The present invention claims priority to U.S. patent applications Ser. No. 15/335,298, filed on Oct. 26, 2016, which claims priority to U.S. patent application Ser. No. 15/236,101, filed on Aug. 12, 2016. The present invention also claims priority to U.S. patent application Ser. No. 15/358,040 filed on Nov. 21, 2016. All of the above applications are incorporated herein by reference.
The present invention relates to a near-eye display system, and more particularly to a binocular near-eye display system including a modulation stack.
Near-eye display systems are becoming more common. Such near-eye display systems attempt to provide a three-dimensional display to the user. In the prior art, displays rendering multiple focal planes utilized mechanical movement such as gears or liquid lenses. Such mechanisms are expensive, slow, and relatively fragile. Another prior art method of displaying multiple focal lengths uses multiple mirrors and lenses.
A binocular near-eye display system utilizing a modulation stack is described. A modulation stack includes one or more digital light path length modulators, to adjust the path length of light. A digital light path length modulator can be used to create two focal planes. In one embodiment, using a modulation stack with a plurality of digital light path length modulators, the number of focal planes can be increased. Creating a display in which the 3D indicia of parallax, focus, and vergence match provides the capacity to build a system that can meet the physiological requirements of human vision. This produces a better quality 3D display than is currently possible and can prevent the discomfort associated with 3D displays.
The following detailed description of embodiments of the invention makes reference to the accompanying drawings. The drawings show various embodiments of practicing the invention. Description of these embodiments is in sufficient detail to enable those skilled in the art to practice the invention. One skilled in the art understands that other embodiments may be utilized and that logical, mechanical, electrical, functional and other changes may be made without departing from the scope of the present invention. The following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The display subsystem 205 includes, in one embodiment, a right eye display subsystem 205A. The right eye display subsystem 205A includes an image source 210A, a projection assembly 220A, and an imaging assembly 240A.
The image source 210A in one embodiment includes a light source 217A, which in one embodiment is a spatial light modulator (SLM). The image source 210 in one embodiment also includes a digital correction system 215A, to correct the output of the light source 217A, to account for distortion in the projection assembly 220A. In one embodiment, the light source 217A may be a real image, in which case the light source 217A is external to the system, and there is no digital correction. In one embodiment, the NED 200 may be used for one or more of virtual reality (digital image source), augmented or mixed reality (a combination of real and digital image sources), and reality (real image source.)
The projection assembly 220A includes a polarizer 225A in one embodiment. The polarizer 225A passes through light with a particular polarization. In one embodiment the polarizer may provide pixel-based polarization. Utilizing pixel-based polarization, the system can provide multiple depths to both eyes.
The projection assembly 220A includes a modulation stack 230A. The modulation stack 230A includes one or more digital light path length modulators 235A, 237A. The digital light path length modulators 235A, 237A alter the light path length based on the polarization of the light. In one embodiment, polarizer 225A may be positioned after modulation stack 230A.
Imaging assembly 240A is used to display the image to the user. In one embodiment, the display subsystem 205A may include additional mechanical and optical elements which can provide correction or alteration of the image.
The display sub-system 205 includes a left eye subsystem 205B to provide binocular display. In one embodiment, the left eye subsystem 205B may include only an imaging assembly 240B, while the image source 210A, polarizer 225A, and modulation stack 230A may be shared between the right-eye display subsystem 205A and the left eye display subsystem 205B. In another embodiment, the binocular elements display subsystem 205B may include more of the elements, including one or more of a light source 210B, polarizer 225B, and modulation stack 230B, in addition to the separate imaging assembly 240B. In one embodiment, if the same modulation stack 230A is shared, then the elements appear at the same distance. In one embodiment, by having separate elements, the system can more easily adjust for the user's prescription. In one embodiment, the system provides monocular focal cues for each eye, including adjusting for motion parallax, depth, sizing, occlusion, etc. By adjusting two eyes, utilizing the binocular system, the system further provides binocular focal cues including binocular parallax and convergence.
