The present invention relates to skiing equipment and more specifically a system for binding a shoe or boot to a ski.
In particular, the invention relates to equipment for use in downhill skiing, cross-country skiing, ski-mountaineering, off-piste skiing and roller skiing.
At present, the known bindings for downhill skiing, cross-country skiing and ski-mountaineering generally provide for the tip of the boot to be fixed or hinged to the ski, for example by means of an extension of the binding or of the boot, so as to allow the skier to rotate his/her foot forwards during fastening/unfastening of the downhill skiing boot or to carry out technical movements when performing cross-country skiing or ski-mountaineering.
This design solution does not allow the tip of the boot to be lifted from the ski, or allows this movement only to a minimal extent, due exclusively to the staggered position of the hinge axis with respect to the toe. However, this small lifting movement takes place only by rotation in the walking direction, which is opposite that which would be required by normal walking, which provides for the extension of the leg without a variation in the angle of the ankle.
Support plates provided with a front hinge are also known, these being designed to allow the use of bindings of the known type and in particular of the fixed type for downhill skiing, which allow the skier to use fixed bindings for downhill skiing also for ski-mountaineering, i.e. bindings without a hinge, but these all revert to the known principle of providing the boot, or the binding, with a hinge at the tip of the boot, and allow no movements other than forward rotation.
At present, the known bindings, both for ski-mountaineering and for cross-country skiing, allow the skier to rotate his/her foot so as to drag the ski, but only the heel can lift up from the ski inasmuch as the shoe or boot are hinged in various ways to the ski at the tip. The tips of the feet of the skier are therefore mounted on the ski vertically, and therefore every time the skier extends his/her leg they are forced to make an unnatural movement to raise the angle of the ankle so as to move the foot forwards, the tip of which cannot be lifted upwards owing to the rigidity of the hinge and of the ski. The only way for the skier to lift the tip of his/her foot is to lift the entire ski, a movement which is very uncomfortable, takes up a large amount of energy and is of little benefit in order to advance. This movement is not particularly efficient and takes up a large amount of energy above all when the skier is covering long level stretches, or worse slight descents which a skier cannot slide down and therefore require walking by pushing the skis. As a result, all skiers, but in particular people without great articular and muscular elasticity, are greatly penalized in level stretches. It is precisely for these reasons that people who have just undergone major operations for the blocking of the articulation of the ankle are prevented from partaking in this sporting activity.
FR 2 779 659, to Oddoux describes a ski binding system with double articulation. A supporting plate for the footwear, which bears at least one tip of a binding, is articulated at the rear binding so as to allow the tip of the boot to be lifted. A rigid front rod or a pair of articulated plates form a mechanism for guiding and limiting the lifting travel of the front end of the footwear.
However, Oddoux does not solve the problem of ensuring efficient movement in every skiing condition with a system which is both light and rigid. Indeed, after only a few movements the binding plate as presented in the invention would become blocked by the snow inevitably moved onto the advancing ski, and—in conditions of deep snow—the snow easily becomes wedged in and compacted under the lifting mechanism, until it ices up and thereby blocks the plate in the lifted position, with the risk that the strong bending movements caused by the weight of the skier tear the rear hinge up from the ski.
In addition, although FR 2 779 659 mentions the possibility of providing a locking device which can prevent the lifting of the tip of the footwear, it does not provide any teaching relating to the practical realization of such a device. The locking device presented is external to the system and it is at a considerable distance from the point of application of the torsional forces arising during the skiing, owing to the weight of the skier who, when going around a curve, presses on a single edge of the ski, and the hypothetical mounting. The system is therefore extremely heavy and not very rigid.
