FTFSSYAMS
WVRQAPGKGLEWVS
AISGSGGS




....V........A....K.......

.F......ER.F.A







SD1046
EVQLVESGGGLVQAGDSLRISCAASG
RTLSIYSMG
WFRQAPGKEREFVA
TIGWNSGR



3-23*04
EVQLVESGGGLVQPGGSLRLSCAASG
FTFSSYAMS
WVRQAPGKGLEWVS
AISGSGGS




.............A.D...I......

.F......ER.F.A







SD1084
EVQLVESGGGLVQPGGSLRLSCAASG
FTFSTSWMY
WLRQAPGKGLEWVS
VINTDGG



3-66*01
EVQLVESGGGLVQPGGSLRLSCAASG
FTVSSNYMS
WVRQAPGKGLEWVS
VIYSGGS




..................K.......

.L............







SD1087
EVQLVESGGGLVQPGGSLRLSCVISG
LSLDTYAVG
WFRQAPGKEREGIT
CISSGHGM



3-23*04
EVQLVESGGGLVQPGGSLRLSCAASG
FTFSSYAMS
WVRQAPGKGLEWVS
AISGSGGS




......................VI..

.F......ER.GIT















FR3
CDR3
FR4





SD1083
TYYTDSMRGRFTISRDNAENTVYLQMDSLKPEDTAVYYC
ATTTAGGGLCWDGTTFSRLASS
WGQGTQVTVSS


3-23*01
TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
----------------------
WGQGTLVTVSS



...T..MR.........AE..V....D..KP........

.....Q.....





SD1038
TNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLC
HVSLYRDPLGVAGGMGVY
WGKGALVTVSS


NL1*01
TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
------------------
WGQGTLVTVSS



.N...............A...........KP.....L.

..K.A......





SD1036
TYYSDSVKGRFTISRDNAKNTEYLEMNNLKPEDTAVYYC
TAQGQWRAAPVAVAAEYEF
WGQGTQVTVSS


3-23*01
TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
-------------------
WGQGTLVTVSS



...S.............A...E..E..N.KP........

.....Q.....





SD1046
TFYPDSLKGRFTISRDNARNTLYLQMNNLRPEDTAVYYC
AAAKGPLRLSSQADY
WGQGTQVTVSS


3-23*04
TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
---------------
WGQGTLVTVSS



.F.P..L..........AR........N..P........

.....Q.....





SD1084
TYYADSVKDRFTISRDNAKDTLYLQMSSLKSEDTAVYYC
AKDWGGPEPT
RGQGTQVTVSS


3-66*01
TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
----------
WGQGTLVTVSS



........D........A.D......S..KS........

R....Q.....





SD1087
TYYADSVKGRFTVSTDNAKNTVYLQMNGLQPEDTARYYC
ATESRYYCSDNWPAPQRYIY
WGQGTQVTVSS


3-23*04
TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC
--------------------
WGQGTLVTVSS



............V.T..A...V.....G.QP....R...

.....Q.....









Subsequently multiple series of sdAb variants were made in which different combinations of non-human FR residues were replaced by their human equivalents. Residues 37, 44, 45 and 47 in FR2 and 103 in FR4 were retained in all variants. Two Met residues, one located in CDR2 of SD1087 and the other in CDR3 of SD1038 were also mutated with the aim to remove a potential Met oxidation site. Amino acid sequences of all variants of sdAbs SD1036, SD1038, SD1046, SD1083, SD1084 and SD1087 are listed in table 40. Humanized sdAb variants were analyzed for temperature stability, expression level (in HEK293 cells) and in vitro neutralizing activity. Temperature stability was assessed for selected sdAbs by measuring their melting temperatures using DSC. In vitro neutralizing activity was determined in a standard 3-day VNA using MDCK cells and ˜100 TCID50 of influenza virus. IC50 values, melting temperatures and expression levels are listed in Tables 41-43. The number of amino acid differences in the sdAb framework regions (FRs) relative to the aligned human V and J sequences as well as the calculated % FR identity are also listed.









TABLE 40





Sequences of humanized binding molecules of the invention
















SD1036



humanized variants


SD3023
EVQLLESGGGLVQAGGSLRLSCAASGRTYAMSWFRQAPGKEREFVSHINALG


(SEQ ID NO: 146)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTQVTVSS





SD3024
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMSWFRQAPGKEREFVSHINALG


(SEQ ID NO: 147)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTQVTVSS





SD3025
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMSWFRQAPGKEREFVAHINALG


(SEQ ID NO: 148)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTQVTVSS





SD3026
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMSWFRQAPGKEREFVSAINALG


(SEQ ID NO: 149)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTQVTVSS





SD3027
EVQLLESGGGLVQAGGSLRLSCAASGRTYAMSWFRQAPGKEREFVSAINALG


(SEQ ID NO: 150)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTQVTVSS





SD3028
EVQLLESGGGLVQAGGSLRLSCAASGRTYAMSWFRQAPGKEREFVAHINALG


(SEQ ID NO: 151)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTQVTVSS





SD3094
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAHINALG


(SEQ ID NO: 152)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTLVTVSS





SD3095
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAHINALG


(SEQ ID NO: 153)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTLVTVSS





SD3096
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAHINALG


(SEQ ID NO: 154)
TRTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTLVTVSS





SD3097
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALG


(SEQ ID NO: 155)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTLVTVSS





SD3098
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALG


(SEQ ID NO: 156)
TRTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCTAQGQWRAAPV



AVAAEYEFWGQGTLVTVSS





SD1038


humanized variants


SD3013
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVATSF


(SEQ ID NO: 157)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRDPL



GVAGGMGVYWGKGALVTVSS





SD3014
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSF


(SEQ ID NO: 158)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRDPL



GVAGGMGVYWGKGALVTVSS





SD3015
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVSVSF


(SEQ ID NO: 159)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRDPL



GVAGGMGVYWGKGALVTVSS





SD3016
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSF


(SEQ ID NO: 160)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYLCHVSLYRDPL



GVAGGMGVYWGKGALVTVSS





SD3017
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVATSF


(SEQ ID NO: 161)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRDPL



GVAGGMGVYWGKGALVTVSS





SD3018
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVAVSF


(SEQ ID NO: 162)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRDPL



GVAGGMGVYWGKGALVTVSS





SD3019
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVSVSF


(SEQ ID NO: 163)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYLCHVSLYRDPL



GVAGGMGVYWGKGALVTVSS





SD3020
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVAVSF


(SEQ ID NO: 164)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYLCHVSLYRDPL



GVAGGMGVYWGKGALVTVSS





SD3021
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSF


(SEQ ID NO: 165)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYLCHVSLYRDPL



GVAGGLGVYWGKGALVTVSS





SD3022
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSF


(SEQ ID NO: 166)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYLCHVSLYRDPL



GVAGGIGVYWGKGALVTVSS





SD3029
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSF


(SEQ ID NO: 167)
RDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPL



GVAGGLGVYWGKGALVTVSS





SD3030
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSF


(SEQ ID NO: 168)
RDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPL



GVAGGIGVYWGKGALVTVSS





SD3031
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSF


(SEQ ID NO: 169)
RDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPL



GVAGGVGVYWGKGALVTVSS





SD3032
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSF


(SEQ ID NO: 170)
RDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPL



GVAGGAGVYWGKGALVTVSS





SD3033
EVQLVESGGGLVQPGGSLRLSCAVSISIFDIYAMDWYRQAPGKQRDLVATSF


(SEQ ID NO: 171)
RDGSTNYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYLCHVSLYRDPL



GVAGGFGVYWGKGALVTVSS





SD3089
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMHWYRQAPGKQRELVSVSF


(SEQ ID NO: 172)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPL



GVAGGLGVYWGQGTLVTVSS





SD3078
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVSVSF


(SEQ ID NO: 173)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPL



GVAGGLGVYWGQGTLVTVSS





SD3080
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSF


(SEQ ID NO: 174)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCHVSLYRDPL



GVAGGLGVYWGQGTLVTVSS





SD3079
EVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSF


(SEQ ID NO: 175)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPL



GVAGGLGVYWGQGTLVTVSS





SD3119
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSF


(SEQ ID NO: 176)
RDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPL



GVAGGIGVYWGQGTLVTVSS





SD1046


humanized variants


SD3041
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSAIG


(SEQ ID NO: 177)
WNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTQVTVSS





SD3042
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSTIG


(SEQ ID NO: 178)
WNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTQVTVSS





SD3043
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVATIG


(SEQ ID NO: 179)
WNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTQVTVSS





SD3044
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSTIG


(SEQ ID NO: 180)
WNSGRTYYADSVKGRFTISRDNARNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTQVTVSS





SD3045
EVQLVESGGGLVQAGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSAIG


(SEQ ID NO: 181)
WNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTQVTVSS





SD3046
EVQLVESGGGLVQAGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSTIG


(SEQ ID NO: 182)
WNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTQVTVSS





SD3047
EVQLVESGGGLVQAGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVATIG


(SEQ ID NO: 183)
WNSGRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTQVTVSS





SD3048
EVQLVESGGGLVQAGGSLRLSCAASGRTLSIYSMSWFRQAPGKEREFVSTIG


(SEQ ID NO: 184)
WNSGRTYYADSVKGRFTISRDNARNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTQVTVSS





SD3068
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVSTIG


(SEQ ID NO: 185)
WNSGRTFYPDSLKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTLVTVSS





SD3067
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATIG


(SEQ ID NO: 186)
WNSGRTFYPDSLKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTLVTVSS





SD3099
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATIG


(SEQ ID NO: 187)
WNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTLVTVSS





SEQ ID NO: 340
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATIG



WNSGRTFYPDSVKGRFTISRDNAKNTLYLQMNSLRAEDTAVYYCAAAKGPLR



LSSQADYWGQGTLVTVSS





SD1083


humanized variants


SD3005
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAMSWFRQAPGKEREGVSCIS


(SEQ ID NO: 188)
KSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTQVTVSS





SD3006
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVSCIS


(SEQ ID NO: 189)
KSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTQVTVSS





SD3007
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVSCIS


(SEQ ID NO: 190)
KSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTQVTVSS





SD3008
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVSCIS


(SEQ ID NO: 191)
KSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTQVTVSS





SD3009
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAMSWFRQAPGKEREGVLCIS


(SEQ ID NO: 192)
KSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTQVTVSS





SD3010
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCIS


(SEQ ID NO: 193)
KSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTQVTVSS





SD3011
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCIS


(SEQ ID NO: 194)
KSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTQVTVSS





SD3012
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCIS


(SEQ ID NO: 195)
KSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTQVTVSS





SD3088
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCIS


(SEQ ID NO: 196)
KSGSWTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTLVTVSS





SD3087
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCIS


(SEQ ID NO: 197)
KSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGG



LCWDGTTFSRLASSWGQGTLVTVSS





SD1084


humanized variants


SD3001
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMSWLRQAPGKGLEWVSVIN


(SEQ ID NO: 198)
TDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEP



TRGQGTQVTVSS





SD3002
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVIN


(SEQ ID NO: 199)
TDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEP



TRGQGTQVTVSS





SD3003
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMSWLRQAPGKGLEWVSVIN


(SEQ ID NO: 200)
TDGGTYYADSVKGRFTISRDNSKDTLYLQMNSLRAEDTAVYYCAKDWGGPEP



TRGQGTQVTVSS





SD3004
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVIN


(SEQ ID NO: 201)
TDGGTYYADSVKGRFTISRDNSKDTLYLQMNSLRAEDTAVYYCAKDWGGPEP



TRGQGTQVTVSS





SD3086
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWVRQAPGKGLEWVSVIN


(SEQ ID NO: 202)
TDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEP



TRGQGTLVTVSS





SD3085
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVIN


(SEQ ID NO: 203)
TDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEP



TRGQGTLVTVSS





SD1087


humanized variants


SD3049
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGVSCIS


(SEQ ID NO: 204)
SGHGMTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRYYC



SDNWPAPQRYIYWGQGTQVTVSS





SD3050
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGITCIS


(SEQ ID NO: 205)
SGHGMTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRYYC



SDNWPAPQRYIYWGQGTQVTVSS





SD3051
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGVSCIS


(SEQ ID NO: 206)
SGHGITYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRYYC



SDNWPAPQRYIYWGQGTQVTVSS





SD3052
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGVSCIS


(SEQ ID NO: 207)
SGHGLTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRYYC



SDNWPAPQRYIYWGQGTQVTVSS





SD3053
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGVSCIS


(SEQ ID NO: 208)
SGHGFTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRYYC



SDNWPAPQRYIYWGQGTQVTVSS





SD3054
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGITCIS


(SEQ ID NO: 209)
SGHGITYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRYYC



SDNWPAPQRYIYWGQGTQVTVSS





SD3055
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGITCIS


(SEQ ID NO: 210)
SGHGLTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRYYC



SDNWPAPQRYIYWGQGTQVTVSS





SD3056
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAMSWFRQAPGKEREGITCIS


(SEQ ID NO: 211)
SGHGFTYYADSVKGRFTISRDNSKNTLYLQMNSLQPEDTARYYCATESRYYC



SDNWPAPQRYIYWGQGTQVTVSS





SD3069
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGITCIS


(SEQ ID NO: 212)
SGHGMTYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3070
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGITCIS


(SEQ ID NO: 213)
SGHGITYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3071
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGITCIS


(SEQ ID NO: 214)
SGHGLTYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3072
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAVGWFRQAPGKEREGITCIS


(SEQ ID NO: 215)
SGHGMTYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3073
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 216)
SGHGMTYYADSVKGRFTVSTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3074
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGITCIS


(SEQ ID NO: 217)
SGHGMTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3075
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 218)
SGHGITYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3076
EVQLVESGGGLVQPGGSLRLSCAASGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 219)
SGHGLTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3092
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 220)
SGHGMTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3093
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 221)
SGHGMTYYADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3100
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 222)
SGHGATYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3101
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 223)
SGHGSTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3102
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 224)
SGHGQTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3103
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 225)
SGHGDTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS





SD3104
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCIS


(SEQ ID NO: 226)
SGHGNTYYADSVKGRFTISTDNSKNTLYLQMNSLRAEDTAVYYCATESRYYC



SDNWPAPQRYIYWGQGTLVTVSS
















TABLE 41







Average neutralization titers (nM), HEK293 expression levels, temperature


stability and sequence characteristics of humanized influenza B sdAbs (empty cells mean ‘not


determined’)
























Expression

# FR














VNA IC50 (nM)
level
Tm
mutations
%


















B/Brisbane/
B/Malaysia/
B/Florida/
B/Harbin/
B/Massachusetts/
B/Lee/
(mg/l culture
onset
vs
identity


ID
60/08
2506/04
04/06
7/94
2/12
40
medium)
(C.)
germline
in FRs




















SD1083
174
256
290
303
260
215

57.6
19
79%


SD3005






0

5
94%


SD3006






0

5
94%


SD3007
>1000


>1000

>1000
15

6
93%


SD3008
>1000


>1000

>1000
157

7
92%


SD3009
194


516

372
6

6
93%


SD3010
149


173

227
15
57.9
6
93%


SD3011
53


96

59
20
71.0
7
92%


SD3012
59


78

60
132
74.3
8
91%


SD3087
32
81
160
201
104
91
161
75.1
7
92%


SD3088
101




127
9
58.7
5
94%


SD1084
12
26
68
322
35
>1000

56.7
10
89%


SD3001
101


>1000

>1000
67

3
97%


SD3002
5


137

>1000
50
65.3
3
97%


SD3003
101


>1000

>1000
68

4
96%


SD3004
5


101

>1000
71
62.2
4
96%


SD3085
12
13
64
228
32
>1000
133
66.2
2
98%


SD3086
40




>1000
99
62.1
1
99%


SD1087
34
59
>1000
>1000
1000
22

74.7
17
81%


SD3049
>1000


>1000


32
68
8
91%


SD3050
>1000


>1000


53
66.5
10
89%


SD3051
>1000


>1000


62

8
91%


SD3052
>1000


>1000


57

8
91%


SD3053
>1000


>1000


29

8
91%


SD3054
>1000


>1000


60
65.7
10
89%


SD3055
>1000


>1000


48
66.2
10
89%


SD3056
>1000


>1000


26

10
89%


SD3069
56


>1000

67
40
69.7
9
90%


SD3070
>1000


>1000

>1000
26
70.9
9
90%


SD3071
>1000


>1000

>1000
29
69.6
9
90%


SD3072
160


>1000

318
20
65.2
8
91%


SD3073
28


>1000

59
35
69.1
7
92%


SD3074
36


>1000

42
27
66.2
8
91%


SD3075
>1000


>1000

>1000
7
61.5
5
94%


SD3076
>1000


>1000

>1000
6
61.1
5
94%


SD3092
51
40
>1000
>1000
>1000
40
18
64.0
6
93%


SD3093
32
40
659
>1000
795
32
21
69.4
7
92%


SD3100
>1000


>1000

>1000
30

6
93%


SD3101
>1000


>1000

>1000
29

6
93%


SD3102
>1000


>1000

>1000
36

6
93%


SD3103
>1000


>1000

>1000
43

6
93%


SD3104
>1000


>1000

>1000
31

6
93%
















TABLE 42







Average neutralization titers (nM), HEK293 expression levels, temperature


stability and sequence characteristics of humanized influenza A sdAbs SD1036 and SD1046


(empty cells mean ‘not determined’)
























Expression
















VNA IC50 (nM)
level

# FR



















A/
A/Hong
A/waterfowl/
A/mallard/
A/New
A/chicken/
(mg/l
Tm
mutations
%



Brisbane/
Kong/
Hong
Netherlands/
York/
Germany/
culture
onset
vs
identity


ID
10/07
1/68-ma
Kong/MPA892/06
12/00
107/03 (PR8)
n/49
medium)
(° C.)
germline
in FRs




