In one embodiment, the system may include an eye tracking mechanism 265, for one or both eyes 265A, 265B. The eye tracking mechanism 265A/B tracks the gaze vector of the user's eyes. In one embodiment, the system may place image elements in one or more selected locations based on where the user's eyes are looking, using the eye tracking mechanism 265A/B. In one embodiment, the system may select one or more focal planes, based on where the user is looking, as determined based on data from the eye tracking mechanism 265A/B. In one embodiment, the eye tracking mechanism 265A/B is an infrared optical sensor or camera to sense light reflected from the eye. Other techniques may be used for eye tracking. Eye tracking mechanism 265A/B may track one or both eyes.
In one embodiment, the system may receive data from auxiliary data system 260. The auxiliary data system may provide information for selecting the focal lengths and may provide controls. As noted above, the modulation stack 230 can create a perception of an image element at various virtual object distances. The auxiliary data system 260 may be used to select a virtual object distance, based on various factors. The auxiliary data system 260 may also be used by the user/wearer to provide feedback or commands.
In one embodiment, biometric systems 270 may be used to detect the user's state, including the user's identity, emotional state, etc. In one embodiment, the biometric systems 270 may be used to customized and/or control the system.
In one embodiment, the biometric system 270 may be used to detect the user's vision correction, and provide adjustment based on the vision correction. In one embodiment, this may be done by scanning the eye. In one embodiment, the user may be requested to input his or her prescription. In one embodiment, the position of the display subsystem (one or both) may be adjusted based on the user's inter-pupillary distance (IPD). In one embodiment, there may be user interface to receive medical data 261. In one embodiment, the prescription and IPD may be entered through manual adjustment 262. In one embodiment, the system may optionally store these settings, so that if multiple users share the near-eye display system 200, the system may be able to auto-adjust to the prior settings. In one embodiment, the adjustment may be based on the data from biometric systems 270 and/or eye tracking mechanism 265A/B.
Environmental feedback system 272 utilizes sensors to obtain data from the external environment. For example, the environmental feedback system 272 may identify the position of a wall, or window, or other targeted location or object, so data displayed by display subsystem 205 can have a virtual object distance appropriate for that target location. The environmental feedback system 272 may be a range sensor, camera, or other system.
Content data-based focal point selection 274 enables the system to selectively choose a virtual object distance, based on what is being displayed. For example, the system may selectively choose a portion of the image for focus.
In one embodiment, user input systems 276 enable focus selection based on head tracking, gestures, voice control, and other types of feedback or input systems. Such user input systems 276 may include video game controllers, microphones, cameras, inertial measurement sensors, and other sensors for detecting user input. In one embodiment, user input systems 276 may provide manual inputs, including one or more of sliders, dials, computer-based inputs, etc. In one embodiment, the user inputs systems 276 may be provided by a linked mobile device or other system.
Other control data 278 may also be provided to the system. Any of this data from auxiliary data system 260 may be used to adjust the virtual object distance of one or more image elements. In one embodiment, in addition to auxiliary data system 260, the system may additionally accept manual adjustment 262. In one embodiment, the manual adjustment may be used to correct for the user's optical issues, which sets a baseline for the user. In one embodiment, manual adjustment 262 may provide an initial IPD and diopter setting. In one embodiment, the manual adjustment is stored so that a user may have a customized setting, which may be beneficial if the near-eye display system is shared.
In one embodiment, the near-eye display 200 may provide depth blending. In one embodiment, the system 200 enables depth blending between the focal lengths created using the modulation stack 230. In one embodiment, depth blending uses weighting of pixel values between adjacent planes and sets opacity. This creates an appearance of continuous depth. In one embodiment, the weighting may be linear weighting. In one embodiment, nonlinear optimization techniques may be used. In one embodiment, the image source 210 adjusts the pixel values output, to create such depth blending.
In one embodiment, the customized image adjustment 280 may use one or more of the following elements: vergence correction 281, focal plane correction 282, brightness/luminosity adjustment 283, magnification 284, color correction 285, artificial color addition for emphasis 286, contrast ratio correction 287, rotation and transposition-based displacement 288, and periodic adjustor for brain training 289.
In one embodiment, the projection assembly 290 may correct for chromatic aberration and other irregularities of optical systems.
