The invention generally relates to binding systems. In particular, the invention relates to multi-state binding systems.
A binding is used to couple or retain a user's foot to a particular object. Bindings are commonly used in athletic activities that incorporate an underfoot platform. These activities include skiing, snowboarding, surfing, wakeboarding, kiteboarding, skateboarding, etc. Various features and systems are incorporated into bindings depending on the particular activity for which they are primarily designed. These features may include states of operation, releasable responses, switching mechanisms, and various response characteristics. States of operation refer to a feature in which a binding may be configured to switch between different functions and/or states of operation that provide independent characteristics. For example, an Alpine Touring binding includes a free pivoting tour state and a restrained locked ski state. Releasable responses refer to various releasable mechanisms incorporated on a binding. For example, a releasable system may be incorporated on a ski binding to automatically disengage a boot from a ski in response to a particular force. Switching mechanisms refer to systems that switch or control the characteristics of a binding. For example, a switching device may be configured to enable a user to increase biasing forces or switch between states of operation. Response characteristics refer to any type of response or transfer of forces from a user's foot to the platform upon which it is bound.
Ski bindings in particular are designed to retain a user's boot to a ski in an optimal skiing position. The optimal position depends on the user and the particular subset of skiing in which they are engaged. Downhill skiing requires that a user's boot be retained to a ski at both the toe and heel. Whereas, Telemark and Cross-country skiing require only a portion of the boot to be coupled to the ski thereby allowing the boot to rotate or pivot with respect to the ski. Other activities such as Alpine Touring or Randonee skiing require a binding that can switch between two states of operation to accommodate both uphill and downhill travel. The uphill state must allow the boot to pivot with respect to the ski while the downhill state preferably retains the boot to the ski at both the toe and heel.
In addition to Alpine Touring, other types of skiing such as Telemark skiing may involve both uphill and downhill travel. The optimal binding characteristics for uphill and downhill travel are dramatically different from one another. Conventional Telemark bindings have generally compromised performance characteristics for uphill travel to provide an optimized binding for downhill travel. A few Telemark bindings have attempted to provide optimal characteristics for both uphill and downhill travel but include inefficient or cumbersome switching mechanisms. Therefore, there is a need in the industry for a skiing binding system that allows for optimal performance in multiple states of operation and includes an efficient and reliable switching mechanism for switching between the states.
The present invention relates to a ski binding that retains a boot to a ski in at least two independent operational states. One embodiment of a ski binding includes a toe receiving member and a releasable system. The toe receiving member is configured to engage the toe portion of the boot. The releasable system is configured to couple the toe receiving member to the ski in at least two independent operational states. A first state corresponds to a state in which the toe receiving member is allowed to freely rotate with respect to the ski. The first state is particularly useful in minimizing the necessary energy output for uphill travel. A second state corresponds to a state in which the toe receiving member is locked with respect to the ski. The second state is particularly useful in high performance downhill travel. The releasable system further includes an engagement mechanism and a switching mechanism. Additional states may also be included such as a third state in which both the toe receiving member and a heel portion of the boot are fixed with respect to the ski. In one embodiment, the releasable system is configured to engage the second locked state in the event of any form of operational failure including failures resulting from damage to the releasable system or decoupling between the switching mechanism and the engagement mechanism. In a second embodiment, the engagement system includes an under-boot rotatable latching mechanism. In a third embodiment, the switching mechanism is configured to switch between the first and second states in response to a similarly aligned force. In a third embodiment, the binding includes a replaceable flex system that provides a biasing force against the boot as it pivots away from the ski in the second state. In a fourth embodiment, the binding includes a climbing rotation point about which the toe receiving member is free to rotate with respect to the ski in the first state, and a pivot point about which a heel portion of the boot is allowed to pivot with respect to the ski in the second state.
These and other features and advantages of the present invention will be set forth or will become more fully apparent in the description that follows and in the appended claims. The features and advantages may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. Furthermore, the features and advantages of the invention may be learned by the practice of the invention or will be obvious from the description, as set forth hereinafter.
