Binding Molecules Targeting IL-2 Receptor

Abstract
The present invention provides binding molecules, particularly antibodies, or antigen-binding portions thereof, which bind to the IL-2 receptor and selectively activate regulatory T cells. The invention further relates to compositions and therapeutic methods for use of these binding molecules for the treatment and/or prevention of autoimmune diseases, and/or other conditions responsive to therapy that is effective to a selective increase in numbers and activation of regulatory T cells over effector T cells.
Description
FIELD OF INVENTION

The present invention relates to binding molecules that bind to one or more of the polypeptide chains of interleukin-2 receptor, hence that bind to one or more of the interleukin-2 receptor α-chain (IL-2Rα, encoded by IL2RA; also known as CD25), interleukin 2 receptor β-chain (IL-2Rβ, encoded by IL2RB; also known as CD122) and the common cytokine receptor γ-chain (γc, encoded by IL2RG; also known as IL-2Rγ or CD132). The present invention further relates to the use of such binding molecules to target interleukin receptors (IL-2R), particularly the high affinity IL-2Rα/IL-2Rβ/γc, as well as the binding molecules for use in methods of treatment and diagnosis. Preferred binding molecules are antibodies, with particularly preferred binding molecules comprising, or consisting of, VHH domain antibodies.


BACKGROUND OF INVENTION

IL-2 is a pleiotropic cytokine involved in immune system function, playing a role in immune responses and also immune tolerance. The main cells that release IL-2 are activated CD4+ T cells. IL-2 influences the differentiation, proliferation, survival, and activity of a wide range of immune cells. It can act on multiple cell types, including T regulatory cells (Tregs), type 2 innate lymphoid cells (ILC2), Natural Killer (NK) cells, T memory (Tmem) cells, effector T cells (Teffs), activated B cells, and monocytes. Stimulation by IL-2 is often key to the survival and proliferation of such immune system cells.


The functional receptor for IL-2, IL-2R, exists as a two-chain heterodimeric form with medium affinity for IL-2 and a high affinity three chain heterotrimeric form. In particular, three different chains can be present in a receptor for IL-2, those being the interleukin-2 receptor α-chain (IL-2Rα; CD25), interleukin 2 receptor β-chain (IL-2Rβ; CD122) and common cytokine receptor γ-chain (γc; IL-2Rγ; CD132). IL-2Rβ and γc can form an IL-2R complex with medium affinity for IL-2. IL-2Rα, IL-2Rβ and γc can together form a heterotrimeric IL-2R complex with high affinity for IL-2. The medium affinity two chain IL-2Rβ/γc receptor complex may be an intermediate in the formation of the higher affinity IL-2Rα/IL-2Rβ/γc receptor complex. IL-2Rα on its own has low affinity for IL-2, but binding of IL-2 to IL-2Rα may also play a part in the formation of IL-2Rα/IL-2Rβ/γc receptor complexes.


As IL-2Rα is the polypeptide chain which is unique to the trimeric IL-2Rα/IL-2Rβ/γc receptor complex, the higher expression of IL-2Rα on Treg cells means that they are most responsive to IL-2. Low dose IL-2 therapy has been used as a way to attempt to preferentially stimulate Tregs, whilst higher dose IL-2 has been used to try and stimulate T effector cells. Lower dose IL-2 has been investigated for treating autoimmune disorders. However, low dose therapy has poor specificity, short in vivo half-life, and the potential for immunogenicity. Higher dose IL-2 has been used in cancer therapy, but has undesirable side-effects, such as vascular leak syndrome (VLS), and different patients show different levels of responsiveness to the treatment. Thus, whilst offering promise, IL-2 therapy has been slow to enter the clinic for the benefit of many patients. Mutant forms of IL-2, IL-2 muteins, have also been developed with increased specificity for the high affinity IL-2Rα/IL-2Rβ/γc receptor complex, but which showed off-target binding to CD25+ cells.


Given the importance of IL-2 in the immune system, a real need remains to provide further and improved ways to target IL-2 and IL-2R complexes, particularly the higher affinity IL-2Rα/IL-2Rβ/γc receptor complex to modulate Tregs.


SUMMARY OF THE INVENTION

The present invention provides binding molecules against the polypeptide chains of the interleukin-2 receptor (IL-2R). The binding molecules are, or comprise, single domain binding regions, particularly comprising heavy chain only antibodies, and especially VHH domain antibodies. The present invention provides binding molecules comprising, or consisting of, single domain binding regions that are able to bind at least one of the IL-2Rα, IL-2Rβ and γc. Preferred single domain binding regions are heavy chain only antibodies. Especially preferred single domain binding regions are VHH domain antibodies. Hence, in a particularly preferred embodiment, the binding molecule may be, or may comprise a VHH domain antibody or antibodies.


Typically, the binding molecules of the present invention do not comprise IL-2 or mutant forms of IL-2. One advantage of the binding molecules of the present invention is therefore that, unlike the mutant forms of IL-2 being developed in the art as therapeutics, they do not run the risk of inducing antibodies against a mutant IL-2 that will cross-react with endogenous IL-2.


In a particularly preferred embodiment, the binding molecules are able to bind all three of IL-2Rα, IL-2Rβ, and γc, and preferably bind the IL-2Rα/IL-2Rβ/γc receptor complex. Hence, the invention allows for the targeting of the IL-2Rα/IL-2Rβ/γc receptor complex and so of Tregs. Such binding molecules are able to preferentially target Treg cells that express high levels of the interleukin-2 receptor α chain associated with stable FoxP3 expression and immunosuppressive properties, hence in one preferred embodiment, the binding molecules may be used to target Treg cells, for instance to preferentially activate Treg cells. The ability to stimulate Treg cells means that one preferred use of the binding molecules of the present invention is in methods to treat or prevent autoimmune disorders.


In one particularly preferred embodiment, the binding molecules of the present invention are, or comprise, VHH domain antibodies. The present inventors have taken advantage of the versatility of VHH domains, and their single polypeptide chain nature, to generate various monospecific, bispecific, trispecific and multispecific binding molecules for targeting IL-2 receptors. In a preferred embodiment, the present invention provides a binding molecule comprising VHH domains that mean that the binding molecule is able to bind at least one of the interleukin-2 receptor α-chain, β-chain, and common cytokine receptor γ-chain. In a particularly preferred embodiment, the binding molecule comprises at least three VHH domains, with at least one VH domain specific against each of the interleukin-2 receptor α chain, β chain, and common γ chain.


The present invention provides a trispecific binding molecule comprising:

    • at least one single domain binding region specific for the IL-2α receptor α-chain;
    • at least one single domain binding region specific for the IL-2 receptor β-chain; and
    • at least one single domain binding region specific for the γc.


The present invention further provides a trispecific binding molecule of the present invention for use as a medicament.


The present invention further provides a trispecific binding molecule of the present invention for use in a method of treating or preventing an autoimmune disorder, or an inflammatory disorder, preferably wherein:

    • (a) the disorder is graft versus host disease (GvHD), preferably where the antibody is for use in a method where it is administered prior to, at the same time, or after a transplant of a cell, tissue, or organ;
    • (b) the disorder is one involving dysfunction or unwanted proliferation of leukocytes, preferably of T cells, more preferably of Teff cells; such disorders may present with an imbalance of Tregs compared to Teff cells;
    • (c) the disorder is selected from inflammatory bowel disease (IBD) (such as ulcerative colitis (UC), Crohn's disease, pouchitis or celiac disease), systemic lupus erythematosus (SLE), multiple sclerosis, type 1 diabetes, myasthenia gravis, pemphigus vulgaris, and bullous pemphigoid; or
    • (d) the disorder is selected from SLE, cGvHD, psoriasis, autoimmune hepatitis, ulcerative colitis, eczema.


The present invention further provides a method of stimulating cell proliferation comprising contacting a target cell expressing the IL-2Rα/IL-2Rβ/γc receptor complex with a trispecific binding molecule of the present invention.


The present invention also provides a pharmaceutical composition comprising a trispecific binding of the present invention and a pharmaceutically acceptable carrier.


The present invention further provides a method of detecting the IL-2Rα/IL-2Rβ/γc receptor complex comprising contacting a test sample with a binding molecule of the present invention and detecting binding of the binding molecule to the IL-2Rα/IL-2Rβ/γc receptor complex, preferably wherein the binding molecule is labelled and the binding of the antibody to the IL-2Rα/IL-2Rβ/γc receptor complex is detected via the label.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A shows the binding of selected VHH antibodies specific for the IL-2Rα-, β-, or γ-chain to HEK-Blue cells expressing all three of the IL-2R α-, β-, or γ-chain as measured by FACS analysis.



FIG. 1B shows the dose-response binding curves of selected monospecific monovalent IL-2Rα VHH antibodies to HEK cells expressing the trimeric IL-2Rα/β/γ as measured by FACS analysis. The format of a monospecific bivalent IL-2R subunit antibody used to obtain the results is shown above the graph.



FIG. 2 shows the ability of selected VHH antibodies specific for the IL-2Rα-, β-, or γ-chain to block binding of IL-2 to HEK-Blue cells expressing all three IL-2R chains as measured by FACS analysis. The higher the column in the graph, the greater the inhibition of binding of IL-2 to the HEK-blue cells by the antibody.



FIG. 3A shows results from testing the monospecific bi- and mono-valent VHH-hFc molecules specific for IL-2Rα/CD25 in a binding ELISA on human and cynomolgus monkey IL-2Rα/CD25 subunits. The structure of the monospecific monovalent and monospecific bivalent antibodies are shown below the graph.



FIG. 3B shows results from testing the monospecific bi- and mono-valent VHH-hFc molecules specific for IL-2Rβ/CD122 in a binding ELISA on human and cynomolgus monkey IL-2Rβ/CD122 subunits. The structure of the monospecific monovalent and monospecific bivalent antibodies assessed was the same as that shown below the graph in FIG. 3A.



FIG. 3C shows results from testing the monospecific bi- and mono-valent VHH-hFc molecules specific for IL-2Rγ/CD132 in a binding ELISA on human and cynomolgus monkey IL-2Rγ/CD132 subunits. The structure of the monospecific monovalent and monospecific bivalent antibodies assessed was the same as that shown below the graph in FIG. 3A



FIG. 4 summarises the VHH clones specific for the IL-2R α-, β-, or γ-chain employed to generate monospecific, bispecific, and trispecific antibodies, with the structure of the antibodies generated shown below the Table. The structures shown are monospecific, bispecific, or trispecific in the sense of whether they bind just IL-2R α alone (the structure on the left), bind IL-2R α and β (bivalent, bispecific structure in the middle), or bind all three of IL-2R α-, β-, and γ (the structure on the right). The structures are referred to as monovalent or bivalent in the sense of how many binding sites that they have individually for each of the IL-2R α-, β-, and γ chains present, even though the overall valency is higher (the structure on the left has an overall valency of two, that in the middle an overall valency of four, whist that on the right has an overall valency of three).



FIG. 5 shows hydrophobic interaction chromatography (HIC) chromatograms for two parental monospecific anti-IL-2Rα and bispecific anti-IL-2Rβ/γc antibodies and the heterodimeric trispecific anti-IL-2Rα/IL-2Rβ/γc antibody. The large peak in each chromatogram represents the main species of the antibody in the sample. The purity obtained for selected trispecific antibodies is indicated in the Table below the HIC chromatograms.



FIG. 6 shows the ability of particular monospecific, bispecific and trispecific antibodies to: bind HEK cells expressing IL-2Rα/IL-2Rβ/γc (top panel); inhibit binding of IL-2 to HEK cells expressing IL-2Rα/IL-2Rβ/γc (middle panel); and activate IL-2R signalling as measured by STAT5 phosphorylation.



FIG. 7A shows the dose-response binding curves of selected bispecific anti-IL-2Rβ/γ VHH antibodies to HEK cells expressing the trimeric IL-2Rα/β/γ as measured by FACS analysis. The antibodies assessed had a valency of two against each of the IL-2Rβ and γ chains and hence an overall valency of four.



FIG. 7B shows the dose-response binding curves of selected trispecific anti-IL-2Rα/β/γc VHH antibodies to HEK cells expressing the trimeric IL-2Rα/β/γ as measured by FACS analysis. The antibodies assessed had a valency of one against each of the IL-2R α β and γ chains and hence an overall valency of three.



FIG. 8 shows the ability of particular bispecific IL-2Rβ/γc and trispecific IL-2Rα/IL-2Rβ/γc antibodies to activate IL-2R signalling as measured by pSTAT5 phosphorylation in HEK cells expressing IL-2Rα/IL-2Rβ/γc, with the Table displaying EC50 (nM) and maximum signal values (% of live cells positive for phosphorylated STAT5).



FIG. 9A shows the pSTAT5 dose-response curves of selected bispecific monovalent anti-IL-2Rβ/γ VHH antibodies in HEK cells expressing the trimeric IL-2Rα/β/γ as measured by FACS analysis.



FIG. 9B shows the pSTAT5 dose-response curves of selected trispecific (monovalent) anti-IL-2Rα/β/γ VHH antibodies in HEK cells expressing the trimeric IL-2Rα/β/γ as measured by FACS analysis.



FIG. 9C shows the pSTAT5 dose-response curves of selected trispecific monovalent anti-IL-2Rα/β/γ VHH antibodies (cfr. FIG. 12C) in HEK cells expressing the trimeric IL-2Rα/β/γ as measured by FACS analysis.



FIG. 9D shows the pSTAT5 dose-response curves of tsVHH48 variants, in particular selected trispecific symmetrical, bivalent anti-IL-2α/β/γ (DC00011, DC00015, DC00019, DC00020, DC00021; cfr. FIG. 12A) and corresponding bispecific mono-(one armed, OA) and bivalent anti-IL-2β/γ VHH antibodies in HEK cells expressing the trimeric IL-2R α/β/γ as measured by FACS analysis.



FIG. 10A shows the ability of particular bispecific IL-2Rβ/γc and trispecific IL-2Rα/IL-2Rβ/γc antibodies to induce dose-dependent pSTAT5 activation of human PBMCs, with trispecific antibodies demonstrating enhanced selectivity and potency for human Tregs.



FIG. 10B shows the ability of monoparatopic tsVHH-48 geometry variants to induce dose-dependent pSTAT5 activation of human PBMCs, with particular trispecific IL-2Rα/IL-2Rβ/γc antibodies demonstrating enhanced selectivity and potency versus IL-2 or the parental tsVHH-48 for human Tregs over NK cells. Graphs represent data from one experiment with one PBMC donor.



FIG. 10C shows the ability of anti-CD25-biparatopic variants of ts VHH48 to induce dose-dependent pSTAT5 activation of human PBMCs, with particular trispecific biparatopic IL-2Rα/IL-2Rβ/γc antibodies demonstrating enhanced selectivity and potency versus the parental tsVHH48 for human Tregs over NK cells. Graphs represent data from one experiment with two PBMC donors.



FIG. 11 shows the ability of trispecific IL-2Rα/IL-2Rβ/γc antibodies to preferentially expand Tregs in human PBMC culture.



FIG. 12A shows illustrative examples of antibody formats that may be employed in the present invention.



FIG. 12B shows further illustrative examples of antibody formats that may be employed in the present invention.



FIG. 12C shows further illustrative examples of antibody formats that may be employed in the present invention. The upper panel illustrates antibodies employing the same VHH building blocks as used for tsVHH48, but with a different order and/or number of VHHs in one or both arms of the antibody thereby resulting in different overall geometries and/or valencies. The lower panel illustrates the use of tsVHH48 building blocks fused to one Fc tail, paired with CD25-binding VHHs belonging to different CDR3 families fused to a second Fc tail (the binding molecules therefore being biparatopic for CD25 and overall being tsVHHs in the sense of having at least one specificity for each of IL-2 α-, β-, and γ-).



FIG. 13 shows the result for treatment of aGvHD mice with tsVHH48.



FIG. 13A shows the survival and disease activity score of xenogeneic graft-versus-host-diseased mice treated with tsVHH48. The mice from the control group were injected intraperitoneally with 100 μg PBS (n=6 mice). Survival rates (A), weight loss (B) and the disease activity (C) are represented from one experiment. Data under B. and C. are represented as mean±SEM. P-value. Paired t-test (* p<0.05; ** p<0.005, *** p<0.0005).



FIG. 13B shows the frequency and proliferation of immune cells in blood over time. Blood was individually collected on a weekly basis and stained for flow cytometry analysis. Percentage of human CD45 engraftment (A), T lymphocytes (B), NK T cells (C), NK cells (D), CD8 T cells (E), effector CD8 T cells (F), proliferating CD8 T cells (G), CD4 T cells (H), effector CD4 T cells (I) and proliferating CD4 T cells (J) are respectively represented. Data are plotted as mean±SEM and represent one experiment.



FIG. 13C shows the frequency and proliferation of Tregs in blood over time. Blood was individually collected on a weekly basis and stained for flow cytometry analysis. Frequency (A) of Tregs (Foxp3+CD127− of the total CD4+ cells) and proliferating Tregs (B) are represented. Data are plotted as mean±SEM and represent one experiment.





DETAILED DESCRIPTION
Binding Molecules, Antibodies and IL-2 Receptors

The present invention provides binding molecules that are able to bind one or more of the polypeptide chains of the IL-2R. For example, the present invention provides a binding molecule that can bind all three of the polypeptide chains of the IL-2R, preferably which can bind all three at the same time.


The binding molecules provided are typically characterised as being, or comprising, single domain binding regions. A single domain binding region consists of a single domain able to bind a target. In one embodiment, the single domain binding region is characterised by not including an antibody light chain. In one embodiment, the binding molecule as a whole does not include an antibody light chain. An advantage of employing single domain binding regions is that it is easier to join together permutations of different single binding domains. In one particularly preferred embodiment the binding molecule is, or comprises, antibody-based sequences. In an alternative embodiment it does not. In one embodiment of the invention, a binding molecule does not comprise Fab binding regions.


In embodiments where a binding molecule of the present invention comprises antibody-based sequences, the binding molecule may be simply referred to as an antibody. Reference to an antibody may be used to refer to the overall structure, even if all of the constituents of the overall structure are not antibody based, the overall structure is not a naturally occurring antibody, or the overall structure includes non-antibody-based sequences. Reference to an “antibody” herein specifically encompasses an individual VHH molecule, as well as an antibody that comprises a VHH molecule as part of the overall structure. Hence, reference to an antibody is not limited to a four polypeptide IgG structure with two light and two heavy chain polypeptides, but also antibody structures where the overall structure is not a naturally occurring one, but the antibody still includes antibody-based sequences. For instance, whilst VHH heavy chain only antibodies are naturally occurring structures, antibodies that comprise more than one VHH molecule or domain are not naturally occurring, but they are still specifically part of the present invention and represent an “antibody” as defined herein. Reference to an antibody herein also includes antibodies that themselves therefore comprise antibodies as one of their constituent parts.


Reference to the “geometry” of a binding molecule and in particular an antibody refers in particular to the number, order, and what the antigen binding sites present bind for a given binding molecule. In one embodiment, the overall structure of the antibody is referred to the “format” of an antibody, with reference to an antibody format though not preferably being limiting to specific sequences.


In a preferred embodiment, the binding molecules of the present invention are, or comprise, heavy chain only antibodies (HCAb). Reference to a heavy chain only antibody includes molecules that represent the heavy chain of an antibody, but lack the CH1 domain, and which are able to bind antigen without needing an accompanying light chain. Reference to a heavy chain only antibody also include VHH domain antibodies, for instance from camelids and VNAR antibodies, for example from cartilaginous fish. In an especially preferred embodiment, a heavy chain antibody employed in the present invention is, or comprises, a VHH domain antibody. However, other types of HCAb may be employed such as human, rat or mouse HCAbs. In another embodiment, other single domain binding regions may be employed which are not antibody based. So, for instance, in one embodiment, the single domain binding regions employed are non-Ig engineered protein scaffolds such as darpins, affibodies, adnectins, anticalin proteins, or peptides and the like. So wherever reference to a VHH domain is used herein, as an alternative embodiment any HCAbs in general may be employed, as well as non-antibody based single domain binding regions, including any of those referred to herein. Further, wherever reference to a single binding domain is made herein, instead a heavy chain only antibody may be employed, with the term heavy chain only antibody encompassing both single binding domains, such as VHH, but also heavy chain only antibodies that are heavy chains able to bind antigen without a light chain, for instance heavy chains lacking a CH1 region.


In a preferred embodiment of the present invention, an antigen binding site present in a binding molecule of the present invention is a VHH domain. In one preferred embodiment, all of the antigen binding sites are provided by VHH domains. In one embodiment, a binding molecule, consisting of a VHH domain as set out herein is provided. In another embodiment, a binding molecule comprising at least one VHH domain as set out herein is provided. In one embodiment, a binding molecule comprising a VHH domain as a sole antigen binding site is provided. In a preferred embodiment a binding molecule of the present invention comprises at least two VHH domains as set out herein. In one embodiment, a binding molecule of the present invention comprises two different VHH domain as set out herein. The present invention provides a bispecific binding molecule comprising two different VHH domains as set out herein. In one preferred embodiment, a binding molecule of the present invention comprises at least three different VHH domains as set out herein. In one embodiment a binding molecule of the present invention is a trispecific comprising three different VHH molecules as set out herein. In a preferred embodiment, the VHH domain or VHH domains will all be specific for an IL-2R polypeptide chain.


VHH antibodies comprise three CDRs, CDR1, CDR2, and CDR3. Reference to a “set of CDRs” in relation to a VHH domain antibody refers to the CDR1, CDR2, and CDR3 of that VHH domain. So, for instance, TABLE 3 identifies preferred VHH domain antibodies which are individually provided, but which may also be used as constituents for a binding molecule of the present invention. So the present invention provides a binding molecule comprising a VHH domain as set out in TABLE 3.


TABLE 4 of the present application sets out the CDR sequences of the VHH domains from TABLE 3. The present invention also provides a binding molecule comprising a “set” of CDRs, so CDR1, CDR2, and CDR3, from


TABLE 4, so from one of the VHH domain antibodies in TABLE 3.


TABLE 7 of the present application provides the VHH domain sequences and CDR sequences for further VHH domain antibodies specific for the IL-2Rα polypeptide, with the invention providing such VHH antibodies, as well as a binding molecule comprising one of the VHH domain antibodies from TABLE 7, and also a binding molecule comprising a set of CDRs from one of the VHH domain antibodies from TABLE 7.


TABLE 8 of the present application provides the VHH domain sequences and CDR sequences for VHH domain antibodies specific for the IL-2Rβ polypeptide, with the invention providing such VHH antibodies, as well as a binding molecule comprising one of the VHH domain antibodies from


TABLE 8, and also a binding molecule comprising a set of CDRs from one of the VHH domain antibodies from TABLE 8. TABLE 9 of the present application provides the VHH domain sequences and CDR sequences for VHH domain antibodies specific for the IL-2Rγ polypeptide, with the invention providing such VHH antibodies, as well as a binding molecule comprising one of the VHH domain antibodies from TABLE 9, and also a binding molecule comprising a set of CDRs from one of the VHH domain antibodies from TABLE 9. The present invention also provides a VHH domain antibody, or a binding molecule comprising such a VHH domain, which comprises a set of CDR sequences from one of TABLES 3, 6, 7, or 8, but with different, or at least modified, framework sequences. As discussed herein variant sequences are also provided, so anywhere herein reference to a specific sequence is made, a variant sequence may also be employed, particularly a variant that retains ability to bind to the specific IL-2R polypeptide chain. In another embodiment, a variant may be one that has one or more CDRs with sequence modifications present, for instance a CDR may comprise one, two, three, or four sequence changes compared to the specific ones set out, with one, two, or three CDRs each having such a level of sequence change. In one embodiment, the sequence changes are conservative sequence changes. Variant sequences will typically retain binding activity, for instance having substantially the same binding activity for the target.


The binding molecule provided by the invention bind to one or more of the interleukin-2 receptor α-chain (IL-2Rα; CD25), interleukin 2 receptor β-chain (IL-2Rβ; CD122) and common cytokine receptor γ-chain (γc; IL-2Rγ; CD132). In a particularly preferred embodiment, the IL-2R polypeptide chain bound by a binding molecule of the present invention is human. The sequences of the human IL-2R polypeptide chains are provided as follows:

    • SEQ ID NO: 2036 provides the sequence of the human interleukin-2 receptor α-chain and an antibody of the invention may specifically bind that sequence:











MDSYLLMWGLLTFIMVPGCQAELCDDDPPEIPHATFKAMAYKEGT






MLNCECKRGFRRIKSGSLYMLCTGNSSHSSWDNQCQCTSSATRNT






TKQVTPQPEEQKERKTTEMQSPMQPVDQASLPGHCREPPPWENEA






TERIYHFVVGQMVYYQCVQGYRALHRGPAESVCKMTHGKTRWTQP






QLICTGEMETSQFPGEEKPQASPEGRPESETSCLVTTTDFQIQTE






MAATMETSIFTTEYQVAVAGCVFLLISVLLLSGLTWQRRQRKSRR






TI



(SEQ ID NO: 1865->NP 000408.1 interleukin-2



receptor subunit alpha



isoform 1 precursor [Homo sapiens])








    • SEQ ID NO: 2037 provides the sequence of the human interleukin-2 receptor β-chain and an antibody of the invention may specifically bind that sequence:














MAAPALSWRLPLLILLLPLATSWASAAVNGTSQFTCFYNSRANIS






CVWSQDGALQDTSCQVHAWPDRRRWNQTCELLPVSQASWACNLIL






GAPDSQKLTTVDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAP






ISLQVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGHTWEE






APLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQGEFTTWSPWSQ






PLAFRTKPAALGKDTIPWLGHLLVGLSGAFGFIILVYLLINCRNT






GPWLKKVLKCNTPDPSKFFSQLSSEHGGDVQKWLSSPFPSSSFSP






GGLAPEISPLEVLERDKVTQLLLQQDKVPEPASLSSNHSLTSCFT






NQGYFFFHLPDALEIEACQVYFTYDPYSEEDPDEGVAGAPTGSSP






QPLQPLSGEDDAYCTFPSRDDLLLFSPSLLGGPSPPSTAPGGSGA






GEERMPPSLQERVPRDWDPQPLGPPTPGVPDLVDFQPPPELVLRE






AGEEVPDAGPREGVSFPWSRPPGQGEFRALNARLPLNTDAYLSLQ






ELQGQDPTHLV



(SEQ ID NO: 1866->NP 000869.1



interleukin-2 receptor subunit beta



precursor [Homo sapiens])






SEQ ID NO: 2038 provides the sequence of the human interleukin-2 receptor γ-chain and an antibody of the invention may specifically bind that sequence:











MLKPSLPFTSLLFLQLPLLGVGLNTTILTPNGNEDTTADFFLTTM






PTDSLSVSTLPLPEVQCFVENVEYMNCTWNSSSEPQPTNLTLHYW






YKNSDNDKVQKCSHYLFSEEITSGCQLQKKEIHLYQTFVVQLQDP






REPRRQATQMLKLQNLVIPWAPENLTLHKLSESQLELNWNNRFLN






HCLEHLVQYRTDWDHSWTEQSVDYRHKFSLPSVDGQKRYTFRVRS






RFNPLCGSAQHWSEWSHPIHWGSNTSKENPFLFALEAVVISVGSM






GLIISLLCVYFWLERTMPRIPTLKNLEDLVTEYHGNFSAWSGVSK






GLAESLQPDYSERLCLVSEIPPKGGALGEGPGASPCNQHSPYWAP






PCYTLKPET



(SEQ ID NO: 1867->NP_000197.1 cytokine



receptor common subunit gamma precursor



[Homo sapiens])






In other embodiments of the present invention the binding molecule may bind to IL-2R polypeptide chains from any of the species mentioned herein. In one preferred embodiment, a binding molecule of the present invention may bind to both the human IL-2R polypeptide and the corresponding mouse polypeptide. In another embodiment, a binding molecule may bind the human polypeptide, but not bind the mouse polypeptide.


In one embodiment, a binding molecule of the present invention will bind to a cell expressing an IL-2Rα/IL-2Rβ/γc complex. In another embodiment, a binding molecule of the present invention will bind to a cell expressing an IL-2Rβ/γc complex. In a preferred embodiment, a binding molecule of the present invention will bind preferentially to (for instance it may be specific for, or specifically interact with, or specifically bind) cells expressing IL-2Rα/IL-2Rβ/γc complex over cells expressing IL-2Rβ/γc complex. In one embodiment, a binding molecule may bind both an IL-2Rα/IL-2Rβ/γc complex and an IL-2Rβ/γc complex.


In one preferred embodiment, a binding molecule of the present invention will bind to an IL-2Rα/IL-2Rβ/γc receptor complex and stimulate IL-2R signalling. IL-2R complexes are thought to signal through a pathway involving the tyrosine kinases Jak1 and Jak3 which are associated respectively with IL-2Rβ and γc. Phosphorylation of IL-2Rβ leads to activation of the MAPK, PI-3K and predominately the Stat5 transcription factor. In one embodiment, a binding molecule of the invention may act as an agonist of the IL-2R complex, for instance increased phosphorylation of STAT5 may be seen in the target cell when contacted with a binding molecule of the invention. In one embodiment MAPK, PI-3K, and/or STAT5 may be activated, for instance all three may be activated, or at least STAT5. In one embodiment, downstream members of the STAT5 signalling pathway may be activated. In another embodiment, a binding molecule of the present invention may act as an antagonist of IL-2R activation. In one preferred embodiment, a binding molecule of the present invention blocks or inhibits the binding of IL-2 to an IL-2R, so for instance decreased STAT5 phosphorylation may be seen when a cell expressing IL-2Rα/IL-2B/γc complex is incubated with the binding molecule and IL-2 compared to when the cell is incubated with only IL-2. In another embodiment, a binding molecule of the present invention binds to the receptor, but does not also prevent IL-2 binding to the receptor as well.


The specificity of a binding molecule, in particular of an antibody, denotes what epitope/antigen it binds. In a particularly preferred embodiment, it will be used to denote how many different antigens a binding molecule binds. Thus a monospecific antibody binds one antigen. A bispecific antibody binds two antigens. A trispecific antibody binds three antigens. In relation to IL-2Rα, IL-2Rβ, and γc, a monospecific antibody will be said to bind one of those chains, a bispecific two, and a trispecific three. Hence, a trispecific antibody is one that has at least one binding site for each of IL-2Rα, IL-2Rβ, and γc. If an antibody has binding sites for more than one epitope on one of IL-2Rα, IL-2Rβ, and γc that will not change whether the antibody is said to be monospecific, bispecific, or trispecific in relation to IL-2Rα, IL-2Rβ, and γc, but will be instead denoted using biparatopic, triparatopic and so on nomenclature. Thus, an antibody with two different binding sites for IL-2Rα which each bind a different epitope of IL-2Rα will be referred to herein as a biparatopic antibody in relation to IL-2Rα. An antibody with three different binding sites each recognising a different epitope of IL-2Rα will be referred to as tri-paratopic in relation to IL-2Rα. Such nomenclature may also be used in relation to other antigens including IL-2Rβ, and γc.


The valency of a binding molecule, in particular an antibody, denotes the number of antigen-binding sites it has. A binding molecule of the present invention will have a valency of at least one. For instance, a binding molecule of the invention may have a valency of one. It may have a valency of two. It may have a valency of three. It may have a valency of four. In one embodiment, an antibody may have a valency of five. In another embodiment, it may have a valency of six. In another embodiment, it may have a valency of seven. In a further embodiment, it may have a valency of eight. In one embodiment, a binding molecule of the invention has at least those values as a valency. In one embodiment, a binding molecule of the invention has a valency of those values for IL-2R polypeptides. In one embodiment, reference to a valency may indicate how many binding sites are present for a given antigen. Hence, for example, a molecule may be referred to as bivalent for IL-2Rα to denote the number of binding sites for IL-2Rα, even though the overall number of binding sites for different antigens, and hence the overall valency is greater.


In one particularly preferred embodiment, a binding molecule is biparatopic for at least one of IL-2R α β, and γc. Preferably it is biparatopic for at least IL-2R α. In one particularly preferred embodiment, a binding molecule is trispecific in respect of IL-2R α, β, and γc, so having binding sites for all three, and is at least biparatopic for at least one of IL-2R α β, and γc. In a further particularly preferred embodiment, a binding molecule is trispecific in respect of IL-2R α, β, and γc, so having binding sites for all three, and is at least biparatopic for IL-2R α. In one preferred embodiment, a binding molecule, particularly an antibody, of the present invention is biparatopic for IL-2R α, but is monoparatopic for the other IL-2R chain or chains. In one preferred embodiment, a binding molecule, in particular an antibody, is trispecific for IL-2R α, β, and γc, biparatopic for IL-2R α, and is monoparatopic for β, and γc. In another preferred embodiment, a binding molecule, in particular an antibody, of the invention has more binding sites for IL-2R α, than for either of IL-2R β, and γc.


The strength of binding of an individual binding site to an IL-2R polypeptide may be referred to as the affinity of the binding site for its target, the IL-2R polypeptide. Whilst the overall strength of binding of a binding molecule is often also referred to as the affinity of the binding molecule, where the binding molecule has more than one binding site, the strength of binding may be referred to using the term avidity, which reflects the overall strength of binding when all of the binding sites of the binding molecule are taken into account.


As well as the preferred tri-specific binding molecules set out herein, all of the specific and variant sets of CDRs, VHH domains and polypeptides are also provided in the context of binding molecules that just bind one IL-2R α, β, and γc, as well as versions that bind two of IL-2R α, β, and γc. Hence, the binding sites set out herein may be provided as well as monovalent molecules binding the relevant one of IL-2R α, β, and γc. They are also provided where binding sites for two of IL-2R α, β, and γc are present, but not for all three. For example, a binding molecule of the present invention may also be provided which binds β, and γc, but not IL-2R α.


In one preferred embodiment, a binding molecule of the present invention will bind an IL-2Rα/IL-2Rβ/γc complex preferentially compared to an IL-2Rβ/γc complex. For instance, the strength of binding for the former compared to the latter may be at least 2, 10, 50, 100, 500, 1000 or more times higher. In one embodiment, the strength of binding may be at least 10,000, or at least 100,000 times greater. So, for instance, the avidity of the binding molecule for the IL-2Rα/IL-2Rβ/γc complex may be greater than that for the IL-2Rβ/γc complex. In one embodiment, a binding molecule of the present invention may be selective for the IL-2Rα/IL-2Rβ/γc complex over the IL-2Rβ/γc complex, in the sense that it specifically binds the trimeric receptor complex, but not the dimeric complex, or does not significantly bind it.


In another embodiment, a binding molecule of the present invention will bind both an IL-2Rα/IL-2Rβ/γc complex and an IL-2Rβ/γc complex. In one embodiment, the binding molecule may bind both IL-2Rα/IL-2Rβ/γc and IL-2Rβ/γc complexes, but bind the former with greater strength because extra binding site or sites are binding IL-2Rα as well as IL-2Rβ and γc. For example, in the case of a trispecific binding molecule it may be that it binds the IL-2Rα/IL-2Rβ/γc complex with greater strength because three binding sites are binding that complex, rather than the two that bind an IL-2Rβ/γc complex. In another embodiment, the binding molecule may preferentially bind the IL-2Rα/IL-2Rβ/γc complex because the binding molecule comprises more binding sites for IL-2Rα than the number of binding sites it has individually for either of IL-2Rβ and γc. In another embodiment, the binding molecule may preferentially bind the IL-2Rα/IL-2Rβ/γc complex because the binding site or sites for IL-2Rα are individually of higher affinity than those for either of IL-2Rβ and γc. In a further embodiment, the binding molecule may have a higher avidity for the IL-2Rα/IL-2Rβ/γc complex because of a combination of those factors.


In one embodiment, an antigen binding domain of a binding molecule of the invention for its target IL-2R polypeptide may have a KD which is about 400 nM or smaller, 200 nM or smaller such as about 100 nM, 50 nM, 20 nM, 10 nM, 1 nM, 500 pM, 250 pM, 200 pM, 100 pM or smaller. In one embodiment, the KD is 50 pM or smaller. In one embodiment, the KD of an individual antigen-binding site of a binding molecule of the present invention may be less than 1 μM, less than 750 nM, less than 500 nM, less than 250 nM, less than 200 nM, less than 150 nM, less than 100 nM, less than 75 nM, less than 50 nM, less than 10 nM, less than 1 nM, less than 0.1 nM, less than 10 pM, less than 1 pM, or less than 0.1 pM. In some embodiments, the KD is from about 0.1 pM to about 1 μM. It may be an individual antigen-binding domain has such KD. It may be that such a KD is displayed by the overall binding molecule of the invention for the IL-2R polypeptide. It may be that such a KD is displayed for IL-2Rα/IL-2Rβ/γc complexes.


In one embodiment, an antigen binding domain of a binding molecule of the invention for its target IL-2R polypeptide may have an EC50 which is about 400 nM or smaller, 200 nM or smaller such as about 100 nM, 50 nM, 20 nM, 10 nM, 1 nM, 500 pM, 250 pM, 200 pM, 100 pM or smaller. In one embodiment, the EC50 is 50 pM or smaller. In one embodiment, the EC50 of an individual antigen-binding site of a binding molecule of the present invention may be less than 1 μM, less than 750 nM, less than 500 nM, less than 250 nM, less than 200 nM, less than 150 nM, less than 100 nM, less than 75 nM, less than 50 nM, less than 10 nM, less than 1 nM, less than 0.1 nM, less than 10 pM, less than 1 pM, or less than 0.1 pM. In some embodiments, the EC50 is from about 0.1 pM to about 1 μM. It may be an individual antigen-binding domain has such EC50. It may be that such a EC50 is displayed by the overall binding molecule of the invention for the IL-2R polypeptide. It may be that such a EC50 is displayed for IL-2Rα/IL-2Rβ/γc complexes.


Binding, including the presence or absence of binding, can be determined using a variety of techniques known in the art, for example but not limited to, equilibrium methods (e.g., enzyme-linked immunoabsorbent assay (ELISA); KinExA, Rathanaswami et al. Analytical Biochemistry, Vol. 373:52-60, 2008; or radioimmunoassay (RIA)), or by a surface plasmon resonance assay or other mechanism of kinetics-based assay (e.g., BIACORE™ analysis or Octet™ analysis (forteBIO)), and other methods such as indirect binding assays, competitive binding assays fluorescence resonance energy transfer (FRET), gel electrophoresis and chromatography (e.g., gel filtration). Binding to the IL-2Rα/IL-2Rβ/γc and IL-2Rβ/γc complexes may be, for instance, measured using cells expressing such complexes, preferably where such complexes are human. In one embodiment, HEK cells expressing the trimeric IL-2 receptor are used to measure binding, for instance via FACS.


In one particularly preferred embodiment, a binding molecule of the invention may have greater potency for targeting cells that express IL-2Rα/IL-2Rβ/γc versus that displayed by IL-2Rβ/γc alone. For instance, a binding molecule of the invention may preferentially activate cells expressing IL-2Rα/IL-2Rβ/γc versus those expressing the IL-2Rβ/γc alone. In one embodiment, a binding molecule of the present invention may be used to preferentially target Treg cells because of their higher level of expression of the IL-2Rα/IL-2Rβ/ye receptor and hence to preferentially activate Treg cells versus other cell types, including Teff cells. In one embodiment, a binding molecule of the present invention activates Tregs by a factor of at least 5, ten, 50, 100, or 1000 fold more than it does other cells, for instance Teff cells. In one embodiment, employing a binding molecule of the present invention shifts the balance of an immune response from one characterised by Teff cells to Treg cells.


Constant Regions

In one embodiment, a binding molecule, in particular an antibody, of the present invention does not comprise a constant region. However, in one preferred embodiment of the present invention the binding molecule of the present invention is an antibody that comprises a constant region. For instance, in one embodiment an antibody of the present invention comprises a polypeptide comprising a VHH domain and an Fc region. The constant region, if present, can be from any class of antibody, for instance can be a gamma, mu, alpha, delta, or epsilon constant region, or a part thereof. In a particularly preferred embodiment, the constant region is an IgG constant region. For instance, it may be an IgG1, IgG2, IgG3, or IgG4 constant region. The IgG1 constant region, or part thereof, is particularly preferred. In a particularly preferred embodiment, the constant region is an Fc region and so comprises the CH2 and CH3 domains, but does not comprise a CH1 domain. Hence, reference herein to a constant region or a heavy chain constant region encompasses such a constant region lacking a CH1 region. Where the antibody comprises two polypeptides that combine to form an Fc region, it may be that the individual polypeptides comprise charge and/or shape modifications that lead preferentially to the formation of heterodimers and so bring two polypeptides carrying VHH domains for different specificities together, rather than identical polypeptides with VHH domains for the same specificity. Additionally, or alternatively, the constant regions may comprise such modifications that allow the separation of heterodimers from homodimers. In one preferred embodiment, a binding molecule, and in particular an antibody, of the present invention does not comprise a light chain.


Fc domain as employed herein generally refers to —(CH2CH3)2, unless the context clearly indicates otherwise, where CH2 is the heavy chain CH2 domain, CH3 is the heavy chain CH3 domain, and there are two CH2CH3 with one from each heavy chain.


In one preferred embodiment, a binding molecule, and in particular an antibody, of the present invention does not bind Fc receptors and in particular does not bind to Fc gamma receptors (FcγR). In one preferred embodiment, the binding molecule, and in particular antibody, does not bind to Fc receptors, either because it does not comprise a constant region or alternatively because its Fc region is modified so that it does not bind Fc receptors. In one embodiment, a binding molecule, and in particular an antibody, of the present invention binds to an FcγR, but to a substantially decreased extent relative to binding of an identical antibody comprising an unmodified Fc region to the FcγR (e.g., a decrease in binding to a FcγR by at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, at least 99%, or 100% relative to binding of the identical antibody comprising an unmodified Fc region to the FcγR as measured). In a particularly preferred embodiment though the binding molecule, and in particular the antibody, has no detectable binding to an FcγR at all.


In one embodiment, where an Fc region is present in an antibody of the present invention, the Fc region employed is mutated, in particular comprising a mutation described herein. In one embodiment the mutation is to remove binding to Fe receptors and in particular FcγR. In one preferred embodiment the antibody has been mutated so that it does not bind Fc receptors. In one embodiment, an antibody may comprise an aglycosylated Fc region, for example to bring about reduced Fc function and in particular a nearly Fc-null phenotype. In one embodiment, an antibody has a modification at N297 and in particular N297A. In one embodiment an antibody has modifications at F243 and/or F244 of the constant region, in particular ones that mean that the antibody comprises a glycosylated constant region. In one embodiment, an antibody may comprise the F243A and/or F244A heavy chain modifications. In another embodiment, one or more of F241, F243, V262 and V264 may be modified and particularly to amino acids that influence glycosylation. In one embodiment, an antibody may have modifications at F241A, F243A, and/or V262E. In one embodiment, it may have the modification V264E. Such modifications are discussed in Yu et al. (2013) Journal of the American Chemical Society, 135 (26): 9723-9732, which is incorporated by reference in its entirety, particularly in relation to the modifications discussed therein. In one particular preferred embodiment, an antibody of the present invention may comprise the LALA modification, Leu234Ala/Leu235Ala. In another particularly preferred embodiment, an antibody of the present invention may comprise the LFLEPS modification, Leu234Phe/Leu235Glu/Pro331/Ser. Further, a binding molecule, in particular an antibody, of the present invention may be produced in a cell type that influences glycosylation as a further approach for sugar engineering. In one embodiment, the fucosylation, sialylation, galactosylation, and/or mannosylation may be altered either by sequence modifications and/or via the type of cell used to produce the binding molecule, and in particular antibody.


In one embodiment, an antibody has modifications at position 297 and/or 299. For example, in one embodiment, an antibody of the present invention comprises a N297A modification in its heavy chains, preferably N297Q or mutation of Ser or Thr at 299 to other residues. In one embodiment it has both those modifications. In one embodiment, an antibody comprises two different heavy chain constant regions where the heavy chain constant regions comprise modifications that allow the different heavy chains to preferentially associate compared to heavy chains associating with identical heavy chains. In one embodiment, the two different heavy chains comprise knob-in-hole mutations. In certain embodiments, the knob-into-hole mutations are a T366W mutation in one heavy chain constant region and a T366S, L368A, and a Y407V mutation in the other domain. In certain embodiments, the modifications comprise charge-pair mutations. In certain embodiments, the charge-pair mutations are a T366K mutation in one of the heavy chain constant regions and a corresponding L351D mutation in the other domain. In an alternative embodiment, rather than have modifications that result in preferential pairing of different heavy chain constant regions the heavy chain constant regions comprise modifications that mean a heterodimer comprising the two heavy chain constant regions can be purified preferentially from the homodimers only comprising one type of heavy chain constant region. For example, the modifications may alter affinity for Protein A, with one heavy chain constant region still able to bind Protein A, whilst the modified heavy chain constant region does not do so, meaning that heterodimers of the two different heavy chains can be purified based on their affinity for Protein A.


In other embodiments, a binding molecule, in particular an antibody, may comprise a modification that changes whether or not a disulfide bridge is formed.


In one embodiment, binding molecules, and in particular antibodies, of the present invention may comprise modifications that alter serum half-life. Hence, in another embodiment, an antibody of the present invention has Fc region modification(s) that alter the half-life of the antibody. Such modifications may be present as well as those that alter Fc functions. In one particularly preferred embodiment, a binding molecule, and in particular an antibody, of the present invention has modification(s) that alter its serum half-life compared to in the absence of such modifications. In one embodiment, the modifications result in increased serum half-life. In another embodiment, they result in decreased serum half-life. In another preferred embodiment, an antibody comprises one or more modifications that collectively both silence the Fc region and decrease the serum half-life of the antibody compared to an antibody lacking such modifications.


Illustrative examples of constant region modifications that may be included in particular embodiments of the invention include:

    • N297A-Asn297Ala which confers Fc silencing;
    • LALA-Leu234Ala/Leu235Ala which decreases binding to Fc receptors;
    • LFLEPS-Leu234Phe/Leu235Glu/Pro331/Ser which decreases binding to Fc receptors;
    • PG-Pro329Gly which decreases binding to Clq;
    • LALA-PG-Leu234Ala/Leu235Ala/Pro329Gly which decreases binding to Fc receptors and Clq;
    • TM-Pro331Ser/Leu234Glu/Leu235Phe-which decreases binding to Fc receptors and Clq;
    • DA-Asp265Ala-which decreases binding to Fc receptors;
    • GRLR-Gly236Arg/Leu328Arg-which decreases binding to Fc receptors; and
    • cFAE-K409R/F405L which promote heterodimer formation.


The LALA-PG, and cFAE modifications are particularly preferred, for instance in one embodiment the constant regions will include all of those modifications. In one preferred embodiment, the LALA modifications are present. FIG. 12A also shows examples of modifications that may be employed individually or together with each other in antibodies.


In another embodiment, a binding molecule, particularly an antibody, may lack one of the constant region modifications set out herein.


Monospecific Binding Molecules and Binding Molecules Comprising VHH Domains

In one embodiment, a binding molecule, particularly an antibody, of the invention is monospecific and recognises just one of the IL-2R polypeptide chains. For example, the present invention provides VHH domains and in one embodiment the binding molecule provided is simply a VHH domain, such as one of those detailed herein. Hence, in one embodiment, the binding molecule provided is an antibody which is monospecific and monovalent, particularly being a VHH domain. In one embodiment, a binding molecule, in particular an antibody, of the present invention may comprise other sequences to the VHH domain, but only includes the VHH domain as a single antigen-binding site.


In one embodiment, the present invention provides a monospecific antibody, comprising, or consisting of, one of the VHH domain antibodies set out in TABLE 3 of the present application or a variant of such a VHH domain antibody. In another embodiment, the present invention provides a monospecific antibody comprising, a set of three CDRs from one of the VHH domain antibodies of TABLE 4 or variants of such CDRs. In another embodiment, the present invention provides a monospecific antibody comprising a VHH domain selected from one of those identified in TABLES 6 to 8 of the present application. In another embodiment, a monospecific antibody is provided comprising a set of three CDRs from one of the VHH domain antibodies identified in Tables 3 and 6 to 8 or a variant set of CDRs. In one embodiment, the invention also provides variants of such antibodies, for instance, where a CDR comprises one, two, three, or four sequence changes compared to the specific sequence set out. In one embodiment, one, two or three CDRs may have such a level of sequence changes.


As well as providing the VHH domains individually, the present invention also provides antibodies comprising one or more of the VHH domains as discussed further below. Thus, also provided is an antibody comprising at least one of the VHH domains set out in TABLES 2 and 6 to 8. Further provided is an antibody comprising a CDR set comprising the CDR1, CDR2, and CDR3 of one of the VHH domain antibodies set out in FIGS. 2 and 6 to 8. Antibodies which comprise variants of those VHH domains or CDR sets are further provided.


Linkers

In a preferred embodiment, binding molecules, in particular antibodies, of the invention comprise more than one antigen-binding site on the same polypeptide. For example, in one embodiment, an antibody of the present invention comprises at least two VHH domains present in the same polypeptide. In one embodiment, an antibody of the present invention comprises two VHH domains on the same polypeptide. In another embodiment, an antibody of the present invention comprises at least three, and preferably three, VHH domains as part of the same polypeptide. In one embodiment, a binding molecule, in particular an antibody, of the present invention may comprise one or more linkers. For instance, a linker may be a non-antibody sequence used to join together different VHH domains and hence aid in providing a polypeptide with several active VHH domains. Any suitable linker may be employed, for instance linkers that are employed in the Examples of the present application or a variant linker sequence.


Bispecific Binding Molecules

In one embodiment, a binding molecule of the present invention is bispecific binding two different antigens. In one preferred embodiment an antibody of the present invention is a bispecific antibody. For instance, the present invention provides a bispecific binding molecule, in particular a bispecific antibody, that recognises two of the chains of the IL-2R, particularly the IL-2Rβ and γc. In a preferred embodiment, a bispecific antibody provided by the present invention comprises one of the VHH domain antibodies set out in TABLES 2, 6, 7, and 8, more preferably two such VHH domain antibodies. In another preferred embodiment, a bispecific antibody provided by the present invention comprises a set of CDRs from one of the VHH domain antibodies set out in TABLES 3, 6, 7, and 8, more preferably two sets of CDRs from those VHH domain antibodies. The antibody may comprise a variant of those specific sequences, for instance one with one, two, three, or more amino acid sequence changes. In one embodiment, such sequence variations may be in the framework regions, in another they may be in the CDRs themselves.


In one preferred embodiment, one VHH domain, or set of CDRs, is from those in TABLES 2, 3 and 6 and is specific for IL-2Rα. In another preferred embodiment, one VHH domain, or set of CDRs, is from those in TABLES 3 and 7 and is specific for IL-2Rβ. In another embodiment, one VHH domain, or set of CDRs, is from those in TABLES 2, 3 and 8 and is specific for IL-2Rγ. In one embodiment, one VHH domain, or set of CDRs, is from those in TABLES 2, 3 and 7 and is specific for IL-2Rβ and one VHH domain, or set of CDRs, is from those in TABLES 2, 3 and 8 and is specific for IL-2Rγ.


Trispecific and Multi-Specific Binding Molecules

In one preferred embodiment, a binding molecule, in particular an antibody, of the present invention is multi-specific and so has at least two specificities. In a further preferred embodiment, a binding molecule, in particular an antibody, of the present invention has at least three specificities. In an especially preferred embodiment, a binding molecule, in particular an antibody, of the present invention is trispecific. In particularly preferred embodiment, a binding molecule, in particular an antibody, of the present invention is trispecific with a specificity for each of the three polypeptide chains of the IL-2R, so for the IL-2Rα-, β-, and γ-chains. In another embodiment, the binding molecule, in particular an antibody, has those specificities, plus at least one other specificity as well. For instance, in one embodiment the other specificity is for serum albumin.


Any suitable trispecific format may be used for a trispecific antibody of the present invention and in particular any suitable trispecific antibody format. In one embodiment, the antibody is a single polypeptide chain comprising three VHH domains, with each domain specific for a different IL-2R polypeptide chain, so IL-2Rα, IL-2Rβ, and γc. In one embodiment, the polypeptide also comprises a constant domain, for instance comprising a CH2-CH3 region, and in another a CH1-CH2-CH3. In one instance, the polypeptide also comprises linkers joining together the different VHH domains and optionally to the constant region. The constant region may, for example, include modifications to prevent association with other constant regions to maintain the antibody as a single polypeptide chain. In another embodiment, the antibody does not comprise any constant region and is a single chain polypeptide.


In one particularly preferred embodiment, a binding molecule, in particular an antibody, of the present invention comprises two polypeptides. For instance, an antibody may comprise two polypeptide chains with a constant region to allow the two polypeptide chains to associate. In one preferred embodiment, such a two-polypeptide antibody is a trispecific antibody or is trispecific for the three different IL-2R polypeptide chains and may also comprise other specificities. Any combination of antigen binding sites giving the required trispecificity may be employed. For example, in a preferred embodiment, one polypeptide chain comprises a VHH domain specific for one of the IL-2R receptor polypeptides, with the other polypeptide chain comprising two VHH domains for the specificities of the other two IL-2R polypeptide chains. So, for example, an antibody may have the format a/b-g where “a” denotes a VHH with specificity for IL-2Rα, “b” denotes a VHH with specificity for IL-2Rβ, “g” denotes a VHH with specificity for γc, and “/” denotes the changeover from the first to second polypeptide being defined, where within a polypeptide the VHH domains are defined in N to C-terminal order. Where a polypeptide chain has a binding domain or binding domains at the C terminus of a constant region in a polypeptide, the binding domain or domains may be denoted by cterm-a, cterm-a-a and so on. The “-” may be a linker or simply denote joining of the VHH domains to each other. Examples of possible formats that may be employed which include one VHH on one polypeptide and two VHHs on the other include: a/b-g; a/g-b; b/a-g; b/g-a; g/a-b; and g/b-a. In another embodiment, an antibody of the present invention comprises two polypeptides where each polypeptide comprises two VHH domains, with collectively the two polypeptides comprising at least one VHH specific for each IL-2R chain. That may mean, for example, that collectively for one of the IL-2R polypeptides there are two VHH domains present in that antibody that are specific for that IL-2R polypeptide chain. So, examples of possible formats that may be include, using the numbering system discussed above: a-a/b-g; a-a/g-b; b-b/a-g; b-b/g-a; g-g/a-b; and g-g/b-a. Some of the Figures of the present application use the Greek symbols α β γ but the structures may also be set out using the equivalent “a”, “b”, and “c” format, or using the equivalent “alpha”, “beta”, and “gamma” format, or using the equivalent “CD25”, “CD122”, and “CD132” format as well.


In a further embodiment, an antibody of the present invention may comprise two polypeptides where:

    • one polypeptide chain comprises at least two VHH domains, where the at least two VHH domains include two VHHs specific for different IL-2R polypeptides; and
    • the other polypeptide chain comprises at least one VHH,
    • where collectively the two polypeptides have at least one VHH for each of the three IL-2R polypeptides. In one embodiment, each polypeptide comprises three VHH domains.


In one embodiment of the present invention has a valency of one, two, or three for one of the IL-2R polypeptides, where the antibody also has binding sites for each of the other two IL-2R polypeptides. In one embodiment, all of the antigen binding sites on one polypeptide have the same specificity, with the other polypeptide providing the antigen binding sites specific for the other two IL-2R polypeptides.



FIG. 12A and FIG. 12B and FIG. 12C of the present application provides illustrative examples of possible trispecific antibody formats comprising VHH domains, where collectively there is at least one VHH specific for each IL-2R polypeptide. An antibody of the present invention may be provided in any of those formats.


In any of the above discussed formats, at least one additional VHH may be present which is specific for something other than an IL-2R polypeptide, for instance, a VHH specific for serum albumin may be present. Any of the different antibody formats discussed herein may be employed with any of the heavy chain Fc region modifications discussed herein, examples of preferred modifications which may be present include those shown in FIG. 12A to 12C.


Illustrative Antibodies and VHH Domains of the Present Invention

TABLE 3 provides examples of particularly preferred VHH domain antibodies of the present invention, with TABLE 4 providing the CDR sequences for those VHH domains. Those VHH domains may be, for instance, employed in any of the antibody formats discussed herein, as may be CDR sets from those VHHs, and variants of either.