The modulation stack 355 includes one or more digital light path length modulators 350. For simplicity the illustration here includes a single digital light path length modulator 350. The digital light path modulator 350 includes a polarization modulator 330, which can rotate the polarization of light, and an optical light path extender (OPLE) 340 which selectively extends the light path length, based on the polarization of the light. In one embodiment, the OPLE 340 may be a transverse OPLE or a longitudinal OPLE. These OPLEs are described in co-pending U.S. Patent application Ser. No. 15/236,101, filed on Aug. 12, 2016 (14100P0030) and U.S. patent application Ser. No. 15/358,040 filed on Nov. 21, 2016 (14100P0036). incorporated herein by reference.
The polarization modulator 330 in
The OPLE 340 in one embodiment is a transverse OPLE with a plurality of polarization sensitive reflective elements, which reflect state 1 polarized light, while passing through state 2 polarized light. Here, state 2 polarized light is transmitted straight through. The output in one embodiment is transmitted to near-eye display (NED) projection optics 360. Though it is not shown, additional optical elements may be included in this system, including lenses, correction systems, etc. In another embodiment, the OPLE 340 may be a longitudinal OPLE in which the state 1 polarized light is reflected back by a polarization sensitive reflective element.
A comparison of
In one embodiment, this binocular display system may be used in near-eye displays (NED), as well as a binocular microscope to enable the display to show depth perception and for digital microscopes, recreating a similar eye feel to high powered microscopes. Other uses of the binocular display system may include other types of displays, such as those associated with cameras, binoculars, digital scopes, medical or surgical display systems, endoscope, binocular range finders, etc.
The modulation stack includes four digital light path length modulators. Each of the digital light path length modulators 450, 455, 460, 465 includes a polarization modulator and an OPLE. In this example, the first OPLE 410 is a longitudinal OPLE, while the other OPLEs are transverse OPLEs. One of the transverse OPLEs 420 is a self-aligning OPLE.
In various embodiments, one or more of the following variations may be made: the effective thickness of the OPLEs may vary, as may the angles of the polarization sensitive reflective elements, and the OPLE may include one, two, or more plates. The effective thickness of the OPLE is defined as the cumulative thickness of the plates which are parts of the OPLE. Thus the effective thickness of OPLE 420 is different than the thickness of OPLE 440, even though the individual plates in the two OPLEs 420, 440 are identical.
With the shown set of four different OPLEs, the system can create up to sixteen, 24 focal lengths by selectively modulating the polarization, as follows:
Although the modulation stack may create a plurality of focal planes, in one embodiment the system provides for focal plane blending. Focal plane blending enables placement of elements between focal planes defined by the OPLEs. Focal plane blending creates a perception of intermediate focal planes. This enables the creation of a blended focal plane at a location where the desired position of the virtual object is, corresponding to appropriate parallax.
In one embodiment, because the light exits from both sides of a longitudinal OPLE, the longitudinal OPLE 410 is preferentially a first OPLE in a modulation stack 400 that includes longitudinal OPLEs. In one embodiment, the number of longitudinal OPLEs 410 is limited by the level of light loss for each longitudinal OPLE.
The figures of 5A-5C illustrate the use of transverse OPLEs for light path extension.
At block 615, a plurality of image elements are identified. The image elements may be in the same image frame, or may be in separate subframes.
At block 620, the focal length and conjugate ratio is determined for each of the plurality of image elements, for both eyes. This is based on the intended virtual location for each image element, based on one or more of the user's intention, the creator's intention, and the user's physical circumstances.
At block 630, appropriate light lengthening is selected, to place the virtual object distance at the selected distance for image element. As noted above, this may be done on a per subframe or per pixel basis.
At block 640, the input is adjusted to correct for any artifacts created by the light path lengthening, and other issues. Other issues may include vergence-based disparity correction, luminosity correction, amblyopia correction, different perceived focal planes, perceived focus adjustments, etc. In one embodiment, the system may adjust color to assist with color blindness, or decreased color perception. The adjustment may include adjusting color differentials, removing noise in the color overlap region, or artificial color fringing. In one embodiment, this adjustment is done by the digital correction system 215A/B, for each eye. The digital correction system 215A/B in one embodiment adjusts the output of light source 217A/B to account for these issues, as well as for artifacts.
At block 650, the process uses the binocular display system to display image elements for each eye at the plurality of perceived focal distances. The process then ends at block 660. Note that while the process is shown as ending, as long as there are further image elements to display, the process continues.