SD1036
59
78
44
6
11
10

56.5
16
82%


SD3023
64
206

5
16

113

7
92%


SD3024
80
206

8
20

40
51.5
5
94%


SD3025
160
280

5
13

122
59.8
6
93%


SD3026
16
36

3
8

59
58.5
5
94%


SD3027
16
30

5
6

106

7
92%


SD3028
101
280

6
26

114

8
91%


SD3094
8
20

<4
6

59
60.8
5
94%


SD3095
8
26

<4
6

102
64.1
6
93%


SD3096
26
20

<4
5

121
66.2
7
92%


SD3097
17
32
6
6
8
6
79
70.5
5
94%


SD3098
4
20

<4
16

114
74.2
6
93%


SD1046
5
26
3
25
34
13

58.3
16
82%


SD3041

858

>1000
>1000

134

5
94%


SD3042

253

>1000
>1000

100
63.8
5
94%


SD3043

466

>1000
>1000

89
71.2
6
93%


SD3044

253

>1000
>1000

138

7
92%


SD3045

632

>1000
>1000

92

6
93%


SD3046

253

>1000
>1000

92

6
93%


SD3047

253

>1000
>1000

94

7
92%


SD3048

343

>1000
858

36

8
91%


SD3067
3
8

10
16

101
63.3
8
91%


SD3068
4
10

10
26

107
55.9
7
92%


SD3099
3
3
2
26
16
5
98
63.5
7
92%
















TABLE 43







Average neutralization titers (nM), HEK293 expression levels, temperature


stability and sequence characteristics of humanized influenza A sdAb SD1038 (empty cells


mean ‘not determined’)













VNA IC50 (nM)
Expression






















A/New




level

# FR
%



A/California/
Caledonia/
A/Puerto
A/Vietnam/
A/Brisbane/
A/Hong
(mg/l
Tm onset
mutations
identity


ID
07/09
20/99
Rico/8/34-ma
1194/04
10/07
Kong/1/68
culture medium)
(° C.)
vs germline
in FRs




















SD1038
2
7
10
15
284
251

60.4
17
81%


SD3013

6
8
20
318
126
109

10
89%


SD3014

3
4
11


97
72
10
89%


SD3015

3
3
6


46
63.7
9
90%


SD3016

3
3
8


99
74.5
11
88%


SD3017

4
6
11


150

10
89%


SD3018

6
3
8


84
69.6
10
89%


SD3019

4
6
8


49
60.3
9
90%


SD3020

4
4
15


93
72.6
11
88%


SD3021
3
3
3
15
>1000

80
73.4
11
88%


SD3022
3
8
6
20
632

96

11
88%


SD3029
3
4
2
20
632
251
22

17
81%


SD3030
3
8
6
20
274
126
37

17
81%


SD3031

37
15
51
>1000

19

17
81%


SD3032

>500
>500
>500


17

17
81%


SD3033

51
51
316


11

17
81%


SD3078

8
3
20
632

81
68.6
6
93%


SD3079

5
3
16
949
503
85
75.3
7
92%


SD3080

5
3
16
632

89
78.6
8
91%


SD3089

3
2
20
1188

87
66.2
6
93%


SD3119

3

6
253
101

75.3
6
93%










Humanization of SD1036:


For SD1036 11 humanized variants were made. Several of these variants showed equal or in some cases even better neutralizing activity than the parent sdAb. No major differences in expression levels were observed, whereas for the majority of SD1036 variants the onset temperature of melting was increased. Variant SD3097 was selected as final humanized variant because it has the lowest number of FR mutations vs human germline, a high Tm onset value and in addition shows potent neutralization of all group 2 influenza strains tested.


Humanization of SD1038:


For SD1038 21 humanized variants were made. All variants, except SD3031-33, showed similar neutralizing activity against 4 group 1 strains as the parent sdAb. IC50 values for H3 strains A/Brisbane/10/07 and A/Hong Kong/1/68 were slightly higher for most of the SD1038 variants. Variant SD3119 was selected as final humanized variant because it has the lowest number of FR mutations vs human germline, a high Tm onset value and shows potent neutralization of all influenza strains tested. In this variant Met in CDR3 is replaced by Ile.


Humanization of SD1046:


For SD1046 11 humanized variants were made. A first series of variants showed strongly reduced neutralizing activity compared to the parent sdAb. A second series of variants was made which showed very similar activity as SD1046 in VNA. Of these variants, SD3099 was selected as final humanized variant because it has the lowest number of FR mutations vs human germline and shows high temperature stability.


Humanization of SD1083:


For SD1083 10 humanized variants were made. Several of these variants showed low expression levels in HEK293 cells and 2 did not express at all. Of the 3 variants that expressed well, SD3087 was selected as final humanized variant. This sdAb is more potent than the parent SD1083 in VNA and has a substantially higher Tm onset value.


Humanization of SD1084:


For SD1084 6 humanized variants were made. Four of these variants showed similar neutralizing activity in VNA as the parent sdAb. Of these variants, SD3085 was selected as final humanized variant because it has the highest Tm onset value and only 2 FR mutations vs human germline.


Humanization of SD1087:


For SD1087 23 humanized variants were made. A first series of 8 variants showed no measurable activity in VNA against 2 influenza B strains. A second series of SDAbs was made which included a number of variants showing similar IC50 values as SD1087. The temperature stability of these variants was lower than that of the parent molecule. None of the variants containing a substitution of Met in CDR2 showed activity in VNA. SD3093 was selected as final humanized variant because it showed only a modest decrease in Tm onset value and its activity in VNA was equal to that of SD1087.