TABLE 7 provides examples of further preferred VHH domains specific for IL-2Rα polypeptide and CDR sets from them that may be employed in any of the antibody formats discussed herein, as may be variants of them. TABLE 8 provides examples of further preferred VHH domains specific for IL-2Rβ polypeptide and CDR sets from them that may be employed in any of the antibody formats discussed herein, as may be variants of them. TABLE 9 provides examples of further preferred VHH domains specific for γc polypeptide and CDR sets from them that may be employed in any of the antibody formats discussed herein, as may be variants of them.


Hence, the present invention provides an antibody comprising any of those VHH domains. It also provides an antibody comprising any of those CDR sets. Also provided is an antibody comprising a variant of those. In one embodiment, an antibody is provided comprising one or at least one of those VHH domains/CDR sets/or variants thereof, in another an antibody comprising at least three of those. In a particularly preferred embodiment, an antibody comprising three of those VHH domains/CDR sets/or variants thereof is provided.


TABLE 5 provides examples of particularly preferred multi-specific antibodies and those form preferred embodiments of the invention, as do variants of them.


Further Examples of Preferred Binding Molecules

In one preferred embodiment, a binding molecule of the present invention consists of, or comprises, a VHH domain against IL-2Rα selected from the group consisting of that of SEQ ID NOs: 2, 3, 4, 8 and 10. In one embodiment, rather than comprising the whole VHH, a binding molecule of the invention comprises a set of CDR1, CDR2, and CDR3 from one of those VHHs. In one embodiment, the employed sequence is a variant of any of those sequences which is still able to bind IL-2Rα.


In one preferred embodiment, a binding molecule of the present invention consists of, or comprises, a VHH domain against IL-2Rβ selected from the group consisting of that of SEQ ID NOs: 16, 18, 19, 22 and 26. In one embodiment, rather than comprising the whole VHH, a binding molecule of the invention comprises a set of CDR1, CDR2, and CDR3 from one of those VHHs. In one embodiment, the employed sequence is a variant of any of those sequences which is still able to bind IL-2Rβ.


In one preferred embodiment, a binding molecule of the present invention consists of, or comprises, a VHH domain against γc selected from the group consisting of that of SEQ ID NOs: 27, 31, 32, 35 and 36. In one embodiment, rather than comprising the whole VHH, a binding molecule of the invention comprises a set of CDR1, CDR2, and CDR3 from one of those VHHs. In one embodiment, the employed sequence is a variant of any of those sequences which is still able to bind γc.


In one particularly preferred embodiment, a binding molecule of the present invention comprises the three VHH domains of SEQ IDs 2, 19, and 27. In another preferred embodiment, the binding molecule comprises the CDRs sets of each of SEQ IDs 2, 19, and 27. In one preferred embodiment, the binding molecule has the structure a2/g27-b19 where a2, g27, and b19 represent respectively SEQ ID NOs 2, 27 and 19. In other embodiments, the antibody has the structure g27/a2-b19. In another embodiment, it has the structure g27/b19-a2. In another embodiment, it has the structure b19/a2-g27. In another embodiment, it has the structure b19/g27-a2. Variants of such sequences may also be employed. For example,


In one preferred embodiment, a binding domain of the present invention comprises the three VHH domains of SEQ IDs 3, 22, and 36. In another preferred embodiment, the binding molecule comprises the CDRs sets of each of SEQ IDs 3, 22, and 36. In one preferred embodiment, the binding molecule has the structure a3/g36-b22 where a3, g36, and b22 represent respectively SEQ ID NOs 3, 36 and 22. In other embodiments, the antibody has the structure g36/a3-b22. In another embodiment, it has the structure g36/b22-a3. In another embodiment, it has the structure b22/a3-g36. In another embodiment, it has the structure b22/g36-a3. Variants of such sequences may also be employed.


In one preferred embodiment, a binding domain of the present invention comprises the three VHH domains of SEQ IDs 4, 16, and 36. In another preferred embodiment, the binding molecule comprises the CDRs sets of each of SEQ IDs 4, 16, and 36. In one preferred embodiment, the binding molecule has the structure a4/g36-b16 where a4, g36, and b16 represent respectively SEQ ID NOs 4, 36 and 16. In other embodiments, the antibody has the structure g36/a4-b16. In another embodiment, it has the structure g36/b16-a4. In another embodiment, it has the structure b16/a4-g36. In another embodiment, it has the structure b16/g36-a4. Variants of such sequences may also be employed.


In one preferred embodiment, a binding domain of the present invention comprises the three VHH domains of SEQ IDs 3, 18, and 27. In another preferred embodiment, the binding molecule comprises the CDRs sets of each of SEQ IDs 3, 18, and 27. In one preferred embodiment, the binding molecule has the structure a3/g27-b18 where a3, g27, and b18 represent respectively SEQ ID NOs 3, 27, and 18. In other embodiments, the antibody has the structure g27/a3-b18. In another embodiment, it has the structure g27/b18-a3. In another embodiment, it has the structure b18/a3-g27. In another embodiment, it has the structure b18/g27-a3. Variants of such sequences may also be employed.


In one embodiment, a binding molecule of the present invention comprises one of the SEQ ID Nos set out in TABLE 5. In one embodiment the binding molecule comprises the VHH sequences of SEQ ID Nos: 32 and 16. In another, those of SEQ ID NOs: 35 and 16. In another, those of SEQ ID NOs: 36 and 16. In another, those of SEQ ID NOs: 27 and 18. In another, those of SEQ ID NOs: 31 and 18. In another, those of SEQ ID NOs: 32 and 18. In another, those of SEQ ID NOs: 35 and 18. In an alternative embodiment, rather than comprise those VHHs it may comprise the two CDR sets from them. It may also be a variant of such sequences. In one embodiment, the binding molecule may also comprise one of SEQ ID NOs 1 to 38 which is not those mentioned above as an additional VHH or it may comprise a CDR set from such VHH.


In one embodiment, a binding molecule of the present invention employs one of the VHHs or combination of VHHs employed in the Examples of this application. In another embodiment, it employs a CDR set or sets from those employed in the Examples of this application. Any of the other features set out in here may also be employed in addition to the VHHs employed in the Examples.



FIG. 12A and FIG. 12B provide examples of preferred formats for a trispecific antibodies which each bind all three IL-2R chains and those formats are discussed further below in the following number preferred embodiments where “a” denotes a binding domain with specificity of the IL-2a, “b” for the IL-2Rβ, and “g” for the γc, “/” denotes the swap over from one polypeptide to the next, “-” denotes the binding domains being joined by a linker or simply joined, “cterm” denotes the presence of binding domains at the C terminus of the constant region, and each polypeptide comprises one of the two polypeptide sequences so the polypeptides can associate to form an Fc region, so typically CH2CH3. For each of the further embodiments set out below, preferably, the antibody has the LALA mutations, N297A mutation, and/or the cFAE mutations in the Fc region. More preferably the antibody has all of the LALA mutations, PG mutation, and the cFAE mutations. In another embodiment, the binding molecule has the LALA mutations, PG mutation, and knob-in-hole modifications (such as any set out herein). The further numbered embodiments of trispecific antibodies binding all three IL-2R polypeptide chains being:

    • 1. A trispecific antibody having the format a/g-b, which comprises an Fc region. Preferably, where the antibody has the structure of structure 1 in FIG. 12A.
    • 2. A trispecific antibody having the format a/b-g, which comprises an Fc region.
    • Preferably, where the antibody has the structure of structure 2 in FIG. 12A.
    • 3. A trispecific antibody having the format a-a/g-b, which comprises an Fc region. Preferably, where the antibody has the structure of structure 3 in FIG. 12A.
    • 4. A trispecific antibody having the format a-a/b-g, which comprises an Fc region. Preferably, where the antibody has the structure of structure 4 in FIG. 12A.
    • 5. A trispecific antibody having the format a/a-b-g, which comprises an Fc region. Preferably, where the antibody has the structure of structure 5 in FIG. 12A.
    • 6. A trispecific antibody having the format a-b-g/a-b-g, which comprises an Fc region. Preferably, where the antibody has the structure of structure 6 in FIG. 12B.
    • 7. A trispecific antibody having the format a-g-b/a-g-b, which comprises an Fc region. Preferably, where the antibody has the structure of structure 7 in FIG. 12B.
    • 8. A trispecific antibody having the format b-a-g/b-a-g, which comprises an Fc region. Preferably, where the antibody has the structure of structure 8 in FIG. 12B.
    • 9. A trispecific antibody having the format b-g-a/b-g-a, which comprises an Fc region. Preferably, where the antibody has the structure of structure 9 in FIG. 12B.
    • 10. A trispecific antibody having the format g-b-a/g-b-a, which comprises an Fc region. Preferably, where the antibody has the structure of structure 10 in FIG. 12B.
    • 11. A trispecific antibody having the format g-a-b/g-a-b, which comprises an Fc region. Preferably, where the antibody has the structure of structure 11 in FIG. 12B.
    • 12. A trispecific antibody having the format b-a/g-a, which comprises an Fc region. Preferably, where the antibody has the structure of structure 12 in FIG. 12B.
    • 13. A trispecific antibody having the format a-b/g-a, which comprises an Fc region. Preferably, where the antibody has the structure of structure 13 in FIG. 12B.
    • 14. A trispecific antibody having the format b-a/a-g, which comprises an Fc region. Preferably, where the antibody has the structure of structure 14 in FIG. 12B.
    • 15. A trispecific antibody having the format a-b/a-g, which comprises an Fc region. Preferably, where the antibody has the structure of structure 15 in FIG. 12B.
    • 16. A trispecific antibody having the format g-b-cterm-a/g-b-cterm-a, which comprises an Fc region. Preferably, where the antibody has the structure of structure 16 in FIG. 12B.
    • 17. An antibody having one of the formats shown in FIG. 12C. Preferably, wherein the antibody has one of the structures shown in FIG. 12C with optionally Fc mutations also present.


In one embodiment any of the formats discussed above in further embodiments 1 to 17 are provided comprising one of the specific VHH domains against IL-2Rα described herein. In one embodiment, all of the VHH domains against IL-2Rα present are that specific VHH domain. In one embodiment any of the formats discussed above in further embodiments 1 to 17 are provided comprising one of the specific VHH domains against IL-2Rβ described herein. In one embodiment, all of the VHH domains against IL-2Rβ present are that specific VHH domain. In one embodiment any of the formats discussed above in further embodiments 1 to 17 are provided comprising one of the specific VHH domains against IL-2Ry described herein. In one embodiment, any of the formats discussed above in further embodiments 1 to 17 are provided comprising a combination of specific VHH domains set out herein, for instance in the sense that all of the VHH domain(s) against IL-2Rα, IL-2Rβ, and ye are those used as a combination of VHH domains set out herein. Also provided are trispecific antibodies of the formats set out in numbered embodiments 1 to 17, where the combination of VHH domains providing specificities for IL-2Rβ, IL-2Rβ, and γc is one of the combinations set out herein, even where set out for an antibody of a different format. In one embodiment a combination of VHH domains or CDR sets used in the Examples of the present application is employed in a format as set out in one of numbered embodiments 1 to 17 set out above.



FIG. 12C, top Table shows examples of particularly preferred formats. The a, b, and g VHH subunits respectively correspond to those present in the parental tsVHH-48, but in different permutations as depicted in the Table. Hence, the VHH corresponding to VHH “a” is that of SEQ ID NO: 2. The VHH corresponding to VHH “b” is that of SEQ ID NO: 19. The VHH corresponding to VHH “g” is that of SEQ ID NO: 27.


Hence, in one embodiment the antibody has the format a/b-g. A preferred such antibody is DC00040 or a variant thereof. In another embodiment, the antibody is in the format a/g-b. A preferred such antibody is DC00042 or a variant thereof. In another embodiment, the antibody is in the format a/a-g. A preferred such antibody is DC00094. In another embodiment, the antibody is in the format a/g-a. A preferred such antibody is DC00095. In another embodiment, the antibody is in the format a/a-b-g. A preferred such antibody is DC00043. In another embodiment, the antibody is in the format a/a-g-b. A preferred such antibody is DC00041. In another embodiment, the antibody is in the format a/b-a-g. A preferred such antibody is DC00039. In another embodiment, the antibody is in the format a/g-b-a. A preferred such antibody is DC00044. In another embodiment, the antibody is in the format a/g-a-b. A preferred such antibody is DC00045.


In another embodiment, the antibody is in the format a-a/b-g. A preferred such antibody is DC00047. In another embodiment, the antibody is in the format a-a/g-b. A preferred such antibody is DC00049. In another embodiment, the antibody is in the format a-a/a-g. A preferred such antibody is DC00096. In another embodiment, the antibody is in the format a-a/g-a. A preferred such antibody is DC00097. In another embodiment, the antibody is in the format a-a/a-b-g. A preferred such antibody is DC00050. In another embodiment, the antibody is in the format a-a/a-g-b. A preferred such antibody is DC00048. In another embodiment, the antibody is in the format a-a/b-a-g. A preferred such antibody is DC00046. In another embodiment, the antibody is in the format a-a/g-b-a. A preferred such antibody is DC00051. In another embodiment, the antibody is in the format a-a/g-a-b. A preferred such antibody is DC00052.


In another embodiment, the antibody is in the format a-b/b-g. A preferred such antibody is DC00054. In another embodiment, the antibody is in the format a-b/g-b. A preferred such antibody is DC00056. In another embodiment, the antibody is in the format a-b/a-g. A preferred such antibody is DC00060. In another embodiment, the antibody is in the format a-b/g-a. A preferred such antibody is DC00061. In another embodiment, the antibody is in the format a-b/a-b-g. A preferred such antibody is DC00057. In another embodiment, the antibody is in the format a-b/a-g-b. A preferred such antibody is DC00055. In another embodiment, the antibody is in the format a-b/b-a-g. A preferred such antibody is DC00053. In another embodiment, the antibody is in the format a-b/g-b-a. A preferred such antibody is DC00058. In another embodiment, the antibody is in the format a-b/g-a-b. A preferred such antibody is DC00059.


In another embodiment, the antibody is in the format b-a/b-g. A preferred such antibody is DC00063. In another embodiment, the antibody is in the format b-a/g-b. A preferred such antibody is DC00065. In another embodiment, the antibody is in the format b-a/a-g. A preferred such antibody is DC00069. In another embodiment, the antibody is in the format b-a/g-a. A preferred such antibody is DC00070. In another embodiment, the antibody is in the format b-a/a-b-g. A preferred such antibody is DC00066. In another embodiment, the antibody is in the format b-a/a-g-b. A preferred such antibody is DC00064. In another embodiment, the antibody is in the format b-a/b-a-g. A preferred such antibody is DC00062. In another embodiment, the antibody is in the format b-a/g-b-a. A preferred such antibody is DC00067. In another embodiment, the antibody is in the format b-a/g-a-b. A preferred such antibody is DC00068.



FIG. 12C, bottom Table shows further examples of particularly preferred formats, with the formats depicted being biparatopic with respect to IL-2Rα. One of the VHHs against IL-2Rα is that from tsVHH-48 so that of SEQ ID NO: 2, with the top of the Table showing the polypeptides including that VHH. The other polypeptide making up the overall antibody is shown on the left hand side, with it being that of SEQ ID NO: 4. SEQ ID NO: 9, SEQ ID NO: 10, or SEQ ID NO: 13. Hence preferred binding molecules include a binding molecule with a geometry set out in the bottom Table with the VHH domains indicated. Thus a preferred binding molecule is one with the VHH domains and geometry of one of DC00082, DC00081, DC00080, DC00083, DC00084. Further preferred binding molecules include one with the VHH domains and geometry of one of DC00087, DC00086, DC00085, DC00088, or DC00089. Further preferred binding molecules include one with the VHH domains and geometry of one of DC00077, DC00076, DC00075, DC00078, or DC00079. Further preferred binding molecules include one with the VHH domains and geometry of one of DC00092, DC00091, DC00090, DC00093, or DC00098.


The present invention further provides variants of the binding molecules discussed above for FIG. 12C provided that the variants remain functional.


Further preferred embodiments include the following:

    • 1. A binding molecule comprising a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2043, 2045, 2039, 2047, 2044, 2041, 2048, 2049 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 2. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 243, 2045, 2039, 2047, 2044, 2041, 2048, 2049 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 3. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2046 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 243, 2045, 2039, 2047, 2044, 2041, 2048, 2049 or a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 4. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2050 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 243, 2045, 2039, 2047, 2044, 2041, 2048, 2049 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 5. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2051 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 243, 2045, 2039, 2047, 2044, 2041, 2048, 2049 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 6. A binding molecule comprising (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051, and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 243 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 a, B or Yc chain or chains.
    • 7. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2045 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 8. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2042 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 9. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2039 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 10. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2047 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 11. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2044 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 12. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 a chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2048, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 13. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2041 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 14. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2048 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 15. A binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051 and a variant of any thereof which still retains the ability to bind to IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2049 and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • 16. A binding molecule comprising a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2052, 2046, 2050, 2051, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.


The following represent further preferred embodiments:

    • (a) A binding molecule comprising a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2054, 2055, 2053, 2056, and a variant of any thereof which still retains the ability to bind IL-2 α.
    • (b) A binding molecule comprising a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2047, 2044, 2041, 2048, 2049, and a variant of any thereof which still retains the ability to bind IL-2 α, β or γc chain or chains.
    • (c) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2054, 2055, 2053, 2056, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2047, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • (d) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2054, 2055, 2053, 2056, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2044, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, B or Yc chain or chains.
    • (e) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2054, 2055, 2053, 2056, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2041, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • (f) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2054, 2055, 2053, 2056, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2048, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • (g) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2054, 2055, 2053, 2056, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2049, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • (h) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2054, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2047, 2044, 2041, 2048, 2049, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • (i) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2055, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2047, 2044, 2041, 2048, 2049, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • (j) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2053, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2047, 2044, 2041, 2048, 2049, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.
    • (k) A binding molecule binding molecule comprising: (i) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2056, and a variant of any thereof which still retains the ability to bind to the IL-2 α chain; and (ii) a polypeptide comprising an amino acid sequence selected from SEQ ID NO: 2047, 2044, 2041, 2048, 2049, and a variant of any thereof which still retains the ability to bind to the relevant IL-2 α, β or γc chain or chains.


Examples of other preferred embodiments include the following pairwise combinations of polypeptides: (1) SEQ ID NO 2052 and SEQ ID NO: 2043; (2) SEQ ID NO 2052 and SEQ ID NO: 2045; (3) SEQ ID NO 2052 and SEQ ID NO: 2042; (4) SEQ ID NO 2052 and SEQ ID NO: 2039; (5) SEQ ID NO 2052 and SEQ ID NO: 2047; (6) SEQ ID NO 2052 and SEQ ID NO: 2044; (7) SEQ ID NO 2052 and SEQ ID NO: 2041; (8) SEQ ID NO 2052 and SEQ ID NO: 2048; SEQ ID NO 2052 and SEQ ID NO: 2049; (10) a variant of any of (1) to (9).


Examples of other preferred embodiments include the following pairwise combinations of polypeptides: (1) SEQ ID NO 2046 and SEQ ID NO: 2043; (2) SEQ ID NO 2046 and SEQ ID NO: 2045; (3) SEQ ID NO 2046 and SEQ ID NO: 2042; (4) SEQ ID NO 2046 and SEQ ID NO: 2039; (5) SEQ ID NO 2046 and SEQ ID NO: 2047; (6) SEQ ID NO 2046 and SEQ ID NO: 2044; (7) SEQ ID NO 2046 and SEQ ID NO: 2041; (8) SEQ ID NO 2046 and SEQ ID NO: 2048; SEQ ID NO 2046 and SEQ ID NO: 2049; (10) a variant of any of (1) to (9).


Examples of other preferred embodiments include the following pairwise combinations of polypeptides: (1) SEQ ID NO 2050 and SEQ ID NO: 2043; (2) SEQ ID NO 2050 and SEQ ID NO: 2045; (3) SEQ ID NO 2050 and SEQ ID NO: 2042; (4) SEQ ID NO 2050 and SEQ ID NO: 2039; (5) SEQ ID NO 2050 and SEQ ID NO: 2047; (6) SEQ ID NO 2050 and SEQ ID NO: 2044; (7) SEQ ID NO 2050 and SEQ ID NO: 2041; (8) SEQ ID NO 2050 and SEQ ID NO: 2048; SEQ ID NO 2050 and SEQ ID NO: 2049; (10) a variant of any of (1) to (9).


Examples of other preferred embodiments include the following pairwise combinations of polypeptides: (1) SEQ ID NO 2051 and SEQ ID NO: 2043; (2) SEQ ID NO 2051 and SEQ ID NO: 2045; (3) SEQ ID NO 2051 and SEQ ID NO: 2042; (4) SEQ ID NO 2051 and SEQ ID NO: 2039; (5) SEQ ID NO 2051 and SEQ ID NO: 2047; (6) SEQ ID NO 2051 and SEQ ID NO: 2044; (7) SEQ ID NO 2051 and SEQ ID NO: 2041; (8) SEQ ID NO 2051 and SEQ ID NO: 2048; SEQ ID NO 2051 and SEQ ID NO: 2049; (10) a variant of any of (1) to (9).


Examples of other preferred embodiments include the following pairwise combinations of polypeptides: (1) SEQ ID NO 2054 and SEQ ID NO: 2047; (2) SEQ ID NO 2054 and SEQ ID NO: 2044; (3) SEQ ID NO 2054 and SEQ ID NO: 2041; (4) SEQ ID NO 2054 and SEQ ID NO: 2048; (5) SEQ ID NO 2054 and SEQ ID NO: 2049; (6) a variant of any of (1) to (3).


Examples of other preferred embodiments include the following pairwise combinations of polypeptides: (1) SEQ ID NO 2055 and SEQ ID NO: 2047; (2) SEQ ID NO 2055 and SEQ ID NO: 2044; (3) SEQ ID NO 2055 and SEQ ID NO: 2041; (4) SEQ ID NO 2055 and SEQ ID NO: 2048; (5) SEQ ID NO 2055 and SEQ ID NO: 2049; (6) a variant of any of (1) to (5).


Examples of other preferred embodiments include the following pairwise combinations of polypeptides: (1) SEQ ID NO 2053 and SEQ ID NO: 2047; (2) SEQ ID NO 2053 and SEQ ID NO: 2044; (3) SEQ ID NO 2053 and SEQ ID NO: 2041; (4) SEQ ID NO 2053 and SEQ ID NO: 2048; (5) SEQ ID NO 2053 and SEQ ID NO: 2049; (6) a variant of any of (1) to (5).


Examples of other preferred embodiments include the following pairwise combinations of polypeptides: (1) SEQ ID NO 2056 and SEQ ID NO: 2047; (2) SEQ ID NO 2056 and SEQ ID NO: 2044; (3) SEQ ID NO 2056 and SEQ ID NO: 2041; (4) SEQ ID NO 2056 and SEQ ID NO: 2048; (5) SEQ ID NO 2056 and SEQ ID NO: 2049; (6) a variant of any of (1) to (5).


In a further preferred embodiment, a binding molecule of the present invention comprises the CDR sets or variant versions thereof or the tsVHH-48 antibody shown in FIG. 12C. In another embodiment, it comprises the VHH domains of the tsVHH-48 antibody or variant versions thereof. In one embodiment, a binding molecule comprises a polypeptide which is monovalent selected from SEQ ID NOs: 2052, 2053, 2054, 2055 or 2056, or a variant thereof. In another embodiment, a binding molecule comprises a polypeptide comprising the sequence of SEQ ID NO: 2028 or a variant thereof. In another embodiment, a binding molecule comprise: (i) a polypeptide comprising the sequence of any one of SEQ ID NOs: 2052, 2053, 2054, 2055 or a variant thereof; and (ii) a polypeptide comprising the sequence of SEQ ID NO: 2028 or a variant thereof. For example, a binding molecule may comprise (i) a polypeptide comprising the sequence of SEQ ID NO: 2052 or a variant thereof; and (ii) a polypeptide comprising the sequence of SEQ ID NO: 2028 or a variant thereof. For example, a binding molecule may comprise: (i) a polypeptide comprising the sequence of SEQ ID NO: 2053 or a variant thereof; and (ii) a polypeptide comprising the sequence of SEQ ID NO: 2028 or a variant thereof. For example, a binding molecule may (i) a polypeptide comprising the sequence of SEQ ID NO: 2054 or a variant thereof; and (ii) a polypeptide comprising the sequence of SEQ ID NO: 2028 or a variant thereof. For example, a binding molecule may (i) a polypeptide comprising the sequence of SEQ ID NO: 2055 or a variant thereof; and (ii) a polypeptide comprising the sequence of SEQ ID NO: 2028 or a variant thereof. Also provided are binding molecules comprising the CDRs sets or variant versions thereof of such binding molecules. Also provided are binding molecules comprising the VHH domains or variant versions thereof of such binding molecules.


In a particularly preferred embodiment, the binding molecules set out are tri-specific. In one embodiment, a variant comprises the VHH regions set out herein, but the other sequences may be different. In another embodiment, a variant sequence will have the CDRs of a binding molecule set out herein, but the other sequences may vary. In one embodiment, the CDRs may have from 1 to 10 amino acid modifications in total, provided that the binding molecule retains functionality. In one embodiment, the modifications will be conservative amino acid modifications. Variants are explained in more detail elsewhere herein and any such degree or type of variation may apply to the specific binding molecules set out herein.


Also provided are binding molecules which are humanised versions of any of those set out herein. Further provided are binding molecules which have the same, or variant versions, of the CDRs for one of the binding molecules set out herein and in the same format, but the non-CDR sequences are different. Also provided are binding molecules with the same VHHs as a binding molecule set out herein, or variant VHH sequences, where the binding molecule is in the same format, but the non-VHH sequences are different. For any of the specific binding molecules set out herein variant versions are also provided where the constant region modifications and mutations are rather those present others set out herein.


The present invention also provides a trispecific binding molecule of the present invention wherein the binding molecule is an antibody comprising two heavy chains wherein the antibody has four antigen-binding regions. In one embodiment, the antibody has four antigen-binding regions, with two antigen-binding regions on each heavy chain polypeptide. In another embodiment, the antibody has four antigen binding sites, with one antigen-binding region on one heavy chain polypeptide and three antigen-binding regions on the other heavy chain polypeptide.


In one embodiment, an antibody of the present invention has six antigen-binding regions. In one embodiment, the antibody has six antigen-binding regions, with three antigen binding regions present on each heavy chain polypeptide. In another embodiment the antibody is symmetrical in the sense that each of the two heavy chain polypeptides is the same.


In one preferred embodiment, an antibody of the present invention is symmetrical in the sense that each of the two heavy chain polypeptides is the same, with each heavy chain comprising two antigen binding regions. In one embodiment, the antibody is symmetrical in the sense that each of the two heavy chain polypeptides is the same, with each heavy chain comprising three antigen binding regions. In another embodiment, the antibody comprises two different single domain binding regions that each bind a different epitope of the same IL-2R chain polypeptide.


In one particularly preferred embodiment, a binding molecule, particularly an antibody, does not comprise an antibody light chain. In another preferred embodiment, a binding molecule, particularly an antibody, of the present invention does not comprise a Fab region.


In one embodiment, a binding molecule of the present invention may be at least as good or improved for a particular parameter in comparison to IL-2. For instance, in one embodiment, the fold EC50 NK/Treg value of a binding molecule of the present invention may be at least as good or better than the value for IL-2. In another embodiment the fold maximal percent pSTAT5 signalling Treg/NK may be at least as good or better as for IL-2. In one preferred embodiment, the method used to measure such values is that employed in the Examples of the present application.


Variant, Cross-Blocking, and Competing Antibodies

Also provided are variant binding molecules, in particular antibodies, derived from the specific molecules set out herein. Further provided, are binding molecules, in particular antibodies, that are able to cross-block the specific binding molecules set herein. Further provided are binding molecules, in particular antibodies, that are able to compete for binding with the specific molecules set out herein. In embodiments where an antibody of the present invention is a multi-specific antibody, it may be that just one antigen-binding specificity is defined in terms of being a variant of one of the specific antigen-binding sites set out herein, or able to compete, or cross-block with one of the specific antigen-binding sites set out here. As in a preferred embodiment the antigen-binding sites of an antibody of the present invention are based on VHH sequences, the individual VHH sequences set out herein may be used to define other VHH sequences that are able to compete or cross-block the specific VHH molecules set out herein.


Cross-blocking binding molecules, in particular antibodies, can be identified using any suitable method in the art, for example by using competition ELISA or BIAcore assays where binding of the cross-blocking binding molecule to antigen prevents the binding of a binding molecule of the present invention or vice versa. Such cross-blocking assays may use cells expressing IL-2R as a target. In one embodiment, flow cytometry is used to assess binding to cells expressing IL-2R. In another embodiment, the ability to compete or cross-block binding to an individual chain of the IL-2R is measured. A technique such as ELISA may be used. A technique such as surface plasmon resonance may be employed. In one embodiment, cross-blocking may be studied for each specificity individually. In one embodiment, that may be done by looking at the ability of individual VHHs to cross-block.


In one embodiment, the degree of cross-blocking may be, for instance, at least 75%, at least 80% or at least 90%. In another embodiment, it may be at least 95%. In another embodiment, it may be at least 99%. Such levels of cross-blocking may be in relation to the overall molecule.


Variant binding molecules, and in particular antibodies, may be employed where they still retain the desired properties of binding molecules of the present invention, particularly in relation to binding IL-2R. For instance, a variant binding molecule, in particular a variant antibody, or an antigen binding site of the variant, may be defined in terms of still being able to bind the same IL-2R chain as the original binding molecule, in particular antibody. Hence, binding molecules and antibodies with degrees of sequence identity to specific ones set out herein are also provided. The sequence identity may be over the entire length of a sequence, such as over the entire length of a VHH domain, or just over the CDR sequences. Sequence identity may also be defined in terms of over the entire length of the polypeptide in question. Degrees of identity and similarity can be readily calculated (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing. Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987, Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991, the BLAST™ software available from NCBI (Altschul, S. F. et al., 1990, J. Mol. Biol. 215:403-410; Gish, W. & States, D. J. 1993, Nature Genet. 3:266-272. Madden, T. L. et al., 1996, Meth. Enzymol. 266:131-141; Altschul, S. F. et al., 1997, Nucleic Acids Res. 25:3389-3402; Zhang, J. & Madden, T. L. 1997, Genome Res. 7:649-656). The present invention also extends to novel polypeptide sequences disclosed herein and sequences at least 80% similar or identical thereto, for example 85% or greater, 90% or greater, in particular 95%, 96%, 97%, 98% or 99% or greater similarity or identity. In one embodiment a sequence may have at least 99% sequence identity to at least one of the specific sequences provided herein. “Identity”, as used herein, indicates that at any particular position in the aligned sequences, the amino acid residue is identical between the sequences. In one embodiment, similarity or identity is measured in relation to the entire length of the shortest sequence of the two being compared. “Similarity”, as used herein, indicates that, at any particular position in the aligned sequences, the amino acid residue is of a similar type between the sequences. For example, leucine may be substituted for isoleucine or valine. Other amino acids which can often be substituted for one another include but are not limited to:

    • phenylalanine, tyrosine and tryptophan (amino acids having aromatic side chains);
    • lysine, arginine and histidine (amino acids having basic side chains);
    • aspartate and glutamate (amino acids having acidic side chains);
    • asparagine and glutamine (amino acids having amide side chains); and
    • cysteine and methionine (amino acids having sulphur-containing side chains).


In one embodiment, a variant may have from one to ten, such as one, two, three, four, five or up to those values of amino acid sequence changes or at least those values, or up to those values, so long as the variant is still able to specifically bind the desired IL-2R chain. In another embodiment, a variant of the present invention may have at least five, six, seven, eight, nine, ten, eleven or twelve amino acid sequence changes compared to the CDRs of one of the specific antibodies set out herein, for example is may have that number of sequence changes in a set of CDRs making up a VHH domain. An antibody of the present invention may have that number of sequence changes in the CDRs compared to the specific antibody set out herein. It may have up to that number of sequence changes. It may have at least that number of amino acid sequence changes. In one embodiment, a variant sequence may have one, two, three, four, five, or more amino acid sequence changes compared to one of the specific binding molecules set out herein. In one embodiment, it may have from five to ten, ten to fifteen, or fifteen to twenty amino acid sequence changes compared to a specific binding molecule set out herein. It may be that a binding molecule has that number of sequence changes in the overall VHH domain. It may have that number of sequence changes overall in the CDRs of a VHH domain. It may have such a number of sequence changes in the individual CDR. Such variant antibody molecules will typically retain the ability to specifically bind IL-2R or in the case of a VHH domain the IL-2R polypeptide it is specific for. They may also retain one of the other functions set out herein. Typically a variant will retain the ability to bind the IL-2R or individual IL-2R polypeptide. It will be appreciated that this aspect of the invention also extends to variants of the specific binding molecules and antibodies, and in particular antibodies, including humanised versions and modified versions, including those in which amino acids have been mutated in the CDRs to remove one or more isomerisation, deamidation, glycosylation site or cysteine residue.


In one embodiment, the binding molecules, an in particular antibodies, of the present invention are mutated to provide improved affinity for IL-2R polypeptides. Such variants can be obtained by a number of affinity maturation protocols including mutating the CDRs (Yang et al., J. Mol. Biol., 254, 392-403, 1995), chain shuffling (Marks et al., Bio/Technology, 10, 779-783, 1992), use of mutator strains of E. coli (Low et al J. Mol. Biol., 250, 359-368, 1996), DNA shuffling (Patten et al Curr. Opin. Biotechnol., 8, 724-733, 1997), phage display (Thompson et al., J. Mol. Biol., 256, 77-88, 1996), and sexual PCR (Crameri et al Nature, 391, 288-291, 1998). Vaughan et al discusses these methods of affinity maturation (Vaughan et al., Nat. Biotech., 16, 535-539, 1998). Where not specifically for VHH domains such approaches may be adapted for them. Improving the affinity of binding of individual binding sites will typically also improve the overall avidity for the target where the binding molecule has more than one binding site.


The skilled person may generate antibodies for use in the antibodies of the invention using any suitable method known in the art. Antigen polypeptides, for use in generating antibodies for example for use to immunize a host or for use in panning, such as in phage display, may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems or they may be recovered from natural biological sources. In the present application, the term “polypeptides” includes peptides, polypeptides and proteins. These are used interchangeably unless otherwise specified. The antigen polypeptide may in some instances be part of a larger protein such as a fusion protein for example fused to an affinity tag or similar. In one embodiment, the host may be immunised with a cell expressing an IL-2R or an IL-2R polypeptide. In a particularly preferred embodiment, a VHH domain of the present invention is obtained by immunising a camelid and in particular a llama.


In one example, the antigen-binding sites, and in particular the variable regions, of the antibodies according to the invention are humanised. Humanised (which include CDR-grafted antibodies) as employed herein refers to molecules having one or more complementarity determining regions (CDRs) from a non-human species and a framework region from a human immunoglobulin molecule (see, e.g., U.S. Pat. No. 5,585,089; WO91/09967 which are incorporated by reference). It will be appreciated that it may only be necessary to transfer the specificity determining residues of the CDRs rather than the entire CDR (see for example, Kashmiri et al., 2005, Methods, 36, 25-34). In a preferred embodiment though, the whole CDR or CDRs is/are transplanted. Humanised antibodies may optionally further comprise one or more framework residues derived from the non-human species from which the CDRs were derived. As used herein, the term “humanised antibody molecule” refers to an antibody molecule wherein one or more CDRs (including, if desired, one or more modified CDRs) from a donor antibody (e.g., a murine monoclonal antibody) are grafted into a framework of an acceptor antibody (e.g., a human antibody). For a review, see Vaughan et al, Nature Biotechnology, 16, 535-539, 1998. In one embodiment, rather than the entire CDR being transferred, only one or more of the specificity determining residues from any one of the CDRs described herein above are transferred to the human antibody framework (see for example, Kashmiri et al., 2005, Methods, 36, 25-34). In one embodiment only the specificity determining residues from one or more of the CDRs described herein above are transferred to the human antibody framework. In another embodiment, only the specificity determining residues from each of the CDRs described herein above are transferred to the human antibody framework.


When the CDRs or specificity determining residues are grafted, any appropriate acceptor variable region framework sequence may be used having regard to the class/type of the donor antibody from which the CDRs are derived, including mouse, primate and human framework regions. Suitably, the humanised antibody according to the present invention has a variable domain comprising human acceptor framework regions as well as one or more of the CDRs provided herein. Examples of human frameworks which can be used in the present invention are KOL, NEWM, REI, EU, TUR, TEI, LAY and POM. For example, KOL and NEWM can be used for the heavy chain, REI can be used for the light chain and EU, LAY and POM can be used for both the heavy chain and the light chain. Alternatively, human germline sequences may be used; these are available at: http://www2.mrc-lmb.cam.ac.uk/vbase/list2.php.


In a humanised antibody molecule of the present invention, the acceptor framework does not necessarily need to be derived from the same antibody and may, if desired, comprise composite chains having framework regions derived from different chains. The framework regions need not have exactly the same sequence as those of the acceptor antibody. For instance, unusual residues may be changed to more frequently-occurring residues for that acceptor chain class or type. Alternatively, selected residues in the acceptor framework regions may be changed so that they correspond to the residue found at the same position in the donor antibody (see Reichmann et al 1998, Nature, 332, 323-324). Such changes should be kept to the minimum necessary to recover the affinity of the donor antibody. A protocol for selecting residues in the acceptor framework regions which may need to be changed is set forth in WO 91/09967. Derivatives of frameworks may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids replaced with an alternative amino acid, for example with a donor residue. Donor residues are residues from the donor antibody, i.e., the antibody from which the CDRs were originally derived, in particular the residue in a corresponding location from the donor sequence is adopted. Donor residues may be replaced by a suitable residue derived from a human receptor framework (acceptor residues).


The Kabat et al numbering system is referred to herein. This system is set forth in Kabat et al., 1987, in Sequences of Proteins of Immunological Interest, US Department of Health and Human Services, NIH, USA (hereafter “Kabat et al. (supra)”). This numbering system is used in the present specification except where otherwise indicated. The Kabat residue designations do not always correspond directly with the linear numbering of the amino acid residues. The actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a shortening of, or insertion into, a structural component, whether framework or complementarity determining region (CDR), of the basic variable domain structure. The correct Kabat numbering of residues may be determined for a given antibody by alignment of residues of homology in the sequence of the antibody with a “standard Kabat numbered sequence. The CDRs of the heavy chain variable domain are located at residues 31-35 (CDR-H1), residues 50-65 (CDR-H2) and residues 95-102 (CDR-H3) according to the Kabat numbering system. However, according to Chothia (Chothia, C. and Lesk, A.M. J. Mol. Biol., 196, 901-917 (1987)), the loop equivalent to CDR-H1 extends from residue 26 to residue 32. Thus, unless indicated otherwise “CDR-H1” as employed herein is intended to refer to residues 26 to 35, as described by a combination of the Kabat numbering system and Chothia's topological loop definition. The CDRs of the light chain variable domain are located at residues 24-34 (CDR-L1), residues 50-56 (CDR-L2) and residues 89-97 (CDR-L3) according to the Kabat numbering system.


The skilled person is able to test variants of CDRs or humanised sequences in any suitable assay such as those described herein to confirm activity is maintained.


A preferred variant binding molecule will retain the ability to act as a trispecific binding molecule in the sense of binding all three of IL-2 α, β, and γ.


In one embodiment, variant antibodies may be identified by identifying such antibodies that are able to cross-block specific antibodies set out herein. Cross-blocking binding molecules, in particular antibodies, can be identified using any suitable method in the art, for example by using competition ELISA or BIAcore assays where binding of the cross-blocking antibody to antigen prevents the binding of an antibody of the present invention or vice versa. Such cross-blocking assays may use cells expressing IL-2Rα/IL-2Rβ/γc as a target. In one embodiment, flow cytometry is used to assess binding to cells expressing IL-2Rα/IL-2Rβ/γc.


Further provided, are binding molecules that bind the same epitope on one of the IL-2R polypeptide chains as one of the specific antibodies set out herein. For instance, the binding molecule may be an antibody that binds to the same epitope. It may be an antibody that belongs to the same “epitope bin” as one of those set out in the Examples of the present application. In one embodiment, the binding molecule may bind to all three of the epitopes recognised in the three IL-2R polypeptide chains.


In one preferred embodiment, a variant CDR has one of the levels of sequence identity recited herein. In another it has one of the levels of sequence identity. For instance, in one embodiment, a variant binding molecule may have at least 90% sequence identity to all of the relevant CDRs of the binding molecule it is being compared to. In another embodiment, the CDRs have at least 95% sequence identity over the CDRs they are being compared to. In another embodiment a variants may have VHH domains with at least 90% sequence identity to the VHH domains of the specific binding molecule it is being compared to. In another embodiment, the VHH domains have at least 95% sequence identity. In another embodiment, a variant CDR may show one, two, or three amino acid sequence changes compared to the specific CDR. A set of variants may be one where each CDR shows that level of variation compared to the specific sequence CDRs. It may be that level of variation is shown cumulatively over the whole CDRs compared to those of the specific binding molecules. A variant will typically retain functionality compared to the specific binding molecule. For example, a variant will typically still be able to bind all of the IL-2Rα, IL-2Rβ and γc chains.


For any of the specific CDRs, VHH domains, polypeptides, and binding molecules set out herein, the present invention also provides variant versions as set out herein.


Conjugates, Fusion Proteins, Effector Molecules, and Labels

In a preferred embodiment, a binding molecule, particularly an antibody, of the present invention may exert its effect by binding the IL-2R without any need for a further effector molecule or label. In some embodiments though it may be conjugated to an effector molecule or label. Hence, a binding molecule, particularly an antibody, for use in the present invention may be conjugated to one or more effector or label molecule(s). Where it is desired to obtain a binding molecule, particularly an antibody, according to the present invention linked to an effector molecule or label, this may be prepared by standard chemical or recombinant DNA procedures in which the binding molecule is linked either directly or via a coupling agent to the effector molecule. Techniques for conjugating such effector molecules to antibodies are well known in the art (see, Hellstrom et al., Controlled Drug Delivery, 2nd Ed., Robinson et al., eds., 1987, pp. 623-53; Thorpe et al., 1982, Immunol. Rev., 62:119-58 and Dubowchik et al., 1999, Pharmacology and Therapeutics, 83, 67-123). Particular chemical procedures include, for example, those described in WO 93/06231, WO 92/22583, WO 89/00195, WO 89/01476 and WO 03/031581. Alternatively, where the effector or label molecule is a protein or polypeptide the linkage may be achieved using recombinant DNA procedures, for example as described in WO 86/01533 and EP0392745.


Effector and label molecules which may be employed include, for example, drugs, toxins, biologically active proteins, for example enzymes, antibody or antibody fragments, synthetic or naturally occurring polymers, nucleic acids and fragments thereof, e.g., DNA, RNA, and fragments thereof, radionuclides, particularly radioiodide, radioisotopes, chelated metals, nanoparticles and reporter groups such as fluorescent compounds or compounds which may be detected by NMR or ESR spectroscopy. Antibodies of the present invention may comprise a detectable substance for use as a label. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive nuclides, positron emitting metals (for use in positron emission tomography), and nonradioactive paramagnetic metal ions. See generally U.S. Pat. No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics. Suitable enzymes include horseradish peroxidase, alkaline phosphatase, betagalactosidase, or acetylcholinesterase; suitable prosthetic groups include streptavidin, avidin and biotin; suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride and phycoerythrin; suitable luminescent materials include luminol; suitable bioluminescent materials include luciferase, luciferin, and aequorin; and suitable radioactive nuclides include 125I, 131I, 111In and 99Tc.


In another embodiment, the effector molecule may increase or decrease the half-life of the binding molecule, in particular antibody, in vivo, and/or reduce immunogenicity and/or enhance delivery across an epithelial barrier to the immune system. Examples of suitable effector molecules of this type include polymers, albumin, albumin-binding proteins or albumin-binding compounds such as those described in WO 05/117984. Where the effector molecule is a polymer, it may, in general, be a synthetic or a naturally occurring polymer, for example an optionally substituted straight or branched chain polyalkylene, polyalkenylene or polyoxyalkylene polymer or a branched or unbranched polysaccharide, e.g., a homo-or heteropolysaccharide. Specific optional substituents which may be present on the above-mentioned synthetic polymers include one or more hydroxy, methyl or methoxy groups. Specific examples of synthetic polymers include optionally substituted straight or branched chain poly (ethyleneglycol), poly (propyleneglycol) poly (vinylalcohol) or derivatives thereof, especially optionally substituted poly (ethyleneglycol) such as methoxypoly (ethyleneglycol) or derivatives thereof.


A binding molecule, particularly an antibody, of the present invention may be conjugated to a molecule that modulates or alters serum half-life. A binding molecule, particularly antibody, of the invention may bind to albumin, for example in order to modulate the serum half-life. Hence, in one embodiment a binding molecule, particularly an antibody, of the present invention includes a binding site for albumin, for instance it may include a VHH domain specific for albumin in addition to the other antigen-binding sites of the antibody. In another embodiment, a binding molecule, particularly an antibody, of the invention may include a peptide linker which is an albumin binding peptide. Examples of albumin binding peptides are included in WO 2015/197772 and WO 2007/106120 the entirety of which are incorporated by reference. In one embodiment, an antibody of the present invention may comprise an Fc tail, serum albumin, and/or a moiety which is a binder of serum albumin, and PEG.


In another embodiment, a binding molecule, particularly an antibody, of the invention is not conjugated to an effector molecule. In one embodiment, a binding molecule, particularly an antibody, of the invention is not conjugated to a toxin. In another embodiment, a binding molecule, particularly an antibody, of the invention is not conjugated to a radioisotope. In another embodiment, it is not conjugated to an agent for imaging.


Assays

In one embodiment, a functional assay may be employed to determine if a binding molecule, particularly an antibody, of the present invention, or an individual component of it, has a particular property or properties, for instance such as any of those mentioned herein. In one embodiment, one or more of the assays described in the Examples of the present application may be employed to assess a particular binding molecule, particularly an antibody, and whether it has a desired property or properties.


A binding molecule, particularly an antibody molecule, of the present invention is able to bind at least one polypeptide chain of IL-2R, so at least one of IL-2Rα, IL-2Rβ, and the γc polypeptide chains. Preferably, it will be able to bind at least two of those polypeptide chains. Particularly preferably, it will be able to bind all three of the IL-2Rα, IL-2Rβ, and the γc polypeptide chains. The ability of antibody binding molecule, or individual VHH, of the present invention, or a candidate, to bind may be assessed in a variety of ways. For example, in one embodiment the ability to bind a given IL-2R polypeptide chain is assessed by employing the polypeptide, such as by using techniques like surface plasmon resonance using the polypeptide chain, or a portion thereof, bound to a chip. Any suitable method for measuring binding may be employed, such as any of the methods discussed herein. In a particularly preferred embodiment, the ability to bind IL-2Rα, IL-2Rβ, and the γc will be assessed using a cell expressing the high affinity IL-2Rα/IL-2Rβ/γc receptor complex on its surface. In one embodiment, candidate molecules are labelled and then screened for their ability to bind cells expressing the receptor, using techniques such as ELISA or flow cytometry. In another embodiment, candidate molecules may be incubated with cells expressing the receptor and then bound candidate molecules detected using secondary agents such as a labelled antibody specific for the species of the candidate molecules. In one embodiment, an antibody, or VHH domain, of present invention is labelled, for example using luciferase-tagged (e.g., Gaussia princeps luciferase (GpL)) variants of an antibody, an in particular antibody or the fusion proteins, for example as described in Kums et al., MAbs. 2017 April; 9 (3): 506-520). Such tagged antibodies may also be used in competitive binding assays.


In one embodiment, a binding molecule, particularly an antibody, of the present invention is able to act as an agonist of the IL-2Rα/IL-2Rβ/γc complex. The present invention provides a method comprising: (a) contacting a cell expressing the IL-2Rα/IL-2Rβ/γc complex with the candidate; and (b) measuring STAT5 phosphorylation, where if the candidate triggers STAT5 phosphorylation it is selected. Such methods may further comprise comparison to a positive control known to activate signalling and hence STAT5 phosphorylation. In one embodiment, the positive control is IL-2. In another embodiment, the positive control is one of the specific binding molecules disclosed herein known to activate the receptor. For instance, a desired variant may be one that gives at least 50% of the level of the phosphorylation as the control. In one embodiment, it gives at least 75% of the level of STAT5 phosphorylation in comparison to the control.


In another embodiment, a binding molecule, particularly an antibody, of the present invention is able to act as an antagonist of the receptor. For instance, in one embodiment, it prevents the binding of IL-2 to the receptor, but does not activate the receptor itself. In one embodiment, a method is provided comprising: (a) contacting a cell expressing the IL-2Rα/IL-2Rβ/γc complex with the candidate; and labelled IL-2; (b) measuring the amount of labelled IL-2 bound to the cell; and (c) comparing the level of IL-2 bound to that seen in the absence of the candidate. If the candidate results in a drop in the amount of labelled IL-2 binding to the cell it is said to have antagonistic activity. In one embodiment, a binding molecule, particularly an antibody, of the invention will reduce IL-2 binding by at least 10%, preferably at least 25%, and more preferably by at least 50%.


In one preferred embodiment, a binding molecule, particularly an antibody, of the present invention does not bind FcγR. In one preferred embodiment, a binding molecule, particularly a candidate antibody, is assessed both for its ability to bind IL-2R, but also for its ability not to bind to and activate FcγR. In one embodiment, the ability of a binding molecule, particularly an antibody, of the present invention to bind Fc receptors and in particular FcγR is assessed. The lack of binding to Fc receptors may be assessed, for instance to determine whether or not CDC, ADCP or ADCC activity is displayed and preferably neither will be by an antibody of the present invention.


In another embodiment, the ability of a binding molecule, particularly an antibody, of the present invention to stimulate activation and/or expansion of cells will be assessed, for example to stimulate particular immune cells in that way, as a binding molecule, particularly an antibody, of the present invention will be typically able to bring about activation and/or expansion of cells such as T cells. In one embodiment, ability to stimulate Treg cells and Treg subsets such as CD25bright Tregs, from PBMC is assessed. In one embodiment, ability to expand Tregs is assessed by a method comprising: isolating PBMC and then culturing the PBMC; harvesting the cells and then seeding the PBMC; incubating the cells with a candidate binding molecule, particularly antibody; and performing analysis to determine the number of cells. In a preferred embodiment, a negative control is performed where the cells are cultured without contacting with the candidate. The cells may be assessed using flow cytometry in particular staining for CD4+CD25+CD127−FoxP3+ cells. In a preferred embodiment the number of CD25+CD127−FoxP3+ cells within the CD3+CD4+ cell population is measured. The cells may also be stained with antibodies specific for CD3 and/or CD8. In one preferred embodiment, a binding molecule, particularly an antibody, of the present invention will give higher numbers of CD4+CD25+CD127−FoxP3+ cells compared to incubation without the binding molecule/antibody. In another embodiment, a candidate may also be compared to a specific binding molecule of the present invention, for example to assess whether a variant antibody is also able to expand Tregs to the same or greater degree than the specific binding molecule of the present invention.


In another preferred embodiment, FoxP3.Luci mice are employed to study Treg cell expansion as the mice express luciferase under the control of the mouse FoxP3 promoter, which acts as a marker for Treg cells. For example, such mice may be injected with a candidate then bioluminescence imaging is used to image Treg cells. A positive control with a known ability to stimulate the proliferation of Tregs cell may be performed, as may be a negative control. In one embodiment a variant or candidate will be compared to a known antibody of the present invention set out herein and if it results in an equivalent or greater level of Tregs as assessed by the bioluminescence imaging in a preferred embodiment it itself is also classified as binding molecule, in particular an antibody, of the present invention. Such assessment may also be combined with ex vivo assessment, for example by subsequently sacrificing the animal, isolating cells, and then analyzing Treg numbers.


In another preferred embodiment, for testing of human-specific molecules, transgenic mice expressing one or more human IL-2R chains are employed to study Treg levels and in particular expansion. Such transgenic mice can be crossbred with FoxP3.Luci transgenic mice for in vivo imaging of Treg expansion. Upon sacrifice, separate tissues can also be processed via imaging for changed levels of Tregs, versus negative control animals. Treg expansion and Treg/Teff ratios can also be quantitated using flow cytometry, sourcing splenocytes, leukocytes in blood or other tissues. Alternatively, immunodeficient mice such as NSG mice can be injected with human PBMCs, human CD34+ cells or human Tregs and the expansion of Tregs determined via flow cytometry.


The efficacy of binding molecule, in particular of an antibody, may be assessed in an in vivo system such as in animal models. For example, various models of graft versus host disease (GvHD) may be employed, with a candidate antibody given to such an animal model and then compared to a control animal which is the same animal model for GvHD but which has not been given the antibody. In one embodiment, an antibody of the present invention will present or reduce the GvHD in the animal model. One preferred model for GvHD employs NOD/Scid/IL2Rg−/−(NSG) mice into which human T cells are transferred, for example by the transfer of human PBMCs into the mice. In one preferred embodiment, the model employed is the NOD/Scid/IL2Rg−/− model used in the Examples of the present application. Other animal models may be used in the same way, for example models of conditions such as inflammatory bowel disease, lupus, multiple sclerosis, and type 1 diabetes.


Pharmaceutical Compositions

In one embodiment, the present invention provides a pharmaceutical composition comprising: (a) a binding molecule of the present invention; and (b) a pharmaceutically acceptable carrier, diluent, and/or excipient. The particularly preferred binding molecule for any of the pharmaceutical compositions of the present invention is an antibody. In one embodiment, a pharmaceutical composition of the present invention comprises binding molecule of the present invention as well as a carrier, a stabilizer, an excipient, a diluent, a solubilizer, a surfactant, an emulsifier, a preservative and/or adjuvant. In one embodiment, a pharmaceutical composition of the present invention is in solid or liquid form. In one embodiment, the pharmaceutical composition may be in the form of a powder, a tablet, a solution or an aerosol. In one embodiment, a pharmaceutical composition of the present invention is provided in a frozen form. In one embodiment, a pharmaceutical composition of the present invention is provided in lyophilized form.


A pharmaceutical composition of the present invention will usually be supplied as a sterile, pharmaceutical composition. A pharmaceutical composition of the present invention may additionally comprise a pharmaceutically acceptable adjuvant. In another embodiment, no such adjuvant is present in a pharmaceutical composition of the present invention. The present invention also provides a process for preparation of a pharmaceutical or medicament composition comprising adding and mixing binding molecule of the present invention together with one or more of a pharmaceutically acceptable excipient, diluent or carrier.


Pharmaceutically acceptable carriers in therapeutic compositions may additionally contain liquids such as water, saline, glycerol and ethanol. Such carriers may be used, for example, so that the pharmaceutical compositions to be formulated as tablets, pills, dragées, capsules, liquids, gels, syrups, slurries and suspensions, for ingestion by the patient. The term “pharmaceutically acceptable excipient” as used herein typically refers to a pharmaceutically acceptable formulation carrier, solution or additive to enhance the desired characteristics of the compositions of the present invention. Excipients are well known in the art and include buffers (e.g., citrate buffer, phosphate buffer, acetate buffer, and bicarbonate buffer), amino acids, urea, alcohols, ascorbic acid, phospholipids, proteins (e.g., serum albumin), EDTA, sodium chloride, liposomes, mannitol, sorbitol, and glycerol. Solutions or suspensions can be encapsulated in liposomes or biodegradable microspheres. Suitable carriers may be large, slowly metabolised macromolecules such as proteins, polypeptides, liposomes, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers and inactive virus particles. Pharmaceutically acceptable salts can be used, for example mineral acid salts, such as hydrochlorides, hydrobromides, phosphates and sulphates, or salts of organic acids, such as acetates, propionates, malonates, and benzoates.


In certain embodiments, the pharmaceutical composition may contain formulation materials for the purpose of modifying, maintaining or preserving certain characteristics of the composition such as the pH, osmolarity, viscosity, clarity, color, isotonicity, odour, sterility, stability, rate of dissolution or release, adsorption or penetration. A thorough discussion of pharmaceutically acceptable carriers is available in Remington's Pharmaceutical Sciences (Mack Publishing Company, N.J. 1991). Additional pharmaceutical compositions include formulations involving the antibody of the present invention in sustained or controlled delivery formulations. Techniques for formulating a variety of sustained-or controlled-delivery means are known to those skilled in the art. A binding molecule, in particular antibody, of the present invention may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, in colloidal drug delivery systems, or in macroemulsions. Such techniques are also disclosed in Remington's Pharmaceutical Sciences.