If there is a vergence disparity, the vergence-based disparity correction may place the image elements further apart (10B) or closer together (10C) so that the perceived placement is correct. There may be brightness or luminosity correction (10D) if the two eyes do not perceive light the same way. In one embodiment, there may be inter-scene contrast ratio correction, by adjusting the brightness of elements relatively to each other for the whole, or portions of the image.
For amblyopia, the image element may be moved, and made less bright for the dominant eye, to force the other eye to work (10E). For different prescriptions (diopters), the perceived focal planes may be shifted (10F), so that despite having different prescriptions for each eye, the two eyes perceive the image elements on the same plane (or on different planes, as designed by the data.) For some vision problems, the system may provide differential magnification, to fix the effect of some vision problems. This may be done for the whole scene, so that the user's eyes perceive images at the same size. In one embodiment for monovision correction or strong eye dominance, which causes 3D fusion problems, the system may provide correction as well. In one embodiment, the correction may include altering one of the images, as shown. In one embodiment, the correction may include alternating the image displayed between the eyes. In one embodiment, the correction may include other changes. In one embodiment, the system may try various modifications to provide an experimental correction, based on the user's reaction. Because people with vision issues have different reactions to such corrections, in one embodiment, the processor may run through an experimental correction protocol, which utilizes various correction methods, and evaluates the user's response using eye tracking mechanisms and biometric systems, and user feedback to identify an optimal correction. In one embodiment, such experimental correction protocols are made available under supervision by a medical or other trained professional.
In one embodiment, there may be different color levels, for contrast. (10H). In one embodiment, the system can adjust color overall for generic color blindness. The color adjustment may remove noise, and overlap between the colors. In one embodiment, the system may also adjust the focal planes by color. The system may also selectively adjust color for one eye for color blindness or reduced color sensitivity in one eye due to macular degeneration or other causes. In one embodiment, the system may add artificial color fringing to provide focus clues. In one embodiment, the system may add a blur filter, to the entire image, to a portion of the image, or by color, to create a perceived focus adjustment. In one embodiment, a whole scene may be positioned in one focal plane, based on where the user is looking, and the elements that the user is not focused on may be artificially blurred.
In one embodiment, the system also provides rotational displacement or transposition, in addition to the changes shown in
In one embodiment, the system dynamically matches vergence and focus, and adjusts these elements in real time. For an augmented or mixed reality system, the display may additionally be adjusted based on external clues. For example, an image may be positioned on a wall, even as the user moves closer to or further away from that wall.
In one embodiment, the correction is to account for the parallax and focal shift, based on the real perception of the user, rather than the idealized perception assumed by a default system.
In one embodiment, the system, because it is fully adjustable on a binocular basis, may be used to train the brain, by changing parameters from the initial values to the more optimized values. The brain adjusts to the images being shown.
For example, if a user has a strongly dominant eye, generally the dominant eye provides resolution and the non-dominant eye only provides depth cues. However, the system can adjust for this, by adjusting luminosity to shift dominance. In one embodiment, the system may alternately or additionally adjust the distance of the object shown to the dominant eye. This can force the brain to learn and adjust. Thus, in one embodiment, the system may be used to train the user's brain, to compensate for existing eye issues. For example, for developmental amblyopia, the system may force the lazy eye to focus by placing the image shown to the dominant eye out of focus, or in soft focus. In one embodiment, the system may be used to train the eyes for cross-dominant shooters (e.g. to enable someone who needs to be able to adjust eye dominance to learn to do so.) In one embodiment, the system may slowly adjust these factors, focus, magnification, luminance, focal plane, and vergence digitally. By combining such changes with testing, the system may be to improve vision. Additionally, by adjusting the display and forcing the user's vision to compensate, the system may be used for lengthening some muscles differentially for therapeutic reasons.
At block 740, the modulation path and other aspects of the image element are adjusted for each eye, based on the condition of the eye, and external conditions, if appropriate.
At block 750, the binocular display system is used to display a plurality of image elements, for each eye, providing the correct parallax.