Example 12: Generation and Characterization of Humanized sdAb Multimer Fc Fusion Constructs

Generation of Fc Fusion Constructs


The humanized sdAb variants described in Example 11 were used to generate multimeric Fc fusion constructs. The humanized multimeric binding molecules, i.e. multimeric binding molecules comprising at least two humanized sdAbs, were fused directly to the N-terminus of the Fc region. The Fc-fusion constructs were expressed in mammalian cells and secreted into the medium as dimeric Fc molecules. Complete amino acid sequences of the Fc fusion constructs are shown in Table 44. Homodimeric as well as heterodimeric Fc-fusion molecules were generated. Heterodimeric Fc fusions were generated by introducing single point mutations (K409R and F405L) in the CH3 domain of the 2 Fc chains as described by Labrijn et al. (2013) or by introducing the knobs-into-holes mutations as described in EP0812357B1 and EP0979281B1.


Gene constructs encoding humanized sdAb multimer Fc fusion proteins were codon optimized for mammalian cell expression and incorporated into Lonza pEE12.4 vectors. The expression vectors (that utilize the CD4 HC signal peptide) were amplified, purified, and concentrated to a final concentration of >5 mg/mL in sterile water for transfection of CHO cell lines using electroporation. Heterodimeric Fc fusion proteins were produced by co-transfection of equal amounts of vectors encoding the 2 individual chains. Homodimeric Fc fusions were produced using a single vector construct as noted above. The cell cultures were grown using standard suspension phase shake flask procedures. The filtered culture supernatants were applied to HiTrap MabSelect SuRe columns, washed with PBS, eluted with 0.1M sodium acetate pH 3.5, neutralized using 2.5M Tris pH 7.2, and dialyzed into dPBS.









TABLE 44







Amino acid sequences of humanized sdAb multimer Fc fusion constructs









FM1W3
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
293



PVAVAAEYEFWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFT



LENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLR



PEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVES



GGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGR



FTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK



TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ



VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL



YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





FM1W4
EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTY
SEQ



YADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASS
ID



WGQGTLVTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYR
NO:



QAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHV
294



SLYRDPLGVAGGIGVYWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSC



AASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQ



MNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQP



GGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTYYADSVKGRFTISRDNSK



NTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTLVTVSSDKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK



TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ



VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL



YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





FM1W5
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGK
NO:



EREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
295



LRLSSQADYWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTL



ENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRP



EDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVESG



GGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRF



TISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCP



APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT



KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV



YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY



SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





FM1W6
EVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTF
SEQ



YPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGPLRLSSQADYWGQGTLV
ID



TVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQR
NO:



ELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPL
296



GVAGGIGVYWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTF



STSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAE



DTAVYYCAKDWGGPEPTRGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLS



CAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVY



LQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLVTVSSDKTHTCPPCP



APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT



KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQV



YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY



SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





FM1W7
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGK
NO:



EREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
297



LRLSSQADYWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAISGLSL



DTYAVGWFRQAPGKEREGVSCISSGHGMTYYADSVKGRFTISTDNSKNTVYLQMNSLRA



EDTAVYYCATESRYYCSDNWPAPQRYIYWGQGTLVTVSSGGGGSGGGGSEVQLVESGGG



LVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGRFTI



SRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPCPAP



ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP



REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT



LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK



LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





FM1W8
EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHGMTY
SEQ



YADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQRYIYWG
ID



QGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQA
NO:



PGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDW
298



GGPEPTRGQGTLVTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIY



AMDWYRQAPGKQRELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA



VYYCHVSLYRDPLGVAGGIGVYWGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGG



SLRLSCAASGRTLSIYSMGWFRQAPGKEREFVATIGWNSGRTFYPDSVKGRFTISRDNS



KNTLYLQMNSLRAEDTAVYYCAAAKGPLRLSSQADYWGQGTLVTVSSDKTHTCPPCPAP



ELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP



REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT



LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK



LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





FM1B67.1
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
299



PVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSGG
ID



GGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI
NO:



SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGT
300



TFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B68.1
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
301



PVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTY
SEQ



YADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASS
ID



WGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLR
NO:



QAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
302



DWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B69.1
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
303



PVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHGMTY
SEQ



YADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQRYIYWG
ID



QGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQA
NO:



PGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDW
305



GGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV



VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE



WESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGK





FM1B70.1
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGK
NO:



EREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
306



LRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV



TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE



YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSGG
ID



GGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI
NO:



SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGT
307



TFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B71.1
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGK
NO:



EREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
308



LRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV



TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE



YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGK



EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTY
SEQ



YADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASS
ID



WGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLR
NO:



QAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
309



DWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B72.1
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGK
NO:



EREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
310



LRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV



TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE



YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHGMTY
SEQ



YADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQRYIYWG
ID



QGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQA
NO:



PGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDW
311



GGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV



VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE



WESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGK





FM1B73.1
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTYYAD
SEQ



SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTL
ID



VTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQ
NO:



RELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDP
312



LGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSGG
ID



GGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI
NO:



SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGT
313



TFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B74.1
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTYYAD
SEQ



SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTL
ID



VTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQ
NO:



RELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDP
314



LGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTY
SEQ



YADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASS
ID



WGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLR
NO:



QAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
315



DWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B75.1
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTYYAD
SEQ



SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTL
ID



VTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQ
NO:



RELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDP
316



LGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHGMTY
SEQ



YADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQRYIYWG
ID



QGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQA
NO:



PGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDW
317



GGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV



VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE



WESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGK





FM1B76.1
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
318



PVAVAAEYEFWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFT



LENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLR



PEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVES



GGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGR



FTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK



TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ



VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL



YSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK



DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV
SEQ



DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK
ID



AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV
NO:



LDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
319





FM1B67.2
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
320



PVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSGG
ID



GGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI
NO:



SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGT
321



TFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B68.2
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
322



PVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTY
SEQ



YADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASS
ID



WGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLR
NO:



QAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
323



DWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B69.2
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
324



PVAVAAEYEFWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHGMTY
SEQ



YADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQRYIYWG
ID



QGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQA
NO:



PGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDW
325



GGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV



VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIAVE



WESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGK





FM1B70.2
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGK
NO:



EREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
326



LRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV



TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE



YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSGG
ID



GGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI
NO:



SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGT
327



TFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B71.2
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGK
NO:



EREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
328



LRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV



TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE



YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGK



EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTY
SEQ



YADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASS
ID



WGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLR
NO:



QAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
329



DWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B72.2
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGRTLSIYSMGWFRQAPGK
NO:



EREFVATIGWNSGRTFYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAAAKGP
330



LRLSSQADYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV



TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE



YKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY



TQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHGMTY
SEQ



YADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQRYIYWG
ID



QGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQA
NO:



PGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDW
331



GGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV



VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIAVE



WESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGK





FM1B73.2
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTYYAD
SEQ



SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTL
ID



VTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQ
NO:



RELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDP
332



LGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSGG
ID



GGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCI
NO:



SKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGT
333



TFSRLASSWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B74.2
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTYYAD
SEQ



SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTL
ID



VTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQ
NO:



RELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDP
334



LGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGKK



EVQLLESGGGLVQPGGSLRLSCAASGFTLENKAIGWFRQAPGKEREGVLCISKSGSWTY
SEQ



YADSVKGRFTISRDNSKNTVYLQMNSLRPEDTAVYYCATTTAGGGLCWDGTTFSRLASS
ID



WGQGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLR
NO:



QAPGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
335



DWGGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT



CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY



KCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK





FM1B75.2
EVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAAINALGTRTYYAD
SEQ



SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAAPVAVAAEYEFWGQGTL
ID



VTVSSGGGGSGGGGSQVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQ
NO:



RELVAVSFRDGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDP
336



LGVAGGIGVYWGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK



EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLWCLVKGFYPSD



IAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH



YTQKSLSLSPGK



EVQLVESGGGLVQPGGSLRLSCAISGLSLDTYAVGWFRQAPGKEREGVSCISSGHGMTY
SEQ



YADSVKGRFTISTDNSKNTVYLQMNSLRAEDTAVYYCATESRYYCSDNWPAPQRYIYWG
ID



QGTLVTVSSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQA
NO:



PGKGLEWVSVINTDGGTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDW
337



GGPEPTRGQGTLVTVSSDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV



VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKC



KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIAVE



WESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGK





FM1B76.2
QVQLVESGGGVVQPGGSLRLSCAASISIFDIYAMDWYRQAPGKQRELVAVSFRDGSTYY
SEQ



ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCHVSLYRDPLGVAGGIGVYWGQGT
ID



LVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKERE
NO:



FVAAINALGTRTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTAQGQWRAA
338



PVAVAAEYEFWGQGTLVTVSSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFT



LENKAIGWFRQAPGKEREGVLCISKSGSWTYYADSVKGRFTISRDNSKNTVYLQMNSLR



PEDTAVYYCATTTAGGGLCWDGTTFSRLASSWGQGTLVTVSSGGGGSGGGGSEVQLVES



GGGLVQPGGSLRLSCAASGFTFSTSWMYWLRQAPGKGLEWVSVINTDGGTYYADSVKGR



FTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDWGGPEPTRGQGTLVTVSSDKTHTCPPC



PAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK



TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQ



VYTLPPSREEMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL



YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK



DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYV
SEQ



DGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK
ID



AKGQPREPQVYTLPPSREEMTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPV
NO:



LDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
339










Influenza Neutralization by Humanized sdAb Multimer Fc Fusion Proteins


Purified Fc fusion proteins were tested in influenza virus neutralization assays as described in Example 6 and showed similar potency and breadth when compared to the corresponding wild-type versions. Average neutralization titers for different influenza strains are summarized in Table 45.









TABLE 45







Average neutralization titers (nM) of humanized sdAb multimer Fc fusion


constructs















H7 A/NIBRG/60


H1 A/New




H3 A/Brisbane/10/07
(A/mallard/Netherlands/12/00)
B/Brisbane/60/08
B/Harbin/7/94
Caledonia/20/99
H5 A/Vietnam/1194/04
















FM1W3
16
8
16
8
6
10


FM1W4
40
16
8
6
32
32


FM1W5
16
6
10
10
6
8


FM1W6
16
13
8
6
40
32


FM1W7
10
8
16
6
5
13


FM1W8
40
51
4
3
40
40


FM1B67.1
16
16
4
6
6
16


FM1B68.1
16
16
6
6
6
16


FM1B69.1
26
16
3
6
6
16


FM1B70.1
16
16
6
5
6
16


FM1B71.1
32
16
6
6
16
26


FM1B72.1
16
16
3
6
10
16


FM1B73.1
16
16
5
6
101
101


FM1B74.1
20
16
6
6
80
101


FM1B75.1
16
16
3
5
80
101


FM1B76.1
16
16
16
16
13
20









REFERENCES



  • Adam et al., Clinical and Vaccine Immunology, 2014; 21(11): 1528-1533.

  • Brandenburg et al., PLoS One, 2013; 8(12):e80034.

  • Corti et al., Science, 2011; 333:850-856.

  • Dreyfus et al., Science, 2012; 337:1343-1348.

  • Ekiert et al., Science, 2009; 324:246-251.

  • Ekiert et al., Science, 2011; 333:843-850.

  • Ekiert et al. Nature, 2012; 489:526-532.

  • Hessell et al. Nature, 2007; 449:101-104.

  • Hufton et al., PLoS One, 2014; 9(8):e103294.

  • Hultberg et al., PLoS One, 2011; 6(4):e17665.

  • Johnson et al., Nat Med, 2009; 15(8):901-906.

  • Kashyap et al., PLoS Pathog., 2010; 6:e1000990.

  • Klein et al., mAbs, 2012; 4(6):653-663

  • Krause et al., J Virol., 2012; 86:6334-6340.

  • Kuo et al., mAbs, 2011; 3(5):422-430.

  • Labrijn et al. PNAS, 2013; 110(13):5145-50.

  • Lee et al., Proc Natl Acad Sci USA, 2012; 109:17040-17045.

  • Limberis et al., Sci Transl Med., 2013; 5(187): 1-8.

  • Strohl, Current Opinion in Biotechnology, 2009; 20:685-691.