A subject will be typically administered a therapeutically effective amount of a pharmaceutical composition and hence of a binding molecule, in particular an antibody, of the present invention. The term “therapeutically effective amount” typically refers to an amount of a therapeutic agent needed to treat, ameliorate or prevent a targeted disease or condition, or to exhibit a detectable therapeutic or preventative effect. The precise therapeutically effective amount for a human subject will depend upon the severity of the disease state, the general health of the subject, the age, weight and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. This amount can be determined by routine experimentation and is within the judgement of the clinician. For example, a low dose may be used initially and then increased if needed to be based on the response seen. Generally, a therapeutically effective amount will be from 0.01 mg/kg to 50 mg/kg, for example 0.1 mg/kg to 20 mg/kg per day. Alternatively, the dose may be 1 to 500 mg per day, such as 10 to 100, 200, 300 or 400 mg per day. In one embodiment, the amount in a given dose is at least enough to bring about a particular function.


In one embodiment, a binding molecule, in particular an antibody, of the present invention may be given in combination with another treatment for the condition being treated. For example, a binding molecule, in particular an antibody, of the present invention may be provided simultaneously, sequentially, or separately with such a further agent. In another embodiment, an antibody of the present invention may be provided in the same pharmaceutical composition as a second therapeutic agent.


In one preferred embodiment, the therapeutic agent of the invention, when in a pharmaceutical preparation, may be present in unit dose forms. Suitable doses may be calculated for patients according to their weight, for example suitable doses may be in the range of 0.01 to 20 mg/kg, for example 0.1 to 20 mg/kg, for example 1 to 20 mg/kg, for example 10 to 20 mg/kg or for example 1 to 15 mg/kg, for example 10 to 15 mg/kg. To effectively treat conditions of use in the present invention in a human, suitable doses may be within the range of 0.001 to 10 mg, 0.01 to 1000 mg, for example 0.1 to 1000 mg, for example 0.1 to 500 mg, for example 500 mg, for example 0.1 to 100 mg, or 0.1 to 80 mg, or 0.1 to 60 mg, or 0.1 to 40 mg, or for example 1 to 100 mg, or 1 to 50 mg, of a dual targeting protein of this invention, which may be administered parenterally, for example subcutaneously, intravenously or intramuscularly. Such a dose may be, if necessary, repeated at appropriate time intervals selected as appropriate by a physician. A binding molecule, and in particular an antibody, of the present invention may be, for instance, lyophilized for storage and reconstituted in a suitable carrier prior to use. Lyophilization and reconstitution techniques can be employed.


The binding molecules, in particular antibodies, and pharmaceutical compositions of this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, transcutaneous (for example, see WO 98/20734), subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, intravaginal or rectal routes. Hyposprays may also be used to administer the pharmaceutical compositions of the invention. Direct delivery of the compositions will generally be accomplished by injection, subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the interstitial space of a tissue. In one preferred embodiment, administration is via intravenous administration. In another preferred embodiment, administration is via subcutaneous administration, for example via subcutaneous injection. The compositions can also be administered into a specific tissue of interest. In some embodiments, administration is via site-specific or targeted local delivery techniques. Examples of site-specific or targeted local delivery techniques include various implantable depot sources of the antibody molecule or local delivery catheters, such as infusion catheters, indwelling catheters, or needle catheters, synthetic grafts, adventitial wraps, shunts and stents or other implantable devices, site specific carriers, direct injection, or direct application.


Dosage treatment may be a single dose schedule or a multiple dose schedule. Where the product is for injection or infusion, it may take the form of a suspension, solution or emulsion in an oily or aqueous vehicle and it may contain formulary agents, such as suspending, preservative, stabilising and/or dispersing agents. Alternatively, the pharmaceutical may be in dry form, for reconstitution before use with an appropriate sterile liquid. In one embodiment, a pharmaceutical composition comprising an antibody of the present invention is provided in lyophilised form. If a composition is to be administered by a route using the gastrointestinal tract, the composition will typically need to contain agents which protect the binding molecule, in particular antibody, from degradation but which release the binding molecule once it has been absorbed from the gastrointestinal tract. In another embodiment, a nebulisable formulation according to the present invention may be provided, for example, as single dose units (e.g., sealed plastic containers or vials) packed in foil envelopes. Each vial contains a unit dose in a volume, e.g., 2 ml, of solvent/solution buffer.


A pharmaceutical composition of the present invention may be provided in a receptacle that provides means for administration to a subject. In one embodiment, a pharmaceutical composition of the present invention may be provided in a prefilled syringe. The present invention therefore provides such a loaded syringe. It also provides an auto-injector loaded with a pharmaceutical composition of the present invention.


In one embodiment the formulation is provided as a formulation for topical administrations including inhalation. Suitable inhalable preparations include inhalable powders, metering aerosols containing propellant gases or inhalable solutions free from propellant gases. Inhalable powders according to the invention containing the active substance may consist solely of the abovementioned active substances or of a mixture of the abovementioned active substances with physiologically acceptable excipient. These inhalable powders may include monosaccharides (e.g., glucose or arabinose), disaccharides (e.g., lactose, saccharose, maltose), oligo- and polysaccharides (e.g., dextranes), polyalcohols (e.g., sorbitol, mannitol, xylitol), salts (e.g., sodium chloride, calcium carbonate) or mixtures of these with one another. Mono- or disaccharides are suitably used, the use of lactose or glucose, particularly but not exclusively in the form of their hydrates.


Particles for deposition in the lung require a particle size less than 10 microns, such as 1-9 microns for example from 1 to 5 μm. The particle size of the active ingredient such as the antibody or fragment is of primary importance. The propellant gases which can be used to prepare the inhalable aerosols are known in the art. Suitable propellant gases are selected from among hydrocarbons such as n-propane, n-butane or isobutane and halohydrocarbons such as chlorinated and/or fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane. The above mentioned propellent gases may be used on their own or in mixtures thereof. Particularly suitable propellent gases are halogenated alkane derivatives selected from among TG 11, TG 12, TG 134a and TG227. Of the above-mentioned halogenated hydrocarbons, TG134a (1,1,1,2-tetrafluoroethane) and TG227 (1,1,1,2,3,3,3-heptafluoropropane) and mixtures thereof are particularly suitable. The propellent-gas-containing inhalable aerosols may also contain other ingredients such as cosolvents, stabilisers, surface-active agents (surfactants), antioxidants, lubricants and means for adjusting the pH. All these ingredients are known in the art. The propellant-gas-containing inhalable aerosols according to the invention may contain up to 5% by weight of active substance. Aerosols according to the invention contain, for example, 0.002 to 5% by weight, 0.01 to 3% by weight, 0.015 to 2% by weight, 0.1 to 2% by weight, 0.5 to 2% by weight or 0.5 to 1% by weight of active ingredient.


Alternatively topical administrations to the lung may also be by administration of a liquid solution or suspension formulation, for example employing a device such as a nebulizer, for example, a nebulizer connected to a compressor (e.g., the Pari LC-Jet Plus (R) nebulizer connected to a Pari Master (R) compressor manufactured by Pari Respiratory Equipment, Inc., Richmond, Va.).


Nebulisable formulation according to the present invention may be provided, for example, as single dose units (e.g., sealed plastic containers or vials) packed in foil envelopes. Each vial contains a unit dose in a volume, e.g., 2 mL, of solvent/solution buffer. The present invention also provides a syringe loaded with a composition comprising an antibody of the invention. In one embodiment, a pre-filled syringe loaded with a unit dose of an antibody is provided. In another embodiment, an autoinjector loaded with a binding molecule, in particular an antibody, of the invention is provided. In a further embodiment, an IV bag loaded with a pharmaceutical composition of the invention is provided.


It is also envisaged that an antibody of the present invention may be administered by use of gene therapy. In order to achieve this, DNA sequences encoding the binding molecule, in particular antibody, under the control of appropriate DNA components are introduced into a patient such that the binding molecule, in particular antibody chains and so antibody, are expressed from the DNA sequences and assembled in situ.


Once formulated, the compositions of the invention can be administered directly to the subject. By “subject” or “individual” or “animal” or “patient” or “mammal,” is meant any subject, particularly a mammalian subject, for whom diagnosis, prognosis, or therapy is desired. Mammalian subjects include humans, domestic animals, farm animals, and zoo, sports, or pet animals such as dogs, cats, guinea pigs, rabbits, rats, mice, horses, cattle, cows, and so on. In a preferred embodiment, the subject to be treated is a mammal. The subjects to be treated can be animals. However, in one or more embodiments the compositions are adapted for administration to humans. In a particularly preferred embodiment, the subject is human.


Kits

The present invention also extends to a kit comprising a binding molecule, in particular an antibody, of the invention, optionally with instructions for administration. In yet another embodiment, the kit further comprises one or more reagents for performing one or more functional assays. In another embodiment, a kit containing single-chambered or multi-chambered pre-filled syringes is provided which is pre-filled with a pharmaceutical composition of the invention. The invention also provides a kit for a single-dose administration unit which comprises a pharmaceutical composition of the invention. In another embodiment, the kit comprises packaging.


Pathological Conditions, Medical, and Diagnostic Uses

Also provided is a binding molecule, in particular an antibody, of the present invention for use as a medicament. In another embodiment a binding molecule, in particular an antibody, of the present invention is provided for use in a method of therapy of the human or animal body. Please note that, in the various therapeutic uses set out herein where reference is made to a binding molecule or an antibody of the present invention, a pharmaceutical composition comprising it may be also employed and vice versa unless stated otherwise, as may be a composition encoding an antibody of the invention. A binding molecule, in particular an antibody, of the present invention may also be used in diagnosis, including in both in vivo diagnosis and also in vitro diagnosis, for example such diagnosis performed on a sample from a subject.


As discussed further below, a binding molecule, in particular an antibody, of the present invention may be employed to treat a condition. As used herein, the terms “treat” or “treatment” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.


The binding molecule, in particular antibody, of the invention may be used to treat any condition that would benefit. For instance, it may be used to treat an autoimmune condition. For instance, examples of conditions that may be treated include:

    • (multispecific conditions:) graft versus host disease (GvHD), systemic lupus erythematosus (SLE) rheumatoid arthritis (RA) (e.g., juvenile rheumatoid arthritis, polyarticular juvenile idiopathic arthritis, psoriatic arthritis, pediatric arthritis, osteoarthritis), type 1 diabetes (TID), autoimmune hepatitis, alopecia areata, polychondritis, ankylosing spondylitis,
    • (gastro-intestinal tract conditions:) Crohn's disease (CD), ulcerative colitis (UC), pouchitis, celiac disease,
    • (muscle conditions:) polymyalgia, polymyositis, idiopathic inflammatory myopathy (IIM), myasthenia gravis,
    • (skin conditions:) psoriasis, dermatitis, atopic dermatitis, eczema, scleroderma, pemphigus vulgaris, bullous pemphigoid,
    • (nerve conditions:) multiple sclerosis (MS), Guillain-Barré syndrome, amyotrophic lateral sclerosis (ALS), chronic inflammatory demyelinating polyneuropathy (CIDP),
    • (glandular conditions:) Sjögren's syndrome, Grave's disease, Hashimoto's thyroiditis, Addison's disease,
    • (blood conditions:) vasculitis, Behcet's disease, Takayasu's arteritis, granulomatosis with polyangitisis, antiphospholipid syndrome (APS), idiopathic thrombocytopeni purpura (ITP), and
    • (conditions affecting airways:) birch pollen allergy, asthma, respiratory-COVID19.


In one preferred embodiment, the invention may be used to treat or prevent graft versus host disease (GvHD). In one embodiment, the autoimmune disease is selected from type 1 diabetes (TID), multiple sclerosis (MS), Crohn's disease (CD), ulcerative colitis (UC), psoriasis, Guillain-Barré syndrome (GBS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), chronic inflammatory demyelinating polyneuropathy (CIDP), Hashimoto's thyroiditis, celiac disease, Addison's disease, autoimmune hepatitis, antiphospholipid syndrome (APS), and Grave's disease. In another embodiment, the autoimmune disease is selected from diseases where the autoreactive T cell compartment, potentially in collaboration with autoreactive B cells, contributes significantly to disease pathology. Such diseases include, but are not limited to myasthenia gravis, pemphigus vulgaris, and bullous pemphigoid.


In one embodiment, the disease to be treated is selected from acute or chronic GvHD, SLE, autoimmune hepatitis, ulcerative colitis, and eczema. In another embodiment, the disease to be treated is selected from alopecia areata, type 1 diabetes, SLE, multiple sclerosis, birch pollen allergy, pemphigus vulgaris, bullous pemphigoid, amyotrophic lateral sclerosis (ALS), polymyalgia, Behcet's disease, polychondritis, idiopathic inflammatory myopathy (IIM), Crohn's disease, rheumatoid arthritis, psoriasis, dermatitis, respiratory-COVID19, vasculitis, idiopathic thrombocytopenia purpura (ITP), and polymyositis. In a further preferred embodiment, the disease to be treated is selected from Takayasu's arteritis, ankylosing spondylitis, granulomatosis with polyangiitis, and Sjögren's syndrome. Particularly preferred disorders to be treated are GvHD, atopic dermatitis, and psoriasis. Other preferred disorders to be treated are ulcerative colitis and SLE.


In one embodiment, a binding molecule, in particular an antibody, of the invention is used to treat or prevent an immune response against a transplant. Examples of organs and tissues that can be transplanted in a mammal that can be treated as described herein include, without limitation, skin, bone, blood, heart, liver, kidney, pancreas, intestine, stomach, testis, penis, cornea, bone marrow, and lung. A transplant can be an allogeneic transplant or an autologous transplant. In some cases, the materials and methods described herein also can be used to treat a mammal having a complication or disease associated with a transplant (e.g., GvHD). In one embodiment, the transplant reject is of an autologous transplant or an allogenic transplant.


In some cases, a binding molecule, in particular an antibody, of the present invention can be administered as a combination therapy with one or more additional treatments used to treat an autoimmune disease and/or one or more additional immunosuppressants. For example, a combination therapy used to treat an autoimmune disease can include administering to the subject a binding molecule, in particular an antibody, as described herein and one or more autoimmune disease treatments such as an adoptive cell (e.g., Treg) transfer, tolerogenic vaccination, an immune checkpoint agonist, and/or steroid administration. For example, a combination therapy used to enhance an immune response can include administering to the mammal an antibody as described herein and one or more immunosuppressants such as cyclosporine, rapamycin, methotrexate, azathioprine, chlorambucil, leflunomide, and/or mycophenolate mofetil.


As discussed further below, a binding molecule, in particular an antibody, of the present invention may be employed to treat a condition. As used herein, the terms “treat” or “treatment” refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder. Beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.


In one particularly preferred embodiment, a binding molecule, in particular an antibody, of the present invention may be used to modulate the immune system. For example, it may be used to stimulate cells of the immune system, for instance activating particular cells of the immune system. In one embodiment the cells may be stimulated to proliferate. In one preferred embodiment, a binding molecule, in particular an antibody, of the present invention is used to activate cells expressing high affinity IL-2R on their surface. For example, the cells in question may be white blood cells and in particular T cells. In a particularly preferred embodiment, a binding molecule, in particular an antibody, of the present invention is used to activate Treg cells, in particular CD25bright Tregs. For example, a binding molecule, in particular an antibody, of the present invention may be used to stimulate Treg cells which in turn suppress, reduce, or prevent an immune response.


The ability of the present invention to modulate the immune system means that it represents a particular good way to target, for example, an autoimmune disorder, or an inflammatory disorder. Hence, the present invention provides for a binding molecule, in particular an antibody, or pharmaceutical composition of the present invention for use in a method of treating or preventing an autoimmune disorder, or an inflammatory disorder. The present invention provides a binding molecule, in particular an antibody, or pharmaceutical composition for use in such a method wherein:

    • (a) the disorder is graft versus host disease (GvHD), preferably where the antibody is for use in a method where it is administered prior to, at the same time, or after a transplant of a cell, tissue, or organ; or
    • (b) the disorder is one involving dysfunction or unwanted proliferation of leukocytes, preferably of T cells, more preferably of Teff cells; such disorders may present with an imbalance of Tregs compared to Teff cells, for example due to increased numbers or activity of Teff which is not balance the numbers and/or immunosuppressive properties of Tregs and in one embodiment the present invention promotes Tregs and in particular shifts the balance with effector cell to, or towards, normal.
    • (c) the disorder is selected from inflammatory bowel disease (such as ulcerative colitis, Crohn's disease, pouchitis, or celiac disease), multiple sclerosis, myasthenia gravis, skin autoimmune diseases such as pemphigus vulgaris or bullous pemphigoid, and type 1 diabetes.


The present invention may be used in treating graft versus host disease (GvHD). In one embodiment, the present invention is employed to promote Treg activity prior to a cell, tissue or organ transplant. For example, in one embodiment the present invention is used to promote Treg activity before transplantation of cells, in particular prior to transplantation of stem cells, and preferably before the transplantation of hematopoietic stem cells. In another embodiment, rather than stimulate Tregs in the recipient prior to transplantation, the invention is used to expand Tregs in a cell population, tissue, or organ that is to be transplanted to the host. In a further embodiment, they are used as part of the treatment for non-malignant hematopoietic diseases.


The present invention may be used to reduce, prevent or treat an immune response against a transplant, for example against transplanted cells, tissue or an organ. Hence, the invention may be used to reduce, prevent or treat graft versus host disease (GvHD). In one embodiment the GvHD is chronic (cGvHD). In one embodiment, the present invention may be used in that way where what is transplanted are cells such as a cell population. In one embodiment, the transplanted material is, or comprises, haematopoietic stem cells (HSCs). In another embodiment, the transplanted material may be an organ or tissue, such as the transplant of a heart, lung, kidney, cornea, or other organ. In another embodiment, the transplanted material may be a graft, such as a skin graft. In one embodiment, the present invention provides a method that comprises administering a binding molecule, in particular an antibody, of the present invention to treat, prevent, or ameliorate an unwanted immune response against transplanted cells, tissues or organs. In one embodiment, the method may actually further comprise performing the transplant. In another embodiment, the binding molecule, in particular antibody, of the present invention is given to the subject before, during, and/or after the transplant. In a further embodiment, rather than administration of the binding molecule, in particular antibody, to the subject the method comprises treating the material to be transplanted ex vivo with a binding molecule before it is transplanted. In one embodiment, a binding molecule of the present invention may be used to expand Treg cells prior to transplantation into a subject and may also activate the Treg cells. In one embodiment, the invention provides a way to expand and activate Tregs ex vivo.


In one embodiment, rather than treat, prevent, or ameliorate the disease itself, the invention is employed to help ensure that the treatment for the disease, namely the transplanted cells, tissue, or organ, is effective by preventing or reducing the severity of GvHD. Hence, the present invention may be employed in a variety of embodiments where a disease is treated by transplanting cells, tissue or organ. In one preferred embodiment, the condition may be one treated via a stem cell transplant, for example a hematopoietic stem cell (HSC) transplant. In some embodiments, the subject has or is otherwise affected by a metabolic storage disorder which is to be treated by a transplant. The subject may suffer or otherwise be affected by a metabolic disorder selected from the group consisting of glycogen storage diseases, mucopolysaccharidoses, Gaucher's disease, Hurler's disease, sphingolipidoses, metachromatic leukodystrophy, or any other diseases or disorders which may benefit from the treatments and therapies disclosed herein and including, without limitation, severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, hyper immunoglobulin M (IgM) syndrome, Chediak-Higashi disease (CHS), hereditary lymphohistiocytosis, systemic sclerosis, systemic lupus erythematosus, multiple sclerosis, juvenile rheumatoid arthritis and those diseases, or disorders described in “Bone Marrow Transplantation for Non-Malignant Disease,” ASH Education Book, 1:319-338 (2000), the disclosure of which is incorporated herein by reference in its entirety as it pertains to pathologies that may be treated by administration of hematopoietic stem cell transplant therapy. In one embodiment, where the invention concerns transplantation, it may be that the transfer is of allogenic cells, tissues, or organs. In one embodiment, the transferred cells may be cells expressing a chimeric antigen receptor (CAR). In some embodiments, the subject is in need of chimeric antigen receptor T-cell (CART) therapy. Such T cells can be Teff, but also Treg cells. For instance, such therapy may form part of a method of the present invention. In another preferred embodiment, the invention provides a method of promoting the engraftment of a cell population, tissue, or organ in a subject by treating, reducing, or preventing an immune response against said population, tissue, or organ.


The ability of a binding molecule, in particular an antibody, of the present invention to modulate the immune system also makes it a particularly valuable approach for targeting autoimmune disease. Hence, in another embodiment, the subject to be treated has an autoimmune disorder. In one particularly preferred embodiment, the autoimmune disorder is multiple sclerosis. In a further particular preferred embodiment, the subject has ulcerative colitis. In another particularly preferred embodiment, the condition is scleroderma. In one embodiment, the condition to be treated is lupus. Further examples of autoimmune diseases include scleroderma, Crohn's disease, type 1 diabetes, or another autoimmune pathology described herein. In one embodiment, the autoimmune disease to be treated is selected from ulcerative colitis, Crohn's disease, celiac disease, inflammatory bowel disease, multiple sclerosis, lupus, Graves' disease and type 1 Diabetes. In one embodiment, the subject has type 1 Diabetes and that is treated.


In one preferred embodiment, the condition treated is a condition involving unwanted inflammation. In one preferred embodiment, the condition is arthritis. For example, the present invention may be used to treat rheumatoid or osteo-arthritis. Non-limiting types of Examples of diseases which may be treated include rheumatoid arthritis, polyarticular juvenile idiopathic arthritis, psoriatic arthritis, and paediatric arthritis. In another preferred embodiment, the condition to be treated is selected from multiple sclerosis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.


In one embodiment, the ability of the invention to stimulate Treg cells is employed as a way to treat allergy. In another embodiment, the ability to stimulate Treg cells may be employed as a way to treat asthma.


The invention may also be used to treat aging, in particular age related inflammation. For example, individuals may display chronic, senescence associated inflammation as a function of older age which can be reduced by promoting Tregs using the binding molecule of the present invention.


In one embodiment, a binding molecule of the present invention is used to preferentially activate Treg cells, for example as compared to Teff cells. In one embodiment, a binding molecule of the invention is used to activate Treg cells and hence to downregulate an immune response, for instance as a way of treating one of the conditions mentioned herein. In one embodiment, the invention may be used to treat a disease that can be treated or ameliorated by expansion of Tregs. In another embodiment, a binding molecule of the present invention is used to treat one of the disorders mentioned herein by expanding the number of Tregs in an individual, in particular by expanding Treg numbers and activating those Tregs.


Detection and Diagnosis

A binding molecule, in particular an antibody, of the present invention may be used to detect any of the chains of the IL-2R that it is specific for. For example, the present invention provides a method comprising contacting a binding molecule, in particular an antibody, of the present invention with a test sample and detecting any binding of a binding molecule. A binding molecule of the present invention may be labelled or linked to an enzyme which allows the detection of the binding molecule and hence that the binding molecule has bound. In one embodiment, such detections methods may be, for instance, ELISA assays or flow cytometry as a way to detect whether or not cells in a test sample express IL-2R on their surface. A binding molecule, in particular antibody, of the present invention may be used in in vitro detection, it may also be used in detection of IL-2R in vivo.


In one embodiment, the present invention provides an in vivo method for detecting IL-2R that comprises administering a labelled binding molecule, in particular antibody, of the present invention and then detecting the location of the binding molecule in the body of a subject. In another embodiment, an antibody of the present invention may be used in the diagnosis of a condition, for example in identifying a reduction of cells expressing IL-2R. In one preferred embodiment, the present invention provides a method of patient stratification comprising subdividing patients on the basis of the level of IL-2R expression.


The present invention also provides a kit for detecting IL-2R comprising a binding molecule, in particular an antibody, of the present invention and optionally instructions for employing the antibody in a method of detecting IL-2R.


In one embodiment, the present invention provides a binding molecule, in particular an antibody, of the present invention as a companion diagnostic, for instance to determine whether or not to administer a drug to a subject based on detection of IL-2R, such as levels of IL-2R, for instance the number of particular cell types expressing IL-2R or their location.


In one embodiment, a monovalent binding molecule of the present invention may be used in diagnosis that binds just one of the α, β, γc polypeptides. Such monovalent molecules may be used to detect the individual polypeptide. In a further embodiment, bivalent binding molecules of the invention may be used to detect two of the α, β, γc polypeptides. In one preferred embodiment, the bivalent molecule binds both the β and γc polypeptides. Hence, the detection methods outlined herein can be used for detecting one chain, two chain, or all three chains.


All documents referred to herein are incorporated by reference. Reference herein to the singular, using terms such as “a” and “an” also encompasses the plural unless specifically stated otherwise. Where something is referred to herein as “comprising” in another embodiment what the invention may “consist essentially of” what is set out. In another embodiment, it may “consist of” what is set out. Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs.


EXAMPLES

The invention will be further understood with reference to the following non-limiting Examples.


Example 1: Generation of Monoclonal Antibodies Targeting IL-2Rα, IL-2Rβ and IL-2Rγ
A. Llama Immunization and Library Construction

Two llamas were immunized with a mix of three pUNO1 plasmids encoding the human IL-2Rα (pUNO1-hIL02RA), IL-2Rβ and IL-2Rγ proteins under control of constitutively active EF-1α/HTLV promoter (Invivogen) in a 2:1:2 mass ratio. Intramuscular DNA injections were repeated a total of 6 times with 2-week intervals. Blood samples of 10 mL were collected pre- and post-immunization to investigate immune response. Four days after the last immunization, 400 mL blood from each immunized llama was collected to isolate PBMCs using Ficoll-Paque gradient and used for RNA extraction. Total RNA was then converted into random primed cDNA using reverse transcriptase, and gene sequences encoding for VHH regions of llama heavy chain-only antibodies were amplified by PCR and subcloned into a phagemid vector.


Specific immune responses to human IL-2Rα, IL-2Rβ and IL-2Rγ were measured by ELISA on coated recombinant proteins. Both immunized llamas showed a strong immune response against human IL-2Rα, IL-2Rβ and IL-2Rγ when pre- and post-immune sera were compared.


B. Selection of VHH Binding to IL-2Rα, IL-2Rβ and IL-2Rγ

Llama VHH phage display libraries in pDCL1 vector were generated and used for selections against the different subunits of the human IL-2R. The VHH-pDCL1 phage display libraries passed the QC criteria of size above 1.0E+08 and showed 100% VHH insert percentage.


Specific VHH antibody fragments were identified by selecting and screening using recombinant human and mouse IL-2Rα, IL-2Rβ and IL-2Rγ proteins as antigens. Two parallel phage display selection strategies were used to identify antibodies binding to the different subunits of the IL-2 receptor: either in-solution selections on pre-captured antigens or panning on antigens coated on a plate. In-solution selections were performed using the KingFisher™ Flex system. In the first round the human proteins were used, in rounds two and three both human and mouse IL-2R proteins were used.


Very high phage enrichments were observed for selections performed on both human and mouse IL-2Rα, IL-2Rβ and IL-2Rγ for one of the animals; outputs on mouse receptor subunits indicated presence of cross-reactive binders. Selections using library from the other animal resulted in high enrichment only for human IL-2Rβ.


C. VHH Screening and Characterisation

Individual clones were isolated and periplasmic extracts (P.E.) containing soluble VHH fragments were produced and screened in a binding ELISA and by surface plasmon resonance (SPR).


In a binding ELISA, human or mouse IL-2Rα, IL-2Rβ and IL-2Rγ proteins were coated directly on maxisorp microtiter plates overnight at 4° C. Free binding sites were blocked using 4% Marvel in PBS for 1 hour. Next, 1:5 dilution of P.E. in 1% Marvel/PBS were added to wells and incubated for 1 hour. After incubation and an extensive PBS washing step, VHH binding was revealed using mouse anti-c-myc IgG and anti-mouse IgG-HRP antibodies. Binding specificity was determined based on O.D. at 450 nm values compared to negative controls.


SPR was performed to determine dissociation rates using Biacore 3000 instrument (GE Healthcare). Briefly, human and mouse IL-2R proteins were immobilized on carboxylmethyl dextran sensor chip (CM5) at approximately 2500 RUs using amine coupling in acetate buffer (GE Healthcare). The VHH-containing P.E. were loaded with a flow rate of 30 uL/min and the off-rates were measured over a 120s period.


VHH clones that showed binding to IL-2R subunits were sequenced and divided into families based on the sequence of the VHH CD3 region. 85 IL-2Rα-, 153 IL-2Rβ-, 92 IL-2Rγ-specific clones with unique VHH sequences were identified, which resulted in 15, 38, and 7 VHH CDR3 families, respectively.


The binding characteristics and the VHH CD3 sequences of the selected clones are shown in TABLE 1.


D. Monospecific Antibody Purification and Characterisation

For each IL-2R subunit, 10 clones displaying varying characteristics were reformatted as VHH-human Fc fusion molecules. For this purpose, the cDNA encoding the VHH of each clone was engineered into a mammalian expression vector comprising the cDNA encoding the CH2 and CH3 domains of human IgG1 and containing mutations that abrogate antibody effector functions mediated by the Fc receptor. Particularly, the molecules comprised the amino acid substitutions L234A, L235A and P329G (EU numbering) in the immunoglobulin heavy chains.


Antibody molecules were subsequently produced by transient transfection in HEK293E cells and purified from cell supernatant by protein A affinity chromatography. Finally, SDS-PAGE analysis was carried out to assess the purity and the integrity of the VHH-human Fc molecules. Produced proteins were highly pure and of correct size (around 78 kDa).


Example 2: In vitro characterisation of monospecific antibodies targeting the IL-2Rα, IL-2Rβ and IL-2Rγ
A. Epitope Mapping

Biacore 3000 system (GE Healthcare) was used to determine whether IL-2Rα-, IL-2Rβ- and IL-2Rγ-specific antibodies compete for the same epitope or bind a different one on their respective targets. A CM5 sensor chip was coated with human IL-2Rα, IL-2Rβ and IL-2Rγ proteins at approximately 100 RU using standard amine coupling. Antibodies were diluted in HBS-EP pH 7.4 buffer at a concentration of 100 nM. Antibodies binding to the same IL-2R subunit were injected pairwise using the Biacore COINJECT method and a flow rate of 30 μL/min. An increased signal observed after the injection of a second antibody indicates that it binds to another epitope on its target than the first antibody. IL-2Rα-, IL-2Rβ- and IL-2Rγ-specific antibodies bound to three, three and four distinct epitopes on their target, respectively (TABLE 1).


The same setup was used to test whether anti-IL-2Rα antibodies blocked human IL-2 binding to human IL-2Rα (CD25). Here, each antibody injection was followed by injection with 100 nM human IL-2. IL-2Rα-specific antibodies from one epitope bin (H) did not block the binding of human IL-2 to human IL-2Rα, while the antibodies from the other two epitope bins (I and J) were blocking (TABLE 1).


B. Binding to HEK-Blue IL-2 Cells

The ability of monospecific anti-IL-2Rα, anti-IL-2Rβ and anti-cy antibodies to bind the human IL-2 receptor was analysed using HEK-Blue IL-2 recombinant cell line (Invivogen, #hkb-il2) overexpressing the three IL-2R subunits. Cell culture was performed following the manufacturer's protocol. Cells were seeded at 100 000 cells/well in a 96-well plate, washed with FACS buffer, and incubated with antibodies diluted in FACS buffer at the concentration of 10 nM for 1 hour at 4° C., washed again with FACS buffer and stained with anti-human IgG-PE detection antibody (eBioscience) for 1 hour at 4° C. Dead cells were excluded from the analysis by using a fixable viability dye (eFluor780, eBioscience). Stained cells were analyzed on a LSR Fortessa flow cytometer (BD Biosciences). Final analysis and graphic output were performed with FlowJo v10.7.1 software (BD Biosciences) and GraphPad Prism version 8 (GraphPad Software). The dose-response binding curves were fit to a nonlinear regression model (log (agonist) vs. response with a variable slope (four parameters)).


The cell binding properties of monospecific anti-IL-2Rα, anti-IL-2Rβ and anti-γc antibodies are shown in FIG. 1A. IL-2Rα and IL-2Rβ-specific clones display high and intermediate cell binding, respectively, while no binding is detected with anti-γc antibodies.


The monospecific monovalent anti-IL-2Rα antibodies were further tested at multiple concentrations; the dose-response curves for cell binding on HEK-Blue IL-2R cells are shown in FIG. 1B.


C. Interference with Human IL-2 Binding to its Receptor


The ability of monospecific anti-IL-2Rα, anti-IL-2Rβ and anti-IL-2Rγ antibodies to compete with the human IL-2 binding to its receptor was analysed using HEK-Blue IL-2R recombinant cell line (Invivogen, #hkb-il2) overexpressing the three IL-2R subunits. Cell culture was performed following the manufacturer's protocol. Cells were seeded at 100,000 cells/well in a 96-well plate, washed with FACS buffer, and preincubated with antibodies diluted in FACS buffer at the concentration of 10 nM for 20 min at 4° C., after which biotinylated human IL-2 (proteintech) at 2 nM was added for another 1 hour at 4° C. Cells were washed again with FACS buffer and stained with Streptavidin-PE (eBioscience) for 1 hour at 4° C. Dead cells were excluded from the analysis by using a fixable viability dye (cFluor780, eBioscience). Stained cells were analyzed on a LSR Fortessa flow cytometer (BD Biosciences). Final analysis and graphic output were performed with FlowJo v10.7.1 software (BD Biosciences) and GraphPad Prism version 8 (GraphPad Software).


The neutralizing potencies of monospecific anti-IL-2Rα, anti-IL-2Rβ and anti-γc antibodies are depicted in FIG. 2 Several clones greatly inhibited the human IL-2 binding to its receptor. Specifically, anti-IL-2Rα Abs 2, 8 and 10 and anti-IL-2Rβ Abs 15 and 17 potently blocked human IL-2 binding to its receptor. Interestingly, although no binding signal is detected with γc-specific clones, clone 28 moderately inhibits human IL-2 binding to its receptor.


D. Human-cynomolgous monkey IL2R subunit cross-reactivity testing


Monospecific monovalent and bivalent IL-2Rα-, IL-2Rβ- and IL-2Rγ-specific antibodies that were selected on human IL-2R subunits, were evaluated for their cross-reactivity in an ELISA. Human and cynomolgus monkey receptor subunits (Acrobiosystems, KactusBiosystems) were coated at 1 μg/mL in PBS (pH 7.4) in a Maxisorp plate (Nunc) and incubated overnight at 4° C. The plates were further washed with PBS-Tween pH 7.4 and incubated with 1% cascin/PBS-Tween blocking solution for 1 hour shaking at 400 rpm. Subsequently, the plate was washed three times with PBS-Tween pH 7.4, after which the test antibodies diluted in 0.1% casein/PBS-Tween were added to the plate and incubated for 1 hour. The plate was again washed three times, after which goat anti-human IgG Fc (HRP) detection antibody (abcam) was added to the plate and incubated for 30 min. The colouring reaction was performed with TMB (Sigma-Aldrich) and stopped with 0.5N H2SO4.


Absorbance was measured at 450 nm with the reference wavelength of 620 nm using spectrophotometer. Final analysis and graphic output were performed with GraphPad Prism version 8 (GraphPad Software). The dose-response binding curves were fit to a nonlinear regression model (log (agonist) vs. response with a variable slope (four parameters)).


The binding properties of monospecific monovalent and bivalent anti-IL-2Rα, anti-IL-2Rβ and anti-γc antibodies are shown in FIG. 3A, FIG. 3B and FIG. 3C. The lower affinity of some antibody clones for the cynomolgus monkey IL-2R subunits is more pronounced in monovalent or one-armed format. In bivalent format, only several clones have significantly lower affinity for the cyno IL-2R subunits than for their human counterpart. The binding properties of the monospecific monovalent and bivalent VHH hFc clones to the human and cyno IL-2R subunits are shown in the TABLE 2. Fold-change of more than 1.5 between EC50 (nM) for binding to human and cyno receptor subunits indicates minor/no cross-reactivity.


Example 3: Construction bispecific and trispecific antibodies co-targeting the IL-2Rα, IL-2Rβ and cγ
A. Construction Bispecific Antibodies Targeting the IL-2Rβ and γc:

5 VHH clones specific for IL-2Rβ and 5 VHH clones specific for IL-2Rγ were selected and used to construct bispecific bivalent anti-IL-2Rβ/γc antibodies. Two VHH fragments were linked to a IgG1 backbone Fc region, while a (G4S)3 linker between the two VHH fragments and between the anti-IL-2Rβ VHH and the Fc region was used. The molecules comprised the amino acid substitutions L234A, L235A and P329G (LALA-PG) (EU numbering) in the immunoglobulin heavy chains, known to abrogate Fc-mediated effector functions. The Fc regions of the antibodies also included the mutations necessary for Fc domain heterodimerization by controlled Fab arm exchange (cFAE) (Labrijn et al. 2013. Proc Natl Acad Sci USA 110 (13): 5145-50; WO 2011/131746). In particular, the anti-IL-2Rβ/γc antibodies contained F405L CH3 domain mutation. Antibody molecules were produced by transient transfection in HEK293E cells and purified from cell supernatant by protein A affinity chromatography.


B. Construction Trispecific Antibodies Targeting the IL-2Rα, IL-2β and IL-2Rγ:

5 VHH clones specific for anti-IL-2Rα were produced as monospecific bivalent VHH-hFc fusion proteins (FIG. 4). The Fc portions of the antibodies comprised LALA-PG mutations and cFAE K409R CH3 domain mutation.


Trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies were obtained using controlled Fab-arm exchange (cFAE) method described in Labrijn et al. 2013. Proc Natl Acad Sci USA 110 (13): 5145-5150 and WO 2011/131746. Monospecific bivalent anti-IL-2Rα antibodies containing K409R mutation and bispecific bivalent anti-IL-2Rβ/γc antibodies containing F405L mutation were mixed with a reducing agent at equimolar quantities. The resulting heterodimerisation of the Fc domains yielded trispecific monovalent anti-IL-2Rα/IL-2Rβ/γc antibodies (FIG. 4).


Protein integrity and heterodimerisation efficiency were analysed by an HPLC method using hydrophobic interaction chromatography (HIC) combined with ultraviolet spectrophotometry. HIC is a technique for separation of proteins based on their relative degree of hydrophobicity.


In HPLC-HIC the starting mobile phase contains a salting out agent. The high concentration of salt retains the protein by increasing hydrophobic interaction between solute and stationary phase. The bound proteins are eluted by decreasing the salt concentration. This is done using a gradient: starting with mobile phase A, high salt, gradually decreasing mobile phase A towards more mobile phase B, which contains very limited/no salt and if needed also organic solvent. The trispecific antibodies with asymmetric architecture are readily distinguished by this method: the retention time of the heterodimeric trispecific antibody is in between the parental homodimeric antibodies.


The HIC-HPLC was run through the MAbPac HIC-20 (ThermoFisher) column at a flow rate of 700 μL/min. The column temperature was kept at 30° C. and the sample temperature at 6° C. Stop time was set at 80 min. A sample having a total of 10 μg protein was run through HIC-HPLC. The antibodies were monitored by measuring their absorbance at 280 nm on the UV spectrum. The mobile phases included a Mobile Phase A and a Mobile Phase B. Mobile Phase A included 2.0 M ammonium sulphate and 100 mM sodium phosphate pH 7.1/H2O (75:25 (v/v)). Mobile Phase B included 100 mM sodium phosphate pH 7.0/H2O/isopropanol (60:20:20 (v/v/v)). The following gradient program was used:














Time
A
B


min
%
%

















1.00
100.0
0.0


10.00
76.0
24.0


55.00
42.2
57.8


56.00
0.0
100.0


62.00
0.0
100.0


63.00
100.0
0.0


80.00
100.0
0.0









The trispecific antibodies with asymmetric architecture are readily distinguished by this method: the retention time of the heterodimeric trispecific antibody is in between the parental homodimeric antibodies. Heterodimerisation using cFAE method resulted in highly pure trispecific constructs. The purity and heterodimerisation efficiency were expressed as % main peak area; the results for the tested antibodies are summarised in (FIG. 5).


Example 4: In vitro characterisation of antibodies targeting the IL-2Rα, IL-2Rβ and IL-2Rγ

Trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies were tested for their ability to bind the human IL-2 receptor and to activate IL-2 signalling on human engineered cells expressing the three IL-2R subunits and on human PBMCs. Final analysis and graphic output were performed with FlowJo v10.7.1 software (BD Biosciences) and GraphPad Prism version 8 (GraphPad Software), respectively. The dose-response binding curves were fit to a nonlinear regression model (log (agonist) vs. response with a variable slope (four parameters)).


A. Binding to HEK-Blue IL-2 Cells

The ability of trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies to bind the human IL-2 receptor was analysed using the HEK-Blue IL-2 recombinant cell line (Invivogen, #hkb-il2) overexpressing the three IL-2R subunits. Cell culture was performed following the manufacturer's protocol. Cells were seeded at 100 000 cells/well in a 96-well plate, washed with FACS buffer, and incubated with antibodies diluted in FACS buffer at the concentration of 10 nM for 1 hour at 4° C., washed again with FACS buffer and stained with anti-human IgG-PE detection antibody (eBioscience) for 1 hour at 4° C. Dead cells were excluded from the analysis by using a fixable viability dye (eFluor780, eBioscience). Flow cytometric measurements were performed on a LSR Fortessa flow cytometer (BD Biosciences).


The cell binding properties of trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies and their parental mono- and bispecific antibodies are shown in FIG. 6.


The cell binding properties of bispecific bivalent anti-IL-2Rβ/γc and monovalent trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies were further assayed at multiple concentrations for cell binding on HEK-Blue IL-2 cells; the results are shown in FIG. 7A and FIG. 7B.


B. Interference with Human IL-2 Binding to its Receptor


The ability of trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies to compete with the human IL-2 binding to its receptor was analysed using HEK-Blue IL-2 recombinant cell line (Invivogen, #hkb-il2) overexpressing the three IL-2R subunits. Cell culture was performed following the manufacturer's protocol. Cells were seeded at 100 000 cells/well in a 96-well plate, washed with FACS buffer, and preincubated with antibodies diluted in FACS buffer at the concentration of 10 nM for 20 min at 4° C., after which biotinylated human IL-2 (proteintech) at 2 nM was added for another 1 hour at 4° C. Cells were washed again with FACS buffer and stained with Streptavidin-PE (eBioscience) for 1 hour at 4° C. Dead cells were excluded from the analysis by using a fixable viability dye (eFluor780, eBioscience). Flow cytometric measurements were performed on a LSR Fortessa flow cytometer (BD Biosciences).


The neutralizing potencies of trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies are depicted in FIG. 6. Several clones greatly inhibited the human IL-2 binding to its receptor. Specifically, trispecific antibodies that contain the strongest binding anti-IL-2Rα VHH 8 and 10 also induce the greatest inhibition of hIL-2 binding to its receptor.


C. Activation of pSTAT5 on HEK-Blue IL-2 cells


The potency of trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies to induce IL-2 signalling was analysed by determining the level of STAT5 phosphorylated by HEK-Blue IL-2 recombinant cell line (Invivogen, #hkb-il2) in the presence of the antibodies. Cell culture was performed following the manufacturer's protocol. Cells were seeded at 200 000 cells/well in a 96-well plate in RPMI 0.1% BSA medium and treated with antibodies at a concentration of 50 nM for 1 hour at 4° C. Cells were further treated with IC Fixation buffer (eBioscience) for 15 min at room temperature, washed with FACS buffer, and incubated with BD Phosflow Perm Buffer III (BD Biosciences) for 30 min on ice. After washing with FACS buffer the cells were stained with anti-Stat5 (pY694)-PE detection antibody (BD Biosciences) overnight at 4° C. Dead cells were excluded from the analysis by using a fixable viability dye (eFluor780, eBioscience). Flow cytometric measurements were performed on a LSR Fortessa flow cytometer (BD Biosciences). The dose-response binding curves were fit to a nonlinear regression model (log (agonist) vs. response with a variable slope (four parameters)).


Results are depicted in FIG. 6. IL-2 signalling pathway is activated by the antibodies that contain both IL-2Rβ and IL-2Rγ VHH, but not by the monospecific anti-IL-2Rα antibodies. As such, pSTAT5 signal strength of trispecific anti-IL-2Rα/IL-2Rβ/γc clones depends mainly on the parental bispecific anti-IL-2Rα/β. These findings are expected because IL-2 signalling is proposed to occur via phosphorylation of IL-2Rβ and γc subunits, with IL-2Rα increasing the affinity of IL-2 for its receptor. Interestingly, pSTAT5 signal strength does not correlate with binding ability of the antibodies nor with their neutralization of human IL-2 potency.


Several clones were further tested at multiple concentrations in order to assay the antibody concentration that gives half-maximal response (EC50). Bispecific bivalent anti-IL-2Rα/IL-2Rβ and trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies induce dose-dependent pSTAT5 activation of HEK-Blue IL-2 cells. For some bispecific clones, addition of anti-IL-2Rα VHH decreases the EC50 value, suggesting improved CD25 targeting (FIG. 8).


The potential of bispecific monovalent anti-IL-2Rβ/γc and trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies to induce IL-2 signalling was further analysed at multiple concentrations using HEK-Blue IL-2 cells reading out STAT5 phosphorylation by flow cytometry. The results are shown in FIG. 9A and FIG. 9B. Several trispecific antibodies displayed a higher potency than the corresponding bispecific antibodies in this cell line assay, suggesting improved targeting of CD25 and the trimeric receptor.


The ability of bivalent trispecific anti-IL-2Rα/IL-2Rβ/γc antibody variants of tsVHH48 to induce pSTAT5 signalling via the human trimeric IL-2 receptor was analysed using a HEK-Blue cell line expressing the trimeric IL-2 receptor. The results are shown in FIG. 9E and the geometries of the antibodies are shown in FIG. 12.


D. Activation of pSTAT5 on Human PBMCs


Peripheral blood mononuclear cells (PBMCs) were isolated from human healthy donor buffy coat donations (supplied by the Red Cross Flanders Blood Service, Belgium) using a Ficoll-Paque gradient. The cells were cultured for 2 days at high cell density using the protocol for resetting T cells to original reactivity (Wegner et al., Blood 2015). On the day of the experiment, the PBMCs were seeded at 10×106 cells/well in a 96-well plate in RPMI 0.1% BSA medium and treated with antibodies for 1 hour at 4° C. Cells were further treated with IC Fixation buffer (eBioscience) for 15 min at room temperature, washed with FACS buffer, and incubated with BD Phosflow Perm Buffer III (BD Biosciences) for 30 min on ice. After washing with FACS buffer the cells were stained overnight at 4° C. with following detection antibodies: anti-human CD3 APC-eFluor780, CD4 PerCP-cFluor710, CD127 PE, Foxp3 cFluor660 (eBioscience), CD8 FITC, Stat5 (pY694) Pacific Blue (BD Biosciences). CD25 staining was performed either with anti-human CD25 PE-Cy7 clone 4E3 (eBioscience) or clone 2A3 (BD Biosciences), depending on which IL-2Rα-specific VHH was used for treatment. Dead cells were excluded from the analysis by using a fixable viability dye (cFluor506, eBioscience). Flow cytometric measurements were performed on a LSR Fortessa flow cytometer (BD Biosciences). Next, monospecific tsVHH-48 geometry variants and anti-CD25-biparatopic tsVHH-48 variants (FIG. 12C, upper & lower panels) were tested for their ability to more selectively activate pSTAT5 in CD4+ Tregs versus NK cells. Amongst non-Treg cell types, NK cells express the higher levels of CD122. Frozen PBMCs were seeded in 96-well plates and rested for 1 hour. Cells were then stimulated with varying doses of tsVHH variants for 40 minutes at 37° C. Stimulation was stopped by fixing cells with paraformaldehyde followed by methanol permeabilization of the cells. Cells were stained for 1 hour at room temperature with the following antibodies: anti-CD3 (clone UCHT1), anti-CD4 (clone SK3), anti-CD8 (clone SK1), anti-CD19 (HIB19), anti-CD56 (clone NCAM16.21), anti-CD127 (clone A019D5), anti-CD25 (clone M-A251), anti-Foxp3 (clone 259D/C7), anti-pSTAT5 (pY694), and dead cells were excluded using a fixable viability dye. Cells were analysed by flow cytometry. The pSTAT5 induction data is represented in FIGS. 10B and 10C and in TABLES 10 and 11. TsVHH-48 geometry variants were identified with increased potency for Tregs versus NK cells as compared to IL-2 or parental ts VHH-48 (TABLE 10). TsVHH-48 variants were also identified with decreased efficacy (max. % pSTAT5) on NK cells versus Tregs as compared to IL-2 and tsVHH-48. Furthermore, particular anti-CD25-biparatopic ts VHH variants show increased potency compared to parental tsVHH-48 or IL-2 (TABLE 11).


E. Preferential Treg Expansion in Human PBMC Assay

Trispecific anti-IL-2Rα/IL-2Rβ/γc antibodies were assayed for their ability to preferentially expand CD25+ Tregs in human PBMC culture. Peripheral blood mononuclear cells (PBMCs) were isolated from human healthy donor buffy coat donations (supplied by the Red Cross Flanders Blood Service, Belgium) and cultured at high density for 2 days in order to restore the reactivity of T cells (Romer et al. 2011, Wegner et al. 2015 and US20110082091). Cells were seeded at 200 000 cells/well in 96-well U-bottom culture plates in RPMI-1640 culture medium (Gibco) supplemented with 10% FBS, 1% P/S, 2 mM L-Glutamine and freshly added 1:1000 B-mercaptoethanol. Cells were labelled with CFSE proliferation dye (Quah et al. 2007 Nature protocols) and stimulated with antibodies at different concentrations (100, 10, 1, 01 nM) for 4 days. Cells were stained with the following FACS antibodies: anti-human CD3 PerCP-VIO 700 (Miltenyi), CD4 BUV496, CD8 BUV805, CD56 BUV563 (BD Bioscience), FoxP3 APC, CD127 BV421, CD19 BV510, HLA-DR BV570 (BioLegend), CD69 PE-Cy7 (eBioscience). CD25 staining was performed either with anti-human CD25 PE-Cy7 clone 4E3 (eBioscience) or clone 2A3 (BD Biosciences), depending on which IL-2Rα-specific VHH was used for treatment. Dead cells were excluded from the analysis by using a fixable viability dye (eFluor780, eBioscience). Flow cytometric measurements were performed on a FACSymphony™ flow cytometer (BD Biosciences). Cell expansion was assessed by measuring CFSE proliferation profiles. TsVHH-48 demonstrates increased Treg selectivity and potency of inducing Treg proliferation versus wild-type IL-2 and the bsVHH-11 used to construct TsVHH-48.


Results are Depicted in FIG. 11.

Next to the monovalent trispecific geometry shown in FIG. 4, additional geometries were designed (FIG. 12A and FIG. 12B and FIG. 12C) to further modify the selectivity and/or potency of IL-2 signaling on Tregs, via increasing for example the number of epitopes for one of the IL-2R chains bound by the antibody from 1 to 2 and/or by increasing the number of CD25 binding moieties within the trispecific Abs. Varying geometries may also be tested for increased yield upon transfecting mammalian cells such as HEK293 cells as well as for case of production and purification. In particular, molecules with a symmetric architecture may be tested.


Example 5: In Vivo Characterization of tsVHH48 in Acute Graft-Vs-Host-Disease Model

The agonistic anti-IL-2R antibodies were further evaluated for their ability to potentiate human Treg function in vivo. A model of xenogeneic graft-versus-host disease (GvHD) was used, which was induced by the infusion of human peripheral blood mononuclear cells (hPBMCs) into immuno-compromised NOD/Scid/IL2Rg−/−(NSG) mice. NSG mice have defective cytokine signaling and lack functional T, B and NK cells, allowing very efficient engraftment of human T cells upon i.v. injection of PBMCs. After hPBMC transfer, recipient mice develop xenogeneic GVHD, due to the activity of human cytotoxic T lymphocytes against murine tissues (Shultz, Nat Rev Immunol. 2012). Preferential Treg expansion would attenuate the disease. This model can thus be used to demonstrate the therapeutic efficacy of agonistic anti-Treg IL-2R trimer antibodies.


Male and female NSG mice between 6 to 10 weeks of age (bred and housed in specific pathogen-free facilities of the University of Leuven unless otherwise stated), were infused with 2×10E7 hPBMCs on day 0. These hPBMC were isolated from healthy blood donors' buffy coats (Belgian Red Cross) using density centrifugation (LSM MP Biomedicals, Germany). The GvH disease activity was evaluated by scoring the mice thrice per week. This score incorporated 6 clinical parameters, each one incrementing: 0 (no symptom), 1 (mild), or 2 (maximum). Parameters included are: weight loss (1 for >10% and 2 for >20%), posture (hunching), mobility, anemia, fur texture, and skin integrity. Mice reaching a disease activity score of 8 or those losing more than 20% of their initial weight were sacrificed in agreement with the KUL ethical committee procedure. All experimental procedures were approved by the Animal Care and Animal Experiments Ethical Committee of KU Leuven.


Mice were injected intraperitoneally with 1 μg, 0.3 μg or 0.1 μg ts VHH48 (100 μl, diluted in DPBS 1X), from day 2 and every 4 days for a total of 4 injections. As a control group, mice were intraperitoneally injected with 100 μl of PBS (Gibco) following the same scheme injection.


To evaluate the human leucocyte engraftment and the modulation of T and NK cell subsets over time, weekly immunophenotyping on blood was performed. Around 150 μl of blood was individually collected into 50 μl of heparin from day 7. Upon red blood cell lysis, each sample was stained with a live dead marker (live dead blue, thermofisher) for 20 min at 4° C. Then, the cells were blocked with Human BD Fc Block (BD) for 10 min at 4° C. and stained with the following antibodies: anti-mCD45 (clone 30-F11, BD), anti-hCD45 (clone HI30, Biolegend), anti-hCD3 (clone UCHT1, Biolegend), anti-hCD4 (clone OKT4, Sony), anti-hCD8 (clone SK1, Biolegend), anti-Ki67 (clone RUO, BD), anti-hCD127 (clone eBioRDR5, Ebioscience), anti-hFOXP3 (clone 206D, Biolegend), anti-hCD56 (clone 5.1H11, Sony), anti-hCD45RO (clone UCHL1, BD), anti-hCD45RA (clone GRT22, Invitrogen), anti-hCD25 (clone BC96, Sony), anti-hCCR4 (L291H4, Biolegend). The engraftment of the human cells was calculated using % hCD45/(% mCD45+% hCD45) from the total alive (Live dead blue negative population) cells. Flow cytometry was performed on the high parameter spectral SONY ID 7000 and analyzed on FCS express v7 (De Novo software). All the graphs and statistical analyses were performed using GraphPad Prism software.


The survival and disease activity readouts are shown in FIG. 13A. The survival of the mice treated with tsVHH48 1 μg was lower than the PBS group (median survival 28 days and 34.5 days respectively) while survival increased for the doses 0.3 and 0.1 μg (median survival 38 and 37 days respectively). The weight loss (and disease activity readouts correlated with the survival trend: the 1 μg tsVHH48 group showed an earlier and faster decrease in weight while animals in the 0.3 μg and 0.1 μg groups kept their weight above animals from the PBS group. After day 14, disease activity for the 1 μg tsVHH48 group increased significantly above, (1 μg vs PBS, P=0.0024, Paired t-test) while the disease activity for the 0.3 μg and 0.1 μg groups were significantly below that of the PBS group (P=0.0002 and P=0.0146 respectively, Paired t-test).


To understand whether these differences were associated with a modulation of the effector or regulatory T cell population, we analyzed the frequency of these immune cell populations over time on blood (FIG. 13B). First, engraftment of human leukocytes (hCD45) was comparable between each group and the human CD45 population constituted mainly of T cells (>95% CD3+ cells,). Transient increases in NK T cell frequency was observed at early time points while frequencies of NK and NKT cells were comparable to or below the PBS group otherwise. A complete differentiation of T cells into effector memory T cells was observed for both CD4 and CD8 T cells without any major difference between the groups. With CD4 and CD8 T cells overall following the same pattern of expansion and attrition as the PBS group, CD4 T cells dominated the CD3+ T cells. The frequency of the Treg population (CD4+CD127-FOXP3+) was increased at day 7 and day 14 compared to the PBS group, with Treg numbers significantly higher for the 0.3 μg tsVHH48 dose group vs PBS group (p=0.0045). Hence the 0.3 μg and 0.1 μg dose groups seemed to increase the Treg frequency at the early timepoints (FIG. 13C).