A further disadvantage is that it is not possible to mechanically control the lifting excursion by means of a movable slide on the front lifting guide rod, shown in
In addition, the solution described does not give the system sufficient rigidity, because even if the rigid front rod were to have a rectangular section to ensure a minimal torsional rigidity (which would involve a difficult execution of the cursor seat, however), the wear resulting from the frequent sliding movements would inevitably introduce a high degree of play such as to quickly impair the stability of the system. In addition, the unavoidable asymmetrical loads bring about torsional loads on the lifting rod, i.e. ultimately increase the friction, and this would impair the object of the invention, which is that of leaving the tip of the footwear free to lift up from the ski. In order to bring about further loads on the articulation of the skier's ankle, as shown in
In addition, said document does not indicate how the system for locking the shoe or boot on the plate may actually operate, both when it is in the free position and when it is in the locked position. Indeed, the invention does not take into account the fact that the rotational movement of the boot needs further space if the bindings are external to the plate, as shown, and this is something that a fixed binding at the tip and at the rear external to the plate cannot ensure. Therefore, it is not possible to use bindings of the known type with the device realized in this way.
It is an object of the present invention to provide a satisfactory solution to the problems outlined above.
In order to provide a device for anchoring a shoe or boot to a ski which allows the disadvantages of the prior art to be overcome, the invention relates to a binding system having the features indicated in claim 1.
Particular embodiments form the subject of the dependent claims, the content of which should be regarded as an integral part of the present description.
The binding system according to the invention, which has a considerable toughness and a very low weight, notwithstanding any other known function typical of a binding for skis, advantageously allows the tip of the boot, and therefore the tip of the skier's foot, to be lifted from the ski to a predetermined height, such as to allow a normal walking or running movement, so that the angle of the ankle, during the extension and advancing phase of the leg with the foot raised, remains virtually unchanged with respect to that which would be present in the case of a natural walking movement without skis.
In a free position, the system according to the invention allows a skier to walk or run easily by dragging the ski under his/her feet, it being possible for the skier to lift the tips of the shoes or boots and at the same time also the heel with respect to the ski for a predefined travel. The aim of the system is to allow the skier to move skis forward by foot with a natural walking movement, i.e. by completely lifting the whole foot to different centimetres with respect to the base of the ski, respectively first the tip and then the heel of the foot in the phase in which the front leg moves forward, and the same for the back leg, meaning that the skier, irrespective of the anthropometric measurements and the walking style, does not have to lift the ski from the snow and can have his/her feet almost completely free.2
Advantageously, in combination with a flexible boot, it is possible to also make the sole of the foot perform the same bending movement, “roll” in technical terms, as that performed for example during walking or running with soft footwear, ultimately reducing the energy required for the walk and/or the run and making the movement more efficient, which allows greater speeds even in the case of athletic performance.
When it is no longer necessary to carry out the walking or running movement, it is possible to operate a locking mechanism and to thereby rigidly bind the tip lifting device on the ski so that the skis can be used to the best of their ability for very steep climbs and for descent and in every other circumstance which requires a rigid mounting of the boot on the skis. This mechanism can be realized in the manner of an additional plate system, along with a binding of the known type, or itself can constitute an integrated dual-function system for lifting the tip and fastening onto a ski of the known type, for specifically designed flexible shoes or boots which can ultimately improve the efficiency of the skier's movement in the running or walking phase with any type of skis on his/her feet.
In a currently preferred embodiment, the locking mechanism is movable and can engage on a shaped support surface of the support structure, so that it assumes a stable open or closed position on account of a contrast spring. In a tougher embodiment, the locking mechanism is rotatable instead of movable and, for example, engages directly on one of the pins of the articulation of the tip lifting device.
To retain the locking mechanism in the open or closed position, even in the presence of strong stresses on account of skiing downhill or the banging and knocking during an ascent, provision is made of a secondary fastening locking mechanism, driven by a spring, which makes the stable positioning easier in the open and closed positions.
In all the configurations, it is possible to add another safety locking system, realized by means of a transverse peg which directly engages the oscillating structure to the part integral with the ski.
Further features and advantages of the invention will become clearer from the following detailed description, provided purely by way of non-restrictive example and referring to the appended drawings, in which:
The rear part of the oscillating structure is provided with the seats for anchoring the rear binding 31, also of a known type, which can be mounted in different positions depending on the length of the skier's boot or, in a version with an integrated rear binding 31, this is mounted on a horizontally movable slide, driven for example by an adjusting screw.