  • Sui et al., Nat Struct Mol Biol., 2009; 16:265-273.

  • Suscovich and Alter, Expert Rev Vaccines, 2015; 14(2): 205-219.

  • Tan et al., J Virol., 2012; 86:6179-6188.

  • Throsby et al., PLoS One, 2008; 3:e3942.

  • Tillib et al., Antiviral Res., 2013; 97(3):245-54.

  • Tsibane et al., PLoS Pathog., 2012; 8:e1003067.

  • Vanlandschoot et al., Antiviral Research, 2011; 92(3), 389-407.

  • Wang et al., PLoS Pathog., 2010b; 6:e1000796.

  • Xu et al., Science, 2010; 328(5976):357-60.

  • Yoshida et al., PLoS Pathog., 2009; 5:e1000350.


Claims
  • 1. A single domain antibody (sdAb) comprising one of the amino acid sequences selected from the group consisting of SEQ ID NO: 155, SEQ ID NO: 176, SEQ ID NO: 197, and SEQ ID NO: 203.
  • 2. A multi-domain antibody comprising at least two of the sdAbs of claim 1.
  • 3. The multi-domain antibody of claim 2, comprising four sdAbs having the amino acid sequence of SEQ ID NO: 155, the amino acid sequence of SEQ ID NO: 176, the amino acid sequence of SEQ ID NO: 197, and the amino acid sequence of SEQ ID NO: 203, respectively.
  • 4. A multi-domain antibody comprising a first polypeptide comprising a first single domain antibody (sdAb) comprising the amino acid sequence of SEQ ID NO: 155 fused to a second sdAb comprising the amino acid sequence of SEQ ID NO: 176; and a second polypeptide comprising a third sdAb comprising the amino acid sequence of SEQ ID NO: 197 fused to a fourth sdAb comprising the amino acid sequence of SEQ ID NO: 203.
  • 5. The multi-domain antibody of claim 4, wherein the first sdAb is fused to the second sdAb via a linker; and the third sdAb is fused to the fourth sdAb via a linker.
  • 6. The multi-domain antibody of claim 4, wherein at least one of the first polypeptide and the second polypeptide further comprises a human Fc tail.
  • 7. The multi-domain antibody of claim 6, wherein each of the first polypeptide and second polypeptide independently further comprises a human Fc tail.
  • 8. A multi-domain antibody comprising a first polypeptide chain comprising, from N-terminus to C-terminus, a first single domain antibody (sdAb) comprising the amino acid sequence of SEQ ID NO: 176 fused to a second sdAb comprising the amino acid sequence of SEQ ID NO: 155 via a linker comprising the amino acid sequence of SEQ ID NO: 142; and a second polypeptide chain comprising, from N-terminus to C-terminus, a third sdAb comprising the amino acid sequence of SEQ ID NO: 203 fused to a fourth sdAb comprising the amino acid sequence of SEQ ID NO: 197 via a linker comprising the amino acid sequence of SEQ ID NO: 142.
  • 9. The multi-domain antibody of claim 8, wherein each of the first polypeptide and second polypeptide independently further comprises a human Fc tail.
  • 10. A multi-domain antibody comprising a first polypeptide chain having the amino acid sequence of SEQ ID NO: 320 and a second polypeptide chain having the amino acid sequence of SEQ ID NO: 321.
  • 11. A pharmaceutical composition comprising the sdAb antibody of claim 1.
  • 12. A pharmaceutical composition comprising the multi-domain antibody of claim 4.
  • 13. A pharmaceutical composition comprising the multi-domain antibody of claim 8.
  • 14. A pharmaceutical composition comprising the multi-domain antibody of claim 10.
  • 15. A method of inhibiting an influenza infection in a subject in need thereof, the method comprising administering to the subject the pharmaceutical composition of claim 11.
  • 16. A method of inhibiting an influenza infection in a subject in need thereof, the method comprising administering to the subject the pharmaceutical composition of claim 12.
  • 17. A method of inhibiting an influenza infection in a subject in need thereof, the method comprising administering to the subject the pharmaceutical composition of claim 13.
  • 18. A method of inhibiting an influenza infection in a subject in need thereof, the method comprising administering to the subject the pharmaceutical composition of claim 14.
  • 19. A nucleic acid molecule encoding the single domain antibody of claim 1.
  • 20. A nucleic acid molecule encoding the multi-domain antibody of claim 4.
  • 21. A nucleic acid molecule encoding the multi-domain antibody of claim 8.
  • 22. A nucleic acid molecule encoding the multi-domain antibody of claim 10.
Priority Claims (1)
Number Date Country Kind
15153957 Feb 2015 EP regional
CROSS REFERENCE TO RELATED APPLICATIONS

This application is continuation of U.S. application Ser. No. 15/548,843, filed Aug. 4, 2017, which is a Section 371 of International Application No. PCT/EP2016/052556, filed Feb. 5, 2016, which was published in the English language on Aug. 11, 2016 under International Publication No. WO 2016/124768 A1, claiming priority under 35 U.S.C. § 119(b) to European Patent Application EP 15153957.4, filed Feb. 2, 2015, and the disclosures of which are incorporated herein by reference.