TABLE 1







Binding characteristics of the selected clones.













P.E. binding ELISA



Sequence



(OD450 nm)
P.E. Off-rate ranking SPR
Competition
Epitope
analysis















human
mouse
huIL2R-a
moIL2R-a
SPR
binding SPR
CDR3

















Target
Clone ID
IL-2R
IL-2R
Rmax (Rus)
kd (1/s)
Rmax (Rus)
kd (1/s)
hIL-2:hIL-2RA
Epitope bin
Family ID




















IL-2R
12-MP05B12
2.136
0.936
585
2.22E−04
567
5.47E−04

H
4


alpha
11-MP05H04
2.221
0.163
202
1.20E−03
533
1.63E−03
no
H
4


(CD25)
4-MP01F04
2.493
0.046
690
2.58E−04
18
2.56E−01
no
H
6



1-MP01H01
1.705
0.048
127
2.29E−02
8
N/A
no
H
6



9-MP05G01
2.353
0.047
570
1.69E−04
119
4.42E−02
no
H
7



6-MP01G05
1.794
0.046
123
2.06E−02
10
N/A
no
H
10



3-MP01E03
2.535
0.046
413
7.99E−04
9
N/A
no
H
14



5-MP01F05
2.620
0.046
312
4.20E−04
9
N/A
yes
I
9



2-MP01A02
2.615
0.046
847
1.53E−03
9
N/A
yes
I
2



8-MP01C12
2.531
0.045
819
3.83E−04
8
N/A
yes
I
3



10-MP05F03
2.465
0.054
780
6.39E−04
329
1.05E−01
yes
J
12


IL-2R
16-MP02B08
1.379
0.048
135
1.41E−04
3
N/A

A
1


beta
20-MP03F10
0.497
0.048
52
5.95E−04
7
N/A

A
3


(CD122)
24-MP06E05
0.355
0.046
315
4.71E−04
9
N/A

A
5



22-MP03F12
0.781
0.048
167
4.19E−04
4
N/A

A
33



15-MP02E06
0.581
0.048
88
1.69E−03
3
N/A

A
38



18-MP03C03
0.405
0.048
125
5.94E−04
14
N/A

ND
34



26-MP06A07
1.027
0.048
451
3.63E−04
46
8.17E−03

B
20



23-MP06F03
0.540
0.047
467
1.05E−03
29
1.93E−01

B
20



19-MP03F08
0.245
0.049
387
2.96E−04
5
N/A

C
9



17-MP02C09
1.205
0.047
100
8.48E−04
−4
N/A

ND
12


IL-2R
34-MP04A12
1.299
3.599
323.31
3.33E−04
342.33
8.09E−03

D
1


gamma
28-MP04D02
0.782
0.054
166.11
8.80E−03
30.94
3.196−01

D
1


(CD132)
38-MP07A11
1.307
0.173
59.76
2.35E−03
215.77
1.49E−02

D
1



36-MP07F02
0.896
0.060
63.96
3.31E−03
112.27
7.47E−02

D
1



37-MP07F09
1.806
1.487
97.14
1.26E−03
309.78
7.00E−03

D
1



31-MP04E03
0.706
0.495
169.31
8.43E−02
27.1
2.83E−01

F
2



32-MP04A08
0.407
0.050
256.29
6.16E−02
9.53
N/A

G
3



27-MP04G01
0.362
0.048
96.63
1.31E−03
9.52
N/A

E
4



35-MP07G01
0.134
0.045
−1.24
N/A
5.31
N/A

E
5



29-MP04H02
0.157
0.050
104.01
6.25E−03
10.31
N/A

E
7
















TABLE 2







Cross-reactivity of the monospecific VHH-hFe clones binding the


three IL-2 receptor subunits CD25, CD122 and CD122.


Results from a binding ELISA on human and


cynomolgus IL-2R subunits.


NB: no binding; NC: not cross-reactive.
















BIVALENT
MONOVALENT






EC50 values (nM)
EC50 values (nM)



















CDR3
Human
Cyno

Human
Cyno



IL-2R


family
IL-2R
IL-2R
Fold
IL-2R
IL-2R
Fold


subunit
Clone ID
CDR3 sequence
ID
subunit
subunit
change
subunit
subunit
change



















CD25
1-MP01H01
DNIPLSSDVAATATEYDY
6
0.052
0.061
1.2
0.478
0.498
1.0



2-MP01A02
ATSYDSIRSGS
2
0.038
0.043
1.1
0.074
0.096
1.3



3-MP01E03
TASSYSTYEANYNY
14
0.057
0.106
1.9
0.086
1.149
13.4



4-MP01F04
DNIPLSSDMRPTATEYDY
6
0.053
0.056
1.1
0.077
0.074
1.0



5-MP01F05
DRTGVGTNDYNY
9
0.060
0.095
1.6
0.088
0.136
1.5



6-MP01G05
DSIPLSSDMSPTATEYGY
10
0.056
0.050
0.9
0.270
0.317
1.2



7-MP01G08
DSIRLRSDVTRIPLEYDY
11
0.072
0.067
0.9
0.173
0.133
0.8



8-MP01C12
ATSYTSIRGAP
3
0.051
0.054
1.1
0.065
0.069
1.1



9-MP05G01
DPLSLTSDWRVDELSS
7
0.065
0.062
1.0
0.078
0.074
1.0



10-MP05F03
RDGGVVAGSRSSAQYNY
12
0.061
0.060
1.0
0.105
0.098
0.9



11-MP05H04
DRLGSQGRYASAWWRSGDMDL
4
0.093
0.110
1.2
0.378
1.246
3.3



12-MP05B12
DRLGSRGAYVPIWWRSSDMDL
4
0.074
0.084
1.1
0.130
1.100
8.5



13-MP05E12
ARERATWAYSEDDCDY
1
0.049
0.051
1.0
0.089
0.095
1.1



92-MP05C07
YTYSGSFYSTVKTHHDEYRY
15
0.047
NB
NC








CD122
15-MP02E06
YSSSTYYPPTPARGRDY
38
0.209
0.895
4.3
0.640
HIGH
NC



16-MP02B08
ALKTITRGQNDYSY
1
0.245
0.230
0.9
0.215
0.280
1.3



17-MP02C09
DSWGGDDY
12
0.124
0.184
1.5
0.148
0.495
3.3



18-MP03C03
VDAYGCSLVQPTTYDF
34
0.294
0.300
1.0
0.373
HIGH
NC



19-MP03F08
DRRPMGSRSYFEPTEYDD
9
0.794
0.603
0.8
0.670
0.953
1.4



20-MP03F10
ARGLPVTPLGDIIY
3
0.218
NB
NC
0.197
NB
NC



22-MP03F12
TRAIGWTARWITTDFDF
33
0.124
0.122
1.0
0.092
0.156
1.7



23-MP06F03
NTDYFQIKSLDANT
20
0.125
0.157
1.3
0.174
0.260
1.5



24-MP06E05
DGPPYSGTYYRYDTYDY
5
0.191
0.265
1.4
0.206
0.657
3.2



26-MP06A07
NTDYFQIRSLDLNT
20
0.117
0.138
1.2
0.086
0.102
1.2



115-MP02E01
SPRGFYGPGNALYDY
29
0.060
0.060
1.0






126-MP02A03
YDSSTFYPPTPARGIAD
36
0.090
0.065
0.7






161-MP02C08
GPYGDAAYRHGRIDS
15
0.084
0.157
1.9






166-MP02H08
DRNIKITADWSY
8
0.085
0.105
1.2






168-MP02B09
ARRGRAAVRSEGGYDF
4
0.053
0.127
2.4






184-MP02E11
PRSGRAGTRNQMDYEY
22
0.059
0.074
1.3






189-MP02B12
RMYSASTYYGDYDY
25
0.053
0.066
1.3






193-MP02F12
TDAVGWTTRWMTADFGF
31
0.087
0.099
1.1






297-MP06A08
ARDWFARNEYQYDY
2
0.079
0.090
1.2








CD132
27-MP04G01
GDGWSTYDY
4
0.131
0.147
1.1
0.155
0.153
1.0



28-MP04D02
APTSFATTAYSGSNSYAY
1
0.107
0.113
1.1
0.620
0.723
1.2



29-MP04H02
TFWIERATTPDIGQYAY
7
0.179
0.260
1.4
0.683
0.534
0.8



31-MP04E03
DNPSTLATDYDN
2
NB
NB
NB
NB
NB
NB



32-MP04A08
DSLPYGRPYYFQRSAGEYDY
3
0.140
NB
NC
HIGH
NB
NB



34-MP04A12
APTSFATTAYSSSNSYAY
1
0.117
0.112
1.0
0.132
0.158
1.2



35-MP07G01
GRYYNSAYDPSPGDFGS
5
NB
NB
NB
NB
NB
NB



36-MP07F02
APTSFPTTAYSSSNSYAY
1
0.117
0.121
1.0
0.145
0.222




37-MP07F09
APTSFATTAYSSSNSYRY
1
0.137
0.141
1.0
0.081
0.097
1.2



38-MP07A11
APTSFATTAYSSSNSYSY
1
0.113
0.133
1.2
0.107
0.160
1.5
















TABLE 3







Amino acid sequences of monovalent anti-CD25


(IL-2Rα), anti-CD122 (IL-2Rβ) and anti-CD132


(γc) VHHs. “ID” refers to


the SEQ ID NO as used herein.












IL-2R



ID
Name
subunit
Sequence













1
1-MP01H01
IL-2Rα
EVQLVESGGGLVQAGGSLRLSCAAS





GRTFRTHNMGWFRRAPGKEREFVAA





ISWNVDNTLYADSVKGRFTISRDNG





RNMVYLQMNSLKPEDTAVYYCAADN





IPLSSDVAATATEYDYWGQGTQVTV





SS





(SEQ ID NO: 1)





2
2-MP01A02
IL-2Rα
QVQLVESGGGLVQPGGSLRLSCATS





GFTFRNNFMSWVRQAPGKGLEWVST





ISYGGESTTYAESVKGRFTISRDNA





KNTLYLQMNNLKPEDTAVYYCAKAT





SYDSIRSGSRGQGTQVTVSS





(SEQ ID NO: 2)





3
3-MP01E03
IL-2Rα
QVQLVESGGGLVQAGGSLRLSCTAS





GRTLSSYSMAWFRQAADKGREFVTA





ISSSGVVTHVLDSVKGRFTISRDNA





KNTVYLQMNSLQPEDTALYFCAGTA





SSYSTYEANYNYWGQGTLVTVSS





(SEQ ID NO: 3)





4
4-MP01F04
IL-2Rα
QVQLVESGGGLVQAGGSLRLSCAAS





GGTFRTRNMGWFRRAPGKEREFVAA





VSWNVDNKLYADSVKGRFTISRDNG





RNMVYLQMNSLKPEDTAVYYCAADN





IPLSSDMRPTATEYDYWGQGTQVTV





SS





(SEQ ID NO: 4)





5
5-MP01F05
IL-2Rα
EVQLVESGGGLVQAGGSLRLSCAAS





IRAFTTWSMAWFRQAPGKEREYVAR





INVSGSVTYYADFVKGRFTISRDNA





KKTMYLEMNNLKPEDTALYYCAADR





TGVGTNDYNYWGQGTQVTVSS





(SEQ ID NO: 5)





6
6-MP01G05
IL-2Rα
QVQLQESGGGLVQAGGSLRLSCAAS





GRTFSSYAMGWFRQAPGKEREFVAV





ISWNVDNTEYTDSVKGRFTISRDND





KNMVYLQMNSLKPEDTAVYYCAADS





IPLSSDMSPTATEYGYWGQGTQVTV





SS





(SEQ ID NO: 6)





7
07-MP01G08
IL-2Rα
EVQLVESGGGLVQAGGSLRLSCAAS





GRAFSMYNMGWFRQAPGKEREFVAA





TGWSGANTPYADSVKGRFTISRDNT





QNTVYLQMNSLKPEDTATYYCAADS





IRLRSDVTRIPLEYDYWGQGTQVTV





SS





(SEQ ID NO: 7)





8
8-MP01C12
IL-2Rα
QVQLVESGGGLVQPGGSLRLSCATS





GFTFSNNFMSWVRQAPGKGLEFVST





ISYGGESTTYAEAVKGRFTISRDNA





KNTLYLQMNNLKPEDTAIYYCAKAT





SYTSIRGAPRGQGTQVTVSS





(SEQ ID NO: 8)





9
9-MP05G01
IL-2Rα
EVQLVESGGGLVQAGGSLRLSCAAS





GGSIYTYNMGWFRQAPGKEREFVAG





TLWSGGDSVYADFAKGRFTLSRENA





KNTLYLQMNSLKPEDTATYYCAIDP





LSLTSDWRVDELSSWGKGTLVTVSS





(SEQ ID NO: 9)





10
10-MP05F03
IL-2Rα
QVQLVESGGGLVQAGGSLRLSCAAS





GIPFDNYAMGWFRQAPGKEREFVAA





RDLEGIITRYGDSVKGRFTISRGNA





KNTVFLQMNSLKPEDTAVYYCAARD





GGVVAGSRSSAQYNYWGQGTQVTVS





S





(SEQ ID NO: 10)





11
11-MP05H04
IL-2Rα
QLQLVESGGGLVQAGGSLRLSCAAS





GLTFEGYAIGWFRQAPGKEREGVSY





ITGSDGTTYYINSVKGRFTISSDNA





KSTVYLQMNTLKPEDTAVYYCAVDR





LGSQGRYASAWWRSGDMDLWGKGTQ





VTVSS





(SEQ ID NO: 11)





12
12-MP05B12
IL-2Rα
QVQLVESGGGLVQAGGSLRLSCAAS





GFTFDGYAIGWFRQAPGKEREGVSY





ITGSDGSTYYADSVKGRFTISSNNA





KNTVYLHMNSLKPDDAAVYYCAIDR





LGSRGAYVPIWWRSSDMDLWGKGTL





VTVSS





(SEQ ID NO: 12)





13
13-MP05E12
IL-2Rα
QVQLQESGGGLVQAGDSLRLSCAAS





GFNFGWHAMGWFRQAPGKEREFVAT





ITWTGRDTYYADSVRGRFTISKDNA





KDTLFLQMNSLRPDDTGVYYCAKAR





ERATWAYSEDDCDYWGQGTQVTVSS





(SEQ ID NO: 13)





14
14-MP02C03
IL-2Rβ
EVQLVESGGGLVQTGGSLRLSCAAS





GSQFINDVMGWYRQVPGKQRELVAD





MDDTGSTEYADSVKGRFTILRDSVK





NTAYLQMSNLKPEDTGVYYCKAGLW





IKGRHFDYWGQGTQVTVSS





(SEQ ID NO: 14)





15
15-MP02E06
IL-2Rβ
QVQLVESGGGSVQPGGSLRLSCAAS





GFTFSNYAMSWVRQAPGKGLEWVAS





ITGFGRGTDYADSVKGRFTISRDNA





EDTLYLQMNSLKPEDTAVYYCAKYS





SSTYYPPTPARGRDYRGQGTQVTVS





S





(SEQ ID NO: 15)





16
16-MP02B08
IL-2Rβ
EVQLVESGGGLVQAGGSLRLSCAAS





GRAIENYPVGWFRQAPGKEREFVAA





ITWISGSTLYADSVKGRFTISRDNA





KNTVYLQMSSLKPEDTALYYCAAAL





KTITRGQNDYSYWGQGTQVTVSS





(SEQ ID NO: 16)





17
17-MP02C09
IL-2Rβ
QVQLQESGGGLVQAGGSLRLSCVAS





GSVSSINGMAWYRQGADNQRVLVAA





ISRVGNTAYGDSVKGRFTISRQNAR





NTVYLQMNSLKPEDTAVYYCNADSW





GGDDYWGQGTQVTVSS





(SEQ ID NO: 17)





18
18-MP03C03
IL-2Rβ
QVQLVESGGGLVQPGGSLRLSCAIS





GGTLDSYGIGWVRQAPGKQREGVSC





MSRSDDRTYYADSVKGRFTISKDSA





KNTVYLQMTSLKPEDTAVYYCAAVD





AYGCSLVQPTTYDFWGLGTQVTVSS





(SEQ ID NO: 18)





19
19-MP03F08
IL-2Rβ
EVQLVESGGGLVQTGGSLRLSCAAS





GGTFSRDAMAWFRQVPGKEREFVAL





ISWSGATTNYADSVKGRFAISRDNG





KNTVYLQMNRLKPADTAIYYCAADR





RPMGSRSYFEPTEYDDWGQGTQVTV





SS





(SEQ ID NO: 19)





20
20-MP03F10
IL-2Rβ
EVQLVESGGGLVQAGGSLRLSCAAS





GRDFSSYAMGWFRQAPGKEREFVVA





ITWTKRSTDFPDSVKGRFTISRDNA





KNTVYLDMNSLKPEDTAVYYCASAR





GLPVTPLGDIIYWGEGTLVTVSS





(SEQ ID NO: 20)





21
21-MP03A12
IL-2Rβ
EVQLVESGGGLVQAGGSLRLSCAAS





GRTFSINAMGWFRQAPGKEREFVAA





ISRSGGSTVYVDGVKGRFTISRDNA





KNTVYLQMNSLEPEDTAVYYCAATM





AVGWTTRWRTADFDSWGQGTQVTVS





S





(SEQ ID NO: 21)





22
22-MP03F12
IL-2Rβ
EVQLVESGGGLVQAGGSLRLSCAAS





GSIFSINAMAWFRQVPGMERELVAA





ISRDGGASVYRDSVKGRFTISRDNS





KNTVYLQMNTLKPEDTAIYVCAATR





AIGWTARWITTDFDFWGQGTQVTVS





S





(SEQ ID NO: 22)





23
23-MP06F03
IL-2Rβ
QVQLVESGGGLVQAGGSLRLSCAVS





GDVFVRYTMAWFRQAPGKEREFVAS





VTDSGRTTDYVHSVKGRFTVSRDNA





KNTVYLQMNNLKPEDTAVYYCAANT





DYFQIKSLDANTWGQGTQVTVSS





(SEQ ID NO: 23)





24
24-MP06E05
IL-2Rβ
QVQLVESGGELVQGGASLRLSCAAS





GRTFSNANMAWFRQAPEKEREFVAL





ITWSSGSTLYADSVKGRFTISRDNA





RKMVYLQMNSLKPEDTAVYYCAADG





PPYSGTYYRYDTYDYWGQGTQVTVS





S





(SEQ ID NO: 24)





25
25-MP06F05
IL-2Rβ
QVQLVESGGGLVQTGDSLRLSCAAS





GRSLDTTYIAWFRQAPGKERDFLAY





ISPRFSHTWYADSVKGRFTISRNIA





KRTVDLEMNSLEPEDTAVYYCAARE





HSGSTAWEHYDHWGQGTQVTVSS





(SEQ ID NO: 25)





26
26-MP06A07
IL-2Rβ
QVQLQESGGGLVQAGGSLRLSCAAS





GDVFVRYTMAWFRQAPGKEREFVAS





VTDSGRTTEYVDSVKGRFTVSRDNA





KNTAYLQMNNLKPEDTAIYYCAANT





DYFQIRSLDLNTWGQGTQVTVSS





(SEQ ID NO: 26)





27
27-MP04G01
IL-2Rγ
QVQLVESGGGLVQAGGSLTLSCAAP





GRTFGTDVVGWFRQAPGKEREFVAS





ISRSGDGIYYDDSVKGRFTISRNNA





WNTVNLQMNSLKVEDTAVYYCAAGD





GWSTYDYWGQGTQVTVSS





(SEQ ID NO: 27)





28
28-MP04D02
IL-2Rγ
QVQLVESGGGLVQAGGSLRLSCAAS





GRTLSRYAMGWFRQAPGKEREFVTA





NSWGGDTYYADSVQGRFTFSRDNAK





NTVYLQMNSLQPEDTAVYYCAAAPT





SFATTAYSGSNSYAYWGQGTQVTVS





S





(SEQ ID NO: 28)





29
29-MP04H02
IL-2Rγ
QVQLVESGGGLVQAGGSLRLACVAS





GLTFDNYYMGWFRQAPGKEREFVAG





IIWNGDHTAYADSIKGRFTISRDNA





KNTAYLRMNSLKPEDTAVYYCAATF





WIERATTPDIGQYAYWGQGTQVTVS





S





(SEQ ID NO: 29)





30
30-MP04C03
IL-2Rγ
EVQLVESGGGWVQDGGSLRLSCALS





GRTFVRGIMGWFRQAPGKEREFVAR





IIWHINSTRYADSVKGRFTISRDSA





KNTMYLQMDSLRPEDTAVYYCAARD





RYGSGNSLSPSAYDYWGQGTQVTVS





S





(SEQ ID NO: 30)





31
31-MP04E03
IL-2Rγ
QVQLVESGGGLVQAGGSLRLSCTGY





GGAFTGYALGWFRQAPGKEREFVAR





INWSGSFTYYASSVKGRFTISRDNA





KNTMYLQMNNLKPEDTAVYYCAADN





PSTLATDYDNWGQGTQVTVSS





(SEQ ID NO: 31)





32
32-MP04A08
IL-2Rγ
QVQLVESGGGLVQAGGSLRLSCAAS





GRTFGSTAVGWFRQVPGKEREFVSA





INRSGSATTYADSVKGRFTISRDNA





KNTVYLQMNSLTPEDTGVYYCAADS





LPYGRPYYFQRSAGEYDYWGQGTQV





TVSS





(SEQ ID NO: 32)





33
33-MP04C09
IL-2Rγ
QLQLVESGGGLVQAGGSLRLSCAAS





GPTFSRVAVGWFRQAPGKEREFVAA





VNRPATMTKYADSVKGRFTVSRDNA





KNTVDLQMNSMKPEDTAVYYCAADS





VPYGRPYYWQTSAGDYDYWGQGTQV





TVSS





(SEQ ID NO: 33)





34
34-MP04A12
IL-2Rγ
QVQLVESGGGLVQAGSSLRLSCAAS





GRTLSRLAMGWFRQAPGKEREFVAV





NSWGGDTFYADSVEGRFTYSRDNAK





SAVYLQMNSLQPEDTAVYYCAAAPT





SFATTAYSSSNSYAYWGQGAQVTVS





S





(SEQ ID NO: 34)





35
35-MP07G01
IL-2Rγ
QVQLQESGGGLVQGGGSLRLSCAAS





GGIFSSYAMGWFRQAPGKEREFVAA





ISRSGRSTNYADSVKGRFTISRDNA





KSTVYLQMNSLKPEETAVYYCAAGR





YYNSAYDPSPGDFGSWGHGTQVTVS





S





(SEQ ID NO: 35)





36
36-MP07F02
IL-2Rγ
QVQLVESGGGLVQAGGSLRLSCAAS





GRTLSRYAMGWFRQAPGSEREFVAA





SSWGGDTFYADSVEGRFTFSRDNAK





NAVYLQMNSLQPEDTAAYYCAAAPT





SFPTTAYSSSNSYAYWGQGTQVTVS





S





(SEQ ID NO: 36)





37
37-MP07F09
IL-2Rγ
QVQLVESGGGLVQAGGSLRLSCAAS





GRTLSRYAMGWFRQAPGKEREYVAI





DSWGGDTFYADSVEGRFTFSRDNAK





NEVYLQMNSLQPEDTAVYYCAGAPT





SFATTAYSSSNSYRYWGQGTQVTVS





S





(SEQ ID NO: 37)





38
38-MP07A11
IL-2Rγ
QVQLVESGGGLVQAGGSLRLSCAAS





GRSLSRDAMGWFRQAPGKEREFVAV





MSWGGDTFYTDSVEGRFTFSRDNAK





NAVYLEMNDLQPEDTAVYYCAAAPT





SFATTAYSSSNSYSYWGRGTQVTVS





S





(SEQ ID NO: 38)
















TABLE 4







Sequences for CDRs and frameworks. The first column refers to the SEQ ID NO of the complete immunoglobulin single


variable domain (ISV), i.e. FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4. CDR1, CDR2, CDR3 were determined according to Kontermann,


12010 (Kontermann & Dübel, 2010 Springer, Antibody Engineering).






















SEQ

SEQ

SEQ

SEQ

SEQ

SEQ

SEQ

SEQ



ID
Name
ID
FR1
ID
CDR1
ID
FR2
ID
CDR2
ID
FR3
ID
CDR3
ID
FR4

























1
1-
1868
EVQLVESGGGLVQAGG
467

THNMG

1869
WFRRAP
468

AISWNVD

1870
RFTISRDNGRNMVY
469

DNIPLSSDVAA

1871
WGQtext missing or illegible when filed



MP01H

SLRLSCAASGRTFR



GKEREF


NTLYADSV


LQMNSLKPEDTAVY


TATEYDY


QVTVtext missing or illegible when filed



01





VA


KG


YCAA









2
2-
1872
QVQLVESGGGLVQPG
470

NNFMS

1873
WVRQAP
471

TISYGGES

1874
RFTISRDNAKNTLYL
472

ATSYDSIRSGS

1875
RGQGT



MP01A

GSLRLSCATSGFTFR



GKGLEW


TTYAESVK


QMNNLKPEDTAVY



QVTVSS



02





VS


G


YCAK









3
3-
1876
QVQLVESGGGLVQAG
473

SYSMA

1877
WFRQAA
474

AISSSGVV

1878
RFTISRDNAKNTVY
475

TASSYSTYEA

1879
WGQGT



MP01E

GSLRLSCTASGRTLS



DKGREF


THVLDSVK


LQMNSLOPEDTALY


NYNY


LVTVSS



03





VT


G


FCAG









4
4-
1880
QVQLVESGGGLVQAG
476

TRNMG

1881
WFRRAP
477

AVSWNVD

1882
RFTISRDNGRNMVY
478

DNIPLSSDMR

1883
WGQGT



MP01F

GSLRLSCAASGGTFR



GKEREF


NKLYADS


LQMNSLKPEDTAVY


PTATEYDY


QVTVSS



04





VA


VKG


YCAA









5
5-
1884
EVQLVESGGGLVQAGG
479

TWSM

1885
WFRQAP
480

RINVSGSV

1886
RFTISRDNAKKTMY
481

DRTGVGTNDY

1887
WGQGT



MP01F

SLRLSCAASIRAFT


A


GKEREY


TYYADFVK


LEMNNLKPEDTALY


NY


QVTVSS



05





VA


G


YCAA









6
6-
1888
QVQLQESGGGLVQAG
482

SYAMG

1889
WFRQAP
483

VISWNVDN

1890
RFTISRDNDKNMVY
484

DSIPLSSDMSP

1891
WGQGT



MP01G

GSLRLSCAASGRTFS



GKEREF


TEYTDSVK


LQMNSLKPEDTAVY


TATEYGY


QVTVSS



05





VA


G


YCAA









7
07-
1892
EVQLVESGGGLVQAGGS
485

MYNMG

1893
WFRQAP
486

ATGWSGA

1894
RFTISRDNTQNTVYL
487

DSIRLRSDVTRI

1895
WGQtext missing or illegible when filed



MP01G0

LRLSCAASGRAFS



GKEREFV


NTPYADSV


QMNSLKPEDTATYY


PLEYDY


QVTVtext missing or illegible when filed



8





A


KG


CAA









8
8-
1896
QVQLVESGGGLVQPG
488

NNFMS

1897
WVRQAP
489

TISYGGES

1898
RFTISRDNAKNTLYL
490

ATSYTSIRGAP

1899
RGQtext missing or illegible when filed



MP01C

GSLRLSCATSGFTFS



GKGLEFV


TTYAEAVK


QMNNLKPEDTAIYY



QVTVtext missing or illegible when filed



12





S


G


CAK









9
9-
1900
EVOLVESGGGLVQAGG
491

TYNMG

1901
WFRQAP
492

GTLWSGG

1002
RFTLSRENAKNTLY
493

DPLSLTSDWR

1903
WGKGT



MP05G

SLRLSCAASGGSIY



GKEREF


DSVYADF


LQMNSLKPEDTATY


VDELSS


LVTVSS



01





VA


AKG


YCAI









10
10-
1904
QVQLVESGGGLVQAG
494

NYAMG

1905
WFRQAP
495

ARDLEGIIT

1906
RFTISRGNAKNTVF
496

RDGGVVAGS

1907
WGQtext missing or illegible when filed



MP05F

GSLRLSCAASGIPFD



GKEREF


RYGDSVK


LQMNSLKPEDTAVY


RSSAQYNY


QVTVtext missing or illegible when filed



03





VA


G


YCAA









11
11-
1908
QLQLVESGGGLVQAGG
497

GYAIG

1909
WFRQAP
498

YITGSDGT

1910
RFTISSDNAKSTVYL
499

DRLGSQGRYA

1911
WGKY



MP05H

SLRLSCAASGLTFE



GKEREG


TYYINSVK


QMNTLKPEDTAVYY


SAWWRSGDM


QVTVSS



04





VS


G


CAV


DL








12
12-
1912
QVQLVESGGGLVQAG
500

GYAIG

1913
WFRQAP
501

YITGSDGS

1914
RFTISSNNAKNTVYL
502

DRLGSRGAYV

1915
WGKGT



MP05B

GSLRLSCAASGFTFD



GKEREG


TYYADSV


HMNSLKPDDAAVY


PIWWRSSDMD


LVTVSS



12





VS


KG


YCAI


L








13
13-
1916
QVQLQESGGGLVQAGD
503

WHAM

1917
WFRQAP
504

TITWTGRD

1918
RFTISKDNAKDTLFLQ
505

ARERATWAYS

1919
WGQGT



MP05E1

SLRLSCAASGFNFG


G


GKEREFV


TYYADSVR


MNSLRPDDTGVYYC


EDDCDY


QVTVSS



2





A


G


AK









14
14-
1920
EVQLVESGGGLVQTGGS
506

NDVMG

1921
WYRQVP
507

DMDDTGST

1922
RFTILRDSVKNTAYL
508

GLWIKGRHFDY

1923
WGQGT



MP02C0

LRLSCAASGSQFI



GKQRELV


EYADSVKG


QMSNLKPEDTGVYY



QVTVSS



3





A



CKA









15
15-
1924
QVQLVESGGGSVQPG
509

NYAMS

1925
WVRQAP
510

SITGFGRG

1926
RFTISRDNAEDTLYL
511

YSSSTYYPPT

1927
RGQGT



MP02E

GSLRLSCAASGFTFS



GKGLEW


TDYADSV


QMNSLKPEDTAVYY


PARGRDY


QVTVSS



06





VA


KG


CAK









16
16-
1928
EVQLVESGGGLVQAGG
512

NYPVG

1929
WFRQAP
513

AITWISGS

1930
RFTISRDNAKNTVY
514

ALKTITRGQN

1931
WGQtext missing or illegible when filed



MP02B

SLRLSCAASGRAIE



GKEREF


TLYADSVK


LQMSSLKPEDTALY


DYSY


QVTVtext missing or illegible when filed



08





VA


G


YCAA









17
17-
1932
QVQLQESGGGLVQAG
515

INGMA

1933
WYRQGA
516

AISRVGNT

1934
RFTISRQNARNTVY
517

DSWGGDDY

1935
WGQtext missing or illegible when filed



MP02C

GSLRLSCVASGSVSS



DNQRVL


AYGDSVK


LQMNSLKPEDTAVY



QVTVtext missing or illegible when filed



09





VA


G


YCNA









18
18-
1936
QVQLVESGGGLVQPG
518

SYGIG

1937
WVRQAP
519

CMSRSDD

1938
RFTISKDSAKNTVYL
520

VDAYGCSLVQ

1939
WGLtext missing or illegible when filed



MP03C

GSLRLSCAISGGTLD



GKQREG


RTYYADS


QMTSLKPEDTAVYY


PTTYDF


QVTVSS



03





VS


VKG


CAA









19
19-
1940
EVQLVESGGGLVQTGG
521

RDAMA

1941
WFRQVP
522

LISWSGAT

1942
RFAISRDNGKNTVY
523

DRRPMGSRSY

1943
WGQGT



MP03F

SLRLSCAASGGTFS



GKEREF


TNYADSV


LQMNRLKPADTAIY


FEPTEYDD


QVTVSS



08





VA


KG


YCAA









20
20-
1944
EVOLVESGGGLVQAGG
524

SYAMG

1945
WFRQAP
525

AITWTKRS

1946
RFTISRDNAKNTVY
526

ARGLPVTPLG

1947
WGEtext missing or illegible when filed



MP03F

SLRLSCAASGRDFS



GKEREF


TDFPDSVK


LDMNSLKPEDTAVY


DIIY


LVTVtext missing or illegible when filed



10





VV


G


YCAS









21
21-
1948
EVQLVESGGGLVQAGGS
527

INAMG

1949
WFRQAP
528

AISRSGGS

1950
RFTISRDNAKNTVYL
529

TMAVGWTTRW

1951
WGQtext missing or illegible when filed



MP03A1

LRLSCAASGRTFS



GKEREFV


TVYVDGVK


QMNSLEPEDTAVYY


RTADFDS


QVTVSS



2





A


G


CAA









22
22-
1952
EVQLVESGGGLVQAGG
530

INAMA

1953
WFRQVP
531

AISRDGGA

1954
RFTISRDNSKNTVY
532

TRAIGWTARW

1955
WGQGT



MP03F

SLRLSCAASGSIFS



GMEREL


SVYRDSV


LQMNTLKPEDTAIY


ITTDFDF


QVTVSS



12





VA


KG


VCAA









23
23-
1956
QVQLVESGGGLVQAG
533

RYTMA

1957
WFRQAP
534

SVTDSGR

1958
RFTVSRDNAKNTVY
535

NTDYFQIKSLD

1959
WGQGT



MP06F

GSLRLSCAVSGDVFV



GKEREF


TTDYVHSV


LQMNNLKPEDTAVY


ANT


QVTVSS



03





VA


KG


YCAA









24
24-
1960
QVQLVESGGELVQGGA
536

NANMA

1961
WFRQAP
537

LITWSSGS

1962
RFTISRDNARKMVY
538

DGPPYSGTYY

1963
WGQGT



MP06E

SLRLSCAASGRTFS



EKEREFV


TLYADSVK


LQMNSLKPEDTAVY


RYDTYDY


QVTVSS



05





A


G


YCAA









25
25-
1964
QVQLVESGGGLVQTGDS
539

TTYIA

1965
WFRQAP
540

YISPRFSHT

1966
RFTISRNIAKRTVDLE
541

REHSGSTAWE

1967
WGQGT



MP06F0

LRLSCAASGRSLD



GKERDFL


WYADSVK


MNSLEPEDTAVYYC


HYDH


QVTVSS



5





A


G


AA









26
26-
1968
QVQLQESGGGLVQAG
542

RYTMA

1969
WFRQAP
543

SVTDSGR

1970
RFTVSRDNAKNTAY
544

NTDYFQIRSLD

1971
WGQGT



MP06A

GSLRLSCAASGDVFV



GKEREF


TTEYVDSV


LQMNNLKPEDTAIY


LNT


QVTVSS



07





VA


KG


YCAA









27
27-
1972
QVQLVESGGGLVQAG
545

TDVVG

1973
WFRQAP
546

SISRSGDG

1974
RFTISRNNAWNTVN
547

GDGWSTYDY

1975
WGQtext missing or illegible when filed



MP04G

GSLTLSCAAPGRTFG



GKEREF


IYYDDSVK


LQMNSLKVEDTAVY



QVTVtext missing or illegible when filed



01





VA


G


YCAA









28
28-
1976
QVQLVESGGGLVQAG
548

RYAMG

1977
WFRQAP
549

ANSWGGD

1978
RFTFSRDNAKNTVY
550

APTSFATTAY

1979
WGQtext missing or illegible when filed



MP04D

GSLRLSCAASGRTLS



GKEREF


TYYADSV


LQMNSLQPEDTAVY


SGSNSYAY


QVTtext missing or illegible when filed



02





VT


QG


YCAA









29
29-
1980
QVQLVESGGGLVQAG
551

NYYMG

1981
WFRQAP
552

GIIWNGDH

1982
RFTISRDNAKNTAY
553

TFWIERATTPD

1983
WGQGT 



MP04H

GSLRLACVASGLTFD



GKEREF


TAYADSIK


LRMNSLKPEDTAVY


IGQYAY


QVTVSS



02





VA


G


YCAA









30
30-
1984
EVQLVESGGGWVQDGG
554

RGIMG

1985
WFRQAP
555

RIIWHINST

1986
FTISRDSAKNTMYLQ
556

RDRYGSGNSL

1987
WGQtext missing or illegible when filed



MP04C0

SLRLSCALSGRTFV



GKEREFV


RYADSVKG


MDSLRPEDTAVYYC


SPSAYDY


QVTVtext missing or illegible when filed



3





A



AA









31
31-
1988
QVQLVESGGGLVQAG
557

GYALG

1989
WFRQAP
558

RINWSGSF

1990
RFTISRDNAKNTMY
559

DNPSTLATDY

1991
WGQtext missing or illegible when filed



MP04E

GSLRLSCTGYGGAFT



GKEREF


TYYASSVK


LQMNNLKPEDTAVY


DN


QVTVSS



03





VA


G


YCAA









32
32-
1992
QVQLVESGGGLVQAG
560

STAVG

1993
WFRQVP
561

AINRSGSA

1994
RFTISRDNAKNTVY
562

DSLPYGRPYY

1995
WGQGT



MP04A

GSLRLSCAASGRTFG



GKEREF


TTYADSVK


LQMNSLTPEDTGVY


FQRSAGEYDY


QVTVSS



08





VS


G


YCAA









33
33-
1996
QLQLVESGGGLVQAGGS
563

RVAVG

1997
WFRQAP
564

AVNRPATM

1998
RFTVSRDNAKNTVDL
565

DSVPYGRPYY

1999
WGQGT



MP04C0

LRLSCAASGPTFS



GKEREFV


TKYADSVK


QMNSMKPEDTAVYY


WQTSAGDYDY


QVTVSS



9





A


G


CAA









34
34-
2000
QVQLVESGGGLVQAGS
566

RLAMG

2001
WFRQAP
567

VNSWGGD

2002
RFTYSRDNAKSAVY
568

APTSFATTAY

2003
WGQGA



MP04A

SLRLSCAASGRTLS



GKEREF


TFYADSVE


LQMNSLQPEDTAVY


SSSNSYAY


QVTVSS



12





VA


G


YCAA









35
35-
2004
QVQLQESGGGLVQGG
569

SYAMG

2005
WFRQAP
570

AISRSGRS

2006
RFTISRDNAKSTVYL
571

GRYYNSAYDP

2007
WGHGT



MP07G

GSLRLSCAASGGIFS



GKEREF


TNYADSV


QMNSLKPEETAVYY


SPGDFGS


QVTVSS



01





VA


KG


CAA









36
36-
2008
QVQLVESGGGLVQAG
570

RYAMG

2009
WFRQAP
573

ASSWGGD

2010
RFTFSRDNAKNAVY
574

APTSFPTTAY

2011
WGQGT



MP07F

GSLRLSCAASGRTLS



GSEREF


TFYADSVE


LQMNSLQPEDTAAY


SSSNSYAY


QVTVSS



02





VA


G


YCAA









37
37-
2012
QVQLVESGGGLVQAG
573

RYAMG

2013
WFRQAP
576

IDSWGGD

2014
RFTFSRDNAKNEVY
577

APTSFATTAY

2015
WGQtext missing or illegible when filed



MP07F

GSLRLSCAASGRTLS



GKEREY


TFYADSVE


LQMNSLQPEDTAVY


SSSNSYRY


QVTtext missing or illegible when filed



09





VA


G


YCAG









38
38-
2016
QVQLVESGGGLVQAG
576

RDAM

2017
WFRQAP
579

VMSWGGD

2018
RFTFSRDNAKNAVY
580

APTSFATTAY

2019
WGRtext missing or illegible when filed



MP07A

GSLRLSCAASGRSLS


G


GKEREF


TFYTDSVE


LEMNDLQPEDTAVY


SSSNSYSY


QVTtext missing or illegible when filed



11





VA


G


YCAA






text missing or illegible when filed indicates data missing or illegible when filed














TABLE 5







Sequence of multispecific polypeptides.


“ID” refers to the SEQ ID NO as


used herein.











ID
Name
Sequence







249
BsVHH-3
QVQLVESGGGLVQAGGSLRLSCAASGRTFG




(32x16)
STAVGWFRQVPGKEREFVSAINRSGSATTY




SEQ ID
ADSVKGRFTISRDNAKNTVYLQMNSLTPED




NO: 2020
TGVYYCAADSLPYGRPYYFQRSAGEYDYWG





QGTQVTVSSGGGGSGGGGSGGGGSGSEVQL





VESGGGLVQAGGSLRLSCAASGRAIENYPV





GWFRQAPGKEREFVAAITWISGSTLYADSV





KGRFTISRDNAKNTVYLQMSSLKPEDTALY





YCAAALKTITRGQNDYSYWGQGTQVTVSSG





GGGSGGGGSGGGGSTVSSDKTHTCPPCPAP





EAAGGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVKFNWYVDGVEVHNAKTKPR





EEQYNSTYRVVSVLTVLHQDWLNGKEYKCK





VSNKALGAPIEKTISKAKGQPREPQVYTLP





PSRDELTKNQVSLTCLVKGFYPSDIAVEWE





SNGQPENNYKTTPPVLDSDGSFLLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLS





LSPGK







250
BsVHH-4
QVQLQESGGGLVQGGGSLRLSCAASGGIFS




(35x16)
SYAMGWFRQAPGKEREFVAAISRSGRSTNY




SEQ ID
ADSVKGRFTISRDNAKSTVYLQMNSLKPEE




NO: 2021
TAVYYCAAGRYYNSAYDPSPGDFGSWGHGT





QVTVSSGGGGSGGGGSGGGGSGSEVQLVES





GGGLVQAGGSLRLSCAASGRAIENYPVGWF





RQAPGKEREFVAAITWISGSTLYADSVKGR





FTISRDNAKNTVYLQMSSLKPEDTALYYCA





AALKTITRGQNDYSYWGQGTQVTVSSGGGG





SGGGGSGGGGSTVSSDKTHTCPPCPAPEAA





GGPSVFLEPPKPKDTLMISRTPEVTCVVDV





SHEDPEVKFNWYVDGVEVHNAKTKPREEQY





NSTYRVVSVLTVLHQDWLNGKEYKCKVSNK





ALGAPIEKTISKAKGQPREPQVYTLPPSRD





ELTKNQVSLTCLVKGFYPSDIAVEWESNGQ





PENNYKTTPPVLDSDGSFLLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPG





K







251
BsVHH-5
QVQLVESGGGLVQAGGSLRLSCAASGRTLS




(36x16)
RYAMGWFRQAPGSEREFVAASSWGGDTFYA




SEQ ID
DSVEGRFTFSRDNAKNAVYLQMNSLQPEDT




NO: 2022
AAYYCAAAPTSFPTTAYSSSNSYAYWGQGT





QVTVSSGGGGSGGGGSGGGGSGSEVQLVES





GGGLVQAGGSLRLSCAASGRAIENYPVGWF





RQAPGKEREFVAAITWISGSTLYADSVKGR





FTISRDNAKNTVYLQMSSLKPEDTALYYCA





AALKTITRGQNDYSYWGQGTQVTVSSGGGG





SGGGGSGGGGSTVSSDKTHTCPPCPAPEAA





GGPSVFLFPPKPKDTLMISRTPEVTCVVVD





VSHEDPEVKFNWYVDGVEVHNAKTKPREEQ





YNSTYRVVSVLTVLHQDWLNGKEYKCKVSN





KALGAPIEKTISKAKGQPREPQVYTLPPSR





DELTKNQVSLTCLVKGFYPSDIAVEWESNG





QPENNYKTTPPVLDSDGSFLLYSKLTVDKS





RWQQGNVFSCSVMHEALHNHYTQKSLSLSP





GK







252
BsVHH-6
QVQLVESGGGLVQAGGSLTLSCAAPGRTFG




(27x18)
TDVVGWFRQAPGKEREFVASISRSGDGIYY




SEQ ID
DDSVKGRFTISRNNAWNTVNLQMNSLKVED




NO: 2023
TAVYYCAAGDGWSTYDYWGQGTQVTVSSGG





GGSGGGGSGGGGSGSQVQLVESGGGLVQPG





GSLRLSCAISGGTLDSYGIGWVRQAPGKQR





EGVSCMSRSDDRTYYADSVKGRFTISKDSA





KNTVYLQMTSLKPEDTAVYYCAAVDAYGCS





LVQPTTYDFWGLGTQVTVSSGGGGSGGGGS





GGGGSTVSSDKTHTCPPCPAPEAAGGPSVF





LFPPKPKDTLMISRTPEVTCVVVDVSHEDP





EVKFNWYVDGVEVHNAKTKPREEQYNSTYR





VVSVLTVLHQDWLNGKEYKCKVSNKALGAP





IEKTISKAKGQPREPQVYTLPPSRDELTKN





QVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPVLDSDGSFLLYSKLTVDKSRWQQGN





VFSCSVMHEALHNHYTQKSLSLSPGK







253
BsVHH-7
QVQLVESGGGLVQAGGSLRLSCTGYGGAFT




(31x18)
GYALGWFRQAPGKEREFVARINWSGSFTYY




SEQ ID
ASSVKGRFTISRDNAKNTMYLQMNNLKPED




NO: 2024
TAVYYCAADNPSTLATDYDNWGQGTQVTVS





SGGGGSGGGGSGGGGSGSQVQLVESGGGLV





QPGGSLRLSCAISGGTLDSYGIGWVRQAPG





KQREGVSCMSRSDDRTYYADSVKGRFTISK





DSAKNTVYLQMTSLKPEDTAVYYCAAVDAY





GCSLVQPTTYDFWGLGTQVTVSSGGGGSGG





GGSGGGGSTVSSDKTHTCPPCPAPEAAGGP





SVFLFPPKPKDTLMISRTPEVTCVVVDVSH





EDPEVKFNWYVDGVEVHNAKTKPREEQYNS





TYRVVSVLTVLHQDWLNGKEYKCKVSNKAL





GAPIEKTISKAKGQPREPQVYTLPPSRDEL





TKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHYTQKSLSLSPGK







254
BsVHH-8
QVQLVESGGGLVQAGGSLRLSCAASGRTFG




(32x18)
STAVGWFRQVPGKEREFVSAINRSGSATTY




SEQ ID
ADSVKGRFTISRDNAKNTVYLQMNSLTPED




NO: 2025
TGVYYCAADSLPYGRPYYFQRSAGEYDYWG





QGTQVTVSSGGGGSGGGGSGGGGSGSQVQL





VESGGGLVQPGGSLRLSCAISGGTLDSYGI





GWVRQAPGKQREGVSCMSRSDDRTYYADSV





KGRFTISKDSAKNTVYLQMTSLKPEDTAVY





YCAAVDAYGCSLVQPTTYDFWGLGTQVTVS





SGGGGSGGGGSGGGGSTVSSDKTHTCPPCP





APEAAGGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVKFNWYVDGVEVHNAKTK





PREEQYNSTYRVVSVLTVLHQDWLNGKEYK





CKVSNKALGAPIEKTISKAKGQPREPQVYT





LPPSRDELTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPVLDSDGSFLLYSKL





TVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK







255
BsVHH-9
QVQLQESGGGLVQGGGSLRLSCAASGGIFS




(35x18)
SYAMGWFRQAPGKEREFVAAISRSGRSTNY




SEQ ID
ADSVKGRFTISRDNAKSTVYLQMNSLKPEE




NO: 2026
TAVYYCAAGRYYNSAYDPSPGDFGSWGHGT





QVTVSSGGGGSGGGGSGGGGSGSQVQLVES





GGGLVQPGGSLRLSCAISGGTLDSYGIGWV





RQAPGKQREGVSCMSRSDDRTYYADSVKGR





FTISKDSAKNTVYLQMTSLKPEDTAVYYCA





AVDAYGCSLVQPTTYDFWGLGTQVTVSSGG





GGSGGGGSGGGGSTVSSDKTHTCPPCPAPE





AAGGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVKFNWYVDGVEVHNAKTKPRE





EQYNSTYRVVSVLTVLHQDWLNGKEYKCKV





SNKALGAPIEKTISKAKGQPREPQVYTLPP





SRDELTKNQVSLTCLVKGFYPSDIAVEWES





NGQPENNYKTTPPVLDSDGSFLLYSKLTVD





KSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK







256
BsVHH-10
QVQLVESGGGLVQAGGSLRLSCAASGRTLS




(36x18)
RYAMGWFRQAPGSEREFVAASSWGGDTFYA




SEQ ID
DSVEGRFTFSRDNAKNAVYLQMNSLQPEDT




NO: 2027
AAYYCAAAPTSFPTTAYSSSNSYAYWGQGT





QVTVSSGGGGSGGGGSGGGGSGSQVQLVES





GGGLVQPGGSLRLSCAISGGTLDSYGIGWV





RQAPGKQREGVSCMSRSDDRTYYADSVKGR





FTISKDSAKNTVYLQMTSLKPEDTAVYYCA





AVDAYGCSLVQPTTYDFWGLGTQVTVSSGG





GGSGGGGSGGGGSTVSSDKTHTCPPCPAPE





AAGGPSVFLEPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVKFNWYVDGVEVHNAKTKPRE





EQYNSTYRVVSVLTVLHQDWLNGKEYKCKV





SNKALGAPIEKTISKAKGQPREPQVYTLPP





SRDELTKNQVSLTCLVKGFYPSDIAVEWES





NGQPENNYKTTPPVLDSDGSFLLYSKLTVD





KSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK







257
BsVHH-11
QVQLVESGGGLVQAGGSLTLSCAAPGRTFG




(27x19)
TDVVGWFRQAPGKEREFVASISRSGDGIYY




SEQ ID
DDSVKGRFTISRNNAWNTVNLQMNSLKVED




NO: 2028
TAVYYCAAGDGWSTYDYWGQGTQVTVSSGG





GGSGGGGSGGGGSGSEVQLVESGGGLVQTG





GSLRLSCAASGGTFSRDAMAWFRQVPGKER





EFVALISWSGATTNYADSVKGRFAISRDNG





KNTVYLQMNRLKPADTAIYYCAADRRPMGS





RSYFEPTEYDDWGQGTQVTVSSGGGGSGGG





GSGGGGSTVSSDKTHTCPPCPAPEAAGGPS





VFLFPPKPKDTLMISRTPEVTCVVVDVSHE





DPEVKFNWYVDGVEVHNAKTKPREEQYNST





YRVVSVLTVLHQDWLNGKEYKCKVSNKALG





APIEKTISKAKGQPREPQVYTLPPSRDELT





KNQVSLTCLVKGFYPSDIAVEWESNGQPEN





NYKTTPPVLDSDGSFLLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK







258
BsVHH-13
QVQLVESGGGLVQAGGSLRLSCAASGRTFG




(32x19)
STAVGWFRQVPGKEREFVSAINRSGSATTY




SEQ ID
ADSVKGRFTISRDNAKNTVYLQMNSLTPED




NO: 2029
TGVYYCAADSLPYGRPYYFQRSAGEYDYWG





QGTQVTVSSGGGGSGGGGSGGGGSGSEVQL





VESGGGLVQTGGSLRLSCAASGGTFSRDAM





AWFRQVPGKEREFVALISWSGATTNYADSV





KGRFAISRDNGKNTVYLQMNRLKPADTAIY





YCAADRRPMGSRSYFEPTEYDDWGQGTQVT





VSSGGGGSGGGGSGGGGSTVSSDKTHTCPP





CPAPEAAGGPSVFLFPPKPKDTLMISRTPE





VTCVVVDVSHEDPEVKFNWYVDGVEVHNAK





TKPREEQYNSTYRVVSVLTVLHQDWLNGKE





YKCKVSNKALGAPIEKTISKAKGQPREPQV





YTLPPSRDELTKNQVSLTCLVKGFYPSDIA





VEWESNGQPENNYKTTPPVLDSDGSFLLYS





KLTVDKSRWQQGNVFSCSVMHEALHNHYTQ





KSLSLSPGK







259
BsVHH-15
QVQLVESGGGLVQAGGSLRLSCAASGRTLS




(36x19)
RYAMGWFRQAPGSEREFVAASSWGGDTFYA




SEQ ID
DSVEGRFTFSRDNAKNAVYLQMNSLQPEDT




NO: 2030
AAYYCAAAPTSFPTTAYSSSNSYAYWGQGT





QVTVSSGGGGSGGGGSGGGGSGSEVQLVES





GGGLVQTGGSLRLSCAASGGTFSRDAMAWF





RQVPGKEREFVALISWSGATTNYADSVKGR





FAISRDNGKNTVYLQMNRLKPADTAIYYCA





ADRRPMGSRSYFEPTEYDDWGQGTQVTVSS





GGGGSGGGGSGGGGSTVSS





DKTHTCPPCPAPEAAGGPSVFLFPPKPKDT





LMISRTPEVTCVVVDVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYNSTYRVVSVLTVLH





QDWLNGKEYKCKVSNKALGAPIEKTISKAK





GQPREPQVYTLPPSRDELTKNQVSLTCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDS





DGSFLLYSKLTVDKSRWQQGNVFSCSVMHE





ALHNHYTQKSLSLSPGK







260
BsVHH-16
QVQLVESGGGLVQAGGSLTLSCAAPGRTFG




(27x22)
TDVVGWFRQAPGKEREFVASISRSGDGIYY




SEQ ID
DDSVKGRFTISRNNAWNTVNLQMNSLKVED




NO: 2031
TAVYYCAAGDGWSTYDYWGQGTQVTVSSGG





GGSGGGGSGGGGSGSEVQLVESGGGLVQAG





GSLRLSCAASGSIFSINAMAWFRQVPGMER





ELVAAISRDGGASVYRDSVKGRFTISRDNS





KNTVYLQMNTLKPEDTAIYVCAATRAIGWT





ARWITTDFDFWGQGTQVTVSSGGGGSGGGG





SGGGGSTVSS





DKTHTCPPCPAPEAAGGPSVFLEPPKPKDT





LMISRTPEVTCVVVDVSHEDPEVKFNWYVD





GVEVHNAKTKPREEQYNSTYRVVSVLTVLH





QDWLNGKEYKCKVSNKALGAPIEKTISKAK





GQPREPQVYTLPPSRDELTKNQVSLTCLVK





GFYPSDIAVEWESNGQPENNYKTTPPVLDS





DGSFLLYSKLTVDKSRWQQGNVFSCSVMHE





ALHNHYTQKSLSLSPGK







261
BsVHH-20
QVQLVESGGGLVQAGGSLRLSCAASGRTLS




(36x22)
RYAMGWFRQAPGSEREFVAASSWGGDTFYA




SEQ ID
DSVEGRFTFSRDNAKNAVYLQMNSLQPEDT




NO: 2032
AAYYCAAAPTSFPTTAYSSSNSYAYWGQGT





QVTVSSGGGGSGGGGSGGGGSGSEVQLVES





GGGLVQAGGSLRLSCAASGSIFSINAMAWF





RQVPGMERELVAAISRDGGASVYRDSVKGR





FTISRDNSKNTVYLQMNTLKPEDTAIYVCA





ATRAIGWTARWITTDFDFWGQGTQVTVSSG





GGGSGGGGSGGGGSTVSSDKTHTCPPCPAP





EAAGGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVKFNWYVDGVEVHNAKTKPR





EEQYNSTYRVVSVLTVLHQDWLNGKEYKCK





VSNKALGAPIEKTISKAKGQPREPQVYTLP





PSRDELTKNQVSLTCLVKGFYPSDIAVEWE





SNGQPENNYKTTPPVLDSDGSFLLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLS





LSPGK

















TABLE 6







Sequences of VHH-hFc fusion proteins.


“ID” refers to the SEQ ID NO


as used herein.