In the front part of the oscillating structure, a gull-wing plate 18 is arranged between the tip binding and the beams, having a triple function of a wedge able to expel the snow which has possibly collected on the ski, a connection between said beams and protection of the moving parts of the tip binding 30.
The hinge or flexible section 6 of the beams 2 defines an articulation of the structure bearing the bindings about a rear transverse axis of the footwear. The front section is provided with a kinematic mechanism 14, which forms a system for guiding and limiting the lifting travel of the beams and is conveniently provided with a locking mechanism 8, for example with a beak locking spring or a spring implementable in different versions.
The kinematic mechanism 14 of the binding system 1 comprises a front or side compass-like articulation. The embodiment of the compass-like articulation shown in the figure comprises, for example, two articulated arms in the form of a V and a central arm, and on the whole is integral at a first end with the top surface of the ski, by means of a pin 16 articulated at a base 10, and at the opposite end with the front section of the oscillating structure 2, by means of one or more pins 4. The tip lifting device has a system for guiding and limiting the lifting travel, given by the maximum opening of the compass which is limited by a ledge and by a transverse pin 17. In addition, the kinematic mechanism 14 has an associated locking mechanism 8, adapted to lock the articulation and mount the oscillating structure on the ski. In a currently preferred embodiment, the locking mechanism 8 comprises, for example, a beak spring element 5 which, once the compass 14 has pushed the pin 4 within the seat in the front base 10, prevents this from coming out. An extremely rigid torsional engagement is thereby realized for the pin 4 and therefore the beams 2, but the pin 4 is left free to move horizontally by several millimetres within the eyelet 19 so that the ski can be elastically deformed without being stiffened by the binding system 1.
The realization of the compass-like kinematic mechanism with a reduced cross section advantageously prevents the formation of compacted blocks of snow or ice in the articulation structure of the oscillating structure, so that the system can operate in every snow condition.
The beams 2 of suitable height advantageously have a small plan thickness and therefore avoid the accumulation of snow, and, even in the case of the accumulation of ice, the pressures that the skier is able to exert on the profile are such as to prevent the growth of incrustations which could impair the functionality of the binding.
Bindings for cross-country skiing of varying nature which differ by small dimensional details of the locking system of the front articulation pin of the shoe are known, but the only true special feature which distinguishes these bindings is in fact the disengagement of the locking system, which may be operated manually or by means of the pole.
The binding system according to the present invention differs from those known in that, in order to make the assembly as a whole lighter and more practical, the footwear binding also uses the movement of the tip lifting kinematic mechanism to fasten or unfasten the footwear to or from the ski binding, in a particular position and owing to that explained in more detail below.
The locking system for the footwear comprises two clamps, a fixed clamp and a mobile clamp which is supported and moved by the binding system according to the present invention, therefore benefitting from the possibility of having an integrated binding which combines all the features of an oscillating structure system for lifting the tip of the footwear, locking the oscillating structure in a lowered position and the fastening of the footwear.
An improvement of the invention is formed by a system for moving the locking clamps for footwear, in which the front end of the compass-like lifting kinematic mechanism can be activated by the skier and can be lifted so as to unfasten the footwear from the binding owing to the fact that the articulated arms of the lifting kinematic mechanism are not rigidly connected to the oscillating structure, but to a movable slide urged by a plurality of springs in turn connected to the mobile clamp, which is adapted to assume a fastening or unfastening position of the pin of the footwear.
The locking system 8 is described in more detail below in relation to
Therefore, the skier will no longer need to act manually on the binding so as to lock the footwear, but instead only so as to unlock it.
The footwear is unlocked by pulling the end 109 of the compass-like lifting mechanism 14 of the tip lifting system upwards, and, since it cannot make any other movements, this pushes the slide 103 connected to the mobile clamp 102 backwards, and the slide clears the passage for the pin 104 as it moves into a sufficiently withdrawn position.