In order that the manner in which the above-recited and other advantages and features of the invention are obtained, a more particular description of the invention briefly described above will be rendered by reference to, specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present invention relates to a ski binding that retains a boot to a ski in at least two independent operational states. One embodiment of a ski binding includes a toe receiving member and a releasable system. The toe receiving member is configured to engage the toe portion of the boot. The releasable system is configured to couple the toe receiving member to the ski in at least two independent operational states. A first state corresponds to a state in which the toe receiving member is allowed to freely rotate with respect to the ski. The first state is particularly useful in minimizing the necessary energy output for uphill travel. A second state corresponds to a state in which the toe receiving member is locked with respect to the ski. The second state is particularly useful in high performance downhill travel. The releasable system further includes an engagement mechanism and a switching mechanism. Additional states may also be included such as a third state in which both the toe receiving member and a heel portion of the boot are fixed with respect to the ski. In one embodiment, the releasable system is configured to engage the second locked state in the event of any form of operational failure including failures resulting from damage to the releasable system or decoupling between the switching mechanism and the engagement mechanism. In a second embodiment, the engagement system includes an under-boot rotatable latching mechanism. In a third embodiment, the switching mechanism is configured to switch between the first and second states in response to a similarly aligned force. In a third embodiment, the binding includes a replaceable flex system that provides a biasing force against the boot as it pivots away from the ski in the second state. In a fourth embodiment, the binding includes a climbing rotation point about which the toe receiving member is free to rotate with respect to the ski in the first state, and a pivot point about which a heel portion of the boot is allowed to pivot with respect to the ski in the second state. Also, while embodiments of the present invention are directed at ski bindings, it will be appreciated that the teachings of the present invention could be applied to other areas.
The following terms are defined as follows:
Under boot—an elevational position located below the surface of the boot. For example, a cable that runs under the sole of the boot is an under-boot cable. A particular lateral position is considered under-boot if it is below the boot at that particular lateral position. Therefore, if the heel portion of the boot is substantially lower than the remainder of the boot, a device disposed below the toe portion of the boot but above or in line with a heel portion of the boot may still be considered under-boot.
Toe portion of a boot—the region of the boot in front of the location at which the ball of a users foot is disposed. For example, the toe portion of a ski boot would include the duckbill, a toe portion of the sole, and a toe portion of the upper casing.
Hand replaceable—an item is hand replaceable if it can reasonably be replaced without the use of additional tools.
Rotation point—a point about which a boot is able to rotate with respect to the ski with little or no resistance.
Pivot point—a point about which a boot is able to pivot with respect to the ski against a biasing force. A pivoting motion includes the ability to raise the heel portion of a boot with respect to the ski while the toe portion of the boot remains fixed or substantially fixed to the ski.
Pin line—a standardized boot location corresponding to a particular distance in front of the toe region of the boot. On Telemark 3-pin boots, the pin line is the lengthwise ski location of connection between the boot and the binding.
Front of the boot—a lateral location corresponding to the forward most portion of a boot; on most ski boots this position is the front portion of the duckbill. However, on non-duckbill boots, the front of the boot may be located closer to the toe box.
75 mm boot—a boot that complies with the international Telemark boot standard of requiring a 75 mm duckbill toe portion.
Independent operational states—states in which a boot is coupled to a ski so as to provide independent performance characteristics. For example, a tour/free state refers to an operational state in which a boot is able to rotate with respect to the ski with a minimal amount of frictional resistance. Likewise, a skiing/locked state refers to an independent operational state in which at least a portion of a boot is fixed with respect to the ski.
Reference is initially made to
The toe receiving member 140 is configured to receive and engage a toe portion of a boot (not shown). Boots are configured in a variety of standardized shapes depending on their particular application including the Telemark 75 mm boot standard. The illustrated toe receiving member 140 is configured to match the 75 mm boot standard meaning that it is compatible with the majority of existing Telemark boots. However, the teachings of the present invention are consistent with alternatively shaped toe receiving members that are capable of accommodating other boot standards. The toe receiving member 140 is shaped to releasably engage the toe portion of a boot by matching the shape and allowing the duckbill portion of the boot to slide under a crossbar member.
The toe receiving member 140 further includes a toe housing 122, a toe base 124, and a rotation axle 126. As described above, the toe housing 122 and toe base 124 are shaped to encircle the toe portion of a boot in a manner to releasably engage the boot. The boot is forced forward by the heel attachment system 160 therein coupling the boot to the binding 100. The toe housing 122 includes two side members and a crossbar that engages a top portion of the duckbill of a boot. Alternative designs may incorporate flanges or smaller crossbar members that are designed to couple with boots that do not contain a 75 mm duckbill. The toe receiving member 140 is coupled to the base 110 via the rotation axle 126. The rotation axle 126 allows the toe housing 122 and the toe base 124 to pivot with respect to the base. The toe base 124 further includes a latch receiving member 158 which is part of the engagement mechanism 150. As will be described in more detail below, when the engagement mechanism is engaged with the toe base 124, the toe receiving member is restricted from rotating about the rotation axle 126.