ID
Name
Sequence





2033
Linker
GGGGSGGGGSGGGGS


2034
hFc with LALA-PG
DKTHTCPPCPAPEAAGGPSVFLFPP



and cFAE
KPKDTLMISRTPEVTCVVVDVSHED



mutation
PEVKFNWYVDGVEVHNAKTKPREEQ



F405L
YNSTYRVVSVLTVLHQDWLNGKEYK




CKVSNKALGAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVK




GFYPSDIAVEWESNGQPENNYKTTP




PVLDSDGSFLLYSKLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSP




GK





2035
hFc with LALA-PG
DKTHTCPPCPAPEAAGGPSVFLFPP



and cFAE
KPKDTLMISRTPEVTCVVVDVSHED



mutation
PEVKFNWYVDGVEVHNAKTKPREEQ



K409R
YNSTYRVVSVLTVLHQDWLNGKEYK




CKVSNKALGAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVK




GFYPSDIAVEWESNGQPENNYKTTP




PVLDSDGSFFLYSRLTVDKSRWQQG




NVFSCSVMHEALHNHYTQKSLSLSP




GK





















TABLE 7








ascending







numbering


PE binding 
P.E. Off-rate ranking SPR-



Patent


ELISA
mouse and human IL-2Ra
















Clone
clone


hu
mo
Rmax-
hd(1/s)-
Rmax-
kd (1/s)-


nr.
ID
V ID
Clone ID
IL-2R
IL-2R
hu
hu
mo
mo





8
1
1-MP01H01
FJ1427_P035MP01H01
1.705
0.048
126.56
2.29E−02
8.31
N/A





9
2
2-MP01A02
FJ1427 P035MP01A02
2.615
0.046
846.81
1.53E−03
9.3
N/A





21
3
3-MP01E03
FJ1427_P035MP01E03
2.535
0.046
413.12
7.99E−04
9.42
N/A





30
4
4-MP01F04
FJ1427_P035MP01F04
2.493
0.046
690.4
2.58E−04
18.31
2.56E−01





38
5
5-MP01F05
FJ1427_P035MP01F05
2.620
0.046
312.1
4.20E−04
9.23
N/A





39
6
6-MP01G05
FJ1427_P035MP01G05
1.794
0.046
122.65
2.06E−02
9.9
N/A





63
7
07-MP01G08
FJ1427 P035MP01G08
2.573
0.046
193.76
1.84E−03
9.92
N/A





91
8
8-MP01C12
FJ1427_P035MP01C12
2.531
0.045
818.61
3.83E−04
8.42
N/A





391
9
9-MP05G01
FJ1427_P035MP05G01
2.353
0.047
569.9
1.69E−04
119.21
4.42E−02





406
10
10-MP05F03
FJ1427_P035MP05F03
2.465
0.054
779.86
6.39E−04
328.6
1.05E−01





416
11
11-MP05H04
FJ1427 P035MP05H04
2.221
0.163
201.79
1.20E−03
533.39
1.63E−03





474
12
12-MP05B12
FJ1427 P035MP05B12
2.136
0.936
584.53
2.22E−04
566.73
5.47E−04





440
13
13-MP05E12
FJ1427_P035MP05H07
2.34
0.048
329.08
7.42E−04
59.27
4.78E−02





1
39

FJ1427_P035MP01A01
2.852
0.046
860.46
1.12E−03
9.37
N/A





2
40

FJ1427_P035MP01B01
2.783
0.046
306.62
1.78E−03
9.5
N/A





7
41

FJ1427_P035MP01G01
2.524
0.053
911.04
4.14E−04
8.31
N/A





13
42

FJ1427 P035MP01E02
2.861
0.046
840.08
1.28E−03
8.36
N/A





14
43

FJ1427_P035MP01F02
2.495
0.046
250.32
3.91E−03
8.25
N/A





16
44

FJ1427 P035MP01H02
2.349
0.047
388.34
1.15E−03
8.76
N/A





19
45

FJ1427_P035MP01C03
2.840
0.045
856.2
1.44E−03
8.37
N/A





20
46

FJ1427_P035MP01D03
2.592
0.048
696.18
1.89E−03
8.44
N/A





22
47

FJ1427 P035MP01F03
2.866
0.045
789.36
3.27E−03
9.73
N/A





23
48

FJ1427_P035MP01G03
0.188
0.048
244.34
1.08E−01
10.1
N/A





28
49

FJ1427_P035MP01D04
2.758
0.045
776.57
2.95E−03
10.54
N/A





29
50

FJ1427_P035MP01E04
2.613
0.046
790.82
2.35E−03
10.12
N/A





31
51

FJ1427 P035MP01G04
2.786
0.047
329.97
1.07E−03
11.74
N/A





37
52

FJ1427_P035MP01E05
2.591
0.046
347.15
4.98E−04
11.74
N/A





40
53

FJ1427_P035MP01H05
2.650
0.046
254.26
2.76E−03
9.95
N/A





46
54

FJ1427 P035MP01F06
2.705
0.046
388.75
5.26E−04
9.5
N/A





53
55

FJ1427_P035MP01E07
2.731
0.046
725.28
1.59E−03
9.09
N/A





54
56

FJ1427 P035MP01F07
2.760
0.047
356.5
6.70E−04
17.9
4.48E−02





55
57

FJ1427_P035MP01G07
2.747
0.047
808.25
1.50E−03
10.2
N/A





56
58

FJ1427_P035MP01H07
2.140
0.049
158.58
1.12E−03
9.38
N/A





60
59

FJ1427_P035MP01D08
2.621
0.045
402.24
8.42E−04
14.13
N/A





62
60

FJ1427 P035MP01F08
2.709
0.046
756.35
1.62E−03
9.58
N/A





64
61

FJ1427 P035MP01H08
2.605
0.047
i.s.
i.s.
i.s.
i.s.





68
62

FJ1427_P035MP01D09
2.566
0.045
729.19
2.12E−03
7.9
N/A





77
63

FJ1427_P035MP01E10
2.784
0.046
816.2
1.19E−03
8.47
N/A





79
64

FJ1427_P035MP01G10
2.755
0.046
414.58
4.43E−04
8.33
N/A





80
65

FJ1427_P035MP01H10
2.471
0.057
i.s.
i.s.
i.s.
i.s.





81
66

FJ1427 P035MP01A11
2.809
0.046
327.6
7.78E−04
8.91
N/A





83
67

FJ1427 P035MP01C11
2.784
0.045
296.26
5.56E−04
18.03
3.51E−01





84
68

FJ1427_P035MP01D11
3.207
0.045
750.95
2.70E−03
8.62
N/A





85
69

FJ1427_P035MP01E11
2.685
0.046
832.34
7.04E−04
8.91
N/A





86
70

FJ1427_P035MP01F11
2.743
0.047
830.65
1.18E−03
8.47
N/A





87
71

FJ1427 P035MP01G11
2.733
0.051
876.95
1.23E−04
54.04
3.12E−01





88
72

FJ1427_P035MP01H11
2.617
0.047
342.09
7.25E−04
9.83
N/A





90
73

FJ1427_P035MP01B12
3.053
0.046
838.87
1.44E−03
9.18
N/A





93
74

FJ1427_P035MP01E12
2.693
0.052
800.76
1.41E−04
46.48
3.35E−01





94
75

FJ1427_P035MP01F12
2.668
0.048
787.83
1.10E−04
15.5
3.29E−01





386
76

FJ1427 P035MP05B01
2.257
0.044
715.2
8.35E−05
28.68
4.01E−02





392
77

FJ1427 P035MP05H01
2.62
0.048
777.28
1.41E−04
45.46
2.91E−01





400
78

FJ1427 P035MP05H02
2.292
0.048
703.96
1.41E−04
55.18
3.09E−01





402
79

FJ1427_P035MP05B03
2.419
0.044
742.5
1.31E−04
55.73
5.37E−03





405
80

FJ1427_P035MP05E03
2.48
0.05
782.11
7.72E−04
281.3
2.38E−02





411
81

FJ1427 P035MP05C04
1.826
0.079
780.27
9.05E−04
514.39
5.70E−03





412
82

FJ1427 P035MP05D04
1.913
0.045
189.94
2.24E−03
206.8
1.22E−02





413
83

FJ1427 P035MP05E04
2.385
0.046
368.07
1.58E−03
201.85
1.96E−01





417
84

FJ1427 P035MP05A05
1.863
0.052
155.83
3.41E−03
185.24
1.72E−02





418
85

FJ1427_P035MP05B05
2.155
0.045
247.13
1.03E−03
311.02
1.14E−02





424
86

FJ1427_P035MP05H05
2.508
0.048
278.7
5.91E−04
122.79
1.07E−01





427
87

FJ1427 P035MP05C06
2.427
0.071
283.43
6.59E−04
344.54
3.11E−03





428
88

FJ1427 P035MP05D06
2.51
0.054
298.56
6.77E−04
101.39
7.55E−02





430
89

FJ1427_P035MP05F06
2.507
0.048
251.48
6.70E−04
114.08
1.15E−01





433
90

FJ1427_P035MP05A07
2.434
0.053
828.7
1.04E−03
388.01
3.69E−02





434
91

FJ1427 P035MP05B07
1.768
0.047
275.63
1.95E−03
157.1
1.27E−02





435
92

FJ1427 P035MP05C07
1.734
0.07
780.36
1.41E−03
559.5
7.14E−03





442
93

FJ1427_P035MP05B08
1.878
0.057
287.84
2.53E−03
442.89
6.08E−03





445
94

FJ1427_P035MP05E08
2.325
0.087
836.98
2.14E−04
409.05
9.59E−03





447
95

FJ1427_P035MP05G08
2.389
0.38
279.18
9.08E−04
397.99
2.58E−03





448
96

FJ1427_P035MP05H08
2.167
0.05
186.2
2.78E−03
199.56
1.29E−02





451
97

FJ1427_P035MP05C09
0.366
0.059
212.3
6.09E−03
361.52
4.35E−03





456
98

FJ1427_P035MP05H09
2.262
0.154
264.1
1.05E−03
497.37
2.44E−03





457
99

FJ1427 P035MP05A10
2.181
0.24
324.06
1.20E−03
452.24
3.21E−03





459
100

FJ1427 P035MP05C10
0.63
0.071
239.18
4.06E−03
290.3
4.03E−03





460
101

FJ1427 P035MP05D10
2.089
0.107
349.75
1.08E−03
383.29
2.84E−03





461
102

FJ1427 P035MP05E10
2.266
0.718
144.76
1.69E−03
298.19
1.77E−03





467
103

FJ1427 P035MP05C11
2.141
0.632
182.57
4.40E−04
389.24
8.44E−04





468
104

FJ1427 P035MP05D11
2.544
0.045
308.43
6.62E−04
68.16
2.40E−02





469
105

FJ1427_P035MP05E11
2.346
0.049
532.77
1.00E−03
225.19
2.96E−02





470
106

FJ1427_P035MP05F11
2.271
0.046
705.9
1.73E−03
151.4
5.10E−02





475
107

FJ1427_P035MP05C12
2.402
0.045
160.88
8.74E−04
22.12
2.92E−02





476
108

FJ1427 P035MP05D12
2.386
0.066
430.66
2.35E−03
157.31
3.66E−02





477
109

FJ1427 P035MP05E12
2.151
0.047
614.28
2.73E−04
75.38
8.23E−02





478
110

FJ1427 P035MP05F12
2.185
0.113
197.87
4.69E−04
154.72
4.63E−03















ascend-






ing






number-






ing


CDR3














Clone
Patent

VH



Family


nr.
clone ID
VH
ID
CDR1
CDR2
CDR3
ID





8
1
EVQLVESGGGLVQAGGSLRLSCAASGRTFR
a12
THNMG-
AISWNVDNTLYADSVKG-
DNIPLSSDVAATATEYDY-
6




THNMGWFRRAPGKEREFVAAISWNVDNTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNGRNMVYLQMNSLKPED

NO: 467
NO: 468
NO: 469





TAVYYCAADNIPLSSDVAATATEYDYWGQG









TQVTVSS-









SEQ ID









NO: 1










9
2
QVQLVESGGGLVQPGGSLRLSCATSGFTFR
a80
NNFMS-
TISYGGESTTYAESVKG-
ATSYDSIRSGS-
2




NNFMSWVRQAPGKGLEWVSTISYGGESTTY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNAKNTLYLQMNNLKPED

NO: 470
NO: 471
NO: 472





TAVYYCAKATSYDSIRSGSRGQGTQVTVSS









-









SEQ ID









NO: 2










21
3
QVQLVESGGGLVQAGGSLRLSCTASGRTLS
a74
SYSMA-
AISSSGVVTHVLDSVKG-
TASSYSTYEANYNY-
14




SYSMAWFRQAADKGREFVTAISSSGVVTHV

SEQ ID
SEQ ID
SEQ ID





LDSVKGRFTISRDNAKNTVYLQMNSLQPED

NO: 473
NO: 474
NO: 475





TALYFCAGTASSYSTYEANYNYWGQGTLVT









VSS-









SEQ ID









NO: 3










30
4
QVQLVESGGGLVQAGGSLRLSCAASGGTFR
a60
TRNMG-
AVSWNVDNKLYADSVKG-
DNIPLSSDMRPTATEYDY-
6




TRNMGWFRRAPGKEREFVAAVSWNVDNKLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNGRNMVYLQMNSLKPED

NO: 476
NO: 477
NO: 478





TAVYYCAADNIPLSSDMRPTATEYDYWGQG









TQVTVSS-









SEQ ID









NO: 4










38
5
EVQLVESGGGLVQAGGSLRLSCAASIRAFT
a15
TWSMA-
RINVSGSVTYYADFVKG-
DRTGVGTNDYNY-
9




TWSMAWFRQAPGKEREYVARINVSGSVTYY

SEQ ID
SEQ ID
SEQ ID





ADFVKGRFTISRDNAKKTMYLEMNNLKPED

NO: 479
NO: 480
NO: 481





TALYYCAADRTGVGTNDYNYWGQGTQVTVS









S-









SEQ ID









NO: 5










39
6
QVQLQESGGGLVQAGGSLRLSCAASGRTFS
a49
SYAMG-
VISWNVDNTEYTDSVKG-
DSIPLSSDMSPTATEYGY-
10




SYAMGWFRQAPGKEREFVAVISWNVDNTEY

SEQ ID
SEQ ID
SEQ ID





TDSVKGRFTISRDNDKNMVYLQMNSLKPED

NO: 482
NO: 483
NO: 484





TAVYYCAADSIPLSSDMSPTATEYGYWGQG









TQVTVSS-









SEQ ID









NO: 6










63
7
EVQLVESGGGLVQAGGSLRLSCAASGRAFS
a11
MYNMG-
ATGWSGANTPYADSVKG-
DSIRLRSDVTRIPLEYDY-
11




MYNMGWFRQAPGKEREFVAATGWSGANTPY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNTQNTVYLQMNSLKPED

NO: 485
NO: 486
NO: 487





TATYYCAADSIRLRSDVTRIPLEYDYWGQG









TQVTVSS-









SEQ ID









NO: 7










91
8
QVQLVESGGGLVQPGGSLRLSCATSGFTFS
a81
NNFMS-
TISYGGESTTYAEAVKG-
ATSYTSIRGAP-
3




NNFMSWVRQAPGKGLEFVSTISYGGESTTY

SEQ ID
SEQ ID
SEQ ID





AEAVKGRFTISRDNAKNTLYLQMNNLKPED

NO: 488
NO: 489
NO: 490





TAIYYCAKATSYTSIRGAPRGQGTQVTVSS









-









SEQ ID









NO: 8










391
9
EVQLVESGGGLVQAGGSLRLSCAASGGSIY
a7
TYNMG-
GTLWSGGDSVYADFAKG-
DPLSLTSDWRVDELSS-
7




TYNMGWFRQAPGKEREFVAGTLWSGGDSVY

SEQ ID
SEQ ID
SEQ ID





ADFAKGRFTLSRENAKNTLYLQMNSLKPED

NO: 491
NO: 492
NO: 493





TATYYCAIDPLSLTSDWRVDELSSWGKGTL









VTVSS-









SEQ ID









NO: 9










406
10
QVQLVESGGGLVQAGGSLRLSCAASGIPFD
a63
NYAMG-
ARDLEGIITRYGDSVKG-
RDGGVVAGSRSSAQYNY-
12




NYAMGWFRQAPGKEREFVAARDLEGIITRY

SEQ ID
SEQ ID
SEQ ID





GDSVKGRFTISRGNAKNTVFLQMNSLKPED

NO: 494
NO: 495
NO: 496





TAVYYCAARDGGVVAGSRSSAQYNYWGQGT









QVTVSS-









SEQ ID









NO: 10










416
11
QLQLVESGGGLVQAGGSLRLSCAASGLTFE
a36
GYAIG-
YITGSDGTTYYINSVKG-
DRLGSQGRYASAWWRSGDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSDGTTYY

SEQ ID
SEQ ID
SEQ ID





INSVKGRFTISSDNAKSTVYLQMNTLKPED

NO: 497
NO: 498
NO: 499





TAVYYCAVDRLGSQGRYASAWWRSGDMDLW









GKGTQVTVSS-









SEQ ID









NO: 11










474
12
QVQLVESGGGLVQAGGSLRLSCAASGFTFD
a59
GYAIG-
YITGSDGSTYYADSVKG-
DRLGSRGAYVPIWWRSSDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSDGSTYY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISSNNAKNTVYLHMNSLKPDD

NO: 500
NO: 501
NO: 502





AAVYYCAIDRLGSRGAYVPIWWRSSDMDLW









GKGTLVTVSS-









SEQ ID









NO: 12










440
13
QVQLQESGGGLVQAGDSLRLSCAASGFNFG
a43
WHAMG-
TITWTGRDTYYADSVRG-
ARERATWAYSEDDCDY-
1




WHAMGWFRQAPGKEREFVATITWTGRDTYY

SEQ ID
SEQ ID
SEQ ID





ADSVRGRFTISKDNAKDTLFLQMNSLRPDD

NO: 503
NO: 504
NO: 505





TGVYYCAKARERATWAYSEDDCDYWGQGTQ









VTVSS-









SEQ ID









NO: 13










1
39
EVQLVESGGGLVQAGDSLRLSCAASGRSFR
a3
NYILA-
AISWLDGTLYADSVED-
DRGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLDGTLYA

SEQ ID
SEQ ID
SEQ ID





DSVEDRFTISRDNPKNTVHLQMDNLKPEDT

NO: 581
NO: 582
NO: 583





AVYYCAADRGPVRPVLAPDVDYWGQGTQVS









VSS-









SEQ ID









NO: 39










2
40
EVQLVESGGGWVQAGDSLRLSCAASGRTFR
a23
NYVMG-
VITSLGGTVYADSVAN-
DRGPARYISASDVDY-
8




NYVMGWFRQVPGKEREFLSVITSLGGTVYA

SEQ ID
SEQ ID
SEQ ID





DSVANRFTISRDNPKDTVYLQMDSLKPEDT

NO: 584
NO: 585
NO: 586





AVYYCAADRGPARYISASDVDYWGQGTQVT









ASS-









SEQ ID









NO: 40










7
41
QVQLQESGGGLVQAGGSLRLSCAASGRTFR
a48
THNMG-
AISWNVDNTLYADSVKG-
DNIPLSSDVRATATEFGY-
6




THNMGWFRRAPGKEREFVAAISWNVDNTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNDRNMVYLQMNSLKPED

NO: 587
NO: 588
NO: 589





TAVYFCAADNIPLSSDVRATATEFGYWGQG









TRVTVSS-









SEQ ID









NO: 41










13
42
QVQLVESGGGLVQAGDSLRLSCAASGRSFR
a56
NYILA-
AISWLDGTLYADSVED-
DRGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLDGTLYA

SEQ ID
SEQ ID
SEQ ID





DSVEDRFTISRDNPKNTVHLQMDNLKPEDT

NO: 590
NO: 591
NO: 592





AVYYCAADRGPVRPVLAPDVDYWGQGTQVT









VSS-









SEQ ID









NO: 42










14
43
QVQLQESGGGLVQAGGSLRLSCAASGRTFR
a47
THNMG-
AISWNIDNKLYADSVKG-
DKIPLSSDVAATATEYDD-
5




THNMGWFRRAPGKEREFVAAISWNIDNKLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRSTISRDNGGNMVFLQMNSLKPED

NO: 593
NO: 594
NO: 595





TAVYYCAADKIPLSSDVAATATEYDDWGQG









TQVTVSS-









SEQ ID









NO: 43










16
44
QLQLVESGGGLVQAGDSLRLSCAASGRAFS
a28
RYAVG-
AINSSGANTYVLDSVKG-
TSSSYSTYEANYNV-
14




RYAVGWFRMAPGKGREFVSAINSSGANTYV

SEQ ID
SEQ ID
SEQ ID





LDSVKGRFTISRDNDKNTAYLQMDSLQPED

NO: 596
NO: 597
NO: 598





TAVYWCAATSSSYSTYEANYNVWGQGTQVT









VSS-









SEQ ID









NO: 44










19
45
EVQLVESGGGLVQPGGSLRLSCATSGFTFR
a19
NNFMS-
TISYGGESTTYAESVKG-
ATSYDSIRSGS-
2




NNFMSWVRQAPGKGLEWVSTISYGGESTTY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNAKNTLYLQMNNLKPED

NO: 599
NO: 600
NO: 601





TAVYYCAKATSYDSIRSGSRGQGTQVTVSS









-









SEQ ID









NO: 45










20
46
EVQLVESGGGLVQPGGSLRLSCATSGFTFR
a18
NNFMS-
TISYGGESTTYAESVKG-
ATSYDSIRSGS-
2




NNFMSWVRQAPGEGLEWVSTISYGGESTTY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNAKNTLYLQMNNLKPED

NO: 602
NO: 603
NO: 604





TAVYYCAKATSYDSIRSGSRGQGTQVTVSS









-









SEQ ID









NO: 46










22
47
QVQLVESGGGLVQPGGSLRLSCAASGFTFS
a78
NNFMS-
TISYGGESTTYAESVKG-
ATSYDSVRSGS-
2




NNFMSWVRQAPGKGLEWVSTISYGGESTTY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNAKNTLYLQMNNLKPED

NO: 605
NO: 606
NO: 607





TAVYYCAKATSYDSVRSGSRGQGTQVTVSS









-









SEQ ID









NO: 47










23
48
QVQLVESGGGLVQAGDSLRLSCAASGRSFR
a55
NYILA-
AISWLDGTLYADSVED-
DQGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLDGTLYA

SEQ ID
SEQ ID
SEQ ID





DSVEDRFTISRDNPKNTVHLQMDNLKPEDT

NO: 608
NO: 609
NO: 610





AVYYCAADQGPVRPVLAPDVDYWGQGTQVT









VSS-









SEQ ID









NO: 48










28
49
QVQLVESGGGWVQPGDSLRLSCAASGRSFR
a86
NYVMG-
VITWLGGTLDADSVAD-
DRGPARYISASDVDY-
8




NYVMGWFRQVPGKEREFLSVITWLGGTLDA

SEQ ID
SEQ ID
SEQ ID





DSVADRFTISRDNSKNTVYLQMDSLKPEDT

NO: 611
NO: 612
NO: 613





AVYYCAADRGPARYISASDVDYWGQGTQVT









VSS-









SEQ ID









NO: 49










29
50
QVQLVESGGGLVQAGDSLRLSCAVSGRSFR
a58
NYILA-
AISWLDGTFYANSVEG-
DRGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLDGTFYA

SEQ ID
SEQ ID
SEQ ID





NSVEGRFTISRDNPKNTVHLQMDGLKPEDT

NO: 614
NO: 615
NO: 616





AVYYCAADRGPVRPVLAPDVDYWGQGTQVT









VAS-









SEQ ID









NO: 50










31
51
QVQLVESGGGLVQPGGSLRLSCAASGFTFS
a75
NNFMS-
TISYFGDSTRYAESVKG-
ATSYDSIRSGS-
2




NNFMSWVRQAPGKGLEWVSTISYFGDSTRY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNEKNTLHLQMNNLKPED

NO: 617
NO: 618
NO: 619





TAVYYCAKATSYDSIRSGSRGRGTQVTVSS









-









SEQ ID









NO: 51










37
52
QVQLVESGGGLVQAGGSLRLSCAASGRTFR
a69
THNMG-
VISWNVDNKLYADSVKG-
DNIPLSSDVRATATEFGY-
6




THNMGWFRRAPGEEREFVAVISWNVDNKLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNGRNMVYLQMNSLKPED

NO: 620
NO: 621
NO: 622





TAVYYCAADNIPLSSDVRATATEFGYWGQG









TQVTVSS-









SEQ ID









NO: 52










40
53
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
a17
NNFMS-
TISYFGDSTTYAESVKG-
ATSYDSIRSGS-
2




NNFMSWVRQAPGKGLEWVSTISYFGDSTTY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNAKNTLYLQMNNLKPED

NO: 623
NO: 624
NO: 625





TAVYYCAKATSYDSIRSGSRGRGTQVTVSS









-









SEQ ID









NO: 53










46
54
QLQLVESGGGLVQAGGSLRLSCAASGGAFS
a31
RYAVG-
AIDLSGTNTHVLDSVKG-
TSSSYSDYEANYNI-
14




RYAVGWFRMAPGKGREFVSAIDLSGTNTHV

SEQ ID
SEQ ID
SEQ ID





LDSVKGRFTISRDNDKNTAYLQMDKLQPED

NO: 626
NO: 627
NO: 628





TAVYWCAATSSSYSDYEANYNIWGQGTQVT









VSS-









SEQ ID









NO: 54










53
55
QVQLQESGGGLVQAGDSLRLSCAASGRSFR
a46
NYILA-
AISWLEGTLYADSVED-
DRGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLEGTLYA

SEQ ID
SEQ ID
SEQ ID





DSVEDRFTISRDNPKNTVHLQMDSLKPEDT

NO: 629
NO: 630
NO: 631





AVYYCAADRGPVRPVLAPDVDYWGQGTQVT









VSS-









SEQ ID









NO: 55










54
56
QVQLVESGGGLVQAGGSLRLSCAATGLTFR
a71
QHNMG-
AISWNVGSTYFADSVKG-
DNIPLASDMRATATAYGY-
6




QHNMGWFRRAPGKEREFVAAISWNVGSTYF

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNGKNMVYLQMNSLKPED

NO: 632
NO: 633
NO: 634





TAVYYCAADNIPLASDMRATATAYGYWGQG









TQVTVSS-









SEQ ID









NO: 56










55
57
QVQLVESGGGLVQTGDSLRLSCAASGRSFR
a82
NYILA-
AISWLDGTLYADSVEG-
DRGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLDGTLYA

SEQ ID
SEQ ID
SEQ ID





DSVEGRFTISRDNPKNTVHLQMDSLKPEDT

NO: 635
NO: 636
NO: 637





AVYYCAADRGPVRPVLAPDVDYWGQGTQVT









VSS-









SEQ ID









NO: 57










56
58
EVQLVESGGGLVQAGGSLRLSCAASGRTLS
a13
GYAMA-
AISSSGIVTHVLDSVKG-
TASSYSDYEANYNY-
14




GYAMAWFRQPPDKGREFVTAISSSGIVTHV

SEQ ID
SEQ ID
SEQ ID





LDSVKGRFTISRDNAKNTVYLQMNSLQPED

NO: 638
NO: 639
NO: 640





TALYFCAATASSYSDYEANYNYWGQGTLVT









VSS-









SEQ ID









NO: 58










60
59
EVQLVESGGGLVQAGGSLRLSCAASGGTFR
a8
TRNMG-
AVSWNVDNKLYAGSVKG-
DNIPLSSDMRPTATEYDY-
6




TRNMGWFRRAPGKEREFVAAVSWNVDNKLY

SEQ ID
SEQ ID
SEQ ID





AGSVKGRFTISRDNGRNMVYLQMNSLKPED

NO: 641
NO: 642
NO: 643





TAVYYCAADNIPLSSDMRPTATEYDYWGQG









TQVTVSS-









SEQ ID









NO: 59










62
60
EVQLVESGGGWVQPGDSLRLSCAASGRSFR
a24
NYVMG-
VITSLGGTLDADSVAD-
DRGPARYISASDVDY-
8




NYVMGWFRQVPGKEREFLSVITSLGGTLDA

SEQ ID
SEQ ID
SEQ ID





DSVADRFTISRDNSKNTVYLQMDSLKPEDT

NO: 644
NO: 645
NO: 646





AVYYCAADRGPARYISASDVDYWGQGTQVT









VSS-









SEQ ID









NO: 60










64
61
EVQLVESGGRLVQSGGSLRLSCAASGRAFS
a25
THNMG-
AISWNVDNKLYANSVKG-
DNIPLSSDMRATATEYDV-
6




THNMGWFRRAPGKEREFVAAISWNVDNKLY

SEQ ID
SEQ ID
SEQ ID





ANSVKGRFAISRDNGRNMVYLQMNSLKPED

NO: 647
NO: 648
NO: 649





TAVYYCAADNIPLSSDMRATATEYDVWGQG









TQVTVSS-









SEQ ID









NO: 61










68
62
QVQLVESGGGLVQPGGSLRLSCAASGFTFS
a77
NNFMS-
TISYGGESTTYAESVKG-
ATSYDSIRSGS-
2




NNFMSWVRQAPGKGLEWVSTISYGGESTTY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNAKNTLYLQMNNLKPED

NO: 650
NO: 651
NO: 652





TAVYYCAKATSYDSIRSGSRGQGTQVTVSS









-









SEQ ID









NO: 62










77
63
QVQLVESGGGLVQAGDSLRLSCAASGRSFR
a57
NYILA-
AISWLDGTLYADSVED-
DRGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLDGTLYA

SEQ ID
SEQ ID
SEQ ID





DSVEDRFTISRDNPKNTVHLQMDSLKPEDT

NO: 653
NO: 654
NO: 655





AVYYCAADRGPVRPVLAPDVDYWGQGTQVT









VSS-









SEQ ID









NO: 63










79
64
EVQLVESGGGLVQAGGSLRLSCAASGGAFS
a6
RYAVG-
AIDLSGTNTHVLDSVKG-
TSSSYSDYEANYNI-
14




RYAVGWFRMAPGKGREFVSAIDLSGTNTHV

SEQ ID
SEQ ID
SEQ ID





LDSVKGRFTISRDNDKNTAYLQMDKLQPED

NO: 656
NO: 657
NO: 658





TAVYWCAATSSSYSDYEANYNIWGQGTQVT









VSS-









SEQ ID









NO: 64










80
65
QVQLVESGGGLVETGGSLRLSCAASGITFN
a52
DHTMA-
ARDWSDIITRYASSVKG-
REGGVVAGVRSGAPYDY-
13




DHTMAWFRQAPGKEREFVAARDWSDIITRY

SEQ ID
SEQ ID
SEQ ID





ASSVKGRFTISRDNAGNTGFLQMNSLRPED

NO: 659
NO: 660
NO: 661





TAVYYCAAREGGVVAGVRSGAPYDYWGQGT









QVTVSS-









SEQ ID









NO: 65










81
66
QVQLVESGGGLVQPGGSLRLSCAASGRTFE
a79
THNMG-
VISWNVDSTEYTDSVKG-
DNIPLSSDMSPTAAEYGY-
6




THNMGWFRRAPGKEREFVAVISWNVDSTEY

SEQ ID
SEQ ID
SEQ ID





TDSVKGRFTISRDNDKNMVYLQMNSLKPED

NO: 662
NO: 663
NO: 664





TGVYYCAADNIPLSSDMSPTAAEYGYWGQG









TQVTVSS-









SEQ ID









NO: 66










83
67
QVQLVESGGGLVQAGGSLRLSCAASGGTFR
a61
TRNMG-
AVSWNVDNKLYAGSVKG-
DNIPLSSDMRPTATEYDY-
6




TRNMGWFRRAPGKEREFVAAVSWNVDNKLY

SEQ ID
SEQ ID
SEQ ID





AGSVKGRFTISRDNGRNMVYLQMNSLKPED

NO: 665
NO: 666
NO: 667





TAVYYCAADNIPLSSDMRPTATEYDYWGQG









TQVTVSS-









SEQ ID









NO: 67










84
68
QLQLVESGGGLVQAGDSLRLSCAASGRSFR
a29
NYIMA-
AISWLDGTLYADSVED-
DRGPVRPVLAPDVDY-
8




NYIMAWYRQAPGKEREFLAAISWLDGTLYA

SEQ ID
SEQ ID
SEQ ID





DSVEDRFTISRDNPKNTVHLQMDSLKPEDT

NO: 668
NO: 669
NO: 670





AVYYCAADRGPVRPVLAPDVDYWGQGTQVT









VSS-









SEQ ID









NO: 68










85
69
QVQLVESGGGLVQPGGSLRLSCAASGFTFS
a76
NNFMS-
TISYFGDSTRYAESVKG-
ATSYDSIRSGS-
2




NNFMSWVRQAPGKGLEWVSTISYFGDSTRY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNEKNTLYLQMNNLKPED

NO: 671
NO: 672
NO: 673





TAVYYCAKATSYDSIRSGSRGRGTQVTVSS









-









SEQ ID









NO: 69










86
70
QVQLQESGGGLVQAGDSLRLSCAASGRSFR
a45
NYILA-
AISWLDGTLYADSVED-
DRGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLDGTLYA

SEQ ID
SEQ ID
SEQ ID





DSVEDRFTISRDNPKNTVHLQMDSLKPEDT

NO: 674
NO: 675
NO: 676





AVYYCAADRGPVRPVLAPDVDYWGQGTQVT









VSS-









SEQ ID









NO: 70










87
71
QVQLVESGGGLVQAGGSLRLSCAASGITFN
a66
DHTMA-
ARDWSDIITRYASSVKG-
REGGVVAGVRSGAPYDY-
13




DHTMAWFRQAPGKEREFVAARDWSDIITRY

SEQ ID
SEQ ID
SEQ ID





ASSVKGRFTISRDNAGNTGFLQMNSLRPED

NO: 677
NO: 678
NO: 679





TAVYYCAAREGGVVAGVRSGAPYDYWGRGT









QVTVSS-









SEQ ID









NO: 71










88
72
QVQLVESGGGLVQAGGSLRLSCAASGRTFR
a70
THNMG-
AISWNVDNTLYADSVKG-
DNIPLSSDVRATATEFGY-
6




THNMGWFRRAPGKEREFVAAISWNVDNTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNDRNMVYLQMNSLKPED

NO: 680
NO: 681
NO: 682





TAVYFCAADNIPLSSDVRATATEFGYWGQG









TRVTVSS-









SEQ ID









NO: 72










90
73
QVQLQESGGGLVQAGDSLRLSCAASGRSFR
a44
NYILA-
AISWLDGTFYANSVEG-
DRGPVRPVLAPDVDY-
8




NYILAWYRQAPGKEREFLAAISWLDGTFYA

SEQ ID
SEQ ID
SEQ ID





NSVEGRFTISRDNPKNTVHLQMDGLKPEDT

NO: 683
NO: 684
NO: 685





AVYYCAADRGPVRPVLAPDVDYWGQGTQVT









VAS-









SEQ ID









NO: 73










93
74
QVQLVESGGGLVQAGGSLRLSCAASGITFN
a65
DHTMA-
ARDWSDIITRYASSVKG-
REGGVVAGVRSGAPYDY-
13




DHTMAWFRQAPGKEREFVAARDWSDIITRY

SEQ ID
SEQ ID
SEQ ID





ASSVKGRFTISRDNAGNTGFLQMNSLRPED

NO: 686
NO: 687
NO: 688





TAVYYCAAREGGVVAGVRSGAPYDYWGQGT









QVTVSS-









SEQ ID









NO: 74










94
75
EVQLVESGGGLVQAGGSLGLSCAASGITFN
a4
DHTMA-
ARDWSDIITRYASSVKG-
REGGVVAGVRSGAPYDY-
13




DHTMAWFRQAPGKEREFVAARDWSDIITRY

SEQ ID
SEQ ID
SEQ ID





ASSVKGRFTISRDNAGNTGFLQMNSLRPED

NO: 689
NO: 690
NO: 691





TAVYYCAAREGGVVAGVRSGAPYDYWGQGT









QVTVSP-









SEQ ID









NO: 75










386
76
QVQLVESGGGLVQAGGSLRLSCAASGITFN
a64
DHTMA-
ARDWSDIITRYASSVKG-
REGGVVAGVRSGAPYDY-
13




DHTMAWFRQAPGKEREFVAARDWSDIITRY

SEQ ID
SEQ ID
SEQ ID





ASSVKGRFTISRDNAGNTGFLQMNSLRPED

NO: 692
NO: 693
NO: 694





TAVYYCAAREGGVVAGVRSGAPYDYWG*









GTQVTVSS-SEQ ID









NO: 76










392
77
EVQLVESGGGLVQAGGSLRLSCAASGITFN
a10
DHTMA-
ARDWSDIITRYASSVKG-
REGGVVAGVRSGAPYDY-
13




DHTMAWFRQAPGKEREFVAARDWSDIITRY

SEQ ID
SEQ ID
SEQ ID





ASSVKGRFTISRDNAGNTGFLQMNSLRPED

NO: 695
NO: 696
NO: 697





TAVYYCAAREGGVVAGVRSGAPYDYWGQGT









QVTVSS-









SEQ ID









NO: 77










400
78
EVQLVESGGGLVQAGGSLRLSCAASGITFN
a9
DHTMA-
ARDWSDIITRYAGSVKG-
REGGVVAGVRSGAPYDY-
13




DHTMAWFRQAPGKEREFVAARDWSDIITRY

SEQ ID
SEQ ID
SEQ ID





AGSVKGRFTISRDNAGNTGFLQMNSLRPED

NO: 698
NO: 699
NO: 700





TAVYYCAAREGGVVAGVRSGAPYDYWGQGT









QVTVSS-









SEQ ID









NO: 78










402
79
QVQLQESGGGLVQPGGSLRLSCAASGITFN
a50
DHTMA-
ARDWSDIITRYASSVKG-
REGGVVAGVRSGAPYDY-
13




DHTMAWFRQAPGKEREFVAARDWSDIITRY

SEQ ID
SEQ ID
SEQ ID





ASSVKGRFTISRDNAGNTGFLQMNSLRPED

NO: 701
NO: 702
NO: 703





TAVYYCAAREGGVVAGVRSGAPYDYWGQGT









QVTVSS-









SEQ ID









NO: 79










405
80
EVQLVESGGGLVQAGGSLRLSCAASGRTLY
a14
SSYGMA-
SISRYGTYTSYADSVKD-
YTYSGSFYSTVKTHRDEYQY-
15




SSYGMAWFRQAPGKERDFVGSISRYGTYTS

SEQ ID
SEQ ID
SEQ ID





YADSVKDRFTISRDNAKSTVYLQMNNTKPE

NO: 704
NO: 705
NO: 706





DTAVYYCAAYTYSGSFYSTVKTHRDEYQYW









GQGTQVTVSS-









SEQ ID









NO: 80










411
81
EVQLVESGGGSVQAGGSLRLSCEASGRTLF
a22
SSYGMG-
AISRFGTYTSYADPVKD-
YTYSGSFYSTVKTHHDEYRY-
15




SSYGMGWFRQAPGKEREFVGAISRFGTYTS

SEQ ID
SEQ ID
SEQ ID





YADPVKDRFTISRDNAKSTVYLQMNNTKPE

NO: 707
NO: 708
NO: 709





DTAVYYCAAYTYSGSFYSTVKTHHDEYRYW









GQGTQVTVSS-









SEQ ID









NO: 81










412
82
QLQLVESGGGLVQAGGSLRLSCAASGLTFD
a35
GYAIG-
YINGRDGSTFYADSVKG-
DRLGSRGAYVSSWWRSPDMDL-
4




GYAIGWFRQASGKEREGVSYINGRDGSTFY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFIISSDNAKNTVDLQMNSLNPDD

NO: 710
NO: 711
NO: 712





AAVYYCAVDRLGSRGAYVSSWWRSPDMDLW









GKGTLVTVSS-









SEQ ID









NO: 82










413
83
QVQLVESGGGLVQAGGSLRLSCAASGGTFR
a62
TRNMG-
AVSWSVDNKLYAGSVKG-
DNIPLSSDMRPTATEFGY-
6




TRNMGWFRRAPGKEREFVAAVSWSVDNKLY

SEQ ID
SEQ ID
SEQ ID





AGSVKGRFTISRDNGRNMVYLQMNSLKPED

NO: 713
NO: 714
NO: 715





TAVYYCAADNIPLSSDMRPTATEFGYWGQG









TRVTVSS-









SEQ ID









NO: 83










417
84
QLQLVESGGGLVQAGGSLRLSCAASGLTFD
a33
GYAIG-
YINGRDGSTFYADSVKG-
DRLGSRGAYVSTWWRPPDMDL-
4




GYAIGWFRQASGKEREGVSYINGRDGSTFY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFIISSDNAKNTVDLQMNSLKPDD

NO: 716
NO: 717
NO: 718





AAVYYCAVDRLGSRGAYVSTWWRPPDMDLW









GKGTLVTVSP-









SEQ ID









NO: 84










418
85
EVQLVESGGGLVQAGGSLRLSCAASGFTFD
a5
GYAVG-
YITGSDGVTYYIDSVKG-
DRLGSQGRYASSWWRAGDMDF-
4




GYAVGWFRQAPGKEPEGVSYITGSDGVTYY

SEQ ID
SEQ ID
SEQ ID





IDSVKGRFTISSDNAKRTVYLQMNTLKPED

NO: 719
NO: 720
NO: 721





TAVYYCAVDRLGSQGRYASSWWRAGDMDFW









GKGTLVTVSS-









SEQ ID









NO: 85










424
86
QVQLVESGGGLVQAGDSLRLSCAASGFNFG
a54
WHAMG-
TITWTGRDTYYADSVRG-
ARERATWAYSEDDCDY-
1




WHAMGWFRQAPGKEREFVATITWTGRDTYY

SEQ ID
SEQ ID
SEQ ID





ADSVRGRFTISKDNAKNTLFLQMSSLRPDD

NO: 722
NO: 723
NO: 724





TGVYYCAKARERATWAYSEDDCDYWGQGTQ









VTVSS-









SEQ ID









NO: 86










427
87
QVQLVESGGGLVQAGGSLRLSCAASGLTFD
a67
GYAIG-
YINGRDGSTFYTDSVKG-
DRLGSRGAYVSSWWRSPDMDL-
4




GYAIGWFRQASGKEREGVSYINGRDGSTFY

SEQ ID
SEQ ID
SEQ ID





TDSVKGRFIISSDNAKNTVDLQMNSLKPDD

NO: 725
NO: 726
NO: 727





AAVYYCAVDRLGSRGAYVSSWWRSPDMDLW









GKGTLVTVSS-









SEQ ID









NO: 87










428
88
QVQLVESGGGLVQAGDSLRLSCAASGFNFG
a53
WHAMG-
TITWTGRDTYYADSVRG-
ARERATWAYSEDDCDY-
1




WHAMGWFRQAPGKEREFVATITWTGRDTYY

SEQ ID
SEQ ID
SEQ ID





ADSVRGRFTISKDNAKDTLFLQMNSLRPDD

NO: 728
NO: 729
NO: 730





TGVYYCAKARERATWAYSEDDCDYWGQGTQ









VTVSS-









SEQ ID









NO: 88










430
89
EVQLVESGGGLVQAGDSLRLSCAASGFNFG
a1
WHAMG-
TITWTGRDTYYADSVRG-
ARERATWAYSEDDCDY-
1




WHAMGWFRQAPGKEREFVATITWTGRDTYY

SEQ ID
SEQ ID
SEQ ID





ADSVRGRFTISKDNAKDTLFLQMNSLRPDD

NO: 731
NO: 732
NO: 733





TGVYYCAKARERATWAYSEDDCDYWGQGTQ









VTVSS-









SEQ ID









NO: 89










433
90
QVQLVESGGGLAQAGASLRLSCAASGRTLY
a51
SSYGMA-
SISRYGTYTSYADSVKG-
YTYSGSFYSTVKTHRDEYQY-
15




SSYGMAWFRQAPGKERDFVGSISRYGTYTS

SEQ ID
SEQ ID
SEQ ID





YADSVKGRFTISRDNAKSTVYLQMNNTKPE

NO: 734
NO: 735
NO: 736





DTAVYYCAAYTYSGSFYSTVKTHRDEYQYW









GQGTQVTVSS-









SEQ ID









NO: 90










434
91
QLQLVESGGGLVQAGGSLRLSCAASGLTFD
a32
GYAIG-
YINGRDGSTFYADSVKG-
DRLGSRGAYVSSWWRSPDMDL-
4




GYAIGWFRQASGKEREGVSYINGRDGSTFY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFIISSDNAKNTVDLQMNSLKPDD

NO: 737
NO: 738
NO: 739





AAVYYCAVDRLGSRGAYVSSWWRSPDMDLW









GKGTLVTVSS-









SEQ ID









NO: 91










435
92
QVQLVESGGGSVQAGGSLRLSCEASGRTLF
a85
SSYGMG-
AISRFGTYTSYADPVKD-
YTYSGSFYSTVKTHHDEYRY-
15




SSYGMGWFRQAPGKEREFVGAISRFGTYTS

SEQ ID
SEQ ID
SEQ ID





YADPVKDRFTISRDNAKSTVYLQMNNTKPE

NO: 740
NO: 741
NO: 742





DTAVYYCAAYTYSGSFYSTVKTHHDEYRYW









GQGTQVTVSS-









SEQ ID









NO: 92










442
93
QLQLVESGGGLVQAGGSLRLSCVAHGLTFD
a40
GYAIG-
YITGSDGSRYYADSVKG-
DRLGSRGAYVSAWWRSSDMDL-
4




GYAIGWFRQAPGKELEGVSYITGSDGSRYY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISSDVAKNTVYLHMNNLKPDD

NO: 743
NO: 744
NO: 745





AARYYCAVDRLGSRGAYVSAWWRSSDMDLW









GKGTLVTVSS-









SEQ ID









NO: 93










445
94
EVQLVESGGGSVQAGGSLRLSCEASGPTLF
a21
SSYGMG-
AISRYGTYTSYADPVKD-
YTYSGSFYSTVKTHHDEYHY-
15




SSYGMGWFRQAPGKKEREFVGAISRYGTYT

SEQ ID
SEQ ID
SEQ ID





SYADPVKDRFTISRDNAKSTVYLQMNNTKP

NO: 746
NO: 747
NO: 748





EDTAVYYCAAYTYSGSFYSTVKTHHDEYHY









WGQGTQVTVSS-









SEQ ID









NO: 94










447
95
QLQLVESGGGLVQAGGSLRLSCTASGLTFE
a39
GYAIG-
YITGSDASTYYIDSVKG-
DRLGSRGGYASSWWRSGDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSDASTYY

SEQ ID
SEQ ID
SEQ ID





IDSVKGRFTISSDFAKSTVYLQMNNLKPED

NO: 749
NO: 750
NO: 751





TAVYYCAVDRLGSRGGYASSWWRSGDMDLW









GKGTLVTVSS-









SEQ ID









NO: 95










448
96
QLQLVESGGGLVQAGGSLRLSCAASGLTFD
a34
GYAIG-
YINGRDGSTFYADSVKG-
DRLGSRGAYVSTWWRSPDMDL-
4




GYAIGWFRQASGKEREGVSYINGRDGSTFY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFIISSDNAKNTVDLQMNSLKPDD

NO: 752
NO: 753
NO: 754





AAVYYCAVDRLGSRGAYVSTWWRSPDMDLW









GKGTLVTVSS-









SEQ ID









NO: 96










451
97
QLQLVESGGGLVQAGGSLRLSCAASGFTFD
a30
GYAIG-
YITGSDGSTYYADSVKG-
DRLGSRGAYVPIWWRSSDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSDGSTYY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISSNNAKNTVYLHMNSLKPDD

NO: 755
NO: 756
NO: 757





AAVYYCAIDRLGSRGAYVPIWWRSSDMDLW









GKGTLVTVSS-









SEQ ID









NO: 97










456
98
QLQLVESGGDLVQPGGSLRLSCTASGLTFD
a26
GYAIG-
YITGSNGSTYYIDSVKG-
DRLGSRGLYASSWWRSGDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSNGSTYY

SEQ ID
SEQ ID
SEQ ID





IDSVKGRFTISSDIAKSTVYLQMNTLKPED

NO: 758
NO: 759
NO: 760





TAVYYCAVDRLGSRGLYASSWWRSGDMDLW









GKGTLVTVSS-









SEQ ID









NO: 98










457
99
QLQLVESGGGLVQAGGSLRLSCTASGLTFD
a38
GYAIG-
YITGSDGSTYYIDSVKG-
DRLGSRGLYASSWWRSGDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSDGSTYY

SEQ ID
SEQ ID
SEQ ID





IDSVKGRFTISSDIAKSTVYLQMNSLKPED

NO: 761
NO: 762
NO: 763





TAVYYCAVDRLGSRGLYASSWWRSGDMDLW









GKGTLVTVSS-









SEQ ID









NO: 99










459
100
QLQLVESGGGLVQTGGSLRLSCSTSGFTFD
a41
GYAIG-
YITGSDGSTYYADSVKG-
DRLGSGGAYVPIWWRSSDMDL-
4




GYAIGWFRQAPGKEPEGVSYITGSDGSTYY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISSDNAKNTVYLHMNSLKPDD

NO: 764
NO: 765
NO: 766





AAVYYCAIDRLGSGGAYVPIWWRSSDMDLW









GKGTLVTVSS-









SEQ ID









NO: 100










460
101
QVQLVESGGGLVQAGGSLRLSCTASGLTFD
a72
GYAIG-
YITGSDGSTYYRDSVKG-
DRLGSRGLYASSWWRSGDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSDGSTYY

SEQ ID
SEQ ID
SEQ ID





RDSVKGRFTISSDNAKSTVYLQMNTLKPED

NO: 767
NO: 768
NO: 769





TAVYYCAVDRLGSRGLYASSWWRSGDMDLW









GKGTLVTVSS-









SEQ ID









NO: 101










461
102
EVQLVESGGGLVQAGGSLRLSCTASGLTFD
a16
GYAIG-
YITGSDGSTYYIDSVKG-
DRLGSRGLYASSWWRSGDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSDGSTYY

SEQ ID
SEQ ID
SEQ ID





IDSVKGRFTISSDIAKSTVYLQMNSLKPED

NO: 770
NO: 771
NO: 772





TAVYYCAVDRLGSRGLYASSWWRSGDMDLW









GKGTLVTVSS-









SEQ ID









NO: 102










467
103
QVQLVESGGGLVQAGGSLRLSCTASGLTFE
a73
GYAIG-
YITGSDASTYYIDSVKG-
DRLGSRGGYASSWWRSGDMDL-
4




GYAIGWFRQAPGKEREGVSYITGSDASTYY

SEQ ID
SEQ ID
SEQ ID





IDSVKGRFTISSDFAKSTVYLQMNNLKPED

NO: 773
NO: 774
NO: 775





TAVYYCAVDRLGSRGGYASSWWRSGDMDLW









GKGTLVTVSS-









SEQ ID









NO: 103










468
104
QVQLVESGGGSVQAGGSLRLSCEASGPTLF
a84
SSYGMG-
AISRYGTYTSYADPVKD-
YTYSGSFYSTVKTHHDEYHY-
15




SSYGMGWFRQAPGKKEREFVGAISRYGTYT

SEQ ID
SEQ ID
SEQ ID





SYADPVKDRLTISRGNAKSTVYLQMNNTKP

NO: 776
NO: 777
NO: 778





EDTAVYYCAAYTYSGSFYSTVKTHHDEYHY









WGQGTQVTVSS-









SEQ ID









NO: 104










469
105
EVQLVESGGGSVQAGGSLRLSCAASGRTLY
a20
SSYGMA-
SISRYGTYTSYADSVKD-
YTYSGSFYSTVKTHRDEYQY-
15




SSYGMAWFRQAPGKERDFVGSISRYGTYTS

SEQ ID
SEQ ID
SEQ ID





YADSVKDRFTISRDNAKSTVYLQMNNTKPE

NO: 779
NO: 780
NO: 781





DTAVYYCAAYTYSGSFYSTVKTHRDEYQYW









GQGTQVTVSS-









SEQ ID









NO: 105










470
106
QVQLVESGGGSVQAGGSLRLSCAASGRTLY
a83
SSYGMA-
SISRYGTYTSYADSVKD-
YTYSGSFYSAVKTHRDEYQY-
15




SSYGMAWFRQAPGKERDFVGSISRYGTYTS

SEQ ID
SEQ ID
SEQ ID





YADSVKDRFTISRDNAKSTVYLQMNNTKPE

NO: 782
NO: 783
NO: 784





DTAVYYCAAYTYSGSFYSAVKTHRDEYQYW









GQGTQVTVSS-









SEQ ID









NO: 106










475
107
EVQLVESGGGLVQAGDSLRLSCAASGFNFG
a2
WHAMG-
TITWTGRDTYYADSVRG-
ARERATWAYSEDDCDY-
1




WHAMGWFRQAPGKEREFVATITWTGRDTYY

SEQ ID
SEQ ID
SEQ ID





ADSVRGRFTISKDNAKNTLFLQMSSLRPDD

NO: 785
NO: 786
NO: 787





TGVYYCAKARERATWAYSEDDCDYWGQGTQ









VTVSS-









SEQ ID









NO: 107










476
108
QLQLVESGGGSVQAGGSLRLSCAASGRTLY
a42
SSYGMA-
SISRYGTYTSYADSVKD-
YTYSGSFYSTVKTHRDEYQY-
15




SSYGMAWFRQAPGKERDFVGSISRYGTYTS

SEQ ID
SEQ ID
SEQ ID





YADSVKDRFTISRDNAKSTVYLQMNNTKPE

NO: 788
NO: 789
NO: 790





DTAVYYCAAYTYSGSFYSTVKTHRDEYQYW









GQGTQVTVSS-









SEQ ID









NO: 108










477
109
QLQLVESGGGLVQAGDSLRLSCAASGFNFG
a27
WHAMG-
TITWTGRDTYYADSVRG-
ARERATWAYSEDDCDY-
1




WHAMGWFRQAPGKEREFVATITWTGRDTYY

SEQ ID
SEQ ID
SEQ ID





ADSVRGRFTISKDNAKDTLFLQMNSLRPDD

NO: 791
NO: 792
NO: 793





TGVYYCAKARERATWAYSEDDCDYWGQGTQ









VTVSS-









SEQ ID









NO: 109










478
110
QLQLVESGGGLVQAGGSLRLSCLASGLTFD
a37
GYAIG-
YITGSDGSSYYADSVKG-
DHLGSRGGYHSSWWRSSDMDL-
4




GYAIGWFRQAPGKELEGVSYITGSDGSSYY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISSDNAKNTVYLHMNSLKPDD

NO: 794
NO: 795
NO: 796





AAVYYCAIDHLGSRGGYHSSWWRSSDMDLW









GKGTLVTVSS-









SEQ ID









NO: 110





















TABLE 8








ascending


P.E. binding
P.E. Off-rate ranking SPR-



numbering


ELISA
mouse and human IL-2Ra
















Clone
Patent


hu
mo
Rmax-
hd(1/s)-
Rmax-
kd (1/s)-


nr.
clone ID
V ID
Clone ID
IL-2R
IL-2R
hu
hu
mo
mo





115
14
14-MP02C03
FJ1427 P035MP02C03
0.183
0.047
254.63
7.14E−04
3.85
N/A





141
15
15-MP02E06
FJ1427 P035MP02E06
0.581
0.048
88.25
1.69E−03
3.25
N/A





154
16
16-MP02B08
FJ1427_P035MP02B08
1.379
0.048
134.82
1.41E−04
2.5
N/A





163
17
17-MP02C09
FJ1427_P035MP02C09
1.205
0.047
99.83
8.48E−04
−4.22
N/A





211
18
18-MP03C03
FJ1427_P035MP03C03
0.405
0.048
124.58
5.94E−04
13.86
N/A





254
19
19-MP03F08
FJ1427_P035MP03F08
0.245
0.049
386.6
2.96E−04
5.01
N/A





270
20
20-MP03F10
FJ1427_P035MP03F10
0.497
0.048
51.52
5.95E−04
6.86
N/A





281
21
21-MP03A12
FJ1427 P035MP03A12
0.146
0.050
95.17
6.28E−03
7.01
N/A





286
22
22-MP03F12
FJ1427_P035MP03F12
0.781
0.048
166.58
4.19E−04
4.04
N/A





502
23
23-MP06F03
FJ1427_P035MP06F03
0.540
0.047
466.68
1.05E−03
28.66
1.93E−01





517
24
24-MP06E05
FJ1427 P035MP06E05
0.355
0.046
315.21
4.71E−04
9.06
N/A





518
25
25-MP06F05
FJ1427_P035MP06F05
0.159
0.047
200.28
8.36E−04
14.57
N/A





529
26
26-MP06A07
FJ1427_P035MP06A07
1.027
0.048
451.44
3.63E−04
45.6
8.17E−03





97
111

FJ1427_P035MP02A01
0.311
0.048
363.33
2.30E−04
3.09
N/A





98
112

FJ1427_P035MP02B01
0.271
0.048
374.77
1.19E−04
7.83
N/A





99
113

FJ1427 P035MP02C01
0.700
0.047
377.07
7.89E−04
5.4
N/A





100
114

FJ1427 P035MP02D01
0.573
0.048
379.16
1.67E−04
6.12
N/A





101
115

FJ1427_P035MP02E01
1.111
0.049
392.8
4.50E−05
4.79
N/A





102
116

FJ1427_P035MP02F01
0.469
0.048
355.79
3.00E−04
4.93
N/A





103
117

FJ1427_P035MP02G01
0.169
0.049
314.66
3.68E−04
6.13
N/A





104
118

FJ1427_P035MP02H01
0.487
0.051
65.91
1.06E−03
4.83
N/A





105
119

FJ1427_P035MP02A02
0.223
0.049
77.21
2.62E−03
1.29
N/A





106
120

FJ1427_P035MP02B02
0.343
0.048
355.19
1.64E−04
4.82
N/A





107
121

FJ1427_P035MP02C02
0.401
0.048
268.38
5.70E−04
2.26
N/A





108
122

FJ1427 P035MP02D02
0.831
0.048
101.36
5.29E−04
−0.13
N/A





109
123

FJ1427 P035MP02E02
0.254
0.049
324.42
2.69E−04
0.97
N/A





110
124

FJ1427 P035MP02F02
0.684
0.052
405.52
6.17E−04
7.09
N/A





111
125

FJ1427 P035MP02G02
0.177
0.049
349.11
1.12E−04
0.48
N/A





113
126

FJ1427_P035MP02A03
0.207
0.048
128.98
5.71E−04
1.39
N/A





114
127

FJ1427_P035MP02B03
0.383
0.048
335.78
2.15E−04
−0.68
N/A





116
128

FJ1427_P035MP02D03
0.286
0.048
154.36
2.26E−04
0.65
N/A





117
129

FJ1427_P035MP02E03
0.242
0.049
302.37
1.69E−04
2.37
N/A





118
130

FJ1427_P035MP02F03
0.212
0.048
40.26
8.28E−04
2.77
N/A





119
131

FJ1427_P035MP02G03
0.197
0.049
25.37
2.93E−03
−1.36
N/A





121
132

FJ1427 P035MP02A04
0.533
0.048
310.86
3.68E−04
−0.8
N/A





122
133

FJ1427_P035MP02B04
0.375
0.047
77.27
4.49E−04
5.08
N/A





123
134

FJ1427_P035MP02C04
0.424
0.047
30.61
2.55E−03
2.91
N/A





124
135

FJ1427_P035MP02D04
0.447
0.048
356.6
3.58E−04
1.79
N/A





125
136

FJ1427_P035MP02E04
0.255
0.048
57.74
7.16E−04
4.96
N/A





126
137

FJ1427 P035MP02F04
0.516
0.048
332.62
3.43E−04
1.14
N/A





127
138

FJ1427_P035MP02G04
0.549
0.048
337.42
2.95E−04
0.95
N/A





128
139

FJ1427 P035MP02H04
0.376
0.050
77.91
5.10E−04
−1.02
N/A





129
140

FJ1427_P035MP02A05
0.263
0.047
332.02
4.44E−04
−1.23
N/A





130
141

FJ1427_P035MP02B05
0.553
0.048
343.63
2.92E−04
2.11
N/A





131
142

FJ1427 P035MP02C05
0.237
0.047
342.81
3.46E−04
3.8
N/A





132
143

FJ1427 P035MP02D05
0.118
0.049
103.1
2.79E−03
4.1
N/A





133
144

FJ1427_P035MP02E05
0.856
0.048
116.74
3.10E−04
3.63
N/A





134
145

FJ1427_P035MP02F05
0.206
0.048
355.08
3.34E−04
1.96
N/A





135
146

FJ1427 P035MP02G05
0.567
0.048
299.07
4.32E−04
−1.49
N/A





136
147

FJ1427 P035MP02H05
0.192
0.049
277.67
2.68E−04
−0.33
N/A





137
148

FJ1427_P035MP02A06
2.552
0.048
84.18
4.84E−04
0.61
N/A





138
149

FJ1427_P035MP02B06
0.125
0.047
29.02
4.60E−03
4.29
N/A





139
150

FJ1427 P035MP02C06
0.351
0.047
53
2.17E−03
3.82
N/A





140
151

FJ1427_P035MP02D06
0.298
0.047
345.4
3.74E−04
2
N/A





142
152

FJ1427_P035MP02F06
0.214
0.047
349.21
2.03E−04
2.53
N/A





145
153

FJ1427 P035MP02A07
0.791
0.049
423.04
2.11E−03
24.52
2.58E−01





146
154

FJ1427 P035MP02B07
0.380
0.046
140.58
3.36E−04
14.48
N/A





147
155

FJ1427_P035MP02C07
0.731
0.046
47.68
2.31E−03
10.64
N/A





148
156

FJ1427_P035MP02D07
0.747
0.046
64.76
9.82E−04
9.64
N/A





149
157

FJ1427_P035MP02E07
0.541
0.071
421.92
5.77E−04
23.81
3.28E−01





150
158

FJ1427 P035MP02F07
0.848
0.055
428.4
1.64E−03
25
3.77E−01





151
159

FJ1427_P035MP02G07
0.636
0.079
426.77
2.59E−04
46.84
1.29E−01





153
160

FJ1427_P035MP02A08
1.789
0.069
407.46
1.98E−03
5.67
N/A





155
161

FJ1427 P035MP02C08
0.254
0.047
71.07
3.33E−03
−1.01
N/A





156
162

FJ1427 P035MP02D08
0.905
0.048
402.37
2.36E−03
−0.73
N/A





157
163

FJ1427_P035MP02E08
0.450
0.058
398.11
8.46E−04
4.56
N/A





158
164

FJ1427_P035MP02F08
0.614
0.048
154.09
1.53E−03
−2.21
N/A





159
165

FJ1427 P035MP02G08
0.441
0.055
419.38
1.78E−03
14.44
N/A





160
166

FJ1427_P035MP02H08
0.885
0.049
175.83
7.31E−04
−1.64
N/A





161
167

FJ1427_P035MP02A09
1.299
0.053
431.17
6.17E−04
31.11
3.11E−01





162
168

FJ1427_P035MP02B09
0.811
0.047
148.47
2.20E−04
−3.61
N/A





164
169

FJ1427 P035MP02D09
1.474
0.056
434.6
4.98E−04
11.47
N/A





166
170

FJ1427_P035MP02F09
1.468
0.051
422.26
1.07E−03
12.98
N/A





167
171

FJ1427_P035MP02G09
0.527
0.066
419.2
1.10E−03
4.38
N/A





168
172

FJ1427 P035MP02H09
1.510
0.049
172.49
1.41E−04
−1.81
N/A





169
173

FJ1427 P035MP02A10
0.359
0.047
109.6
2.26E−03
0.77
N/A





170
174

FJ1427_P035MP02B10
0.476
0.047
152.72
2.84E−04
1.29
N/A





171
175

FJ1427_P035MP02C10
1.286
0.050
426.67
5.21E−04
9.46
N/A





172
176

FJ1427 P035MP02D10
0.557
0.047
96.27
1.09E−03
1.99
N/A





173
177

FJ1427_P035MP02E10
1.389
0.047
80.54
6.15E−04
−3.94
N/A





174
178

FJ1427_P035MP02F10
0.595
0.051
400.6
7.88E−04
5.82
N/A





175
179

FJ1427_P035MP02G10
0.974
0.048
135.75
3.07E−04
−3.41
N/A





176
180

FJ1427 P035MP02H10
0.435
0.051
406.01
7.57E−04
7.4
N/A





177
181

FJ1427_P035MP02A11
0.891
0.047
94.42
2.93E−04
−1.82
N/A





179
182

FJ1427 P035MP02C11
1.570
0.060
440.23
4.33E−04
27.13
1.48E−01





180
183

FJ1427 P035MP02D11
0.463
0.047
102.96
8.33E−04
−0.99
N/A





181
184

FJ1427 P035MP02E11
0.529
0.048
83.65
1.88E−03
−0.86
N/A





182
185

FJ1427_P035MP02F11
0.330
0.047
71.84
6.86E−04
−0.4
N/A





183
186

FJ1427_P035MP02G11
0.429
0.049
49.11
7.08E−04
−0.23
N/A





184
187

FJ1427_P035MP02H11
0.795
0.049
49.64
7.73E−04
−0.61
N/A





185
188

FJ1427 P035MP02A12
0.182
0.047
38.14
4.51E−03
4.65
N/A





186
189

FJ1427 P035MP02B12
1.255
0.048
350.63
7.16E−04
3.42
N/A





187
190

FJ1427_P035MP02C12
0.616
0.047
73.65
1.06E−03
−2.68
N/A





188
191

FJ1427_P035MP02D12
0.658
0.046
50
1.44E−03
−1.26
N/A





189
192

FJ1427_P035MP02E12
0.108
0.048
47.66
1.15E−02
10.71
N/A





190
193

FJ1427 P035MP02F12
0.628
0.048
82.48
2.94E−03
2.63
N/A





194
194

FJ1427 P035MP03B01
0.203
0.050
272.11
1.10E−03
11.6
N/A





196
195

FJ1427 P035MP03D01
0.307
0.048
165.84
1.27E−03
9.91
N/A





197
196

FJ1427 P035MP03E01
0.329
0.049
219.11
3.23E−04
11.43
N/A





198
197

FJ1427_P035MP03F01
0.221
0.049
32.03
4.47E−03
9.35
N/A





199
198

FJ1427_P035MP03G01
0.192
0.049
78.54
5.80E−04
9.43
N/A





200
199

FJ1427_P035MP03H01
0.327
0.051
352.35
3.65E−04
8.93
N/A





201
200

FJ1427_P035MP03A02
0.280
0.052
56.22
1.04E−03
7.41
N/A





202
201

FJ1427_P035MP03B02
0.529
0.068
19.84
2.41E−03
5.45
N/A





203
202

FJ1427 P035MP03C02
0.828
0.048
26.23
1.59E−03
8.29
N/A





204
203

FJ1427 P035MP03D02
0.116
0.048
345.41
7.96E−04
7.24
N/A





205
204

FJ1427_P035MP03E02
0.488
0.050
50.08
1.24E−03
6.16
N/A





206
205

FJ1427_P035MP03F02
0.113
0.049
38.07
1.91E−03
8.64
N/A





207
206

FJ1427_P035MP03G02
0.684
0.049
46.9
7.54E−04
7.03
N/A





209
207

FJ1427 P035MP03A03
0.296
0.050
341.4
2.48E−04
12.27
N/A





210
208

FJ1427_P035MP03B03
0.310
0.048
261.48
4.99E−04
15.53
3.21E−01





212
209

FJ1427_P035MP03D03
0.265
0.048
90.37
5.38E−04
10.94
N/A





213
210

FJ1427_P035MP03E03
0.281
0.048
53.86
1.36E−03
16.76
3.46E−01





214
211

FJ1427_P035MP03F03
0.107
0.048
347.43
3.61E−04
18.35
3.07E−01





215
212

FJ1427_P035MP03G03
0.137
0.050
105.4
1.14E−03
10.69
N/A





217
213

FJ1427_P035MP03A04
0.305
0.051
318.54
3.73E−04
7.23
N/A





218
214

FJ1427 P035MP03B04
0.186
0.048
286.39
4.30E−04
9.54
N/A





219
215

FJ1427 P035MP03C04
0.395
0.048
141.52
3.07E−04
8.91
N/A





220
216

FJ1427 P035MP03D04
0.447
0.048
34.63
1.60E−03
9.03
N/A





221
217

FJ1427_P035MP03E04
0.220
0.048
346.71
2.53E−04
10.26
N/A





222
218

FJ1427_P035MP03F04
0.153
0.049
258.53
4.02E−04
8.16
N/A





224
219

FJ1427_P035MP03H04
0.262
0.050
96.55
4.31E−04
8.43
N/A





226
220

FJ1427_P035MP03B05
0.401
0.050
400.47
8.98E−04
12.18
N/A





229
221

FJ1427 P035MP03E05
0.230
0.049
90.97
5.26E−04
6.31
N/A





231
222

FJ1427_P035MP03G05
0.914
0.049
94.07
3.51E−04
5.31
N/A





232
223

FJ1427 P035MP03H05
0.316
0.049
31.63
7.72E−04
5.66
N/A





233
224

FJ1427 P035MP03A06
0.393
0.047
351.15
1.95E−04
4.74
N/A





235
225

FJ1427 P035MP03C06
1.208
0.057
421.82
6.58E−04
20.02
4.33E−01





237
226

FJ1427_P035MP03E06
0.299
0.048
99.96
1.16E−03
7.58
N/A





238
227

FJ1427_P035MP03F06
0.434
0.048
359.12
2.86E−04
4.66
N/A





241
228

FJ1427_P035MP03A07
0.307
0.049
150
2.81E−04
4.97
N/A





243
229

FJ1427_P035MP03C07
0.372
0.047
52.24
5.33E−04
4.01
N/A





244
230

FJ1427 P035MP03D07
0.209
0.049
372.01
2.63E−03
6.21
N/A





245
231

FJ1427 P035MP03E07
0.211
0.057
399.68
1.68E−03
11.86
N/A





246
232

FJ1427 P035MP03F07
0.156
0.048
69.86
1.26E−03
3
N/A





247
233

FJ1427_P035MP03G07
0.201
0.048
55.87
2.86E−03
6.36
N/A





248
234

FJ1427_P035MP03H07
0.649
0.053
374.89
1.72E−03
8.41
N/A





250
235

FJ1427 P035MP03B08
1.124
0.052
413.11
6.40E−04
19.7
4.75E−01





251
236

FJ1427 P035MP03C08
0.972
0.054
407.61
7.57E−04
9.86
N/A





253
237

FJ1427_P035MP03E08
1.112
0.048
165.75
1.49E−04
2.97
N/A





255
238

FJ1427_P035MP03G08
1.260
0.053
419.28
5.50E−04
23.88
4.72E−01





257
239

FJ1427_P035MP03A09
0.208
0.049
370.9
4.80E−04
3.69
N/A





258
240

FJ1427_P035MP03B09
0.467
0.046
401.99
2.02E−03
9.85
N/A





260
241

FJ1427 P035MP03D09
0.313
0.059
397.85
1.61E−03
18.79
5.40E−01





262
242

FJ1427 P035MP03F09
0.621
0.048
190.2
3.47E−04
4.39
N/A





263
243

FJ1427_P035MP03G09
0.843
0.054
404.02
7.13E−04
13.59
N/A





264
244

FJ1427_P035MP03H09
0.166
0.052
67.9
1.84E−03
6.07
N/A





265
245

FJ1427_P035MP03A10
0.983
0.071
413.1
6.36E−04
15.94
5.06E−01





266
246

FJ1427 P035MP03B10
0.286
0.050
377.33
7.07E−04
7.72
N/A





267
247

FJ1427 P035MP03C10
0.596
0.047
128.12
4.39E−04
2.47
N/A





268
248

FJ1427_P035MP03D10
0.118
0.047
33.15
1.20E−03
4.14
N/A





269
249

FJ1427_P035MP03E10
0.398
0.048
33.99
2.07E−03
8.56
N/A





271
250

FJ1427_P035MP03G10
0.260
0.048
40.5
1.65E−03
4.73
N/A





272
251

FJ1427 P035MP03H10
0.578
0.049
48
1.09E−03
5.22
N/A





274
252

FJ1427 P035MP03B11
0.987
0.052
410.36
6.22E−04
13.53
N/A





275
253

FJ1427 P035MP03C11
1.306
0.059
411.83
5.14E−04
19.27
4.94E−01





276
254

FJ1427 P035MP03D11
0.118
0.049
94.76
1.02E−03
3.73
N/A





277
255

FJ1427_P035MP03E11
0.624
0.050
389.61
1.48E−03
14.78
N/A





278
256

FJ1427 P035MP03F11
0.474
0.048
118.25
2.77E−04
4.2
N/A





279
257

FJ1427_P035MP03G11
0.380
0.057
391.93
1.22E−03
16.07
4.30E−01





282
258

FJ1427 P035MP03B12
0.202
0.049
375.75
1.25E−03
7.3
N/A





283
259

FJ1427 P035MP03C12
0.321
0.047
386.64
1.40E−03
3.41
N/A





481
260

FJ1427_P035MP06A01
0.348
0.047
474.12
5.61E−04
23.32
2.86E−01





482
261

FJ1427_P035MP06B01
0.521
0.046
476.12
2.10E−03
23.68
4.27E−01





483
262

FJ1427_P035MP06C01
1.342
0.047
472.96
5.44E−04
38.33
1.77E−01





484
263

FJ1427 P035MP06D01
1.101
0.064
480.76
3.10E−04
57.08
1.43E−01





487
264

FJ1427 P035MP06G01
0.557
0.049
381.48
1.43E−04
8.51
N/A





488
265

FJ1427_P035MP06H01
0.720
0.048
462.91
1.01E−03
19.52
2.78E−01





490
266

FJ1427_P035MP06B02
0.435
0.048
452.14
8.53E−04
13.8
N/A





491
267

FJ1427 P035MP06C02
0.799
0.048
463.95
4.55E−04
23.13
2.17E−01





493
268

FJ1427_P035MP06E02
0.148
0.047
452.54
1.49E−03
23.64
3.27E−01





494
269

FJ1427_P035MP06F02
0.278
0.047
448.3
3.70E−04
25.59
1.42E−01





495
270

FJ1427_P035MP06G02
0.677
0.047
467.81
6.19E−04
19.76
1.86E−01





496
271

FJ1427_P035MP06H02
0.371
0.050
452.86
1.71E−04
34.32
8.89E−02





497
272

FJ1427_P035MP06A03
0.148
0.047
428.04
8.82E−04
16.47
3.37E−01





500
273

FJ1427_P035MP06D03
1.020
0.047
471.16
2.90E−04
60.68
1.49E−01





501
274

FJ1427 P035MP06E03
0.570
0.048
462.36
7.45E−04
37.48
2.04E−01





503
275

FJ1427_P035MP06G03
0.267
0.048
458.78
5.86E−04
34.77
2.69E−01





504
276

FJ1427_P035MP06H03
0.239
0.050
455.35
1.96E−04
49.62
1.25E−01





506
277

FJ1427_P035MP06B04
0.935
0.048
465.64
1.88E−04
54.68
1.33E−01





507
278

FJ1427_P035MP06C04
0.187
0.046
446.33
8.40E−04
29.68
2.58E−01





508
279

FJ1427_P035MP06D04
0.189
0.047
452.08
6.21E−04
30.89
3.20E−01





509
280

FJ1427_P035MP06E04
0.974
0.053
466.26
1.98E−04
66.48
1.28E−01





510
281

FJ1427 P035MP06F04
1.328
0.049
469.61
4.87E−04
52.43
2.12E−01





511
282

FJ1427_P035MP06G04
0.213
0.047
447.95
6.41E−04
25.85
2.45E−01





512
283

FJ1427_P035MP06H04
1.025
0.048
454.77
2.45E−04
36.08
1.16E−01





513
284

FJ1427_P035MP06A05
0.149
0.046
439.59
1.18E−03
22.03
4.61E−01





514
285

FJ1427_P035MP06B05
0.617
0.047
457.12
8.71E−04
30.53
2.37E−01





515
286

FJ1427_P035MP06C05
0.580
0.046
439.77
7.51E−04
15.43
2.23E−01





516
287

FJ1427_P035MP06D05
0.304
0.053
454.57
4.83E−04
42.58
1.86E−01





520
288

FJ1427_P035MP06H05
0.590
0.048
418.52
8.85E−04
25.16
1.81E−01





521
289

FJ1427_P035MP06A06
0.300
0.046
431.32
6.31E−04
28.53
2.23E−01





522
290

FJ1427 P035MP06B06
1.418
0.046
440.19
3.24E−04
30.17
1.21E−01





523
291

FJ1427_P035MP06C06
0.255
0.048
436.72
6.98E−04
19.74
2.05E−01





524
292

FJ1427_P035MP06D06
0.289
0.047
426.31
2.90E−04
22.59
1.27E−01





525
293

FJ1427_P035MP06E06
1.453
0.047
443.23
2.41E−04
36.18
8.34E−02





526
294

FJ1427_P035MP06F06
0.224
0.048
427.72
9.35E−04
19.34
1.47E−01





530
295

FJ1427_P035MP06B07
1.015
0.046
447.21
2.85E−04
39.69
1.14E−01





532
296

FJ1427_P035MP06D07
0.957
0.049
449.94
3.46E−04
51.29
1.70E−01





537
297

FJ1427 P035MP06A08
0.440
0.047
413.69
4.97E−04
2.11
N/A





539
298

FJ1427_P035MP06C08
0.297
0.048
430.14
3.35E−04
33.41
1.48E−01





540
299

FJ1427 P035MP06D08
0.836
0.048
434.79
2.09E−04
38.84
1.22E−01





541
300

FJ1427_P035MP06E08
0.359
0.047
419.89
2.67E−04
25.86
1.28E−01





542
301

FJ1427_P035MP06F08
0.343
0.048
428
2.74E−04
45.72
1.31E−01





543
302

FJ1427_P035MP06G08
0.255
0.048
429.73
2.86E−04
42.71
1.31E−01





544
303

FJ1427_P035MP06H08
0.313
0.048
428.17
3.49E−04
37.37
1.18E−01





545
304

FJ1427_P035MP06A09
0.192
0.046
413.96
9.47E−04
19.81
1.98E−01





546
305

FJ1427_P035MP06B09
0.329
0.066
424.36
2.25E−03
89.43
1.64E−02





547
306

FJ1427 P035MP06C09
0.690
0.046
436.33
1.01E−03
29.27
2.45E−01





550
307

FJ1427_P035MP06F09
0.564
0.046
383.12
1.47E−04
8.59
N/A





551
308

FJ1427 P035MP06G09
0.202
0.049
419.96
7.26E−04
34.74
1.58E−01





554
309

FJ1427_P035MP06B10
0.264
0.058
418.07
2.23E−03
80.94
6.01E−02





555
310

FJ1427_P035MP06C10
0.358
0.050
422.9
2.08E−04
53.92
1.55E−01





559
311

FJ1427_P035MP06G10
1.004
0.047
432.87
2.61E−04
48.85
1.42E−01





573
312

FJ1427 P035MP06E12
0.271
0.047
403.99
4.96E−04
19.27
1.56E−01


















doorlopende









nummering









Patent





CDR3


Clone
clone

VH



Family


nr.
ID
VH
ID
CDR1
CDR2
CDR3
ID





115
14
EVQLVESGGGLVQTGGSLRLSCAASGSQFI
b51
NDVMG-
DMDDTGSTEYADSVKG-
GLWIKGRHFDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTEYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 505
NO: 506
NO: 507





GVYYCKAGLWIKGRHFDYWGQGTQVTVSS-









SEQ ID









NO: 14










141
15
QVQLVESGGGSVQPGGSLRLSCAASGFTFS
b176
NYAMS-
SITGFGRGTDYADSVKG-
YSSSTYYPPTPARGRDY-
38




NYAMSWVRQAPGKGLEWVASITGFGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAEDTLYLQMNSLKPED

NO: 508
NO: 509
NO: 510





TAVYYCAKYSSSTYYPPTPARGRDYRGQGT









QVTVSS-









SEQ ID









NO: 15










154
16
EVQLVESGGGLVQAGGSLRLSCAASGRAIE
b19
NYPVG-
AITWISGSTLYADSVKG-
ALKTITRGQNDYSY-
1




NYPVGWFRQAPGKEREFVAAITWISGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTVYLQMSSLKPED

NO: 511
NO: 512
NO: 513





TALYYCAAALKTITRGQNDYSYWGQGTQVT









VSS-









SEQ ID









NO: 16










163
17
QVQLQESGGGLVQAGGSLRLSCVASGSVSS
b81
INGMA-
AISRVGNTAYGDSVKG-
DSWGGDDY-
12




INGMAWYRQGADNQRVLVAAISRVGNTAYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTISRQNARNTVYLQMNSLKPEDT

NO: 514
NO: 515
NO: 516





AVYYCNADSWGGDDYWGQGTQVTVSS-









SEQ ID









NO: 17










211
18
QVQLVESGGGLVQPGGSLRLSCAISGGTLD
b160
SYGIG-
CMSRSDDRTYYADSVKG-
VDAYGCSLVQPTTYDF-
34




SYGIGWVRQAPGKQREGVSCMSRSDDRTYY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISKDSAKNTVYLQMTSLKPED

NO: 517
NO: 518
NO: 519





TAVYYCAAVDAYGCSLVQPTTYDFWGLGTQ









VTVSS-









SEQ ID









NO: 18










254
19
EVQLVESGGGLVQTGGSLRLSCAASGGTFS
b50
RDAMA-
LISWSGATTNYADSVKG-
DRRPMGSRSYFEPTEYDD-
9




RDAMAWFRQVPGKEREFVALISWSGATTNY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFAISRDNGKNTVYLQMNRLKPAD

NO: 520
NO: 521
NO: 522





TAIYYCAADRRPMGSRSYFEPTEYDDWGQG









TQVTVSS-









SEQ ID









NO: 19










270
20
EVQLVESGGGLVQAGGSLRLSCAASGRDFS
b20
SYAMG-
AITWTKRSTDFPDSVKG-
ARGLPVTPLGDIIY-
3




SYAMGWFRQAPGKEREFWVAITWTKRSTDF

SEQ ID
SEQ ID
SEQ ID





PDSVKGRFTISRDNAKNTVYLDMNSLKPED

NO: 523
NO: 524
NO: 525





TAVYYCASARGLPVTPLGDIIYWGEGTLVT









VSS-









SEQ ID









NO: 20










281
21
EVQLVESGGGLVQAGGSLRLSCAASGRTFS
b23
INAMG-
AISRSGGSTVYVDGVKG-
TMAVGWTTRWRTADFDS-
32




INAMGWFRQAPGKEREFVAAISRSGGSTVY

SEQ ID
SEQ ID
SEQ ID





VDGVKGRFTISRDNAKNTVYLQMNSLEPED

NO: 526
NO: 527
NO: 528





TAVYYCAATMAVGWTTRWRTADFDSWGQGT









QVTVSS-









SEQ ID









NO: 21










286
22
EVQLVESGGGLVQAGGSLRLSCAASGSIFS
b30
INAMA-
AISRDGGASVYRDSVKG-
TRAIGWTARWITTDFDF-
33




INAMAWFRQVPGMERELVAAISRDGGASVY

SEQ ID
SEQ ID
SEQ ID





RDSVKGRFTISRDNSKNTVYLQMNTLKPED

NO: 529
NO: 530
NO: 531





TAIYVCAATRAIGWTARWITTDFDFWGQGT









QVTVSS-









SEQ ID









NO: 22










502
23
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b132
RYTMA-
SVTDSGRTTDYVHSVKG-
NTDYFQIKSLDANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VHSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 532
NO: 533
NO: 534





TAVYYCAANTDYFQIKSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 23










517
24
QVQLVESGGELVQGGASLRLSCAASGRTFS
b86
NANMA-
LITWSSGSTLYADSVKG-
DGPPYSGTYYRYDTYDY-
5




NANMAWFRQAPEKEREFVALITWSSGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNARKMVYLQMNSLKPED

NO: 535
NO: 536
NO: 537





TAVYYCAADGPPYSGTYYRYDTYDYWGQGT









QVTVSS-









SEQ ID









NO: 24










518
25
QVQLVESGGGLVQTGDSLRLSCAASGRSLD
b162
TTYIA-
YISPRFSHTWYADSVKG-
REHSGSTAWEHYDH-
24




TTYIAWFRQAPGKERDFLAYISPRFSHTWY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRNIAKRTVDLEMNSLEPED

NO: 538
NO: 539
NO: 540





TAVYYCAAREHSGSTAWEHYDHWGQGTQVT









VSS-









SEQ ID









NO: 25










529
26
QVQLQESGGGLVQAGGSLRLSCAASGDVFV
b76
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 541
NO: 542
NO: 543





TAIYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 26










97
111
QVQLVESGGGLVQTGGSLRLSCVVSGSHFI
b170
SDVMG-
DMADGGSAKYGDSVKG-
GLWITGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTVYLQMSSLNPEDT

NO: 798
NO: 799
NO: 800





GVYYCKAGLWITGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 111










98
112
QVQLVESGGGLVQTGGSLRLSCAASGSQFI
b164
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHFDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 801
NO: 802
NO: 803





GVYYCKAGLWIKGRHFDYWGQGTQVTVSS-









SEQ ID









NO: 112










99
113
QVQLVESGGGLVQPGGSLGLSCAASGFTFD
b151
NYAMS-
SITGAGRGTHYADSVKG-
YSSSTYYPPTPARGTDY-
38




NYAMSWVRQAPGKGLEWVSSITGAGRGTHY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 804
NO: 805
NO: 806





TAVYYCAKYSSSTYYPPTPARGTDYRGPGT









QVTVSS-









SEQ ID









NO: 113










100
114
QVQLQESGGGLVQTGGSLRLSCAASGSQFI
b84
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHSDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 807
NO: 808
NO: 809





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 114










101
115
EVQLVESGGGLVQIGGSLRLSCAASGRTFS
b46
SITMA-
GINFSGTRTFYADSVKG-
SPRGFYGPGNALYDY-
29




SITMAYFRQVPGKEREWVAGINFSGTRTFY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFLISRDDAKSTMYLQMNSLKPED

NO: 810
NO: 811
NO: 812





TAVYYCAASPRGFYGPGNALYDYWGQGTQV









TVSS-









SEQ ID









NO: 115










102
116
EVQLVESGGGLVQTGGSLRLSCAVSGSRFI
b57
SDVMG-
DMADGGSAKYADSVKG-
GLWIAGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSILRDSVKNTVYLQMSSLKPEDT

NO: 813
NO: 814
NO: 815





GIYYCKAGLWIAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 116










103
117
QVQLVESGGGLVQTGGSLRLSCAVSGSRFI
b168
SDVMG-
DMADGGSAKYADSVKG-
GLWIAGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSILRDSAKNTVYLQMSSLKPEDT

NO: 816
NO: 817
NO: 818





GIYYCKAGLWIAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 117










104
118
QVQLVESGGGLVQPGGSLGLSCAASGFTFD
b151
NYAMS-
SITGAGRGTHYADSVKG-
YSSSTYYPPTPARGTDY-
38




NYAMSWVRQAPGKGLEWVSSITGAGRGTHY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 819
NO: 820
NO: 821





TAVYYCAKYSSSTYYPPTPARGTDYRGPGT









QVTVSS-









SEQ ID









NO: 118










105
119
QVQLVESGGGLVQPGGSLRLSCAASGFTFD
b154
NYAMT-
SITGAGRGTHYADSVKG-
YSSSTYYPTTPVRGTDY-
38




NYAMTWVRQAPGKGLEWVSSITGAGRGTHY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQVNSLKPED

NO: 822
NO: 823
NO: 824





TAVYYCARYSSSTYYPTTPVRGTDYRGQGT









QVTVSS-









SEQ ID









NO: 119










106
120
EVQLVESGGTLVQTGGSLRLSCVVSGSHFI
b64
SDVMG-
DMADGGSAKYGDSVKG-
GLWIKGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTIVRDSVKNTVYLQMSSLNPEDT

NO: 825
NO: 826
NO: 827





GVYYCKAGLWIKGRHSDYWGQGTQVTVTS-









SEQ ID









NO: 120










107
121
QVQLVESGGGLVQPGGSLRLSCAASGSRFV
b159
SDFMG-
DMADGGSARYGDSVKG-
GLWIAGRHFDY-
14




SDFMGWYRQVPGKQRELVADMADGGSARYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDNMNSTAFLQMSSLKPEDT

NO: 828
NO: 829
NO: 830





GVYYCKAGLWIAGRHFDYWGQGTQVTVSS-









SEQ ID









NO: 121










108
122
QVQLVESGGGLVQVGGSLSVSCAASGRSFD
b175
SITMA-
GINFSGSRTAYGDSVKG-
SPRGFYGPGHALYDY-
29




SITMAYFRQAPGNEREFIAGINFSGSRTAY

SEQ ID
SEQ ID
SEQ ID





GDSVKGRFTISRDNAKNTVFLQMNSLNPED

NO: 831
NO: 832
NO: 833





TAVYYCAASPRGFYGPGHALYDYWGQGTQV









TVSS-









SEQ ID









NO: 122










109
123
EVQLVESGGGLVQTGGSLRLSCAASGSQFI
b53
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHSDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 834
NO: 835
NO: 836





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 123










110
124
EVQLVESGGGLVQAGGSLRLACALSGDVFV
b8
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 837
NO: 838
NO: 839





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 124










111
125
QVQLVESGGGLVQPGGSLRLSCAASGSHFI
b158
SDVMG-
DMADGGSVKYGDSVKG-
GLWITGRHFDY-
14




SDVMGWYRQVPGKQRELVADMADGGSVKYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTVTLQMSSLNPEDT

NO: 840
NO: 841
NO: 842





GVYYCKAGLWITGRHFDYWGQGIQVTVTS-









SEQ ID









NO: 125










113
126
QVQLVESGGGLVQPGGSLRLSCAASGFTFS
b157
NYAMS-
SITGAGRGTYYAESVKG-
YDSSTFYPPTPARGIAD-
36




NYAMSWVRQAPGKGLEWVSSITGAGRGTYY

SEQ ID
SEQ ID
SEQ ID





AESVKGRFTISRDNDKNTLYLQMNSLKPED

NO: 843
NO: 844
NO: 845





TAVYYCAKYDSSTFYPPTPARGIADRGQGT









RVTVSS-









SEQ ID









NO: 126










114
127
QVQLVESGGGLVQTGGSLRLSCAASGSRFV
b166
SDFMG-
DMADGGSARYGDSVKG-
GLWIAGRHFDY-
14




SDFMGWYRQVPGKQRELVADMADGGSARYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSGNSTAYLQMSSLKPEDT

NO: 846
NO: 847
NO: 848





GVYYCKAGLWIAGRHFDYWGQGTQVTVSS-









SEQ ID









NO: 127










116
128
QVQLVESGGGLVQAGGPLRLSCAASGGTFS
b91
SYAMG-
ATTRGGGRTMYAVSTEG-
MTSYYSGTYYPDSSDFDI-
18




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNAKNTVYLLMNSLKPED

NO: 849
NO: 850
NO: 851





TAVYYCAAMTSYYSGTYYPDSSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 128










117
129
EVQLVESGGGSVQTGGSLRLSCVVSGSHFI
b62
SDVMG-
DMADGGSVKYGDSVKG-
GLWITGRHFDY-
14




SDVMGWYRQVPGKQRELVADMADGGSVKYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTVTLQMSSLNPEDT

NO: 852
NO: 853
NO: 854





GVYYCKAGLWITGRHFDYWGQGTQVTVTS-









SEQ ID









NO: 129










118
130
EVQLVESGGGLVQAGGSLRLSCAASGGTFS
b17
SYAMG-
ATTRGGGRTMYAVSTEG-
MTSYYSGTYYPDSSDFDI-
18




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNAKNTVYLLMNSLKPED

NO: 855
NO: 856
NO: 857





TAVYYCAAMTSYYSGTYYPDSSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 130










119
131
QVQLVESGGGLVQPGGSLGLSCAASGFTFS
b152
NYAMS-
SITGFGRGTDYADSVKG-
YSSSTYYPPTPARGRDY-
38




NYAMSWVRQAPGKGLEWVASITGFGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTVSRDNAKNTLYLQMNSLKPED

NO: 858
NO: 859
NO: 860





TAVYYCAKYSSSTYYPPTPARGRDYRGQGT









QVTVSS-









SEQ ID









NO: 131










121
132
EVQLVESGGGLVQTGGSLRLSCTASGSQFI
b58
NDVMG-
DMDDTGSTKYADSVNG-
GLWIKGRHSDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVNGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 861
NO: 862
NO: 863





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 132










122
133
EVQLVESGGGLVQAGGSLGLSCAASGGTFS
b7
SYAMG-
ATTRGGGRTMYAVSTEG-
MTSYYSGTYYPDSSDFDI-
18




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNAKNTVYLQMNSLKPKD

NO: 864
NO: 865
NO: 866





TAIYYCAAMTSYYSGTYYPDSSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 133










123
134
QVQLVESGGGLVQPGGSLELSCAASGFTFS
b150
NYAMS-
SITGFGRGTDYADSVKG-
YSSSTYYPPTPARGRDY-
38




NYAMSWVRQAPGKGLEWVSSITGFGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNDKNTLYLQMNSLKPED

NO: 867
NO: 868
NO: 869





TAVYYCARYSSSTYYPPTPARGRDYRGQGT









QVTVSS-









SEQ ID









NO: 134










124
135
QVQLVESGGGLVQTGGSLRLSCAVSGSRFI
b169
SDVMG-
DMADGGSAKYADSVKG-
GLWIAGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSILRDSVKNTVYLQMSSLKPEDT

NO: 870
NO: 871
NO: 872





GIYYCKAGLWIAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 135










125
136
EVQLVESGGGLVQAGGSLRLSCAASGGTFS
b18
SYAMG-
ATTRGGGRTMYAVSTEG-
MTSYYSGTYYPDSSDFDI-
18




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNAKNTVYLQMNSLKPKD

NO: 873
NO: 874
NO: 875





TAIYYCAAMTSYYSGTYYPDSSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 136










126
137
EVQLVESGGGLVQTGGSLRLSCAASGSQFI
b52
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHFDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 876
NO: 877
NO: 878





GVYYCKAGLWIKGRHFDYWGQGTQVTVSS-









SEQ ID









NO: 137










127
138
QVQLVESGGGLVQAGGSLRLSCAASGSQFI
b130
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHFDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 879
NO: 880
NO: 881





GVYYCKAGLWIKGRHFDYWGQGTQVTVSS-









SEQ ID









NO: 138










128
139
QVQLVESGGGLVQAGDSLRLSCATSGLTFS
b90
SYALG-
ATTRGGGRTMYAVSTEG-
MTSYYSGTYYPDSSDFDI-
18




SYALGWFRQAPGKKREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNDKNTVYLLMNSLKPKD

NO: 882
NO: 883
NO: 884





TAVYYCAAMTSYYSGTYYPDSSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 139










129
140
EVQLVESGGGLVQTGGSLRLSCAASGSQFI
b53
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHSDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 885
NO: 886
NO: 887





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 140










130
141
EVQLVESGGGLVQTGGSLRLSCAASGSQFI
b52
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHFDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 888
NO: 889
NO: 890





GVYYCKAGLWIKGRHFDYWGQGTQVTVSS-









SEQ ID









NO: 141










131
142
QVQLVESGGGLVQTGGSLRLSCAVSGSRFI
b169
SDVMG-
DMADGGSAKYADSVKG-
GLWIAGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSILRDSVKNTVYLQMSSLKPEDT

NO: 891
NO: 892
NO: 893





GIYYCKAGLWIAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 142










132
143
QVQLVESGGGLVQPGESLGLSCAASGFTFS
b149
NYAMS-
SITGAGRGTDYADSVKG-
YSSGTYYPPTPVRGTDY-
38




NYAMSWVRQAPGKGLEWVSSITGAGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 894
NO: 895
NO: 896





TAVYYCAKYSSGTYYPPTPVRGTDYRGQGT









QVTVSS-









SEQ ID









NO: 143










133
144
EVQLVESGGGLVQIGGSLRLSCAASGRTFS
b45
SITMA-
NFSGTRTFYADSVKG-
SPRGFYGPGNALYDY-
29




SITMAYFRQVPGKEHEWVAGINFSGTRTFY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFLISRDDAKSTMYLQMNSLKPED

NO: 897
NO: 898
NO: 899





TAVYYCAASPRGFYGPGNALYDYWGQGTQV









TVSS-









SEQ ID









NO: 144










134
145
EVQLVESGGGLVQTGGSLRLSCAVSGSRFI
b57
SDVMG-
DMADGGSAKYADSVKG-
GLWIAGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSILRDSVKNTVYLQMSSLKPEDT

NO: 900
NO: 901
NO: 902





GIYYCKAGLWIAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 145










135
146
EVQLVESGGGLVQTGGSLRLSCAASGSQFI
b54
NDVTG-
DMDDTGSTKYADSVKG-
GLWIKGRHSDY-
14




NDVTGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 903
NO: 904
NO: 905





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 146










136
147
EVQLVESGGGSVQTGGSLRLSCVVSGSHFI
b61
SDVMG-
DMADGGSAKYGDSVKG-
GLWITGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTVTLQMSSLNPEDT

NO: 906
NO: 907
NO: 908





GVYYCKAGLWITGRHSDYWGQGTQVTVTS-









SEQ ID









NO: 147










137
148
QVQLQESGGGLVQAGGSLRLSCAASGGTFS
b78
SYAMG-
ATTRGGGRTMYAVSTEG-
MTSYYSGTYYPDSSDFDI-
18




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNDKNTVYLLMNSLKPKD

NO: 909
NO: 910
NO: 911





TAVYYCAAMTSYYSGTYYPDSSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 148










138
149
QVQLVESGGGLVQPGESLGLSCAASGFTFS
b149
NYAMS-
SITGAGRGTDYADSVKG-
YSSGTYYPPTPVRGTDY-
38




NYAMSWVRQAPGKGLEWVSSITGAGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 912
NO: 913
NO: 914





TAVYYCAKYSSGTYYPPTPVRGTDYRGQGT









QVTVSS-









SEQ ID









NO: 149










139
150
QLQLVESGGGLVQPGGSLELSCAASGFTFS
b68
NYAMS-
SITGFGRGTDYADSVKG-
YSSSTYYPPTPARGRDY-
38




NYAMSWVRQAPGKGLEWVSSITGFGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 915
NO: 916
NO: 917





TAVYYCARYSSSTYYPPTPARGRDYRGQGT









QVTVSS-









SEQ ID









NO: 150










140
151
EVQLVESGGGLVQTGGSLRLSCAASGSQFI
b53
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHSDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 918
NO: 919
NO: 920





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 151










142
152
EVQLVESGGGLVQTGGSLRLSCAASGSRFI
b55
SDFMG-
DMADGGSARYGDSVKG-
GLWIAGRHFDY-
14




SDFMGWYRQVPGKQRELVADMADGGSARYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRESGNATAYLQMSSLKPEDT

NO: 921
NO: 922
NO: 923





GVYYCKAGLWIAGRHFDYWGQGTQVTVSS-









SEQ ID









NO: 152










145
153
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b137
RYTMA-
TVTDSGRTTEYVDSVKG-
NTDYFRIRSLDANT-
20




RYTMAWFRQAPGKEREFVATVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 924
NO: 925
NO: 926





TAVYYCAANTDYFRIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 153










146
154
EVQLVESGGGLVEAGGSLRLSCAASGRAFN
b1
NFPMG-
AITWISGSTLYADSVKG-
ALKTITRGQHDYTY-
1




NFPMGWFRQAPGKEREFVAAITWISGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDKSKNTVYLQMSGLKPED

NO: 927
NO: 928
NO: 929





TALYYCAAALKTITRGQHDYTYWGQGTQVT









VSS-









SEQ ID









NO: 154










147
155
QVQLVESGGGLVQAGGSLRLSCAASGRTFS
b120
INTMG-
AISRSGDSTVYVDSVKG-
TVAVGWTTRWSTIDFDS-
30




INTMGWFRQAPGKEREFVAAISRSGDSTVY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTISRDNAKNTVYLQMNTLKPED

NO: 930
NO: 931
NO: 932





TAVYYCATTVAVGWTTRWSTIDFDSWGQGT









QVTVSS-









SEQ ID









NO: 155










148
156
EVQLVESGGGLVQAGGSLRLSCAASGRSLS
b21
TTEMG-
AITWSGRGTMYAESVE-
ARRGRAAVRSEGGYDF-
4




TTEMGWFRQAPGKEREFVAAITWSGRGTMY

SEQ ID
SEQ ID
SEQ ID





AESVEGRFAVSRENAKNTVYLQMNSLKPED

NO: 933
NO: 934
NO: 935





TAIYYCAAARRGRAAVRSEGGYDFWGQGTQ









VTVSS-









SEQ ID









NO: 156










149
157
QVQLVESGGGLVQAGGSLGLACALSGDVFV
b93
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 936
NO: 937
NO: 938





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 157










150
158
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b101
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIRSLDANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 939
NO: 940
NO: 941





TARYYCAANTDYFQIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 158










151
159
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b135
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 942
NO: 943
NO: 944





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 159










153
160
EVQLVESGGGLVQAGGSLRLSCTVSGDVFV
b36
RYTMA-
TVTDSGRTTEYVDSVKG-
NTDYFRIRSLDANT-
20




RYTMAWFRQAPGKEREFVATVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 945
NO: 946
NO: 947





TAVYYCAANTDYFRIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 160










155
161
EVQLVESGGGLVQAGGSLRLSCAASGSTFS
b31
RQPMY-
AITWSGRGTLYADSVEG-
GPYGDAAYRHGRIDS-
15




RQPMYWFRQAPGKEREFVAAITWSGRGTLY

SEQ ID
SEQ ID
SEQ ID





ADSVEGRFTISRDNAKNTVYLQMNSLRPDD

NO: 948
NO: 949
NO: 950





TAAYYCAAGPYGDAAYRHGRIDSWGQGTQV









TVSS-









SEQ ID









NO: 161










156
162
EVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b40
RYTMA-
SITDSGRTTEYVDSVKG-
NTDYFRIRSLDANT-
20




RYTMAWFRQAPGKEREFVISITDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 951
NO: 952
NO: 953





TAVYYCAANTDYFRIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 162










157
163
EVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b39
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 954
NO: 955
NO: 956





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 163










158
164
QVQLVESGGGLVQAGGSLRLSCAASGSIFS
b128
LNTMG-
AISRSGGSATYGDSVKG-
SAAVGWTTRWSTIDFDS-
28




LNTMGWFRQAPGKEREFVAAISRSGGSATY

SEQ ID
SEQ ID
SEQ ID





GDSVKGRFTISTNNAKTTVYLQMNSLKPDD

NO: 957
NO: 958
NO: 959





TAVYSCAASAAVGWTTRWSTIDFDSWGQGT









QVTVSS-









SEQ ID









NO: 164










159
165
QVQLVESGGGLVQAGGSLRLSCTVSGDVFV
b141
RYTMA-
SVTDSGRTTEYVHSVRG-
NTDYFRIRSLDANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VHSVRGRFTVSRDNAKNTVYLQMNNLKPED

NO: 960
NO: 961
NO: 962





TAVYYCAANTDYFRIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 165










160
166
EVQLVESGGGLVQAGDSLRISCAASGRIFS
b3
NYAMG-
THLTSTTHYADSVKG-
DRNIKITADWSY-
8




NYAMGWFRQAPGKETEFVAGITHLTSTTHY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTMHLQMNNLKPED

NO: 963
NO: 964
NO: 965





TALYYCAADRNIKITADWSYWGQGTQVTVA









S-









SEQ ID









NO: 166










161
167
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b133
RYTMA-
SVTDSGRTTEYVDSAKG-
NTDYFQIRSLRANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSAKGRFTVSRDNAKNTVYLQMNSLKPED

NO: 966
NO: 967
NO: 968





TAVYYCAANTDYFQIRSLRANTWGQGTQVT









VSS-









SEQ ID









NO: 167










162
168
EVQLVESGGGLVQAGGSLRLSCAASGRTFS
b28
TTEMG-
AITWTGRGTMYAESVEG-
ARRGRAAVRSEGGYDF-
4




TTEMGWFRQAPGKEREFVAAITWTGRGTMY

SEQ ID
SEQ ID
SEQ ID





AESVEGRFTISRENAKNMVYLQMNSLKPED

NO: 969
NO: 970
NO: 971





TAIYYCAAARRGRAAVRSEGGYDFWGQGTQ









VTVSS-









SEQ ID









NO: 168










164
169
QVQLVESGGGLVQAGGSLRLACALSGDVFV
b96
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 972
NO: 973
NO: 974





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 169










166
170
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b14
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIRSLEFNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 975
NO: 976
NO: 977





TAVYYCAANTDYFQIRSLEFNTWGQGTQVT









VSS-









SEQ ID









NO: 170










167
171
QVQLVESGGGLVQAGGSLRLSCTVSGDVFV
b140
RYTMA-
LVTDSGRTTEYVDSVKG-
NTDYFRIRSLDANT-
20




RYTMAWFRQAPGKEREFVALVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 978
NO: 979
NO: 980





TAVYYCAANTDYFRIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 171










168
172
QLQLVESGGGLVQPGGSLRLSCAAAGRAIE
b69
NYPVG-
AITWISGSTLYADSVKG-
ALKTITRGQNDYSY-
1




NYPVGWFRRAPGKEREFVAAITWISGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTVYLQMSSLKPED

NO: 981
NO: 982
NO: 983





TALYYCAAALKTITRGQNDYSYWGQGTQVT









VSS-









SEQ ID









NO: 172










169
173
QLQLVESGGGLVQTGTSLRLSCAASGHTSR
b71
INAMG-
AISRNGGSTVYVDSVKG-
TDAVGWTTRWMTADFGF-
31




INAMGWFRQFPGKEREFVAAISRNGGSTVY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTISRDNAKSTVYLQMNSLKPED

NO: 984
NO: 985
NO: 986





TAVYYCTATDAVGWTTRWMTADFGFWGQGT









QVTVSS-









SEQ ID









NO: 173










170
174
QVQLVESGGGLVEAGGSLRLSCAASGRAFN
b88
NFPMG-
AITWISGSTLYADSVKG-
ALKTITRGQHDYTY-
1




NFPMGWFRQAPGKEREFVAAITWISGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDKSKNTVYLQMSGLKPED

NO: 987
NO: 988
NO: 989





TALYYCAAALKTITRGQHDYTYWGQGTQVT









VSS-









SEQ ID









NO: 174










171
175
QVQLVESGGGLVQAGGSLRLACALSGDVFV
b96
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 990
NO: 991
NO: 992





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 175










172
176
EVQLVESGGGLVQAGGSLRLSCAASGRTFS
b24
SDAKA-
AITWAGRGTDYADSVKD-
NPTGVIGPGFRNSNRYDY-
19




SDAKAWFRQAPGKEREFVAAITWAGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKDRFTITRDNAKNMVYLQMSSLKPED

NO: 993
NO: 994
NO: 995





TAVYYCALNPTGVIGPGFRNSNRYDYWGQG









TQVTVAS-









SEQ ID









NO: 176










173
177
QVQLVESGGGLVQAGGSLRLSCAAAGRAIE
b98
NYPVG-
AITWISGSTLYADSVKG-
ALKTITRGQNDYSY-
1




NYPVGWFRRAPGKEREFVAAITWISGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTVYLQMSSLKPED

NO: 996
NO: 997
NO: 998





TALYYCAAALKTITRGQNDYSYWGQGTQVT









VSS-









SEQ ID









NO: 177










174
178
EVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b39
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 999
NO: 1000
NO: 1001





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 178










175
179
QVQLVESGGGLVQAGGSLRLSCAASGRTFS
b126
TTEMG-
AITWTGRGTMYAESVEG-
ARRGRAAVRSEGGYDF-
4




TTEMGWFRQAPGKEREFVAAITWTGRGTMY

SEQ ID
SEQ ID
SEQ ID





AESVEGRFTISRENAKNMVYLQMNSLKPED

NO: 1002
NO: 1003
NO: 1004





TAIYYCAAARRGRAAVRSEGGYDFWGQGTQ









VTVSS-









SEQ ID









NO: 179










176
180
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b13
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIKSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1005
NO: 1006
NO: 1007





TAVYYCAANTDYFQIKSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 180










177
181
EVQLVESGGGLVQAGGSLRLSCAASGRTFS
b26
TTEMG-
AITWTGRGTMYAESVEG-
ARRGRAAVRSEGGYDF-
4




TTEMGWFRQAPGKEREFVAAITWTGRGTMY

SEQ ID
SEQ ID
SEQ ID





AESVEGRFTISRENAKNMVYLQMNSLKPED

NO: 1008
NO: 1009
NO: 1010





TAIYYCAAARRGRAAVRSEGGYDFWGQGTQ









ATVSS-









SEQ ID









NO: 181










179
182
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b136
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLRANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNSLKPED

NO: 1011
NO: 1012
NO: 1013





TAVYYCAANTDYFQIRSLRANTWGQGTQVT









VSS-









SEQ ID









NO: 182










180
183
QVQLQESGGGLVQAGDSLRISCAASGRIFS
b72
NYAMG-
THLTSTTHYADSVKG-
DRNIKITADWSY-
8




NYAMGWFRQAPGKETEFVAGITHLTSTTHY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTMHLQMNNLKPED

NO: 1014
NO: 1015
NO: 1016





TALYYCAADRNIKITADWSYWGQGTQVTVA









S-









SEQ ID









NO: 183










181
184
QVQLQESGGGLVQAGGSLRLSCAASGRTFS
b79
NYVMA-
AITQTGRGTFYADSVEG-
PRSGRAGTRNQMDYEY-
22




NYVMAWFRQAPGKEREFVGAITQTGRGTFY

SEQ ID
SEQ ID
SEQ ID





ADSVEGRFTISRINDKNTVYLQMNSLKPED

NO: 1017
NO: 1018
NO: 1019





TAVYYCSAPRSGRAGTRNQMDYEYWGQGTQ









VTVSS-









SEQ ID









NO: 184










182
185
EVQLVESGGGLVQAGGSLRLSCAASGRDFS
b20
SYAMG-
AITWTKRSTDFPDSVKG-
ARGLPVTPLGDIIY-
3




SYAMGWFRQAPGKEREFWVAITWTKRSTDF

SEQ ID
SEQ ID
SEQ ID





PDSVKGRFTISRDNAKNTVYLDMNSLKPED

NO: 1020
NO: 1021
NO: 1022





TAVYYCASARGLPVTPLGDIIYWGEGTLVT









VSS-









SEQ ID









NO: 185










183
186
QLQLVESGGGLVQAGGSLRLSCAASGRDFS
b67
SYAMG-
AITWTKRSTDFPDSVKG-
ARGLPVTPLGDIIY-
3




SYAMGWFRQAPGKEREFWAITWTKRSTDFP

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTISRDNAKNTVYLDMNSLKPEDT

NO: 1023
NO: 1024
NO: 1025





AVYYCASARGLPVTPLGDIIYWGEGTLVTV









SS-









SEQ ID









NO: 186










184
187
EVQLVESGGGLVQAGGSLRLSCAASGRTFS
b27
TTEMG-
AITWTGRGTMYAESVEG-
ARRGRAAVRSEGGYDF-
4




TTEMGWFRQAPGKEREFVAAITWTGRGTMY

SEQ ID
SEQ ID
SEQ ID





AESVEGRFTISRENAKNMVYLQMNSLKPED

NO: 1026
NO: 1027
NO: 1028





TAIYYCAAARRGRAAVRSEGGYDFWGQGTQ









VAVSS-









SEQ ID









NO: 187










185
188
QVQLQESGGGLVQAGGSLRLSCAVSGRSFR
b80
NYVMG-
GITQFTSTTYYDDSVKG-
DRSIKMTADWAY-
10




NYVMGWFRQAPGREREIVAGITQFTSTTYY

SEQ ID
SEQ ID
SEQ ID





DDSVKGRFTISRDNAKNTVYLQMNSLKPED

NO: 1029
NO: 1030
NO: 1031





TALYYCAADRSIKMTADWAYWGQGTQVTVS









S-









SEQ ID









NO: 188










186
189
QVQLVESGGGLVQAGGSLRLSCAASGRADS
b115
NAIMA-
AVTYSGMPTYQDDSVQG-
RMYSASTYYGDYDY-
25




NAIMAWFRQAPGKEREFIVAVTYSGMPTYQ

SEQ ID
SEQ ID
SEQ ID





DDSVQGRFTASRDNAKNTVYLQMNSLKPED

NO: 1032
NO: 1033
NO: 1034





TAVYYCAARMYSASTYYGDYDYWGQGTQVT









VSS-









SEQ ID









NO: 189










187
190
EVQLVESGGGSVQAGGSLRLSCAASGRTFS
b60
DYTMG-
AITGTGHTTDMPDSVEG-
ARGLPVTPLGDIIY-
3




DYTMGWFRQAPGKEREFWVAITGTGHTTDM

SEQ ID
SEQ ID
SEQ ID





PDSVEGRFTISRDNAKNTIYLDMKNLKPGD

NO: 1035
NO: 1036
NO: 1037





TAVYYCASARGLPVTPLGDIIYWGEGTLVT









VSS-









SEQ ID









NO: 190










188
191
QVQLVESGGGLVQAGGSLTLSCAASGGAFS
b146
SDAKA-
AITWAGRGTDYADSVKG-
NPRGVIGPAFRNSNHYTY-
19




SDAKAWFRQAPGKEREFVAAITWAGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTITRDNAKATVHLQMNSLKPED

NO: 1038
NO: 1039
NO: 1040





TAVYYCALNPRGVIGPAFRNSNHYTYWGQG









TQVTVSS-









SEQ ID









NO: 191










189
192
QVQLQESGGGLVQAGGSMRLSCAASGRTFS
b83
NYVIA-
AITQTGRGTFYASSVEG-
PRSGRAGTRNQMDYEY-
22




NYVIAWFRQAPGKEREFVGAITQTGRGTFY

SEQ ID
SEQ ID
SEQ ID





ASSVEGRFTLSRLNDQSTVYLQMNSLNPED

NO: 1041
NO: 1042
NO: 1043





TGVYYCSAPRSGRAGTRNQMDYEYWGQGTQ









VTVSS-









SEQ ID









NO: 192










190
193
QLQLVESGGGLVQTGTSLRLSCAASGHTSR
b71
INAMG-
AISRNGGSTVYVDSVKG-
TDAVGWTTRWMTADFGF-
31




INAMGWFRQFPGKEREFVAAISRNGGSTVY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTISRDNAKSTVYLQMNSLKPED

NO: 1044
NO: 1045
NO: 1046





TAVYYCTATDAVGWTTRWMTADFGFWGQGT









QVTVSS-









SEQ ID









NO: 193










194
194
QVQLVESGGGLVQAGGSLRLSCAASGFTFS
b110
NYAMS-
SITGFGRGTDYADSVKG-
YSSSTYYPPTPARGTDY-
38




NYAMSWVRQAPGKGLEWVSSITGFGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 1047
NO: 1048
NO: 1049