The tip lifting device is adapted to assume a lifted position which allows the tip of the shoe or boot, also of the known type, to rise with respect to the ski to the necessary extent for walking to the maximum extent allowed by the end-of-travel determined by the kinematic mechanism 14, as shown in
Advantageously, the articulated kinematic mechanism 14 simultaneously constitutes a protection against the intrusion of snow or ice under the structure in the lifted position, and a torsional stiffening element, which limits the torsional rotation of the oscillating structure 2 with respect to the ski.
With reference to
The rear plate 18P ensures that the snow cannot solidify and turn into ice between the rear binding and the ski. In addition, the hinge is divided for example in two so as not to represent an obstacle to the outflow of the snow towards the rear side (indicated by the wavy arrows), towards which the snow is normally also pushed by the advancing ski and by the pushing of the snow plough wedge. If the pin were in one piece, this exit route would be precluded and it would therefore be impossible to prevent the accumulation of snow and therefore the blocking of the articulation.
The binding system according to the invention, shown in more detail in
Conveniently, it is possible to also mount on the special triple-function binding 1 all the known technical devices or mechanisms, such as crampons for the ice or rear heel lifting device.
One embodiment of a locking mechanism 8, which makes it possible, with a rapid manoeuvre, to lock or unlock the oscillating support structure 2 of the ski with the tip of the pole by lifting the ends 109 of the compass 14, is described with reference to
The shaped fastening block 50, which rotates pivoted by the pin 59, and the horizontally pivoted fastener 52, which rotates about the pin 58, are stressed by a spring 56, connected to the pin 57 which has the dual task of ensuring an elastic reaction between the block 50 and fastener 52 so that these normally adopt the mutual position shown in
In consideration of the forces which are active during downhill off-piste skiing, in all of the cases presented the locking mechanism 8 according to the invention can also provide for the presence of a further pin 60 of the known type, for example a pin or of the “push-pin” type, which can be inserted into appropriate seats (holes or eyelets) present at the front end of the support structure 2 and of the base 10, so as to ensure complete and irreversible locking of the structure 2 which is free from significant play, which at most limits the possible torsions of the structure 2.
The locking system described advantageously makes it possible to lock or unlock, as required, the support structure 2 of the bindings 30 and 31 with a simple motion, with one hand or the tip of the ski pole, in the latter case without the skier having to bend down.
Conveniently, the locking system described can prevent or, vice versa, allow the vertical lifting of the oscillating support structure, but advantageously in every operational condition always allows the relative horizontal sliding movement between the support structure and the ski owing to the different elastic deformation of the ski, which is considerably greater than that of the tip lifting structure thereabove.
Finally, it is possible to integrate the features of lifting the tip of the footwear and locking thereof on the binding of the ski by means of said compass-like articulation kinematic mechanism of the tip lifting device.
The tip lifting device and therefore the front section of the beams 2 are locked with respect to the ski by means of the pin 44, or an extension thereof, which engages on a shaped bearing formation 41 integral with the structure 2 by means of a support pad 46, for example made of rubber or a similar material with mechanical and elastic properties which avoid the noise caused by the impact of the snow plough wedge 47 on the ski 12 and ensure a sufficient upward and torsional constraint reaction, which increases the stability of the locking mechanism when the latter is in the operational locking position. The elasticity of the rubber pad also makes it possible to recover the possible play caused by the deterioration owing to wear of the sliding surfaces present on the structure 2 or on the locking mechanism 8.
With reference also to
By withdrawing the slide 40 into the operational position indicated by B, the pin 44, or an extension thereof, engages on the shaped formation 41 integral with the structure 2 and prevents the front section of the structure 2 from lifting with respect to the ski 12.
Clearly, without departing from the principle of the invention, the embodiments and details of construction may differ considerably from those described and illustrated purely by way of non-restrictive example, without thereby departing from the scope of protection of the invention defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
TO2010A000211 | Mar 2010 | IT | national |
TO2010A000803 | Oct 2010 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2011/051170 | 3/21/2011 | WO | 00 | 9/18/2012 |