At block 820, the vergence and perceived focal distance of the user is identified. In one embodiment, this may be done by observing the user's eyes as test images are displayed. In one embodiment, this may be done via user input. In one embodiment, this may be done by receiving user feedback during display of a plurality of test images or other content. In one embodiment, this may be done by requesting feedback from a user, the feedback reflecting a comparison of real objects in the environment and displayed object in the binocular NED system.
At block 830, the light path length is adjusted for each eye of the binocular display for the appropriate perceived focal distances and image element locations for correct disparity.
At block 840, the plurality of image elements are displayed in a plurality of subframes at the selected plurality of perceived focal distances.
At block 850, the system determines whether the focal distance should be changed. If so, at block 860 the new correct focal distance and parallax are identified, based on the user data and the data in the content being presented. Otherwise, the process returns to block 840 to display the next plurality of subframes. In this way, the system continuously adjusts the data being displayed to account for both the vergence and perceived focal distance of the user, as the data changes. In one embodiment, the system performs the differential adjustment of block 830 once when initially setting up the system. Thereafter, the data for both eyes are adjusted uniformly, to maintain continuity of content. Thus, as focal distance changes, the system maintains the needed disparity between the eyes. In one embodiment, this process does not utilize eye tracking. Rather, the known focal distance and vergence data is used.
At block 925, the gaze vector of the user's eye is identified. The gaze vector is detected, in one embodiment, using eye tracking. At block 930, the process determines whether either eye needs a diopter adjustment. If so, at block 935, diopters are adjusted. In one embodiment, diopters may be adjusted without moving parts, using the modulation stack and image source. In one embodiment, the diopter adjustment may be a manual adjustment. In one embodiment the distance between the two eye pieces of the binocular display may also be adjusted to conform to the IPD (inter-pupillary distance) of the user.
At block 940, the process determines whether either eye needs a luminosity or color adjustment. If so, at block 945, the luminosity and/or color is adjusted for the appropriate eye(s).
At block 950, the process determines whether there is a need for an opia adjustment. Opias are visual disorders which change the user's ability to perceive image data, ranging from myopia to amblyopia and presbyopia, and others. If there is such an adjustment needed, the light level, focus, disparity, color, or other aspect of the display are adjusted, as needed at block 955.
At block 960, the defined display difference between the user's eyes is stored, in one embodiment. This display difference is maintained as a fixed difference while adjusting through different display categories, in one embodiment. In one embodiment, the difference may change based on the perceived focal distance, for example, utilizing a different adjustment at different perceived focal distances. The display difference, defines the differential between the user's two eyes.
The process then ends, at block 970. In one embodiment, these settings are maintained and utilized for the user, adjusting the display data in real-time. In one embodiment, some of these adjustments may be precalculated. The adjustments may be made by image source (either altering the light level from light source, or adjusting other aspects via digital correction system), by the modulation stack, or by intermediate optics within the display system. In one embodiment, a combination of these elements may be used to provide the controls contemplated.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
3586416 | Bitetto | Jun 1971 | A |
3856407 | Takeda et al. | Dec 1974 | A |
4670744 | Buzak | Jun 1987 | A |