The toe receiving member 140 is coupled to the heel attachment system 160 via the front cables 168. The attachment between the toe receiving member 140 and the heel attachment system 160 is accomplished at an under-boot location. Therefore, when the toe receiving member 140 is restricted from rotating with respect to the base 110, the heel attachment system 160 will be able to pivot about a particular cable exit location on the toe receiving member 140. It is important to note that the location of the cable exit location is different from the rotation axle 126. The location of the cable exit location/pivot point will be described in more detail in the paragraphs below.
The switching mechanism 120 is part of the releasable system that allows the binding 100 to switch between the independent operational states. The switching mechanism 120 is disposed at a frontal under-boot location with respect to the toe receiving member 140. The frontal location allows a user to easily switch between operational states without reaching behind the binding 100. This also provides a user with a convenient visual indicator corresponding to which operational state the binding is currently engaged in. The switching mechanism 120 generally includes a toggle member 102, a switch housing 104, and a switch cable 106. The switch housing 104 is fixably coupled to the base 110 and includes an enclosed channel recess on either side. The toggle member 102 includes two protrusions that extend into the enclosed channel recesses of the switch housing 103. The toggle member 102 is shaped to pivot about two positions as the protrusions slide along the enclosed channel recess. Therefore, the toggle member 102 acts as a dual position toggle pivot switch within the switch housing 104. The switch cable 106 is coupled to an underside of the toggle member 102 such that it is extended or retracted a particular translational distance as the toggle member 102 pivots within the switch housing 104. The pivoting motion of the toggle member 102 with respect to the switch housing 104 allows the switching mechanism 120 to be switched between the operational states with substantially the same directional force. In the illustrated embodiment, this switching force is a downward pushing force but other configurations could be designed such that the switching force is an elevational pulling force, a translational force, or some other similarly aligned force. From a user convenience and efficiency standpoint, it is advantageous to provide a switching mechanism in which the force required to switch between the operational states is directionally aligned.
The engagement mechanism 150 is also part of the releasable system that operates with the switching mechanism 120 to allow the binding 100 to switch between the operational states. The engagement mechanism 150 is located at a rear under-boot location with respect to the toe receiving member 120. The engagement mechanism 150 is configured to releasably secure the toe receiving member 120 to the base 110 in a fixed operational state. In a free rotation state, the engagement mechanism is configured to allow the toe receiving member 120 to rotate without interference so as to minimize frictional forces upon the toe receiving member 120 as it rotates with respect to the base 110. The engagement mechanism 150 is coupled to the switching mechanism 120 via the switch cable 106. The engagement mechanism 150 includes a latch 152, a latch receiving member 158, a latch axle 156, and a latch spring 154. The latch 152 is configured to rotationally hook onto the latch receiving member 158. The latch receiving member 158 is disposed on the toe base 124 and the latch 152 is coupled to the base 110. Therefore, when the latch 152 hooks onto the latch receiving member 158, toe receiving member 120 is prevented from rotating about the rotation axle 126. As illustrated, the latch 152 rotates about a latch axle 156 in a direction substantially parallel to the longest dimension of the base 110 and ski (not shown).
The latch 152 is spring biased into an engaged or hooked position by the latch spring 154. The latch spring 154 is coupled to both the latch 152 and base in a manner to provide the bias of the latch 152 towards the engaged position. The switch cable 106 is routed below and around the base 110 in a manner to provide a constant downward pulling force on the latch 152 when the switch is configured to engage the free rotation operational state. A swage/chocking system may be used to couple the switch cable 106 to the latch 152.
The heel attachment system 160 is coupled to the toe receiving member 140 to releasably retain the heel portion of a boot. The heel attachment system 160 is configured to exert a retention force upon the boot which forces the toe portion of the boot 140 forward effectively engaging the toe receiving member 140. In addition, the heel attachment system 160 extends primarily under the boot of a user. The heel attachment system 160 further includes a pair of front cables 168, a pair of spring cartridges 162, a rear cable 164, and a heel throw 166. The heel attachment system 160 also acts as a biasing system that exerts a biasing force upon a heel portion of the boot as it pivots independently of the toe portion of the boot. Therefore, if the toe portion of the boot is fixed (ie. the toe receiving member 140 is locked with respect to the base 110), the heel is allowed to pivot upward against the biasing force generated by the heel attachment system 160. The spring cartridges 162 act as the biasing elements that generate the biasing force against the heel portion of the boot. The spring cartridges 162 also exert the retention force to secure the boot into the toe receiving member 140. The spring cartridges 162 include a spring and a cover and may be configured to adjust the amount of force they exert. The inclusion of two spring cartridges 162/biasing elements is advantageous in providing consistent biasing forces upon the boot during lateral movements. The spring cartridges 162 may also be adjustable so as to increase or decrease the amount of biasing force they generate. One type of adjustment system allows for a simple rotation of the cartridge to effectuate the increase or decrease of spring tension depending on the direction or rotation. The spring cartridges 162 may further include releasable coupling mechanisms for attachment to the front cables 168 and the rear cables 164. These releasable mechanisms allow for the convenient replacement of the spring cartridges 162. A cable swage/chocking system may again be used to provide this releasable coupling mechanism between the spring cartridges 162 and the cables 168, 164. The replacement system described above allows the spring cartridges 162 to be reasonably replaceable as opposed to requiring extensive tooling and/or dismemberment. In addition, the spring cartridges 162 can be designed to be hand replaceable.