TAVYYCARYSSSTYYPPTPARGTDYRGQGT









QVTVSS-









SEQ ID









NO: 194










196
195
QVQLVESGGGLVQPGGSLGLSCAASGFTFD
b151
NYAMS-
SITGAGRGTHYADSVKG-
YSSSTYYPPTPARGTDY-
38




NYAMSWVRQAPGKGLEWVSSITGAGRGTHY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 1050
NO: 1051
NO: 1052





TAVYYCAKYSSSTYYPPTPARGTDYRGPGT









QVTVSS-









SEQ ID









NO: 195










197
196
QVQLVESGGGLVQAGGSLRLSCAASGGTFS
b114
SYAMG-
ATTRGGGRTMYAVSTEG-
MTSYYSGTYYPDSSDFDI-
18




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNAKNTVYLLMNSLKPED

NO: 1053
NO: 1054
NO: 1055





TAVYYCAAMTSYYSGTYYPDSSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 196










198
197
QVQLVESGGGLVQVGGSLRVSCAASGRTSG
b173
DRNMG-
IITWSSGSTVYADSVKG-
DYYPYSGSWNIMDY-
13




DRNMGWFRQAPGKEREFVGIITWSSGSTVY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTVYLDMSSLKPED

NO: 1056
NO: 1057
NO: 1058





TAVYYCAADYYPYSGSWNIMDYWGKGTLVT









VSS-









SEQ ID









NO: 197










199
198
EVQLVESGGGLVQAGGSLRLSCAASGGTFS
b16
SYAMG-
ATTRGGGRTMYAVSTEG-
RTSYYSGTYYPASSDFDI-
27




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNAKNTVYLLMNRVKPED

NO: 1059
NO: 1060
NO: 1061





TAVYYCAARTSYYSGTYYPASSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 198










200
199
QVQLVESGGGSVQTGGSLRLSCVVSGSHFI
b177
SDVMG-
DMADGGSAKYADSVKG-
GLWITGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTVTLQMSSLNPEDT

NO: 1062
NO: 1063
NO: 1064





GVYYCKAGLWITGRHSDYWGQGTQVTVTS-









SEQ ID









NO: 199










201
200
QVQLVESGGGLVQAGGSLRLSCAASGGTFS
b113
SYAMG-
ATTRGGGRTMYAVSTEG-
MTSYYSGTYYPDSSDFDI-
18




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFTCSRDNAENTVYLQMNSLKPED

NO: 1065
NO: 1066
NO: 1067





TAIYYCAAMTSYYSGTYYPDSSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 200










202
201
EVQLVESGGGLVQVGDSLRLSCAASGRTVG
b59
SANMG-
VITWSTGSTVYADSVKG-
DVYPYSGNLNIMDY-
13




SANMGWFRQAPGKEREFVAVITWSTGSTVY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTVYLDMSSLKPDD

NO: 1068
NO: 1069
NO: 1070





TAVYYCAADVYPYSGNLNIMDYWGKGTLVT









VSS-









SEQ ID









NO: 201










203
202
QVQLVESGGGLVQVGDSLRLSCAASGRTVG
b172
SANMG-
VITWSTGSTVYADSVKG-
DVYPYSGNLNIMDY-
13




SANMGWFRQAPGKEREFVAVITWSTGSTVY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTVYLDMSSLKPED

NO: 1071
NO: 1072
NO: 1073





TAVYYCAADVYPYSGNLNIMDYWGKGTLVT









VSS-









SEQ ID









NO: 202










204
203
QVQLQESGGGLVQTGGSLRLSCAVSGSRFI
b85
SDVMG-
DMADGGSAKYADSVKG-
GLWLAGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSILRDSVKNTVYLQMSSLKPEDT

NO: 1074
NO: 1075
NO: 1076





GIYYCKAGLWLAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 203










205
204
QVQLVESGGGLVQVGGSLSVSCAASGRSFD
b175
SITMA-
GINFSGSRTAYGDSVKG-
SPRGFYGPGHALYDY-
29




SITMAYFRQAPGNEREFIAGINFSGSRTAY

SEQ ID
SEQ ID
SEQ ID





GDSVKGRFTISRDNAKNTVFLQMNSLNPED

NO: 1077
NO: 1078
NO: 1079





TAVYYCAASPRGFYGPGHALYDYWGQGTQV









TVSS-









SEQ ID









NO: 204










206
205
QVQLVESGGGLVQPGGSLRLSCAASGFTFS
b156
NYAMS-
SITGAGRGTYYADSVKG-
YDSSTYYPPTPARGIAD-
36




NYAMSWVRQAPGKGLEWVSSITGAGRGTYY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNDKNTLYLQMNSLKPED

NO: 1080
NO: 1081
NO: 1082





TAVYYCAKYDSSTYYPPTPARGIADRGQGI









QVTVSS-









SEQ ID









NO: 205










207
206
EVQLVESGGGLVQPGGSLRLSCAISGGTLD
b49
SYGIG-
CMSRSDDRTFYADSVKG-
VDAYGCSLVQPTTYDF-
34




SYGIGWVRQAPGKQREGVSCMSRSDDRTFY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISKDNAKSTVYLQMTNLKPDD

NO: 1083
NO: 1084
NO: 1085





TAVYYCAAVDAYGCSLVQPTTYDFWGLGTQ









VTVSS-









SEQ ID









NO: 206










209
207
EVQLVESGGGSVQTGGSLRLSCVVSGSHFI
b62
SDVMG-
DMADGGSVKYGDSVKG-
GLWITGRHFDY-
14




SDVMGWYRQVPGKQRELVADMADGGSVKYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTVTLQMSSLNPEDT

NO: 1086
NO: 1087
NO: 1088





GVYYCKAGLWITGRHFDYWGQGTQVTVTS-









SEQ ID









NO: 207










210
208
QLQLVESGGGLVQTGGSLRLSCAVSGSRFI
b70
SDVMG-
DMADGGSAKYADSVKG-
GLWIAGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSILRDSVKNTVYLQMSSLKPEDT

NO: 1089
NO: 1090
NO: 1091





GIYYCKAGLWIAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 208










212
209
QVQLVESGGGLVQVGDSLRLSCAASGRTVG
b171
SANMG-
VITWSTGSTVYADSVKG-
DVYPYSGNLNIMDY-
13




SANMGWFRQAPGKEREFVAVITWSTGSTVY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTVYLDLSSLKPED

NO: 1092
NO: 1093
NO: 1094





TAVYYCAADVYPYSGNLNIMDYWGKGTQVT









VSS-









SEQ ID









NO: 209










213
210
QVQLVESGGGLVQPGGSLRLSCAVSGGTLH
b161
DYGIG-
CMSRSDDKTYYADYVKG-
VDAYGCSLVQPTTYDY-
34




DYGIGWIRQAPGKQREGVSCMSRSDDKTYY

SEQ ID
SEQ ID
SEQ ID





ADYVKGRFTISKDNAKNTVYLQMISLKPED

NO: 1095
NO: 1096
NO: 1097





TAVYYCAAVDAYGCSLVQPTTYDYWGQGTQ









VTVSS-









SEQ ID









NO: 210










214
211
QVQLVESGGTLVQTGGSLRLSCVVSGSHFI
b180
SDVMG-
DMADGGSAKYGDSVKG-
GLWIKGRHSDY-
14




SDVMGWYRQVPGKQRELVADMADGGSAKYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTIVRDSVKNTVYLQMSSLNPEDT

NO: 1098
NO: 1099
NO: 1100





GVYYCKAGLWIKGRHSDYWGQGTQVTVTS-









SEQ ID









NO: 211










215
212
QVQLVESGGGLVQPGGSLGLSCAASGFTFD
b151
NYAMS-
SITGAGRGTHYADSVKG-
YSSSTYYPPTPARGTDY-
38




NYAMSWVRQAPGKGLEWVSSITGAGRGTHY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 1101
NO: 1102
NO: 1103





TAVYYCAKYSSSTYYPPTPARGTDYRGPGT









QVTVSS-









SEQ ID









NO: 212










217
213
EVQLVESGGGSVQTGGSLRLSCVVSGSHFI
b62
SDVMG-
DMADGGSVKYGDSVKG-
GLWITGRHFDY-
14




SDVMGWYRQVPGKQRELVADMADGGSVKYG

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTVTLQMSSLNPEDT

NO: 1104
NO: 1105
NO: 1106





GVYYCKAGLWITGRHFDYWGQGTQVTVTS-









SEQ ID









NO: 213










218
214
QVQLVESGGGLVQTGGSLRLSCAASGSQFI
b165
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHSDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 1107
NO: 1108
NO: 1109





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 214










219
215
EVQLVESGGGLVQAGASLELSCAASGGTFS
b2
SYAMG-
ATTRGGGRTMYAVSTEG-
RTSYYDGTYYPASSDFDI-
27




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFSCSRDNAKNTVNLLIKNLKPED

NO: 1110
NO: 1111
NO: 1112





TAVYYCAARTSYYDGTYYPASSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 215










220
216
QVQLVESGGGLVQPGGSLRLSCAASGFTFS
b155
NYAMS-
SSITSAGRGTHYADTVKG-
YSSATYYPPTPAQGRDY-
38




NYAMSWVRQAPGKELEWVSSITSAGRGTHY

SEQ ID
SEQ ID
SEQ ID





ADTVKGRFTISRDNDENTLYLQMNSLEPED

NO: 1113
NO: 1114
NO: 1115





TAVYYCAKYSSATYYPPTPAQGRDYRGQGT









QVTVSS-









SEQ ID









NO: 216










221
217
QVQLVESGGGLVQTGGSLRLSCAVSGSHFI
b167
SDVMG-
DMADGNSAKYADSVKG-
GLWIAGRHSDY-
14




SDVMGWYRQVPEKQRELVADMADGNSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSILRDSVKNTVYLQMSSLKPEDT

NO: 1116
NO: 1117
NO: 1118





GIYYCKAGLWIAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 217










222
218
EVQLVESGGGLVQTGGSLRLSCAASGSQFI
b53
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHSDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 1119
NO: 1120
NO: 1121





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 218










224
219
QVQLVESGGGLVQAGGSLALSCAASGGTFS
b92
SYAMG-
ATTRGGGRTMYAVSTEG-
RTSYYDGTYYPASSDFDI-
27




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFSCSRDNAKNTVYLLIKNLKPED

NO: 1122
NO: 1123
NO: 1124





TAVYYCAARTSYYDGTYYPASSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 219










226
220
EVQLVESGGGLVQAGGSLRLACALSGDVFV
b8
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1125
NO: 1126
NO: 1127





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 220










229
221
EVQLVESGGGLVQAGGSLRLSCAVSGVIFW
b35
SDVVG-
TINLDDTKHYGEVVKG-
RRGSEFY-
26




SDVVGWYRQASGKQRELVATINLDDTKHYG

SEQ ID
SEQ ID
SEQ ID





EVVKGRFAISRDSHKNAYYLQLNSLKPEDT

NO: 1128
NO: 1129
NO: 1130





AVYYCNVRRGSEFYWGQGTQVTVSS-









SEQ ID









NO: 221










231
222
EVQLVESGGGLVQIGGSLRLSCAASGRTFS
b46
SITMA-
GINFSGTRTFYADSVKG-
SPRGFYGPGNALYDY-
29




SITMAYFRQVPGKEREWVAGINFSGTRTFY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFLISRDDAKSTMYLQMNSLKPED

NO: 1131
NO: 1132
NO: 1133





TAVYYCAASPRGFYGPGNALYDYWGQGTQV









TVSS-









SEQ ID









NO: 222










232
223
QLQLVESGGGLVQAGGSLALSCAASGGTFS
b65
SYAMG-
ATTRGGGRTMYAVSTEG-
RTSYYDGTYYPASSDFDI-
27




SYAMGWFRQAPGKEREFVAATTRGGGRTMY

SEQ ID
SEQ ID
SEQ ID





AVSTEGRFSCSRDNAKNTVYLLIKNLKPED

NO: 1134
NO: 1135
NO: 1136





TAVYYCAARTSYYDGTYYPASSDFDIWGQG









TQVTVSS-









SEQ ID









NO: 223










233
224
EVQLVESGGGLVQTGGSLRLSCAVSGSRFI
b56
SDVMG-
DMADGGSAKYADSVKG-
GLWIAGRHSDY-
14




SDVMGWYRQVPGKARELVADMADGGSAKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFSIVRDSGKSTMYLQMSSLKPEDT

NO: 1137
NO: 1138
NO: 1139





GMYYCKAGLWIAGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 224










235
225
QVQLVESGGGLVQAGGSLRLACALSGDVFV
b96
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1140
NO: 1141
NO: 1142





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 225










237
226
QVQLVESGGGLVQAGRSLGLSCAASGFTFD
b148
NYAMS-
SITGAGRGTHYADSVKG-
YSSSTYYPPTPARGTDY-
38




NYAMSWVRQAPGKGLEWVSSITGAGRGTHY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTLYLQMNSLKPED

NO: 1143
NO: 1144
NO: 1145





TAVYYCAKYSSSTYYPPTPARGTDYRGPGT









QVTVSS-









SEQ ID









NO: 226










238
227
QVQLQESGGGLVQTGGSLRLSCAASGSQFI
b84
NDVMG-
DMDDTGSTKYADSVKG-
GLWIKGRHSDY-
14




NDVMGWYRQVPGKQRELVADMDDTGSTKYA

SEQ ID
SEQ ID
SEQ ID





DSVKGRFTILRDSVKNTAYLQMSNLKPEDT

NO: 1146
NO: 1147
NO: 1148





GVYYCKAGLWIKGRHSDYWGQGTQVTVSS-









SEQ ID









NO: 227










241
228
QVQLVESGGGLVEAGGSLRLSCAASGRAFN
b88
NFPMG-
AITWISGSTLYADSVKG-
ALKTITRGQHDYTY-
1




NFPMGWFRQAPGKEREFVAAITWISGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDKSKNTVYLQMSGLKPED

NO: 1149
NO: 1150
NO: 1151





TALYYCAAALKTITRGQHDYTYWGQGTQVT









VSS-









SEQ ID









NO: 228










243
229
QVQLVESGGGLVQAGDSLRLSCAASGRSLS
b89
TDCMG-
GITWGTGSTLYADSVEG-
DRYCYRGTVYRD-
11




TDCMGWVRQAPGKEREFVAGITWGTGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVEGRFTISKDNAKNTGYLQMSSLKPED

NO: 1152
NO: 1153
NO: 1154





TAVYYCAVDRYCYRGTVYRDWGRGTQVTVS









S-









SEQ ID









NO: 229










244
230
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b11
RYTMA-
SVTDSGRTTDYGDSVKG-
NTDYFQIRSLDANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





GDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1155
NO: 1156
NO: 1157





TAVYYCAANTDYFQIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 230










245
231
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b137
RYTMA-
TVTDSGRTTEYVDSVKG-
NTDYFRIRSLDANT-
20




RYTMAWFRQAPGKEREFVATVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1158
NO: 1159
NO: 1160





TAVYYCAANTDYFRIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 231










246
232
QVQLVESGGGLVQAGGSLRLSCAASGRTFS
b124
SYVMG-
AITGTRRTTDWPDSVKG-
ARGLPVPPLGDIIH-
3




SYVMGWFRQAPGKEREFWVAITGTRRTTDW

SEQ ID
SEQ ID
SEQ ID





PDSVKGRFTISRDNAQNTVYLDMNSLKPED

NO: 1161
NO: 1162
NO: 1163





TAVYYCASARGLPVPPLGDIIHWGEGTLVT









VSS-









SEQ ID









NO: 232










247
233
QVQLVESGGGLVQAGGSLRLSCAASGRTFS
b122
SDAKG-
AITWAGRGTDYADSVKG-
NPEGVIGPYFRNSNRYNY-
19




SDAKGWFRQAPGKEREFVAAITWAGRGTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTITRDNAKNMVYLQMSNLKPED

NO: 1164
NO: 1165
NO: 1166





TAVYYCALNPEGVIGPYFRNSNRYNYWGQG









TQVTVSS-









SEQ ID









NO: 233










248
234
EVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b38
RYTMA-
AVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAAVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1167
NO: 1168
NO: 1169





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 234










250
235
QVQLVESGGGLVQAGGSLRLACALSGDVFV
b96
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1170
NO: 1171
NO: 1172





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 235










251
236
EVQLVESGGGLVQAGGSLRLACALSGDVFV
b8
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1173
NO: 1174
NO: 1175





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 236










253
237
QVQLVESGGGLVQAGGSLRLSCAAAGRAIE
b98
RYTMA-
AITWISGSTLYADSVKG-
ALKTITRGQNDYSY-
1




NYPVGWFRRAPGKEREFVAAITWISGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRDNAKNTVYLQMSSLKPED

NO: 1176
NO: 1177
NO: 1178





TALYYCAAALKTITRGQNDYSYWGQGTQVT









VSS-









SEQ ID









NO: 237










255
238
QVQLVESGGGLVQAGGSLRLACALSGDVFV
b97
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKGREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1179
NO: 1180
NO: 1181





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 238










257
239
QVQLVESGGGLVQAGGSLRLACAASGRTFS
b95
RYTMA-
GISPSGGYAWHADSVKG-
DHPPYGAVASRSEYEYDD-
6




TLTMGWFRQAPGKEREFVAGISPSGGYAWH

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTIDRDNAKNTVYLQTRSLRPED

NO: 1182
NO: 1183
NO: 1184





TAVYYCAADHPPYGAVASRSEYEYDDWGPG









TRVTVSS-









SEQ ID









NO: 239










258
240
QVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b145
RYTMA-
SITDSGRTTEYVDSVKG-
NTDYFRIRSLDANT-
20




RYTMAWFRQAPGKEREFVISITDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1185
NO: 1186
NO: 1187





TAVYYCAANTDYFRIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 240










260
241
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b132
RYTMA-
SVTDSGRTTDYVHSVKG-
NTDYFQIKSLDANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VHSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1188
NO: 1189
NO: 1190





TAVYYCAANTDYFQIKSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 241










262
242
EVQLVESGGGLVQAGGSLTLSCAASGRAFS
b43
RYTMA-
AITWLSGSTLYADSVEG-
ALKTITRGQNDYSY-
1




NYPVGWFRQAPGKEREFVAAITWLSGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVEGRFTISRDNAKNTVYLLMSSLKPED

NO: 1191
NO: 1192
NO: 1193





TALYFCAAALKTITRGQNDYSYWGQGTQVT









VSS-









SEQ ID









NO: 242










263
243
QVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b144
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1194
NO: 1195
NO: 1196





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 243










264
244
QVQLVESGGGLVQAGGSLRLSCAASGSIFS
b127
RYTMA-
AISRSGGSTAYVDSVKG-
TAAVGWTSRWITTDFDS-
30




INAMGWFRQAPGKEREFVAAISRSGGSTAY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTISRDNSKNMVHLQMNSLKSED

NO: 1197
NO: 1198
NO: 1199





EAVYYCAATAAVGWTSRWITTDFDSWGQGT









QVTVSS-









SEQ ID









NO: 244










265
245
QVQLVESGGGLVQAGGSLRLACALSGDVFV
b96
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1200
NO: 1201
NO: 1202





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 245










266
246
QVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b144
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1203
NO: 1204
NO: 1205





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 246










267
247
QVQLVESGGGLVQAGGSLRLSCAASGRTFS
b126
RYTMA-
AITWTGRGTMYAESVEG-
ARRGRAAVRSEGGYDF-
4




TTEMGWFRQAPGKEREFVAAITWTGRGTMY

SEQ ID
SEQ ID
SEQ ID





AESVEGRFTISRENAKNMVYLQMNSLKPED

NO: 1206
NO: 1207
NO: 1208





TAIYYCAAARRGRAAVRSEGGYDFWGQGTQ









VTVSS-









SEQ ID









NO: 247










268
248
QVQLQESGGGLVQAGDSLRLSCVVSGRDFS
b73
RYTMA-
LITWSTGRVHYTDSVEG-
GRVGYTTNLHSYDY-
16




GYTMGWFRQPPGKEREFVALITWSTGRVHY

SEQ ID
SEQ ID
SEQ ID





TDSVEGRFTISRDSAKNTVYLQMNSLKPED

NO: 1209
NO: 1210
NO: 1211





TAVYTCAAGRVGYTTNLHSYDYSGQGTQVI









VSA-









SEQ ID









NO: 248










269
249
EVQLVESGGGLVQPGGSLRLSCAASGFTFR
b48
RYTMA-
GITGEGLGTIYQDSVEG-
MASGTLFRDKPYEYTS-
17




NYAMSWVRQAPGKGLEWVGGITGEGLGTIY

SEQ ID
SEQ ID
SEQ ID





QDSVEGRFTISRNNAKNTLYLQMNSLRSED

NO: 1212
NO: 1213
NO: 1214





TAVYYCTKMASGTLFRDKPYEYTSRGQGTQ









VTVSS-









SEQ ID









NO: 249










271
250
QVQLVESGGGLVQAGGSLRLSCAASGRSYA
b117
RYTMA-
AISWSASSTYYSESVKG-
RASPFVAGSYDPSDDPADYGS-
23




MGWFRQAPGKEREFVAAISWSASSTYYSES

SEQ ID
SEQ ID
SEQ ID





VKGRFTISRENAKNTVYLQMNSLKPEDTAV

NO: 1215
NO: 1216
NO: 1217





YYCAVRASPFVAGSYDPSDDPADYGSWGQG









TQVIVSS-









SEQ ID









NO: 250










272
251
QVQLVESGGGLVQAGGSLRLSCAASGRTFS
b126
RYTMA-
AITWTGRGTMYAESVEG-
ARRGRAAVRSEGGYDF-
4




TTEMGWFRQAPGKEREFVAAITWTGRGTMY

SEQ ID
SEQ ID
SEQ ID





AESVEGRFTISRENAKNMVYLQMNSLKPED

NO: 1218
NO: 1219
NO: 1220





TAIYYCAAARRGRAAVRSEGGYDFWGQGTQ









VTVSS-









SEQ ID









NO: 251










274
252
EVQLVESGGGLVQAGGSLRLACALSGDVFV
b8
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1221
NO: 1222
NO: 1223





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 252










275
253
QVQLVESGGGLVQAGGSLRLACALSGDVFV
b96
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1224
NO: 1225
NO: 1226





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 253










276
254
QVQLVESGGGLVQAGGSLRLSCAASGRTFS
b125
RYTMA-
AITWSSHSTLYADSVEG-
VRRGWAVVRTEGAYDF-
35




TTDVGWFRQAPGKEREFVAAITWSSHSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVEGRFTVTRENAKNTVYLQMNSLKPED

NO: 1227
NO: 1228
NO: 1229





TAVYYCAAVRRGWAVVRTEGAYDFWGQGTQ









VTVSA-









SEQ ID









NO: 254










277
255
EVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b37
RYTMA-
AVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAAVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLEPED

NO: 1230
NO: 1231
NO: 1232





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 255










278
256
QVQLVESGGGLAQAGGSLRLSCAASGRTFS
b87
RYTMA-
AITWSGRDTDYADSVKG-
YPQGTIGPYFRSSNHYDY-
37




QDAKAWFRQAPGKEREFVAAITWSGRDTDY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTIARDNAKNTVYLQMDSLKPED

NO: 1233
NO: 1234
NO: 1235





TAVYYCAVYPQGTIGPYFRSSNHYDYWGQG









TQVTVSS-









SEQ ID









NO: 256










279
257
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b14
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIRSLEFNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1236
NO: 1237
NO: 1238





TAVYYCAANTDYFQIRSLEFNTWGQGTQVT









VSS-









SEQ ID









NO: 257










282
258
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b10
RYTMA-
AVTDSGRTADYVDSVKG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVAAVTDSGRTADY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1239
NO: 1240
NO: 1241





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 258










283
259
QVQLVESGGGLVQAGGSLRLSCAASGRAFS
b116
RYTMA-
IISESGGIIDYGDSVKG-
ARDWFARTAYQYDY-
2




TYSMGWFRQTPGKEREFVAIISESGGIIDY

SEQ ID
SEQ ID
SEQ ID





GDSVKGRFTLSRDNAKNTVSLQMSSLQPED

NO: 1242
NO: 1243
NO: 1244





TAVYYCAAARDWFARTAYQYDYWGQGTQVT









VSA-









SEQ ID









NO: 259










481
260
QVQLVESGGGLVQAGGSLRLACALSGDVFV
b96
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1245
NO: 1246
NO: 1247





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 260










482
261
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b103
RYTMA-
SVTDSGRTTDYVHSVKG-
NTDYFQIRSLDANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VHSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1248
NO: 1249
NO: 1250





TAVYYCAANTDYFQIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 261










483
262
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b100
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIKSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNALKPED

NO: 1251
NO: 1252
NO: 1253





TAVYYCAANTDYFQIKSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 262










484
263
QVQLVESGGRLVQAGGSLRLSCAASGDVFV
b178
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLNLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1254
NO: 1255
NO: 1256





TAVYYCAANTDYFQIRSLNLNTWGQGTQVT









VSS-









SEQ ID









NO: 263










487
264
EVQLVESGGGLVQAGDSLRLSCVVSGRGFS
b4
RYTMA-
AITWSTGRTSYADSVKG-
DQVLWTTRPRDMRY-
7




TYTMGWFRQAPGKEREFVAAITWSTGRTSY

SEQ ID
SEQ ID
SEQ ID





ADSVKGRFTISRENAENTVYLQMNSLELED

NO: 1257
NO: 1258
NO: 1259





TAVYYCATDQVLWTTRPRDMRYWGQGTQVT









VSF-









SEQ ID









NO: 264










488
265
EVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b33
RYTMA-
SVTDSGRTTDYVHSVKG-
NTDYFQIKSLDANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VHSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1260
NO: 1261
NO: 1262





TAVYYCAANTDYFQIKSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 265










490
266
QVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b143
RYTMA-
AVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAAVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1263
NO: 1264
NO: 1265





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 266










491
267
QVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b144
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1266
NO: 1267
NO: 1268





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 267










493
268
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b137
RYTMA-
TVTDSGRTTEYVDSVKG-
NTDYFRIRSLDANT-
20




RYTMAWFRQAPGKEREFVATVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1269
NO: 1270
NO: 1271





TAVYYCAANTDYFRIRSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 268










494
269
QVQLQESGGGLVQAGGSLRLSCAASGDVFV
b74
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIKSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNALKPED

NO: 1272
NO: 1273
NO: 1274





TAVYYCAANTDYFQIKSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 269










495
270
EVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b42
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPRKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1275
NO: 1276
NO: 1277





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 270










496
271
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b135
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1278
NO: 1279
NO: 1280





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 271










497
272
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b14
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIRSLEFNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1281
NO: 1282
NO: 1283





TAVYYCAANTDYFQIRSLEFNTWGQGTQVT









VSS-









SEQ ID









NO: 272










500
273
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b104
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1284
NO: 1285
NO: 1286





TAIYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 273










501
274
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b12
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIKSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1287
NO: 1288
NO: 1289





TAVYYCAANTDYFQIKSLDRNTWGQGTQVT









VSP-









SEQ ID









NO: 274










503
275
QVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b144
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1290
NO: 1291
NO: 1292





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 275










504
276
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b135
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1293
NO: 1294
NO: 1295





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 276










506
277
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b135
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1296
NO: 1297
NO: 1298





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 277










507
278
QVQLQESGGGLVQAGGSLRLSCAASGDVFV
b75
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIRSLEFNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1299
NO: 1300
NO: 1301





TAVYYCAANTDYFQIRSLEFNTWGQGTQVT









VSS-









SEQ ID









NO: 278










508
279
QVQLQESGGGLVQAGGSLRLSCVVSGDVFV
b82
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1302
NO: 1303
NO: 1304





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 279










509
280
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b135
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1305
NO: 1306
NO: 1307





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 280










510
281
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b136
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLRANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNSLKPED

NO: 1308
NO: 1309
NO: 1310





TAVYYCAANTDYFQIRSLRANTWGQGTQVT









VSS-









SEQ ID









NO: 281










511
282
QVQLQESGGGLVQAGGSLRLSCVVSGDVFV
b82
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1311
NO: 1312
NO: 1313





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 282










512
283
EVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b34
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1314
NO: 1315
NO: 1316





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 283










513
284
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b132
RYTMA-
SVTDSGRTTDYVHSVKG-
NTDYFQIKSLDANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VHSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1317
NO: 1318
NO: 1319





TAVYYCAANTDYFQIKSLDANTWGQGTQVT









VSS-









SEQ ID









NO: 284










514
285
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b102
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIRSLEFNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1320
NO: 1321
NO: 1322





TAVYYCAANTDYFQIRSLEFNTWGQGTQVT









VSS-









SEQ ID









NO: 285










515
286
EVQLVESGGGLVQAGGSLRLSCVVSGDVFV
b41
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKGREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1323
NO: 1324
NO: 1325





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 286










516
287
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b136
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLRANT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNSLKPED

NO: 1326
NO: 1327
NO: 1328





TAVYYCAANTDYFQIRSLRANTWGQGTQVT









VSS-









SEQ ID









NO: 287










520
288
QVQLVESGGRLVQAGGSLRLSCVVSGDVFV
b179
RYTMA-
VVTDSGRTTEYVGSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VGSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1329
NO: 1330
NO: 1331





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 288










521
289
QLQLVESGGGLVQAGGSLRLACALSGDVFV
b66
RYTMA-
SVTDSGRTTDYVASVQG-
NTDYFQIRSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VASVQGRFTVSRDNNKNTVYLQMNSLKPED

NO: 1332
NO: 1333
NO: 1334





TAVYYCAANTDYFQIRSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 289










522
290
EVQLVESGGGLVQAGGPLRLSCAVSGDVFV
b6
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1335
NO: 1336
NO: 1337





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 290










523
291
QVQLQESGGGLVQAGGSLRLSCVVSGDVFV
b82
RYTMA-
VVTDSGRTTEYVDSVKG-
NTDYFQIRSVDNNA-
21




RYTMAWFRQAPGKEREFVAVVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1338
NO: 1339
NO: 1340





TAVYYCAANTDYFQIRSVDNNAWGQGTQVT









VSS-









SEQ ID









NO: 291










524
292
EVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b34
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1341
NO: 1342
NO: 1343





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 292










525
293
EVQLVESGGGLVQAGGSLRLFCAVSGDVFV
b9
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKDTAYLQMNNLKPED

NO: 1344
NO: 1345
NO: 1346





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 293










526
294
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b102
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIRSLEFNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1347
NO: 1348
NO: 1349





TAVYYCAANTDYFQIRSLEFNTWGQGTQVT









VSS-









SEQ ID









NO: 294










530
295
EVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b34
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1350
NO: 1351
NO: 1352





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 295










532
296
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b104
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1353
NO: 1354
NO: 1355





TAIYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 296










537
297
EVQLVESGGGLVQAGESLRLSCAASGQYFS
b5
RYTMA-
IISESGGIKEYVDSVKG-
ARDWFARNEYQYDY-
2




TYSMAWFRRTPGKEREFVTIISESGGIKEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNSLKPED

NO: 1356
NO: 1357
NO: 1358





TAVYYCAAARDWFARNEYQYDYWGQGTQVT









VSS-









SEQ ID









NO: 297










539
298
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b104
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1359
NO: 1360
NO: 1361





TAIYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 298










540
299
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b134
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1362
NO: 1363
NO: 1364





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSL-









SEQ ID









NO: 299










541
300
EVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b34
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1365
NO: 1366
NO: 1367





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 300










542
301
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b105
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLNLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1368
NO: 1369
NO: 1370





TAVYYCAANTDYFQIRSLNLNTWGQGTQVT









VSS-









SEQ ID









NO: 301










543
302
QVQLQESGGGLVQAGGSLRLSCAASGDVFV
b77
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLNLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1371
NO: 1372
NO: 1373





TAVYYCAANTDYFQIRSLNLNTWGQGTQVT









VSS-









SEQ ID









NO: 302










544
303
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b104
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1374
NO: 1375
NO: 1376





TAIYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 303










545
304
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b13
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIKSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1377
NO: 1378
NO: 1379





TAVYYCAANTDYFQIKSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 304










546
305
QVQLVESGGGLVQAGGSLRLSCAVSGDVLV
b138
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1380
NO: 1381
NO: 1382





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 305










547
306
EVQLVESGGGLVQAGGSLRLSCAASGDVFV
b15
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLRANT-
20




RYTMAWFRQTPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1383
NO: 1384
NO: 1385





TAVYYCAANTDYFQIRSLRANTWGQGTQVT









VSS-









SEQ ID









NO: 306










550
307
QVQLVESGGGLVQAGGSLTLSCAASGRAFS
b147
RYTMA-
AITWLSGSTLYADSVEG-
ALKTITRGQNDYSY-
1




NYPVGWFRQAPGKEREFVAAITWLSGSTLY

SEQ ID
SEQ ID
SEQ ID





ADSVEGRFTISRDNAKNTVYLLMSSLKPED

NO: 1386
NO: 1387
NO: 1388





TALYFCAAALKTITRGQNDYSYWGQGTQVT









VSS-









SEQ ID









NO: 307










551
308
QVQLVESGGGLVQPGGSLRLSCAASGDVFV
b153
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIKSLDRNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNNLKPED

NO: 1389
NO: 1390
NO: 1391





TAVYYCAANTDYFQIKSLDRNTWGQGTQVT









VSS-









SEQ ID









NO: 308










554
309
QVQLVESGGGLVQAGGSLRLSCAASGDVLV
b108
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1392
NO: 1393
NO: 1394





TAIYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 309










555
310
QVQLVESGGGLVQAGGSLRLSCAVSGDVFV
b135
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1395
NO: 1396
NO: 1397





TAVYYCAANTDYFQIRSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 310










559
311
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b105
RYTMA-
SVTDSGRTTEYVDSVKG-
NTDYFQIRSLNLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTEY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTAYLQMNNLKPED

NO: 1398
NO: 1399
NO: 1400





TAVYYCAANTDYFQIRSLNLNTWGQGTQVT









VSS-









SEQ ID









NO: 311










573
312
QVQLVESGGGLVQAGGSLRLSCAASGDVFV
b100
RYTMA-
SVTDSGRTTDYVDSVKG-
NTDYFQIKSLDLNT-
20




RYTMAWFRQAPGKEREFVASVTDSGRTTDY

SEQ ID
SEQ ID
SEQ ID





VDSVKGRFTVSRDNAKNTVYLQMNALKPED

NO: 1401
NO: 1402
NO: 1403





TAVYYCAANTDYFQIKSLDLNTWGQGTQVT









VSS-









SEQ ID









NO: 312

























TABLE 9








doorlopende











nummering


PE binding


















Clone
Patent


ELISA

P.E. Off-rate ranking SPR-mouse and human IL-2Ra
















nr.
clone ID
V ID
Clone ID
hu IL-2R
mo IL-2R
Rmax-hu
hd(1/s)-hu
Rmax-mo
kd (1/s)-mo





295
 27
27-
FJ1427_P035MP04G01
0.362
0.048
 96.63
1.31E−03
  9.52
N/A




MP04G01












300
 28
28-MP04D02
FJ1427_P035MP04D02
0.782
0.054
166.11
8.80E−03
 30.94
3.19E−01





304
 29
29-MP04H02
FJ1427_P035MP04H02
0.157
0.050
104.01
6.25E−03
 10.31
N/A





307
 30
30-MP04C03
FJ1427_P035MP04C03
1.488
0.048
442.69
8.44E−03
 11.53
N/A





309
 31
31-MP04E03
FJ1427_P035MP04E03
0.706
0.495
169.31
8.43E−02
 27.1
2.83E−01





345
 32
32-MP04A08
FJ1427_P035MP04A08
0.407
0.050
256.29
6.16E−02
  9.53
N/A





355
 33
33-MP04C09
FJ1427_P035MP04C09
1.690
0.047
332.57
3.10E−02
 10.13
N/A





377
 34
34-MP04A12
FJ1427_P035MP04A12
1.299
3.599
323.31
3.33E−04
342.33
8.09E−03





583
 35
35-
FJ1427_P035MP07G01
0.134
0.045
 −1.24
N/A
  5.31
N/A




MP07G01












590
 36
36-MP07F02
FJ1427_P035MP07F02
0.896
0.060
 63.96
3.31E−03
112.27
7.47E−02





646
 37
37-MP07F09
FJ1427_P035MP07F09
1.806
1.487
 97.14
1.26E−03
309.78
7.00E−03





657
 38
38-MP07A11
FJ1427_P035MP07A11
1.307
0.173
 59.76
2.35E−03
215.77
1.49E−02





289
313

FJ1427_P035MP04A01
0.867
0.060
282.7
1.56E−03
 78.22
1.32E−01





290
314

FJ1427_P035MP04B01
0.873
0.074
157.01
3.27E−03
 53.81
1.96E−01





291
315

FJ1427_P035MP04C01
0.264
0.049
 82.41
1.24E−03
  8.6
N/A





292
316

FJ1427_P035MP04D01
1.024
0.066
278.79
1.82E−03
121.22
1.13E−01





293
317

FJ1427_P035MP04E01
1.078
0.067
188.27
2.66E−03
112.7
1.09E−01





294
318

FJ1427_P035MP04F01
1.656
0.085
195.73
2.68E−03
130.44
1.10E−01





296
319

FJ1427_P035MP04H01
1.665
0.109
264.66
2.06E−03
143.64
1.04E−01





297
320

FJ1427_P035MP04A02
1.450
0.085
177.95
3.06E−03
120.28
1.26E−01





298
321

FJ1427_P035MP04B02
1.969
0.048
409.02
2.85E−02
  8.18
N/A





299
322

FJ1427_P035MP04C02
1.002
0.070
245.73
1.96E−03
113.3
1.26E−01





301
323

FJ1427_P035MP04E02
1.980
0.049
407.94
6.52E−03
  9.4
N/A





302
324

FJ1427_P035MP04F02
0.196
0.049
 64.5
2.60E−03
  9.4
N/A





303
325

FJ1427_P035MP04G02
0.980
0.066
313.74
1.48E−03
107.94
1.14E−01





305
326

FJ1427_P035MP04A03
1.869
0.052
375.6
7.12E−03
  9.12
N/A





306
327

FJ1427_P035MP04B03
1.373
0.048
373.15
4.21E−02
  9.07
N/A





308
328

FJ1427_P035MP04D03
1.662
0.063
271.44
1.43E−03
 51.2
1.68E−01





310
329

FJ1427_P035MP04F03
1.771
0.300
280.73
7.40E−04
192.73
6.10E−02





311
330

FJ1427_P035MP04G03
0.933
0.049
346.95
7.44E−03
  9.04
N/A





312
331

FJ1427_P035MP04H03
1.254
0.442
159.47
1.00E−03
212.46
2.97E−02





313
332

FJ1427_P035MP04A04
1.307
0.050
370.31
3.78E−02
  8.97
N/A





315
333

FJ1427_P035MP04C04
1.432
0.063
153.37
2.14E−03
 67.05
1.51E−01





317
334

FJ1427_P035MP04E04
1.725
0.048
350.75
7.96E−03
  9.48
N/A





319
335

FJ1427_P035MP04G04
1.672
0.276
270.25
1.22E−03
205.91
6.66E−02





322
336

FJ1427_P035MP04B05
1.489
0.063
139.55
2.92E−03
 66.97
1.38E−01





323
337

FJ1427_P035MP04C05
1.810
0.047
376.56
7.75E−03
  9.66
N/A





328
338

FJ1427_P035MP04H05
1.569
0.080
199.1
2.73E−03
127.82
1.08E−01





329
339

FJ1427_P035MP04A06
0.898
0.063
187.84
2.83E−03
118.49
1.13E−01





330
340

FJ1427_P035MP04B06
1.445
0.048
409.59
2.08E−02
 11.37
N/A





331
341

FJ1427_P035MP04C06
0.797
0.061
222.95
2.01E−03
 70.8
4.65E−02





332
342

FJ1427_P035MP04D06
2.099
0.637
181.62
1.45E−03
202.27
1.37E−02





334
343

FJ1427_P035MP04F06
1.409
0.077
146.16
2.98E−03
106.98
1.16E−01





337
344

FJ1427_P035MP04A07
1.898
0.049
404.72
1.96E−02
 11.4
N/A





338
345

FJ1427_P035MP04B07
1.938
0.047
365.49
1.87E−02
 10.21
N/A





341
346

FJ1427_P035MP04E07
0.919
0.079
298.94
1.89E−03
 69.38
2.15E−01





342
347

FJ1427_P035MP04F07
0.789
0.064
195.88
2.49E−03
 64.64
1.56E−01





343
348

FJ1427_P035MP04G07
0.863
0.049
364.63
9.10E−03
 12.59
N/A





344
349

FJ1427_P035MP04H07
0.919
0.076
289.33
1.54E−03
132.57
1.01E−01





346
350

FJ1427_P035MP04B08
1.441
0.075
251
2.05E−03
127.43
1.13E−01





348
351

FJ1427_P035MP04D08
0.579
0.048
344.95
1.95E−02
 11.46
N/A





349
352

FJ1427_P035MP04E08
1.228
0.078
261.72
1.97E−03
115.24
1.22E−01





351
353

FJ1427_P035MP04G08
1.836
0.049
390.91
8.92E−03
  9.87
N/A





352
354

FJ1427_P035MP04H08
1.298
0.053
339.74
4.80E−02
 10.92
N/A





353
355

FJ1427_P035MP04A09
1.231
0.049
279.47
5.76E−02
  9.51
N/A





354
356

FJ1427_P035MP04B09
1.544
0.083
355.43
1.46E−03
134.71
1.22E−01





356
357

FJ1427_P035MP04D09
1.928
0.048
411.82
2.07E−02
 13.61
N/A





357
358

FJ1427_P035MP04E09
0.652
0.070
278.01
1.62E−03
 97.04
1.09E−01





358
359

FJ1427_P035MP04F09
1.774
0.049
394.46
7.95E−03
 10.55
N/A





359
360

FJ1427_P035MP04G09
0.559
0.050
259.1
6.58E−02
 11.22
N/A





360
361

FJ1427_P035MP04H09
1.871
0.050
385.95
2.22E−02
 12.05
N/A





361
362

FJ1427_P035MP04A10
1.846
0.048
383.76
2.04E−02
 10.63
N/A





362
363

FJ1427_P035MP04B10
1.474
0.047
348.83
7.49E−03
 10.52
N/A





363
364

FJ1427_P035MP04C10
1.335
0.047
406.12
2.05E−02
 10.49
N/A





364
365

FJ1427_P035MP04D10
1.263
0.077
364.55
1.39E−03
124.4
1.20E−01





366
366

FJ1427_P035MP04F10
0.751
0.048
306.49
1.47E−02
  8.01
N/A





367
367

FJ1427_P035MP04G10
0.839
0.049
353.65
1.04E−02
 11.45
N/A





368
368

FJ1427_P035MP04H10
1.804
0.049
406.1
9.98E−03
 12.25
N/A





369
369

FJ1427_P035MP04A11
0.593
0.050
371.26
1.65E−02
 12.01
N/A





370
370

FJ1427_P035MP04B11
0.750
0.047
343.62
1.03E−02
 10.16
N/A





371
371

FJ1427_P035MP04C11
0.912
0.047
319.23
6.93E−02
 10.94
N/A





372
372

FJ1427_P035MP04D11
1.411
0.048
295.74
4.01E−02
 11.15
N/A





373
373

FJ1427_P035MP04E11
0.940
0.065
362.54
1.49E−03
113.67
1.17E−01





374
374

FJ1427_P035MP04F11
2.008
0.049
386.1
1.11E−02
 10.84
N/A





375
375

FJ1427_P035MP04G11
1.396
0.048
356.15
1.16E−02
 11.91
N/A





376
376

FJ1427_P035MP04H11
1.774
0.049
272.2
1.03E−02
 13.42
N/A





378
377

FJ1427_P035MP04B12
0.936
0.074
 98.96
3.44E−03
125.8
1.16E−01





379
378

FJ1427_P035MP04C12
1.684
0.048
372.74
7.32E−03
 11.68
N/A





380
379

FJ1427_P035MP04D12
1.051
0.054
392.49
7.20E−03
  9.89
N/A





381
380

FJ1427_P035MP04E12
1.333
0.051
403.48
6.88E−03
  9.73
N/A





382
381

FJ1427_P035MP04F12
2.024
0.049
397.28
7.14E−03
  9.91
N/A





577
382

FJ1427_P035MP07A01
0.478
0.045
191.09
1.51E−03
 38.78
1.18E−01





578
383

FJ1427_P035MP07B01
0.518
0.049
165.79
2.35E−03
 83.09
1.00E−01





579
384

FJ1427_P035MP07C01
0.945
0.923
129.88
1.13E−03
296.03
6.94E−03





580
385

FJ1427_P035MP07D01
1.191
0.051
108.22
2.94E−03
103.53
1.13E−01





581
386

FJ1427_P035MP07E01
0.830
0.139
 73.58
1.56E−03
162.58
1.32E−02





582
387

FJ1427_P035MP07F01
0.556
0.047
102.03
2.97E−03
 79.2
8.55E−02





584
388

FJ1427_P035MP07H01
0.818
0.133
135.33
1.25E−03
154.75
2.74E−02





585
389

FJ1427_P035MP07A02
0.829
0.063
 96.66
1.76E−03
199.59
1.16E−02





586
390

FJ1427_P035MP07B02
1.324
0.061
 71.34
2.32E−03
153.09
1.51E−02





587
391

FJ1427_P035MP07C02
0.480
0.044
386.82
1.86E−02
 11.07
N/A





588
392

FJ1427_P035MP07D02
0.599
0.057
111.68
1.52E−03
199.85
1.27E−02





589
393

FJ1427_P035MP07E02
0.620
0.061
 88.48
2.06E−03
212.67
1.32E−02





591
394

FJ1427_P035MP07G02
1.220
0.051
 86.45
3.65E−03
 80.49
1.00E−01





592
395

FJ1427_P035MP07H02
0.801
0.066
106.45
1.88E−03
215.31
1.23E−02





593
396

FJ1427_P035MP07A03
1.691
0.869
 66.93
1.74E−03
216.69
7.95E−03





594
397

FJ1427_P035MP07B03
1.552
0.058
 48.01
2.78E−03
 81.25
1.32E−02





595
398

FJ1427_P035MP07C03
0.982
0.046
 71.75
3.53E−03
 48.29
1.14E−01





596
399

FJ1427_P035MP07D03
1.247
0.046
 84.13
3.39E−03
 58.38
1.07E−01





597
400

FJ1427_P035MP07E03
0.445
0.048
111.6
3.11E−03
 92.04
9.66E−02





598
401

FJ1427_P035MP07F03
0.497
0.046
103.9
3.21E−03
 69.3
1.05E−01





599
402

FJ1427_P035MP07G03
0.495
0.048
113.65
3.09E−03
 76.89
9.90E−02





601
403

FJ1427_P035MP07A04
0.507
0.046
130.63
1.26E−03
 44.97
1.49E−01





602
404

FJ1427_P035MP07B04
0.970
0.047
121.03
2.77E−03
 54.41
1.14E−01





603
405

FJ1427_P035MP07C04
0.406
0.045
153.69
2.67E−03
 94.18
9.28E−02





604
406

FJ1427_P035MP07D04
0.792
0.046
 99.59
2.43E−03
 44.76
1.61E−01





605
407

FJ1427_P035MP07E04
0.729
0.046
146.95
2.59E−03
 76.19
1.03E−01





606
408

FJ1427_P035MP07F04
0.400
0.047
128.1
2.96E−03
 53.51
1.15E−01





607
409

FJ1427_P035MP07G04
1.017
0.047
135.81
2.81E−03
 50.92
1.12E−01





608
410

FJ1427_P035MP07H04
0.593
0.052
142.73
1.77E−03
 97.39
8.23E−02





609
411

FJ1427_P035MP07A05
0.973
0.046
105.7
3.23E−03
 48.45
1.27E−01





610
412

FJ1427_P035MP07B05
0.439
0.045
139.96
2.82E−03
 83.18
1.10E−01





611
413

FJ1427_P035MP07C05
0.479
0.047
113.52
1.82E−03
139.59
1.28E−02





612
414

FJ1427_P035MP07D05
0.733
0.054
132.87
1.53E−03
159.41
6.09E−02





613
415

FJ1427_P035MP07E05
0.434
0.045
 84.27
3.72E−03
 52.18
1.20E−01





614
416

FJ1427_P035MP07F05
0.405
0.045
101.39
3.23E−03
 53
1.16E−01





615
417

FJ1427_P035MP07G05
0.450
0.046
 88.5
2.57E−03
 32.76
1.91E−01





616
418

FJ1427_P035MP07H05
1.141
0.049
134.27
2.79E−03
 97.11
1.18E−01





617
419

FJ1427_P035MP07A06
1.119
0.047
134.97
2.73E−03
 69.04
1.09E−01





618
420

FJ1427_P035MP07B06
0.902
0.045
119.08
3.22E−03
 51.58
1.12E−01





619
421

FJ1427_P035MP07C06
0.319
0.045
133.96
2.79E−03
 60.36
1.11E−01





620
422

FJ1427_P035MP07D06
0.919
0.045
143.54
2.88E−03
 58.87
1.26E−01





621
423

FJ1427_P035MP07E06
0.464
0.046
169.4
2.72E−03
 99.58
1.02E−01





622
424

FJ1427_P035MP07F06
1.343
0.082
162.47
1.62E−03
239.55
1.17E−02





625
425

FJ1427_P035MP07A07
1.039
0.047
194.33
1.73E−03
 66.11
9.71E−02





626
426

FJ1427_P035MP07B07
0.290
0.045
128.36
2.59E−03
 57.11
3.47E−03





627
427

FJ1427_P035MP07C07
0.469
0.047
145.52
2.50E−03
 64.9
1.05E−01





629
428

FJ1427_P035MP07E07
0.359
0.047
 74.37
2.25E−03
 60.14
9.27E−02





630
429

FJ1427_P035MP07F07
0.372
0.045
 91.37
3.00E−03
 47.67
1.33E−01





631
430

FJ1427_P035MP07G07
0.479
0.045
128.46
2.73E−03
 90.68
1.06E−01





632
431

FJ1427_P035MP07H07
1.415
0.047
 80.51
4.18E−03
 21.68
3.31E−03





633
432

FJ1427_P035MP07A08
0.889
0.049
143.26
2.55E−03
 80.83
1.06E−01





634
433

FJ1427_P035MP07B08
0.425
0.044
 89.12
3.26E−03
 32.8
1.44E−01





635
434

FJ1427_P035MP07C08
0.528
0.049
153.91
2.59E−03
 92.76
1.08E−01





636
435

FJ1427_P035MP07D08
1.031
0.050
159.87
2.63E−03
118.36
9.91E−02





637
436

FJ1427_P035MP07E08
0.642
0.049
109.34
2.29E−03
 73.2
1.30E−01





638
437

FJ1427_P035MP07F08
1.241
0.052
130.42
1.85E−03
 92.37
1.00E−01





639
438

FJ1427_P035MP07G08
0.504
0.047
124.62
3.00E−03
 87.05
1.05E−01





640
439

FJ1427_P035MP07H08
0.510
0.047
127.29
3.03E−03
 78.98
1.00E−01





641
440

FJ1427_P035MP07A09
0.518
0.055
129.97
1.61E−03
181.98
1.19E−02





642
441

FJ1427_P035MP07B09
1.268
0.082
119.23
1.68E−03
213.73
1.27E−02





643
442

FJ1427_P035MP07C09
0.723
0.755
104.15
1.37E−03
338.19
7.03E−03





644
443

FJ1427_P035MP07D09
0.865
0.045
 57.07
4.47E−03
 45.2
1.26E−01





645
444

FJ1427_P035MP07E09
0.428
0.045
 89.11
3.30E−03
 74.19
1.08E−01





647
445

FJ1427_P035MP07G09
1.144
0.047
 61.25
2.40E−03
 75.21
1.01E−01





648
446

FJ1427_P035MP07H09
1.111
0.049
 79.96
3.46E−03
100.7
1.35E−01





649
447

FJ1427_P035MP07A10
0.759
0.053
 80
2.42E−03
103.16
7.67E−02





650
448

FJ1427_P035MP07B10
0.716
0.059
 87.5
1.75E−03
138.94
5.01E−02





651
449

FJ1427_P035MP07C10
0.424
0.074
 77.95
1.76E−03
229.75
1.32E−02





652
450

FJ1427_P035MP07D10
0.734
0.048
 53.81
3.00E−03
 68.81
1.25E−01





653
451

FJ1427_P035MP07E10
0.434
0.047
 93.39
3.30E−03
 85.46
1.07E−01





654
452

FJ1427_P035MP07F10
0.670
0.089
 64.41
1.99E−03
164.14
1.21E−02





655
453

FJ1427_P035MP07G10
0.682
0.740
 96.71
1.22E−03
325.7
6.82E−03





656
454

FJ1427_P035MP07H10
0.572
0.049
 54.04
2.36E−03
126.54
1.37E−02





658
455

FJ1427_P035MP07B11
1.246
0.246
 54.36
2.14E−03
229.6
1.14E−02





659
456

FJ1427_P035MP07C11
0.858
0.046
 62.86
4.85E−03
 63.59
1.68E−01





661
457

FJ1427_P035MP07E11
0.398
0.045
107.25
3.04E−03
 88.26
1.09E−01





662
458

FJ1427_P035MP07F11
0.983
0.686
107.78
1.31E−03
321.3
7.57E−03





663
459

FJ1427_P035MP07G11
0.999
0.046
 77.9
3.51E−03
 75.72
9.90E−02





664
460

FJ1427_P035MP07H11
1.316
0.057
 70.12
2.52E−03
101.05
6.60E−02





665
461

FJ1427_P035MP07A12
0.485
0.052
 67.93
2.70E−03
 92.95
7.48E−02





666
462

FJ1427_P035MP07B12
1.789
0.700
 61.23
1.53E−03
197.54
7.66E−03





667
463

FJ1427_P035MP07C12
0.426
0.071
 64.81
1.97E−03
190.43
1.46E−02





668
464

FJ1427_P035MP07D12
0.511
0.051
 62.42
1.99E−03
141.1
1.22E−02





669
465

FJ1427_P035MP07E12
0.956
0.050
 60.15
3.05E−03
 84.92
8.83E−02





670
466

FJ1427_P035MP07F12
0.823
0.341
 46.09
1.97E−03
193.35
7.92E−03


















doorlopende









nummering








Clone
Patent clone
Sequence analysis




CDR3


nr.
ID
VH
VH ID
CDR1
CDR2
CDR3
Family ID





295
 27
QVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFRQAPGKE
 5_c
TDVVG-SEQ
SISRSGDGIYY
GDGWSTYDY-SEQ
4




REFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLKVED

ID NO: 545
DDSVKG-SEQ
ID NO: 547





TAVYYCAAGDGWSTYDYWGQGTQVTVSS-SEQ ID NO: 27


ID NO: 546







300
 28
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 7_c
RYAMG-
ANSWGGDTY
APTSFATTAYSGSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSGSNSYAYWGQGTQVTVSS-SEQ ID