5610765 | Colucci | Mar 1997 | A |
5751243 | Turpin | May 1998 | A |
6515801 | Shimizu | Feb 2003 | B1 |
6580078 | O'callaghan et al. | Jun 2003 | B1 |
7360899 | McGuire, Jr. et al. | Apr 2008 | B2 |
7905600 | Facius et al. | Mar 2011 | B2 |
8262234 | Watanabe | Sep 2012 | B2 |
8755113 | Gardner et al. | Jun 2014 | B2 |
9025067 | Gray et al. | May 2015 | B2 |
9304319 | Bar-Zeev | Apr 2016 | B2 |
9494805 | Ward et al. | Nov 2016 | B2 |
9588270 | Merrill et al. | Mar 2017 | B2 |
20020191300 | Neil | Dec 2002 | A1 |
20030020925 | Patel et al. | Jan 2003 | A1 |
20040156134 | Furuki et al. | Aug 2004 | A1 |
20040263806 | Silverstein et al. | Dec 2004 | A1 |
20050141076 | Bausenwein et al. | Jun 2005 | A1 |
20060119951 | McGuire | Jun 2006 | A1 |
20070030456 | Duncan et al. | Feb 2007 | A1 |
20070030543 | Javidi et al. | Feb 2007 | A1 |
20070139760 | Baker et al. | Jun 2007 | A1 |
20070146638 | Ma et al. | Jun 2007 | A1 |
20080130887 | Harvey et al. | Jun 2008 | A1 |
20080174741 | Yanagisawa et al. | Jul 2008 | A1 |
20090061505 | Hong et al. | Mar 2009 | A1 |
20090061526 | Hong et al. | Mar 2009 | A1 |
20090237785 | Bloom | Sep 2009 | A1 |
20090244355 | Horie | Oct 2009 | A1 |
20110032436 | Shimizu et al. | Feb 2011 | A1 |
20110149245 | Barth et al. | Jun 2011 | A1 |
20120075588 | Suga | Mar 2012 | A1 |
20130070338 | Gupta et al. | Mar 2013 | A1 |
20130100376 | Sawado | Apr 2013 | A1 |
20130222770 | Tomiyama | Aug 2013 | A1 |
20130344445 | Clube et al. | Dec 2013 | A1 |
20140168035 | Luebke | Jun 2014 | A1 |
20140176818 | Watson et al. | Jun 2014 | A1 |
20150061976 | Ferri | Mar 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150319342 | Schowengerdt | Nov 2015 | A1 |
20160041390 | Poon et al. | Feb 2016 | A1 |
20160041401 | Suga | Feb 2016 | A1 |
20160077338 | Robbins et al. | Mar 2016 | A1 |
20160131920 | Cook | May 2016 | A1 |
20160195718 | Evans | Jul 2016 | A1 |
20160225337 | Ek et al. | Aug 2016 | A1 |
20160227195 | Venkataraman et al. | Aug 2016 | A1 |
20160381352 | Palmer | Dec 2016 | A1 |
20170038579 | Yeoh et al. | Feb 2017 | A1 |
20170068103 | Huang et al. | Mar 2017 | A1 |
20170075126 | Carls et al. | Mar 2017 | A1 |
20170097507 | Yeoh et al. | Apr 2017 | A1 |
20170146803 | Kishigami et al. | May 2017 | A1 |
20170160518 | Lanman et al. | Jun 2017 | A1 |
20180045973 | Evans et al. | Feb 2018 | A1 |
20180045974 | Eash et al. | Feb 2018 | A1 |
20180045984 | Evans et al. | Feb 2018 | A1 |
20180149862 | Kessler et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2012104839 | Aug 2012 | WO |
2012175939 | Dec 2012 | WO |
WO 2012175939 | Dec 2012 | WO |
2015190157 | Dec 2015 | WO |
2016087393 | Jun 2016 | WO |
Entry |
---|
Hu, Xinda et al., “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22, 13896-13903 (2014). |
Lee, Yun-Han et al., Switchable Lens for 3D Display, Augmented Reality and Virtual Reality. Society for Information Display (SID), International Symposium Digest of Technical Papers, vol. 47, Issue 1, May 25, 2016 (4 page). |
Matjasec et al., “All-Optical Thermos-Optical Path Length Modulation based on the Vanadium-Doped Fibers,” Optical Society of America, vol. 21, No. 10, May 2013, pp. 1-14. |
Pate, Michael, Polarization Conversion Systems for Digital Projectors, Web Publication, Apr. 21, 2006, Downloaded from http://www.zemax.com/os/resources/learn/knowledgebase/polarization-conversion-systems-for-digital-projectors on Jun. 17, 2016 (8 pages). |
PCT Search Report Written Opinion PCT/US2017/046644, dated Oct. 23, 20017, 11 pages. |
Polatechno Co., Ltd., LCD Projector Components, http://www.polatechno.co.jp/english/products/projector.html downloaded Jun. 17, 2016 (2 pages). |
Sandner et al., “Translatory MEMS Actuators for optical path length modulation in miniaturized Fourier-Transform infrared spectrometers,” MEMS MOEMS 7(2), Apr.-Jun. 2008 pp. 1-11. |
Number | Date | Country | |
---|---|---|---|
20180048882 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15358040 | Nov 2016 | US |
Child | 15377938 | US | |
Parent | 15335298 | Oct 2016 | US |
Child | 15358040 | US | |
Parent | 15236101 | Aug 2016 | US |
Child | 15358040 | US |