US Referenced Citations (2)
Number Name Date Kind
8961978 Kwaks et al. Feb 2015 B2
10370435 Brandenburg Aug 2019 B2
Foreign Referenced Citations (5)
Number Date Country
2009121004 Oct 2009 WO
2009147248 Dec 2009 WO
2013007770 Jan 2013 WO
2013011347 Jan 2013 WO
2013030604 Mar 2013 WO
Non-Patent Literature Citations (33)
Entry
Adam et al, “Adeno-Associated Virus 9-Mediated Airway Expression of Antibody Protects Old and Immunodeficient Mice Against Influenza Virus,” Clinical and Vaccine Immunology, vol. 21, No. 11, pp. 1528-1533 (2014).
Brandenburg et al, “Mechanisms of Hemagglutinin Targeted Influenza Virus Neutralization,” PLoS One, vol. 8, Issue 12, pp. e80034 (2013).
Corti et al, “A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins,” Science, vol. 333, pp. 850-856 (2011).
Dreyfus et al, “Highly Conserved Protective Epitopes on Influenza B Viruses,” Science, vol. 337, pp. 1343-1348 (2012).
Ekiert et al, “Antibody Recognition of a Highly Conserved Influenza Virus Epitope,” Science, vol. 324, pp. 246-251 (2009).
Ekiert et al, “A Highly Conserved Neutralizing Epitope on Group 2 Influenza A Viruses,” Science, vol. 333, pp. 843-850 (2011).
Ekiert et al, “Cross-Neutralization of Influenza A Viruses Mediated by a Single Antibody Loop,” Nature, vol. 489, pp. 526-536 (2012).
Hessell et al, “Fc Receptor but not Complement Binding is Important in Antibody Protection Against HIV,” Nature, vol. 449, pp. 101-104 (2007).
hufton et al, “The Breadth of Cross Sub-Type Neutralisation Activity of a Single Domain Antibody to Influenza Hemagglutinin can be Increased by Antibody Valency,” PLoS One, vol. 9, Issue 8, pp. e103294 (2014).
Hultberg et al, “Llama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules,” PLoS One, vol. 6, Issue 4, pp. e17665 (2011).
Johnson et al, “Vector-Mediated Gene Transfer Engenders Long-Lived Neutralizing Activity and Protection Against SIV Infection in Monkeys,” Nature Medicine, vol. 15, No. 8, pp. 901-906 (2009).
Kashyap et al, “Protection from the 2009 H1N1 Pandemic Influenza by an Antibody From Combinatorial Survivor-Based Libraries,” PLoS Pathog, vol. 6, pp. e1000990 (2010).
Klein et al, “Progress in Overcoming the Chain Association Issue in Bispecific Heterodimeric IgG Antibodies,” mAbs, vol. 4, No. 6, pp. 653-663 (2012).
Krause et al, “Human Monoclonal Antibodies to Pandemic 19571-12N2 and Pandemic 1968 H3N2 Influenza Viruses,”Journal of Virology, vol. 86, No. 11, pp. 6334-6340 (2012).
Kuo et al, “Neonatal Fc Receptor and IgG-Based Therapeutics,” mAbs, vol. 3, Issue 5, pp. 422-430 (2011).
Labrijn et al, “Efficient Generation of Stable Bispecific IgG1 by Controlled Fab-arm Exchange,” PNAS, vol. 110, No. 13, pp. 5145-5150 (2013).
Lee et al, “Heterosubtypic Antibody Recognition of the Influenza Virus Hemagglutinin Receptor Binding Site Enhanced by Avidity,” Proc Natl Acad Scie USA, vol. 109, No. 42, pp. 17040-17045 (2012).
Limberis et al, “Intranasal Antibody Gene Transfer in Mice and Ferrets Elicits Broad Protection Against Pandemic Influenza,” Sci Transl Med, vol. 5, Issue 187, pp. 1-8 (2013).
Strohl, “Optimization of Fc-Mediated Effector Functions of Monoclonal Antibodies,” Current Opinion in Biotechnology, vol. 20, pp. 685-691 (2009).
Sui et al, “Structural and Functional Bases for Broad-Spectrum Neutralization of Avian and Human Influenza A Viruses,” Nat Struct Mol Biol, vol. 16, No. 3, pp. 265-273 (2009).
Suscovich and Alter, “In Situ Production of Therapeutic Monoclonal Antibodies,” Expert Reviews Vaccines, vol. 14, No. 2, pp. 205-219 (2015).
Tan et al, “A Pan-H1 Anti-Hemagglutinin Monoclonal Antibody With Potent Broad-Spectrum Efficacy In Vivo,” Journal of Virology, vol. 86, No. 11, pp. 6179-6188 (2012).
Throsby et al, “Heterosubtypic Neutralizing Monoclonal Antibodes Cross-Protective Against H5N1 and H1N1 Recovered From Human IgM+ Memory B Cells,” PLoS One, vol. 3, Issue 12, pp. e3942 (2008).
Tillib et al, Formatted Single-Domain Antibodes Can Protect Mice Against Infection With Influenza Virus (H5N2), Antiviral Research, vol. 97, No. 3, pp. 245-254 (2013).
Tsibane et al, “Influenza Human Monoclonal Antibody 1F1 Interacts With Three Major Antigenic Sites and Residues Mediating Human Receptor Specificity in H1N1 Viruses,” PLoS Pathog, vol. 8, Issue 12, pp. e1003067 (2012).
Vanlandschoot et al, “Nanobodies: New Ammunition to Battle Viruses,” Antiviral Research, vol. 92, No. 3, pp. 389-407 (2011).
Wang et al, “Broadly Protective Monoclonal Antibodies Against H3 Influenza Viruses Following Sequential Immunization with Different Hemagglutinins,” PLoS Pathog., vol. 6, Issue 2, pp. e1000796 (2010).
Xu et al, “Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus,” Science, vol. 328, No. 5976, pp. 357-360 (2010).
Yoshida et al, “Cross-Protective Potential of a Novel Monoclonal Antibody Directed Against Antigenic Site B of the Hemagglutinin of Influenza A Viruses,” PLoS Pathog., vol. 5, Issue 3, pp. e1000350 (2009).
Int'l Search Report dated Apr. 5, 2016 in Int'l Application No. PCT/EP2016/052556.
Glaven et al, “Linking Single Domain Antibodes that Recognize Different Epitopes on the Same Target,” Biosensors, col. 2, pp. 43-56 (2012).
Written Opinion dated May 4, 2016 in Int'l Application No. PCT/EP2016/052556.
Hagifiara, Yoshihisa, “Next-Generation Antibodies: Molecular Theory of Camel Antibodies”, Bio Industry, vol. 25, No. 5, pp. 15-22, (2008).
Related Publications (1)
Number Date Country
20190359693 A1 Nov 2019 US
Continuations (1)
Number Date Country
Parent 15548843 US
Child 16455151 US