The front cables 168 are coupled to the toe receiving member 140 in a manner that allows them to be hand releasable. For example a swage/chocking system can be used such that when the front cables 168 are not under tension, they can easily be unchocked and disengaged from the toe receiving member 140. Naturally, various other coupling systems can be used between the front cables 168 and the toe receiving member 140 and remain consistent with the present invention. The front cables 168 are releasably coupled to the spring cartridges 162.
The rear cable 164 and the heel throw 166 operate to couple the heel attachment system 160 to the heel portion of a boot. Almost all boots contain a ledge or protrusion which is commonly used to attach various boot accessories such as a binding. The heel throw 166 is shaped and configured to hook over a rear protrusion on the boot and allow a user to generate a particular amount of separational force via a lever motion. The generated separational force provides the necessary force to overcome the spring cartridges' retention forces and thereby couple the heel attachment system 160 to the boot. Likewise, the illustrated heel attachment system 160 provides a mechanism for releasing the boot from the binding 100 if particular forces are imposed. It is beneficial to allow a boot to release from a binding so as to prevent or minimize injury to a user.
Reference is next made to
Telemark skiing by definition involves pivoting a boot with respect to the ski. Using this pivoting to turn a ski in the snow is often referred to as a “Telemark turn”. For downhill skiing purposes, it is desirable to position the pivot point 172 as close to the ball of a user's foot as possible. Conventional Telemark bindings were forced to balance the benefits of an under ball pivot with the inefficiencies it may produce for uphill travel. Since the binding described herein is a multi-operational state binding, a separate state is dedicated to uphill travel and it is not necessary to compromise the location of the pivot point 172. Therefore, the pivot point 172 is disposed away from the rotation point 170 by at least 30 mm as designated by 174. In addition, the pivot point 172 is disposed away from the front of a boot by at least 24 mm. And further, the pivot point 172 is disposed away from the pin line by at least 10 mm.
In operation, the locked state is engaged by a series of interconnected operations. The specific interrelation of the various components is best illustrated in the cross-sectional view illustrated in
Reference is next made to
In many skiing activities it is necessary to ascend snow covered slopes. If a slope is not too steep, it is most efficient to skin up a slope using a pair of skins affixed to the bottom of the skis. Skinning up as slope includes alternately sliding each ski forward so as to cause an upward movement. It is necessary for both the front and rear boot to be able to articulate in some manner with respect to the ski. The more a boot is able to rotate with respect to the ski, the less energy is required to generate the forward movements. Therefore, uphill skinning is optimized in an operational state in which the boot is allowed to rotate free with respect to the ski about a rotation point 170. Free rotation includes minimizing biasing and frictional forces that would restrict a boot from rotating with respect to the ski. In addition, the rotation range is another factor in uphill skinning performance. For example, a binding that allows a boot to rotate 70 degrees will require more force to ascend a slope than a binding which allows a boot to rotate 90 degrees. Therefore, the rotation point 170 is positioned to maximize rotational freedom.
In operation, the free state is engaged by a series of interconnected operations. The specific interrelation of the various components is best illustrated in the cross-sectional view illustrated in
Thus, as discussed herein, the present invention relates to binding systems. In particular, the invention relates to multi-state binding systems. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the, claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
4029336 | Haimerl | Jun 1977 | A |
4273355 | Storandt | Jun 1981 | A |
4322090 | Loughney | Mar 1982 | A |
5364118 | Burger et al. | Nov 1994 | A |
6431578 | Pedersen et al. | Aug 2002 | B2 |
Number | Date | Country |
---|---|---|
10064095 | Jul 2002 | DE |
1509288 | Mar 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20070108735 A1 | May 2007 | US |