548
SEQ ID NO:
550





NO: 28


549







304
 29
QVQLVESGGGLVQAGGSLRLACVASGLTFDNYYMGWFRQAPGKE
 9_c
NYYMG-
GIIWNGDHTA
TFWIERATTPDIGQ
7




REFVAGIIWNGDHTAYADSIKGRFTISRDNAKNTAYLRMNSLKPEDT

SEQ ID NO:
YADSIKG-
YAY-SEQ ID NO:





AVYYCAATFWIERATTPDIGQYAYWGQGTQVTVSS-SEQ ID NO: 29

551
SEQ ID NO:
553








552







307
 30
EVQLVESGGGWVQDGGSLRLSCALSGRTFVRGIMGWFRQAPGKE
12_c
RGIMG-SEQ
RIIWHINSTRY
RDRYGSGNSLSPS
6




REFVARIIWHINSTRYADSVKGRFTISRDSAKNTMYLQMDSLRPEDT

ID NO: 554
ADSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 555
556





30










309
 31
QVQLVESGGGLVQAGGSLRLSCTGYGGAFTGYALGWFRQAPGKE
14_c
GYALG-SEQ
RINWSGSFTY
DNPSTLATDYDN-
2




REFVARINWSGSFTYYASSVKGRFTISRDNAKNTMYLQMNNLKPED

ID NO: 557
YASSVKG-
SEQ ID NO: 559





TAVYYCAADNPSTLATDYDNWGQGTQVTVSS-SEQ ID NO: 31


SEQ ID NO:









558







345
 32
QVQLVESGGGLVQAGGSLRLSCAASGRTFGSTAVGWFRQVPGKE
31_c
STAVG-SEQ
AINRSGSATTY
DSLPYGRPYYFQRS
3




REFVSAINRSGSATTYADSVKGRFTISRDNAKNTVYLQMNSLTPEDT

ID NO: 560
ADSVKG-SEQ
AGEYDY-SEQ ID





GVYYCAADSLPYGRPYYFQRSAGEYDYWGQGTQVTVSS-SEQ ID


ID NO: 561
NO: 562





NO: 32










355
 33
QLQLVESGGGLVQAGGSLRLSCAASGPTFSRVAVGWFRQAPGKER
36_c
RVAVG-SEQ
AVNRPATMTK
DSVPYGRPYYWQT
3




EFVAAVNRPATMTKYADSVKGRFTVSRDNAKNTVDLQMNSMKPED

ID NO: 563
YADSVKG-
SAGDYDY-SEQ ID





TAVYYCAADSVPYGRPYYWQTSAGDYDYWGQGTQVTVSS-SEQ


SEQ ID NO:
NO: 565





ID NO: 33


564







377
 34
QVQLVESGGGLVQAGSSLRLSCAASGRTLSRLAMGWFRQAPGKER
53_c
RLAMG-
VNSWGGDTF
APTSFATTAYSSSN
1




EFVAVNSWGGDTFYADSVEGRFTYSRDNAKSAVYLQMNSLQPEDT

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





AVYYCAAAPTSFATTAYSSSNSYAYWGQGAQVTVSS-SEQ ID NO:

566
SEQ ID NO:
568





34


567







583
 35
QVQLQESGGGLVQGGGSLRLSCAASGGIFSSYAMGWFRQAPGKE
61_c
SYAMG-
AISRSGRSTN
GRYYNSAYDPSPG
5




REFVAAISRSGRSTNYADSVKGRFTISRDNAKSTVYLQMNSLKPEET

SEQ ID NO:
YADSVKG-
DFGS-SEQ ID NO:





AVYYCAAGRYYNSAYDPSPGDFGSWGHGTQVTVSS-SEQ ID NO:

569
SEQ ID NO:
571





35


570







590
 36
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGSE
66_c
RYAMG-
ASSWGGDTF
APTSFPTTAYSSSN
1




REFVAASSWGGDTFYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAAYYCAAAPTSFPTTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

572
SEQ ID NO:
574





36


573







646
 37
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
85_c
RYAMG-
IDSWGGDTFY
APTSFATTAYSSSN
1




REYVAIDSWGGDTFYADSVEGRFTFSRDNAKNEVYLQMNSLQPED

SEQ ID NO:
ADSVEG-SEQ
SYRY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

575
ID NO: 576
577





NO: 37










657
 38
QVQLVESGGGLVQAGGSLRLSCAASGRSLSRDAMGWFRQAPGKE
90_c
RDAMG-
VMSWGGDTF
APTSFATTAYSSSN
1




REFVAVMSWGGDTFYTDSVEGRFTFSRDNAKNAVYLEMNDLQPED

SEQ ID NO:
YTDSVEG-
SYSY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYSYWGRGTQVTVSS-SEQ ID NO:

578
SEQ ID NO:
580





38


579







289
313
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1405
SEQ ID NO:
1407





313


1406







290
314
EVQLVESGGGLVQAGASLRLSCAASGRTLSRYAMGWFRQAPGKER
 2_c
RYAMG-
ASSWGGDTY
APTSFATTAYSSSN
1




EFVAASSWGGDTYYADSVEGRFTFSRDNAKNAVYLQMNSLQPEDT

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





AVYYCAGAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1408
SEQ ID NO:
1410





314


1409







291
315
QVQLVESGGGLVQAGGSLTLSCAASGRTFSTDVVGWFRQAPGKER
 3_c
TDVVG-SEQ
SISRSGDGIYY
GDGWSTYDY-SEQ
4




EFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNNLKVEDT

ID NO: 1411
DDSVKG-SEQ
ID NO: 1413





AVYYCAAGDGWSTYDYWGQGTQVTVSS-SEQ ID NO: 315


ID NO: 1412







292
316
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1414
SEQ ID NO:
1416





316


1415







293
317
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1417
SEQ ID NO:
1419





317


1418







294
318
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1420
SEQ ID NO:
1422





318


1421







296
319
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1423
ID NO: 1424
1425





319










297
320
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1426
SEQ ID NO:
1428





320


1427







298
321
QVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQTPGKE
 6_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1429
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1430
1431





321










299
322
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1432
SEQ ID NO:
1434





322


1433







301
323
QVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQTPGKE
 6_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1435
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1436
1437





323










302
324
QLQLVESGGGLVQAGGSLTLSCAASGRTFSRDVVGWFRQAPGKER
 8_c
RDVVG-
SISRSGDGTF
GDGWSTYDY-SEQ
4




EFVASISRSGDGTFYTDSVKGRFTISSRDNAKNTVLLQMNSLKVEDT

SEQ ID NO:
YTDSVKG-
ID NO: 1440





AVYYCAAGDGWSTYDYWGQGTQVTVSS-SEQ ID NO: 324

1438
SEQ ID NO:









1439







303
325
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1441
SEQ ID NO:
1443





325


1442







305
326
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQTPGKE
10_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1444
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


D NO: 1445
1446





326










306
327
QVQLQESGGGLVQAGESLRLSCAASGPTASRVAVAWFRQVPGKER
11_c
RVAVA-SEQ
VVNRPGTMTK
DSVPYGRPYYFQTS
3




EFVAVVNRPGTMTKYADSVKGRFTISRDSAKNTVYLQMNSLKPEDT

ID NO: 1447
YADSVKG-
AGNYDY-SEQ ID





AVYYCAADSVPYGRPYYFQTSAGNYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1449





NO: 327


1448







308
328
EVQLVESGGGLVQAEGSLRLSCAASGRTLSRYAMGWFRQAPGKER
13_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




EFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPEDT

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





AVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1450
SEQ ID NO:
1452





328


1451







310
329
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRNAMGWFRQAPGKE
15_c
RNAMG-
ADSWGGDTF
APTSFATTAYSSSN
1




REFVAADSWGGDTFYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYRY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1453
SEQ ID NO:
1455





NO: 329


1454







311
330
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
16_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMDSLRPEDT

ID NO: 1456
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1457
1458





330










312
331
QLQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
17_c
RYAMG-
ADSWGGDTF
APTSFATTAYSSSN
1




REFVAADSWGGDTFYADSVEGRFTFSRDNAKNAAYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYRY-SEQ ID NO:





TATYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1459
SEQ ID NO:
1461





NO: 331


1460







313
332
QVQLVESGGGLVQAGESLRLSCAASGPTASRVAVAWFRQVPGKER
18_c
RVAVA-SEQ
VVNRPGTMTK
DSVPYGRPYYFQTS
3




EFVAVVNRPGTMTKYADSVKGRFTISRDSAKNTVYLQMNSLKPEDT

ID NO: 1462
YADSVKG-
AGNYDY-SEQ ID





AVYYCAADSVPYGRPYYFQTSAGNYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1464





NO: 332


1463







315
333
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1465
SEQ ID NO:
1467





333


1466







317
334
EVQLVESGGGWVQVGESLRLSCVPSGRTFVSGIMGWFRQAPGKE
19_c
SGIMG-SEQ
RIILNSNSTRY
RDRYGSGNSLSPS
6




REFVARIILNSNSTRYTDSVKGRFTISRDSAKNTMYLQMNSLRPEDT

ID NO: 1468
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1469
1470





334










319
335
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAVGWFRQAPGKE
20_c
RYAVG-SEQ
ANSWGGDTF
APTSFATTAYSSSN
1




REFVTANSWGGDTFYADSVQGRFTFSRDNAKNTVYLQMNSLLPED

ID NO: 1471
YADSVQG-
SYKV-SEQ ID NO:





AAVYYCAAAPTSFATTAYSSSNSYKVWGQGTQVTVSS-SEQ ID NO:


SEQ ID NO:
1473





335


1472







322
336
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1474
SEQ ID NO:
1476





336


1475







323
337
QVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
22_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKDTMYLQMNTLRPEDT

ID NO: 1477
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1478
1479





337










328
338
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1480
SEQ ID NO:
1482





338


1481







329
339
QVQLVESGGGLVQPGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
23_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1483
SEQ ID NO:
1485





339


1484







330
340
QLQLVESGGGWVQVGESLRLSCVPSGRTFVSGIMGWFRQAPGKE
24_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1486
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1487
1488





340










331
341
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1489
SEQ ID NO:
1491





341


1490







332
342
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
25_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1492
ID NO: 1493
1494





342










334
343
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1495
SEQ ID NO:
1497





343


1496







337
344
QLQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
26_c
SGIMG-SEQ
RIILNNNSTRYI
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYIDSVKGRFTISRDSAKNTMYLQMDSLRPEDTA

ID NO: 1498
DSVKG-SEQ
AYDY-SEQ ID NO:





VYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1499
1500





344










338
345
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQTPGKE
27_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTLYLQMNTLRPEDTA

ID NO: 1501
TDSVKG-SEQ
AYDY-SEQ ID NO:





VYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1502
1503





345










341
346
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
28_c
RYAMG-
ATSWGGDTY
APTSFATTAYSSSN
1




RDFVAATSWGGDTYYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1504
SEQ ID NO:
1506





346


1505







342
347
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1507
SEQ ID NO:
1509





347


1508







343
348
QVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
29_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1510
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1511
1512





348










344
349
QLQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
30_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1513
SEQ ID NO:
1515





349


1514







346
350
QVQLVESGGGLVQAGGSLRLSCVASGRTLSRYAMGWFRQAPGKE
32_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1516
SEQ ID NO:
1518





350


1517







348
351
QVQLVESGGGLVQAGESLRLSCAASGPTASRVAVAWFRQVPGKER
18_c
RVAVA-SEQ
VVNRPGTMTK
DSVPYGRPYYFQTS
3




EFVAVVNRPGTMTKYADSVKGRFTISRDSAKNTVYLQMNSLKPEDT

ID NO: 1519
YADSVKG-
AGNYDY-SEQ ID





AVYYCAADSVPYGRPYYFQTSAGNYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1521





NO: 351


1520







349
352
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1522
SEQ ID NO:
1524





352


1523







351
353
QVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
33_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMDSLRPEDT

ID NO: 1525
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1526
1527





353










352
354
EVQLVESGGGLVQAGESLRLSCAASGPTASRVAVAWFRQVPGKER
34_c
RVAVA-SEQ
VVNRPGTMTK
DSVPYGRPYYFQTS
3




EFVAVVNRPGTMTKYADSVKGRFTISRDSAKNTVYLQMNSLKPEDT

ID NO: 1528
YADSVKG-
AGNYDY-SEQ ID





AVYYCAADSVPYGRPYYFQTSAGNYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1530





NO: 354


1529







353
355
QVQLVESGGGLVQAGGSLRLSCAASGRTFGAVAVGWFRQVPGKE
35_c
AVAVG-SEQ
AINRNGSATK
DSLPYGRPYYFQTS
3




REFVAAINRNGSATKYADSAKGRFTISRDNAESPVYLQMNSLKPEDT

ID NO: 1531
YADSAKG-
AGEYDY-SEQ ID





AIYYCAADSLPYGRPYYFQTSAGEYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1533





NO: 355


1532







354
356
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1534
SEQ ID NO:
1536





356


1535







356
357
QVQLVESGGGWVQVGESLRLSCAPSGRTFVRGIMGWFRQAPGKE
37_c
RGIMG-SEQ
RIILNSNSTRYI
RDRYGSGNSLSPS
6




REFVARIILNSNSTRYIDSVKGRFTISRDSAKNTMYLQMNSLRPEDTA

ID NO: 1537
DSVKG-SEQ
AYDY-SEQ ID NO:





VYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1538
1539





357










357
358
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
38_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRSTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1540
SEQ ID NO:
1542





358


1541







358
359
QVQLVESGGGWVQVGESLRLSCAPSGRTFVRGIMGWFRQAPGKE
39_c
RGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMWLQMDSLRPEDT

ID NO: 1543
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1544
1545





359










359
360
QVQLQESGGGLVQAGGSLRLSCAASGPTFSRVAVGWFRQVPGKE
40_c
RVAVG-SEQ
AVNRPATMTK
DSVPYGRPYYFQTS
3




REFVAAVNRPATMTKYADSVKGRFTISRDNAKNTVDLQMNSMKPED

ID NO: 1546
YADSVKG-
AGEYDY-SEQ ID





TAVYYCAADSVPYGRPYYFQTSAGEYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1548





NO: 360


1547







360
361
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
41_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1549
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1550
1551





361










361
362
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
41_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1552
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1553
1554





362










362
363
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
42_c
SGIMG-SEQ
RIILNNNSTRYI
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYIDSVKGRFTISRDSAKNTMYLQMDSLRPEDTA

ID NO: 1555
DSVKG-SEQ
AYDY-SEQ ID NO:





VYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSL-SEQ ID NO:


ID NO: 1556
1557





363










363
364
QVQLQESGGGWVQVGESLRLSCVPSGRTFVSGIMGWFRQAPGKE
43_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1558
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1559
1560





364










364
365
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1561
SEQ ID NO:
1563





365


1562







366
366
QLQLVESGGGWVQVGESLRLSCVPSGRTFVSGIMGWFRQAPGKE
44_c
SGIMG-SEQ
RIISNNNSTRY
RDRYGSGNSLSPS
6




REFVARIISNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1564
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1565
1566





366










367
367
QVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
45_c
SGIMG-SEQ
RIILNSNSTRY
RDRYGSGNSLSPS
6




REFVARIILNSNSTRYTDSAKGRFTISRDSAKNTMYLQMDSLRPEDT

ID NO: 1567
TDSAKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1568
1569





367










368
368
QVQLVESGGGLVQAGGSLRLSCAPSGRTFVSGIMGWFRQAPGKER
46_c
SGIMG-SEQ
RIILNNNSTRYI
RDRYGSGNSLSPS
6




EFVARIILNNNSTRYIDSVKGRFTISRDSAKNTMYLQMDSLRPEDTAV

ID NO: 1570
DSVKG-SEQ
AYDY-SEQ ID NO:





YYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO: 368


ID NO: 1571
1572






369
369
QVQLVESGGGLVQAGESLRLSCAASGPTASRVAVAWFRQVPGKER
18_c
RVAVA-SEQ
VVNRPGTMTK
DSVPYGRPYYFQTS
3




EFVAVVNRPGTMTKYADSVKGRFTISRDSAKNTVYLQMNSLKPEDT

ID NO: 1573
YADSVKG-
AGNYDY-SEQ ID





AVYYCAADSVPYGRPYYFQTSAGNYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1575





NO: 369


1574







370
370
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
47_c
SGIMG-SEQ
RIILNNNSTRYI
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYIDSVKGRFTISRDSAKNTMYLQMDSLRPEDTA

ID NO: 1576
DSVKG-SEQ
AYDY-SEQ ID NO:





VYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1577
1578





370










371
371
QVQLVESGGGLVQHGGSLRLSCAASGPTFSRVAVGWFRQVPGKE
48_c
RVAVG-SEQ
VVNRPGSMTK
DSVPYGRPYYFTTS
3




REFVAVVNRPGSMTKYADSVKGRFNISRDTAKNTVYLQMNSLKPED

ID NO: 1579
YADSVKG-
AGDYDY-SEQ ID





TAVYYCAADSVPYGRPYYFTTSAGDYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1581





NO: 371


1580







372
372
EVQLVESGGGLVQAGGSLRLSCAASGRTFGAVAVGWFRQVPGKE
49_c
AVAVG-SEQ
AINRSGSATK
DSLPYGRPYYFQTS
3




REFVAAINRSGSATKYADSVKGRFTISRDNAESPVFLQMNSLKPEDT

ID NO: 1582
YADSVKG-
AGEYDY-SEQ ID





AVYYCAADSLPYGRPYYFQTSAGEYDYWGQGTQVTVSS-SEQ ID


SEQ ID NO:
NO: 1584





NO: 372


1583







373
373
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1585
SEQ ID NO:
1587





373


1586







374
374
QVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQTPGKE
50_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTLYLQMNTLRPEDTA

ID NO: 1588
TDSVKG-SEQ
AYDY-SEQ ID NO:





VYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1589
1590





374










375
375
QVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGEE
51_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1591
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1592
1593





375










376
376
QVQLVESGGGWVQVGESPRLSCAPSGRTFVSGIMGWFRQTPGKE
52_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1594
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1595
1596





376










378
377
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1597
SEQ ID NO:
1599





377


1598







379
378
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQAPGKE
47_c
SGIMG-SEQ
RIILNNNSTRYI
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYIDSVKGRFTISRDSAKNTMYLQMDSLRPEDTA

ID NO: 1600
DSVKG-SEQ
AYDY-SEQ ID NO:





VYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1601
1602





378










380
379
QVQLVESGGGWVQVGKSLRLSCAPSGRTFVSGIMGWFRQAPGKE
54_c
SGIMG-SEQ
RIILNNNSTRYI
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYIDSVKGRFTISRDSAKNTMYLQMDSLRPEDTA

ID NO: 1603
DSVKG-SEQ
AYDY-SEQ ID NO:





VYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1604
1605





379










381
380
QLQLVESGGGWVQVGESLRLSCAPSGRTFASGIMGWFRQAPGKE
55_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1606
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1607
1608





380










382
381
QVQLQESGGGWVQVGESLRLSCVPSGRTFVSGIMGWFRQAPGKE
43_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1609
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1610
1611





381










577
382
EVQLVESGGGLVQAGDSLRLSCAASGRTLSRYAMGWFRQAPGKE
56_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1612
SEQ ID NO:
1614





382


1613







578
383
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
57_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFTRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1615
SEQ ID NO:
1617





383


1616







579
384
QVQLVESGGGLVQAGDSLRLSCVASGRTLSRCAMGWFRKAPGKE
58_c
RCAMG-
ISSWGGDTFY
APTSFATTAYSSSN
1




REYVAISSWGGDTFYEDSVEGRFTFSRDNAKNTVYLQMNSLRPEDT

SEQ ID NO:
EDSVEG-SEQ
SYAY-SEQ ID NO:





AVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1618
ID NO: 1619
1620





384










580
385
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
59_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVAANSWGGDTYYTDSVEGRFTFSRDNAKNAVYLQMNSLQPGD

SEQ ID NO:
YTDSVEG-
SYSY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYSYWGQGTQVTVSS-SEQ ID NO:

1621
SEQ ID NO:
1623





385


1622







581
386
QVQLQESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
60_c
RYAMG-
CDSWGGDTF
APTSFATTAYSSSN
1




REFVACDSWGGDTFYADSVEGRFTFSRDNAKNATYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYTV-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYTVWGQGTQVTVSL-SEQ ID NO:

1624
SEQ ID NO:
1626





386


1625







582
387
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1627
SEQ ID NO:
1629





387


1628







584
388
QVQLVESGGGLVQAGGSLRLFCATSGRTLSRYAMGWFRQAPGRE
62_c
RYAMG-
CDSWGGDTF
APTSFATTAYSSSN
1




REFVACDSWGGDTFYADSVKGRFTFSRDSAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVKG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1630
SEQ ID NO:
1632





388


1631







585
389
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
63_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTASS-SEQ ID NO:

1633
ID NO: 1634
1635





389










586
390
EVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
64_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1636
ID NO: 1637
1638





390










587
391
EVQLVESGGGWVQVGESLRLSCAPSGRTFVSGIMGWFRQTPGKE
10_c
SGIMG-SEQ
RIILNNNSTRY
RDRYGSGNSLSPS
6




REFVARIILNNNSTRYTDSVKGRFTISRDSAKNTMYLQMNTLRPEDT

ID NO: 1639
TDSVKG-SEQ
AYDY-SEQ ID NO:





AVYYCAARDRYGSGNSLSPSAYDYWGQGTQVTVSS-SEQ ID NO:


ID NO: 1640
1641





391










588
392
QVQLQESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
65_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1642
ID NO: 1643
1644





392










589
393
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
25_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1645
ID NO: 1646
1647





393










591
394
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1648
SEQ ID NO:
1650





394


1649







592
395
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
25_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1651
ID NO: 1652
1653





395










593
396
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
67_c
RYAMG-
IDSWGGDTFY
APTSFATTAYSSSN
1




REYVAIDSWGGDTFYADSVEGRFTFSRDNAKNEVYLQMNSLQPED

SEQ ID NO:
ADSVEG-SEQ
SYRY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1654
ID NO: 1655
1656





NO: 396










594
397
EVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
64_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1657
ID NO: 1658
1659





397










595
398
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1660
SEQ ID NO:
1662





398


1661







596
399
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1663
SEQ ID NO:
1665





399


1664







597
400
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1666
SEQ ID NO:
1668





400


1667







598
401
QVQLVESGGGLVQTGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
68_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1669
SEQ ID NO:
1671





401


1670







599
402
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1672
SEQ ID NO:
1674





402


1673







601
403
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQGPGKE
69_c
RYAMG-
ADSWGGDTY
APTSFATTAYSSSN
1




REFVAADSWGGDTYYDDSVEGRFTFSRDITKNAVYLQMNSLQPED

SEQ ID NO:
YDDSVEG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1675
SEQ ID NO:
1677





403


1676







602
404
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1678
SEQ ID NO:
1680





404


1679







603
405
QVQLVESGGGVVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
70_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1681
SEQ ID NO:
1683





405


1682







604
406
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQGPGKE
71_c
RYAMG-
ADSWGGDTY
APTSFATTAYSSSN
1




REFVAADSWGGDTYYDDSVEGRFTFSRDITKNAVYLQMNSLQPED

SEQ ID
YDDSVEG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

NO:1684
SEQ ID NO:
1686





406


1685







605
407
QVQLVESGGGLVQAGDSLRLSCEASGRTLSRYAMGWFRQAPGKE
72_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1687
SEQ ID NO:
1689





407


1688







606
408
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1690
SEQ ID NO:
1692





408


1691







607
409
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1693
SEQ ID NO:
1695





409


1694







608
410
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
73_c
RYAMG-
AMSWGGDTF
APTSFATTAYSSSN
1




REFVAAMSWGGDTFYADSVEGRFTFSRDNAEIAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSH-SEQ ID NO:

1696
SEQ ID NO:
1698





410


1697







609
411
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1699
SEQ ID NO:
1701





411


1700







610
412
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1702
SEQ ID NO:
1704





412


1703







611
413
EVQLVESGGGLVQPGGSLRLSCAASGRALSRLAMGWFRQAPGKE
74_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1705
ID NO: 1706
1707





413










612
414
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRNAMGWFRQAPGKE
15_c
RNAMG-
ADSWGGDTF
APTSFATTAYSSSN
1




REFVAADSWGGDTFYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYRY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1708
SEQ ID NO:
1710





NO: 414


1709







613
415
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1711
SEQ ID NO:
1713





415


1712







614
416
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGRE
75_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1714
SEQ ID NO:
1716





416


1715







615
417
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
76_c
RYAMG-
ADSWGGDTY
APTSFATTAYSSSN
1




REFVAADSWGGDTYYADSVEGRFTFSRDNANNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1717
SEQ ID NO:
1719





417


1718







616
418
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
59_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVAANSWGGDTYYTDSVEGRFTFSRDNAKNAVYLQMNSLQPGD

SEQ ID NO:
YTDSVEG-
SYSY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYSYWGQGTQVTVSS-SEQ ID NO:

1720
SEQ ID NO:
1722





418


1721







617
419
QVQLVESGGGLVQPGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
23_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1723
SEQ ID NO:
1725





419


1724







618
420
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1726
SEQ ID NO:
1728





420


1727







619
421
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
77_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAENTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1729
SEQ ID NO:
1731





421


1730







620
422
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1732
SEQ ID NO:
1734





422


1733







621
423
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1735
SEQ ID NO:
1737





423


1736







622
424
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
25_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1738
ID NO: 1739
1740





424










625
425
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1741
SEQ ID NO:
1743





425


1742







626
426
QVQLVESGGGLVQAGGSLRLSCAASGRSLSRYAMGWFRQAPGKE
78_c
RYAMG-
AISWGGDSFY
APTSFPTTAYSSSN
1




REFVAAISWGGDSFYTDSVEGRFTFSRDNAKNAVYLEMNDLQPEDT

SEQ ID NO:
TDSVEG-SEQ
SYSY-SEQ ID NO:





AVYYCAAAPTSFPTTAYSSSNSYSYWGRGTQVTVSS-SEQ ID NO:

1744
ID NO: 1745
1746





426










627
427
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1747
SEQ ID NO:
1749





427


1748







629
428
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGSE
79_c
RYAMG-
ASSWGGDTF
APTSFPTTAYSSSN
1




REFVAASSWGGDTFYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAAYYCAAAPTSFPTTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1750
SEQ ID NO:
1752





428


1751







630
429
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1753
SEQ ID NO:
1755





429


1754







631
430
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1756
SEQ ID NO:
1758





430


1757







632
431
QVQLVESGGGLVQAGDSLRLSCAASGRTLSRYAMGWFRQAPGKE
80_c
RYAMG-
ATSWGGDSY
APTSFATTAYSSSN
1




REFVAATSWGGDSYYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAN-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYANWGQGTQVTVSS-SEQ ID NO:

1759
SEQ ID NO:
1761





431


1760







633
432
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1762
SEQ ID NO:
1764





432


1763







634
433
EVQLVESGGGSVQPGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
81_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1765
SEQ ID NO:
1767





433


1766







635
434
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1768
SEQ ID NO:
1770





434


1769







636
435
QLQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
30_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1771
SEQ ID NO:
1773





435


1772







637
436
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
82_c
RYAMG-
ADSWGGDTY
APTSFATTAYSSSN
1




REFVAADSWGGDTYYDDSVEGRFTFSRDIAKNAVYLQMNSLQPED

SEQ ID NO:
YDDSVEG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1774
SEQ ID NO:
1776





436


1775







638
437
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRDAMGWFRQAPGKE
83_c
RDAMG-
ADSWGGDTF
APTSFATTAYSSSN
1




REFVAADSWGGDTFYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYRY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1777
SEQ ID NO:
1779





NO: 437


1778







639
438
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGRE
84_0
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMSSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1780
SEQ ID NO:
1782





438


1781







640
439
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1783
SEQ ID NO:
1785





439


1784







641
440
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
25_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1786
ID NO: 1787
1788





440










642
441
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
25_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1789
ID NO: 1790
1791





441










643
442
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
85_c
RYAMG-
IDSWGGDTFY
APTSFATTAYSSSN
1




REYVAIDSWGGDTFYADSVEGRFTFSRDNAKNEVYLQMNSLQPED

SEQ ID NO:
ADSVEG-SEQ
SYRY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1792
ID NO: 1793
1794





NO: 442










644
443
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 1_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1795
SEQ ID NO:
1797





443


1796







645
444
QVQLQESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
86_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1798
SEQ ID NO:
1800





444


1799







647
445
QVQLQESGGGLVQAGGSLRLSCAASGRTLSRVAMGWFRQAPGKE
87_c
RVAMG-
ADSWGGDTF
APASFATTAYSSSN
1




REFVAADSWGGDTFYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYSY-SEQ ID NO:





TAVYFCAGAPASFATTAYSSSNSYSYWGQGTQVTVSS-SEQ ID

1801
SEQ ID NO:
1803





NO: 445


1802







648
446
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
88_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVAANSWGGDTYYTDSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YTDSVEG-
SYTY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYTYWGQGTQVTVSS-SEQ ID NO:

1804
SEQ ID NO:
1806





446


1805







649
447
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGSE
66_c
RYAMG-
ASSWGGDTF
APTSFPTTAYSSSN
1




REFVAASSWGGDTFYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAAYYCAAAPTSFPTTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1807
SEQ ID NO:
1809





447


1808







650
448
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
89_c
RYAMG-
ADSWGGDTF
APTSFATTAYSSSN
1




REFVAADSWGGDTFYADSVEGRFTFSRDNAKNAAYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYRY-SEQ ID NO:





TATYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1810
SEQ ID NO:
1812





NO: 448


1811







651
449
QVQLVESGGGLVQAGGSLRLSCAASGRSLSRDAMGWFRQAPGKE
90_c
RDAMG-
VMSWGGDTF
APTSFATTAYSSSN
1




REFVAVMSWGGDTFYTDSVEGRFTFSRDNAKNAVYLEMNDLQPED

SEQ ID NO:
YTDSVEG-
SYSY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYSYWGRGTQVTVSS-SEQ ID NO:

1813
SEQ ID NO:
1815





449


1814







652
450
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
82_c
RYAMG-
ADSWGGDTY
APTSFATTAYSSSN
1




REFVAADSWGGDTYYDDSVEGRFTFSRDIAKNAVYLQMNSLQPED

SEQ ID NO:
YDDSVEG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1816
SEQ ID NO:
1818





450


1817







653
451
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1819
SEQ ID NO:
1821





451


1820







654
452
QVQLQESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
60_c
RYAMG-
CDSWGGDTF
APTSFATTAYSSSN
1




REFVACDSWGGDTFYADSVEGRFTFSRDNAKNATYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYTV-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYTVWGQGTQVTVSL-SEQ ID NO:

1822
SEQ ID NO:
1824





452


1823







655
453
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
85_c
RYAMG-
IDSWGGDTFY
APTSFATTAYSSSN
1




REYVAIDSWGGDTFYADSVEGRFTFSRDNAKNEVYLQMNSLQPED

SEQ ID NO:
ADSVEG-SEQ
SYRY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1825
ID NO: 1826
1827





NO: 453










656
454
EVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
64_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1828
ID NO: 1829
1830





454










658
455
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
91_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVEGRFTFSRDNAKSTVYLQMNSLQPGD

SEQ ID NO:
ADSVEG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVPS-SEQ ID NO:

1831
ID NO: 1832
1833





455










659
456
QVQLVESGGGLVQAGASLRLSCAASGRTLSRYAMGWFRQAPGKE
92_c
RYAMG-
ASSWGGDTY
APTSFATTAYSSSN
1




REFVAASSWGGDTYYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID

1834
SEQ ID NO:
1836





NO: 456


1835







661
457
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
 4_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1837
SEQ ID NO:
1839





457


1838







662
458
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRLAMGWFRQAPGKE
93_c
RLAMG-
VNSWGGDTF
APTSFATTAYSSSN
1




REFVAVNSWGGDTFYADSVEGRFTYSRDNAKSAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1840
SEQ ID NO:
1842





458


1841







663
459
QVQLQESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
86_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYADSVQGRFTFSRDNAKNTVYLQMNSLQPED

SEQ ID NO:
YADSVQG-
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1843
SEQ ID NO:
1845





459


1844







664
460
QVQLVESGGGLVQPGGSLRLSCAASGRTLSRYAMGWFRQAPGKD
94_c
RYAMG-
ASSWGGDTF
APTSFATTAYSSSN
1




REFVAASSWGGDTFYADSVEGRFTFSRDNAENATYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYGS-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYGSWGQGTQVTVSS-SEQ ID

1846
SEQ ID NO:
1848





NO: 460


1847







665
461
QVQLQESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGSE
95_c
RYAMG-
ASSWGGDTF
APTSFPTTAYSSSN
1




REFVAASSWGGDTFYADSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YADSVEG-
SYAY-SEQ ID NO:





TAAYYCAAAPTSFPTTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1849
SEQ ID NO:
1851





461


1850







666
462
EVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
67_c
RYAMG-
IDSWGGDTFY
APTSFATTAYSSSN
1




REYVAIDSWGGDTFYADSVEGRFTFSRDNAKNEVYLQMNSLQPED

SEQ ID NO:
ADSVEG-SEQ
SYRY-SEQ ID NO:





TAVYYCAGAPTSFATTAYSSSNSYRYWGQGTQVTVSS-SEQ ID

1852
ID NO: 1853
1854





NO: 462










667
463
QVQLVESGGGLVQAGGSLRLSCAASGRSLSRDAMGWFRQAPGKE
90_c
RDAMG-
VMSWGGDTF
APTSFATTAYSSSN
1




REFVAVMSWGGDTFYTDSVEGRFTFSRDNAKNAVYLEMNDLQPED

SEQ ID NO:
YTDSVEG-
SYSY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYSYWGRGTQVTVSS-SEQ ID NO:

1855
SEQ ID NO:
1857





463


1856







668
464
QVQLVESGGGLVQAGGSLRLSCAASGRALSRLAMGWFRQAPGKE
25_c
RLAMG-
ASSWGDDTFY
APTSFATTAYSSSN
1




REFVVASSWGDDTFYADSVKGRFTFSRDNAKNTVYLQMNSLQPGD

SEQ ID NO:
ADSVKG-SEQ
SYAY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1858
ID NO: 1859
1860





464










669
465
QVQLVESGGGLVQAGGSLRLSCAASGRTLSRYAMGWFRQAPGKE
96_c
RYAMG-
ANSWGGDTY
APTSFATTAYSSSN
1




REFVTANSWGGDTYYTDSVEGRFTFSRDNAKNAVYLQMNSLQPED

SEQ ID NO:
YTDSVEG-
SYTY-SEQ ID NO:





TAVYYCAAAPTSFATTAYSSSNSYTYWGQGTQVTVSS-SEQ ID NO:

1861
SEQ ID NO:
1863





465


1862







670
466
EVQLVESGGGLVQAGDSLRLSCVASGRTLSRCAMGWFRKAPGKER
97_c
RCAMG-
ISSWGGDTFY
APTSFATTAYSSSN
1




EYVAISSWGGDTFYEDSVEGRFTFSRDNAKNTVYLQMNSLRPEDTA

SEQ ID NO:
EDSVEG-SEQ
SYAY-SEQ ID NO:





VYYCAAAPTSFATTAYSSSNSYAYWGQGTQVTVSS-SEQ ID NO:

1864
ID NO: 1865
1866





466





















TABLE 10












Fold Max signal



EC50 (nM)
fold EC50
Max signal (% pSTAT5+)
(% pSTAT5+)














Treg
NK
NK/Treg
Treg
NK
Treg/NK

















IL-2
0.001183
0.3298
279
97
34
3


DC0003
0.01177
2.592
220
95
20
5


(TsVHH-48)


DC00039
0.0007609
0.03149
41
46
4
11


DC00040
0.01579
0.7013
44
43
4
10


DC00041
<0.0001
0.1503
>1503
94
17
5


DC00042
0.0001058
0.7626
7208
94
21
5


DC00043
0.000529
0.04251
80
54
3
16


DC00044
<0.0001
0.4415
>4415
96
20
5


DC00045
0.0001514
0.05733
379
88
7
12


DC00046
N/A
N/A
N/A
25
6
4


DC00047
N/A
N/A
N/A
0
0
1


DC00048
<0.0001
0.1762
>1762
95
26
4


DC00049
0.003361
0.1979
59
95
27
4


DC00050
0.001344
0.0326
24
56
8
7


DC00051
<0.0001
0.1912
>1912
96
33
3


DC00052
0.004034
0.08119
20
79
9
8


DC00053
0.0004882
0.05702
117
84
13
7


DC00055
<0.0001
0.8888
>8888
97
34
3


DC00057
0.002082
0.5485
263
89
19
5


DC00058
0.002496
1.866
748
97
34
3


DC00059
0.0002523
0.04008
159
86
14
6


DC00060
0.003339
0.6452
193
56
8
7


DC00061
0.004271
0.165
39
44
5
9


DC00062
<0.0001
0.03074
>307.4
93
22
4


DC00064
<0.0001
0.1863
>1863
94
38
2


DC00066
<0.0001
0.1782
>1782
96
27
4


DC00067
<0.0001
0.2175
>2175
95
39
2


DC00068
0.001892
0.09357
49
83
14
6


DC00069
0.001189
0.234
197
87
12
7


DC00070
0.0004972
0.0538
108
80
11
7





















TABLE 11












Fold Max signal



EC50 (nM)
fold EC50
Max signal (% pSTAT5+)
(% pSTAT5+)














Treg
NK
NK/Treg
Treg
NK
Treg/NK

















IL-2
0.05135
0.399
46
82.8
18.2
5


TsVHH-48
0.001948
1.135
583
64.1
8.26
8


DC00060
0.002151
0.7691
358
19.8
2.49
8


DC00068
0.0004247
0.00127
3
30
3.39
9


DC00075
<0.0001
0.003197
>31.97
53.1
4.31
12


DC00076
<0.0001
2.423
>24230
59.4
14
4


DC00077
<0.0001
0.0001907
>1.907
58.4
7.96
7


DC00078
<0.0001
0.1948
>1948
67.8
14.1
5


DC00079
<0.0001
0.09935
>993.5
62.4
7.35
8


DC00080
<0.0001
0.006477
>64.77
17.8
4.42
4


DC00081
<0.0001
0.194
>1940
60.9
13.5
5


DC00082
0.0008481
0.02268
27
4.57
2.11
2


DC00083
<0.0001
0.4958
>4958
64.1
13
5


DC00085
0.03127
0.6626
21
8.49
2.19
4


DC00086
0.004405
0.187
42
44.1
4.9
9


DC00087
N/A
0.009717
N/A
4.37
1.4
3


DC00090
<0.0001
0.5723
>5723
23.5
2.67
9


DC00091
<0.0001
0.3069
>3069
67.7
14.5
5


DC00092
<0.0001
N/A
N/A
26.7
4.82
6


DC00093
0.7354
0.07519
0
66.7
11.4
6

















TABLE 12







DC00009
QVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFRQAPGKEREFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLK


(SEQ ID NO: 2039)
VEDTAVYYCAAGDGWSTYDYWGQGTQVTVSSGGGGSGGGGGGGGSQVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVR



QAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLKPEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSDKTHTC



PPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW



LNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD



GSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00010
EVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFRQVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGKNTVYLQMNRL


(SEQ ID NO: 2040)
KPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVTVSSGGGGSGGGGSGGGGSQVQLVESGGGLVQAGGSLTLSCAAPGRTFG



TDVVGWFRQAPGKEREFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLKVEDTAVYYCAAGDGWSTYDYWGQGTQVT



VSSGGGGSGGGGSGGGGSQVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFT



ISRDNAKNTLYLQMNNLKPEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQP



REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEA



LHNHYTQKSLSLSPGK





DC00011
EVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFRQVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGKNTVYLQMNRL


(SEQ ID NO: 2041)
KPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVTVSSGGGGSGGGGSGGGGSQVQLVESGGGLVQPGGSLRLSCATSGFTFRN



NFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLKPEDTAVYYCAKATSYDSIRSGSRGQGTQVTV



SSGGGGSGGGGSGGGGSQVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFRQAPGKEREFVASISRSGDGIYYDDSVKGRFTIS



RNNAWNTVNLQMNSLKVEDTAVYYCAAGDGWSTYDYWGQGTQVTVSSGGGGSGGGGSGGGGSDKTHTCPPCPAPEAAGGPSVFL



FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL



GAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRW



QQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00012
QVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLK


(SEQ ID NO: 2042)
PEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSGGGGSGGGGSGGGGSQVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFR



QAPGKEREFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLKVEDTAVYYCAAGDGWSTYDYWGQGTQVTVSSGGGGS



GGGGSGGGGSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYN



STYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNG



QPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00014
EVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFRQVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGKNTVYLQMNRL


(SEQ ID NO: 2043)
KPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVTVSSGGGGSGGGGSGGGGSQVQLVESGGGLVQAGGSLTLSCAAPGRTFG



TDVVGWFRQAPGKEREFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLKVEDTAVYYCAAGDGWSTYDYWGQGTQVT



VSSGGGGSGGGGSGGGGSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT



KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00015
QVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLK


(SEQ ID NO: 2044)
PEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSGGGGSGGGGSGGGGSQVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFR



QAPGKEREFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLKVEDTAVYYCAAGDGWSTYDYWGQGTQVTVSSGGGGS



GGGGSGGGGSEVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFRQVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGK



NTVYLQMNRLKPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVTVSSGGGGSGGGGSGGGGSDKTHTCPPCPAPEAAGGPSV



FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK



ALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSR



WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00016
QVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFRQAPGKEREFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLK


(SEQ ID NO: 2045)
VEDTAVYYCAAGDGWSTYDYWGQGTQVTVSSGGGGSGGGGSGGGGSEVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFR



QVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGKNTVYLQMNRLKPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVT



VSSGGGGSGGGGSGGGGSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT



KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00018
QVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLK


(SEQ ID NO: 2046)
PEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSGGGGSGGGGSGGGGSQVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQ



APGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLKPEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSDKTHTCP



PCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL



NGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS



FLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00019
QVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLK


(SEQ ID NO: 2047)
PEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSGGGGSGGGGSGGGGSEVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFR



QVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGKNTVYLQMNRLKPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVT



VSSGGGGSGGGGSGGGGSQVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFRQAPGKEREFVASISRSGDGIYYDDSVKGRFT



ISRNNAWNTVNLQMNSLKVEDTAVYYCAAGDGWSTYDYWGQGTQVTVSSGGGGSGGGGSGGGGSDKTHTCPPCPAPEAAGGPSVF



LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA



LGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSR



WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00020
QVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFRQAPGKEREFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLK


(SEQ ID NO: 2048)
VEDTAVYYCAAGDGWSTYDYWGQGTQVTVSSGGGGSGGGGSGGGGSEVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFR



QVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGKNTVYLQMNRLKPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVT



VSSGGGGSGGGGSGGGGSQVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFT



ISRDNAKNTLYLQMNNLKPEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPE



VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQP



REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEA



LHNHYTQKSLSLSPGK





DC0021
QVQLVESGGGLVQAGGSLTLSCAAPGRTFGTDVVGWFRQAPGKEREFVASISRSGDGIYYDDSVKGRFTISRNNAWNTVNLQMNSLK


(SEQ ID NO: 2049)
VEDTAVYYCAAGDGWSTYDYWGQGTQVTVSSGGGGSGGGGSGGGGSQVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVR



QAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLKPEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSGGGGS



GGGGSGGGGSEVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFRQVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGK



NTVYLQMNRLKPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVTVSSGGGGSGGGGSGGGGSDKTHTCPPCPAPEAAGGPSV



FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK



ALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSR



WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00024
QVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLK


(SEQ ID NO: 2050)
PEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSGGGGSGGGGSGGGGSEVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFR



QVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGKNTVYLQMNRLKPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVT



VSSGGGGSGGGGSGGGGSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKT



KPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDI



AVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00026
EVQLVESGGGLVQTGGSLRLSCAASGGTFSRDAMAWFRQVPGKEREFVALISWSGATTNYADSVKGRFAISRDNGKNTVYLQMNRL


(SEQ ID NO: 2051)
KPADTAIYYCAADRRPMGSRSYFEPTEYDDWGQGTQVTVSSGGGGSGGGGSGGGGSQVQLVESGGGLVQPGGSLRLSCATSGFTFRN



NFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLKPEDTAVYYCAKATSYDSIRSGSRGQGTQVTV



SSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL



TVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT



PPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





DC00028
QVQLVESGGGLVQPGGSLRLSCATSGFTFRNNFMSWVRQAPGKGLEWVSTISYGGESTTYAESVKGRFTISRDNAKNTLYLQMNNLK


(SEQ ID NO: 2052)
PEDTAVYYCAKATSYDSIRSGSRGQGTQVTVSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ



VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK


DC00071
QVQLVESGGGLVQAGGSLRLSCAASGIPFDNYAMGWFRQAPGKEREFVAARDLEGIITRYGDSVKGRFTISRGNAKNTVFLQMNSLK





(SEQ ID NO: 2053)
PEDTAVYYCAARDGGVVAGSRSSAQYNYWGQGTQVTVSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH



EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPS



RDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK





DC00072
QVQLVESGGGLVQAGGSLRLSCAASGGTFRTRNMGWFRRAPGKEREFVAAVSWNVDNKLYADSVKGRFTISRDNGRNMVYLQMNS


(SEQ ID NO: 2054)
LKPEDTAVYYCAADNIPLSSDMRPTATEYDYWGQGTQVTVSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV



SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLP



PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK



SLSLSPGK





DC00073
EVQLVESGGGLVQAGGSLRLSCAASGGSIYTYNMGWFRQAPGKEREFVAGTLWSGGDSVYADFAKGRFTLSRENAKNTLYLQMNSL


(SEQ ID NO: 2055)
KPEDTATYYCAIDPLSLTSDWRVDELSSWGKGTLVTVSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED



PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSRD



ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSL



SPGK





DC00074
QLQLVESGGGLVQAGDSLRLSCAASGFNFGWHAMGWFRQAPGKEREFVATITWTGRDTYYADSVRGRFTISKDNAKDTLFLQMNSL


(SEQ ID NO: 2056)
RPDDTGVYYCAKARERATWAYSEDDCDYWGQGTQVTVSSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH



EDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPS



RDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK








Claims
  • 1. A trispecific binding molecule comprising: at least one single domain antigen-binding region specific for the IL-2Rα;at least one single domain antigen-binding region specific for the IL-2Rβ; andat least one single domain antigen-binding region specific for the γc.
  • 2. The trispecific binding molecule of claim 1 which is a trispecific antibody comprising: at least one VHH domain specific for the IL-2Rα;at least one VHH domain specific for the IL-2Rβ; andat least one VHH domain specific for the γc.
  • 3. The trispecific binding molecule of claim 2, wherein: (a) the trispecific antibody has higher affinity, avidity, selectivity, efficacy and/or potency for the IL-2Rα/IL-2Rβ/γc receptor complex compared to the IL-2Rβ/γc receptor complex;(b) the trispecific antibody activates the IL-2Rα/IL-2Rβ/γc receptor complex resulting in phosphorylation of STAT5; and/or(c) the trispecific antibody preferentially expands Treg cells
  • 4. The trispecific binding molecule of claim 2, wherein the binding molecule is an antibody comprising two heavy chain polypeptides, but not a light chain.
  • 5. The trispecific binding molecule of claim 2, wherein the binding molecule is an antibody comprising two heavy chains wherein: (a) the antibody has four antigen-binding region;(b) the antibody has four antigen-binding regions, with two antigen-binding regions on each heavy chain polypeptide;(c) the antibody has four antigen binding sites, with one antigen-binding region on one heavy chain polypeptide and three antigen-binding regions on the other heavy chain polypeptide;(d) the antibody has five antigen binding sites, with two antigen-binding regions on one heavy chain polypeptide and three antigen-binding regions on the other heavy chain polypeptide;(e) the antibody has six antigen-binding regions;(f) the antibody has six antigen-binding regions, with three antigen binding regions present on each heavy chain polypeptide;(g) the antibody is symmetrical in the sense that each of the two heavy chain polypeptides is the same;(h) the antibody is symmetrical in the sense that each of the two heavy chain polypeptides is the same, with each heavy chain comprising two antigen binding regions;(i) the antibody is symmetrical in the sense that each of the two heavy chain polypeptides is the same, with each heavy chain comprising three antigen binding regions;or(j) the antibody is biparatopic comprising two different single domain binding regions that each bind a different epitope of the same IL-2R chain polypeptide.
  • 6. The trispecific binding molecule of claim 2, wherein the binding molecule is an antibody comprising: (a) an Fc region; or(b) an Fc region, but no CH1 domain.
  • 7. The trispecific binding molecule of claim 2, wherein the binding molecule is an antibody which is biparatopic for at least one of IL-2Rα, IL-2Rβ, and γc, preferably wherein it is biparatopic for at least IL-2Rα.
  • 8. The trispecific binding molecule of claim 2, wherein the binding molecule is an antibody comprising: (a) one of the antibody formats 1 to 19 shown in FIG. 12A or FIG. 12B or FIG. 12C either with or without the indicated specific Fc modifications; or(b) one of the antibody formats 1 to 19 shown in FIG. 12A or FIG. 12B or FIG. 12C with the specific Fc region modifications shown.
  • 9. The trispecific binding molecule of claim 2, where the binding molecule is an antibody comprising a heavy chain modification selected from one or more of: a) N297A-Asn297Ala which confers Fc silencing;b) LALA-Leu234Ala/Leu235Ala which decreases binding to Fc receptors;c) LFLEPS-Leu234Phe/Leu235Glu/Pro331/Ser which decreases binding to Fc receptors;d) PG-Pro329Gly which decreases binding to C1q;e) LALA-PG-Leu234Ala/Leu235Ala/Pro329Gly which decreases binding to Fc receptors and C1q;f) TM-Pro331Ser/Leu234Glu/Leu235Phe—which decreases binding to Fc receptors and C1q;g) DA—Asp265Ala—which decreases binding to Fc receptors;h) GRLR—Gly236Arg/Leu328Arg-which decreases binding to Fc receptors;i) cFAE—K409R/F405L which promote heterodimer formation; andj) M252Y/S254T/T256E (YTE) which helps extend the half-life of the antibody.
  • 10. The trispecific binding molecule of claim 2, which comprises: (a) a VHH domain selected from TABLE 3;(b) a VHH domain specific for the IL-2Rα selected from TABLE 7;(c) a VHH domain specific for the IL-2Rβ selected from TABLE 8;(d) a VHH domain specific for the γc selected from TABLE 9;(e) a VHH domain specific for the IL-2Rα selected from TABLE 3, a VHH domain specific for the IL-2Rβ selected from TABLE 3, and a VHH domain specific for the γc selected from TABLE 3; or(f) a VHH domain specific for the IL-2Rα selected from TABLE 7, a VHH domain specific for the IL-2Rβ selected from TABLE 8, and a VHH domain specific for the γc selected from TABLE 9.
  • 11. The trispecific binding molecule of claim 2 which comprises: (a) a set of three CDRs from a VHH domain selected from TABLE 3;(b) a set of three CDRs from a VHH domain specific for the IL-2Rα selected from TABLE 7;(c) a set of three CDRs from a VHH domain specific for the IL-2Rβ selected from TABLE 8;(d) a set of three CDRs from a VHH domain specific for the γc selected from TABLE 9;(e) a set of three CDRs from a VHH domain specific for the IL-2Rα selected from TABLE 3, a set of three CDRs from a VHH domain specific for the IL-2Rβ selected from TABLE 3, and a set of three CDRs from a VHH domain specific for the γc selected from TABLE 3; or(f) a set of three CDRs from a VHH domain specific for the IL-2Rα selected from TABLE 7, a set of three CDRs from a VHH domain specific for the IL-2Rβ selected from TABLE 8, and a set of three CDRs from a VHH domain specific for the γc selected from TABLE 9.
  • 12. The trispecific binding molecule of claim 2 which comprises: (a) a set of three VHH domains as set out in TABLE 5 or the CDRs for a set of three VHH domains as set out in TABLE 5;(b) a set of the VHH domains from one of the polypeptides in TABLE 12, all of the CDR sets of one of the polypeptides set out in TABLE 12; or(c) a set of the VHH domains from a pair of the polypeptides in TABLE 12, all of the CDR sets from a pair of the polypeptides set out in TABLE 12, wherein the pair of polypeptides is one of those defined by the pairwise combinations set out in FIG. 12C.
  • 13. The trispecific binding molecule of claim 2, which comprises the geometry and VHH domain sequences, or variants thereof, of one of the antibodies shown in FIG. 12.
  • 14. The trispecific binding molecule of claim 2, which comprises: (a) the CDRs of one of the binding molecules shown in FIG. 12C or variant CDRs of those CDRs;(b) the VHH domains of one of the binding molecules shown in FIG. 12 or variant VHH domains;(c) what is set out in (a) or (b) wherein the CDRs or VHHs domains are in the same order as shown in FIG. 12C, with the binding molecule having the same format as shown in FIG. 12C, but not necessarily the same sequence apart from the CDRs or VHHs, optionally wherein the binding molecule comprises the constant region modifications shown in FIG. 12C;(d) the CDR sets of one of the polypeptide sequences set out in Table 12 or variants thereof;(e) the CDR sets from a pair of polypeptides sequences set out in Table 12 or variants thereof, wherein the pair of polypeptides are one of the pairs of polypeptides shown in FIG. 12C;(f) the VHH domains of one of the polypeptide sequences set out in Table 12 or variants thereof;(g) the VHH domains from a pair of polypeptides sequences set out in Table 12 or variants thereof, wherein the pair of polypeptides are one of the pairs of polypeptides shown in FIG. 12C;(h) at least one of the polypeptide sequences set out in Table 12 or variants thereof; or(i) a pair of the polypeptide sequences set out in Table 12 or variants thereof, wherein the pair of polypeptides are one of the pairs of polypeptides shown in FIG. 12C;
  • 15. The trispecific binding molecule of claim 1 for use as a medicament.
  • 16. The trispecific binding molecule of claim 1 for use in a method of treating or preventing an autoimmune disorder, or an inflammatory disorder, preferably wherein: (a) the disorder is graft versus host disease (GvHD), preferably where the antibody is for use in a method where it is administered prior to, at the same time, or after a transplant of a cell, tissue, or organ; or(b) the disorder is one involving dysfunction or unwanted proliferation of leukocytes, preferably of T cells, more preferably of Teff cells; such disorders may present with an imbalance of Tregs compared to Teff cells;(c) the disorder is selected from inflammatory bowel disease (such as ulcerative colitis, Crohn's disease, pouchitis or celiac disease), SLE, multiple sclerosis, type 1 diabetes, myasthenia gravis, pemphigus vulgaris, and bullous pemphigoid;(d) the disorder is selected from SLE, GvHD, psoriasis, autoimmune hepatitis, ulcerative colitis, eczema;(e) the disorder is one that can be treated by expansion of Tregs; or(f) the disorder is one involving dysfunction or unwanted deficiency of leukocytes, preferably regulatory T cells; such disorders may present with an imbalance of Tregs compared to Teff cells;(g) the disorder is one involving reduced numbers, dysfunction or unwanted proliferation of leukocytes, preferably of T cells, more preferably of T reg cells; or(h) the disorder is one that can benefit from increasing numbers and/or function of Tregs.
  • 17. A method of stimulating cell proliferation comprising contacting a target cell expressing the IL-2Rα/IL-2Rβ/γc receptor complex with a trispecific binding molecule according to claim 1.
  • 18. A pharmaceutical composition comprising a trispecific binding molecule according to claim 1 and a pharmaceutically acceptable carrier.
  • 19. A method of detecting the IL-2Rα/IL-2Rβ/γc receptor complex comprising contacting a test sample with a binding molecule according to claim 1 and detecting binding of the binding molecule to the IL-2Rα/IL-2Rβ/γc receptor complex preferably wherein the binding molecule is labelled and the binding of the antibody to the IL-2Rα/IL-2Rβ/γc receptor complex is detected via the label.
Priority Claims (1)
Number Date Country Kind
2115122.0 Oct 2021 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2022/079483 10/21/2022 WO