Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode

Information

  • Patent Grant
  • 11839700
  • Patent Number
    11,839,700
  • Date Filed
    Thursday, January 3, 2019
    5 years ago
  • Date Issued
    Tuesday, December 12, 2023
    a year ago
Abstract
The present invention provides a bio-electrode composition including: a resin having a urethane bond and a silicone chain in the main chain; and an electro-conductive material, wherein the electro-conductive material is a polymer compound having one or more repeating units selected from fluorosulfonic acid salts shown by the following formula (1)-1, fluorosulfonic acid salts shown by the following formula (1)-2, sulfonimide salts shown by the following formula (1)-3, and sulfonamide salts shown by the following formula (1)-4. This can form a living body contact layer for a bio-electrode that is excellent in electric conductivity and biocompatibility, light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried. The present invention also provides a bio-electrode in which the living body contact layer is formed from the bio-electrode composition, and a method for manufacturing the bio-electrode
Description
TECHNICAL FIELD

The present invention relates to a bio-electrode, which is in contact with living skin and can detect physical conditions such as a heart rate on the basis of electric signals from the skin, and a method for manufacturing the same, as well as a bio-electrode composition that is usable for a bio-electrode suitably.


BACKGROUND ART

In recent years, wearable devices have been developed progressively with the spread of Internet of Things (IoT). Representative examples thereof include a watch and glasses that can be connected with internet. Wearable devices that can always monitor physical conditions are also necessary in a medical field and a sports field, and are expected to be a growth field in the future.


In the medical field, for example, wearable devices to monitor organic conditions have been investigated as in an electrocardiogram measurement, which detects heart beats by concentration change of ions released from skin linked to the heart beats. The electrocardiogram is measured by fitting a body with electrodes on which electro-conductive paste is applied, and this measurement is performed only once in a short period of time. On the other hand, the aim of development of the foregoing medical wearable device is to develop devices that monitor health conditions continuously for several weeks. Accordingly, bio-electrodes used for a medical wearable device have to keep the electric conductivity unchanged and not to cause skin allergies even when being used for a long time. In addition to these, it is desirable that the bio-electrode is light in weight and can be manufactured at low cost.


Medical wearable devices include a type in which the device is attached to a body and a type in which the device is incorporated into clothes. As the type in which the device is attached to a body, it has been proposed a bio-electrode using water soluble gel containing water and electrolyte, which are materials of the foregoing electro-conductive paste (Patent Literature 1). On the other hand, as the type in which the device is incorporated into clothes, it has been proposed a means to use cloth in which an electro-conductive polymer such as poly-3,4-ethylenedioxythiophene-polystyrenesulfonate (PEDOT-PSS) or silver paste is incorporated into the fibers for electrodes (Patent Literature 2).


When using the foregoing water soluble gel containing water and electrolyte, however, the electric conductivity is lost as the water is lost due to drying. On the other hand, some people can cause skin allergies by the use of metal with high ionization tendency such as copper. The use of an electro-conductive polymer such as PEDOT-PSS also has a higher risk of skin allergies due to the strong acidity of the electro-conductive polymer.


One of the role of bio-electrodes include conversion of concentration change of ions released from skin to electric signals. Accordingly, they have to have higher ionic conductivity. The bio-electrode of water-soluble gel electrolyte has higher ionic conductivity. On the other hand, the use of metal having higher electron conductivity such as silver or gold as a bio-electrode causes inferior electric conductance and higher resistance between the bio-electrode and skin. It has been investigated to use metal nanowire, carbon black, carbon nanotube, etc., which have excellent electron conductivity, as an electrode material (Patent Literatures 3, 4, and 5). These bio-electrodes, however, fails to exhibit high performance of bio-electrodes by the reason described above.


To improve the ionic conductivity of solid-state batteries, it has been investigated to combine ionic electrolyte and polyethylene glycol. The ionic conduction is brought by ions hopping on the polyethylene glycol chain.


It has started to use silicone for use such as medical tubes and so on since silicone is excellent in biocompatibility and repels water such as perspiration. However, it is difficult to use silicone for bio-electrodes since silicone is an insulating material.


Urethane may be usable for bio-electrodes since urethane is also excellent in biocompatibility, and the electric insulation property is not so high as that of silicone. Urethane, however, has higher hydrophilicity and is hydrolysable, thereby being unsuitable for uses that involve contact with skin for a long time.


In order to prevent the hydrolysis of polyurethane, polyurethane having a silicone main chain has been investigated (Patent Literature 6).


When the bio-electrode is away from skin, it becomes impossible to obtain information from the body. Just the change of contact area fluctuates the quantity of electricity to be conducted, thereby fluctuating the baseline of an electrocardiogram (electric signals). Accordingly, the bio-electrode have to be in contact with skin continually without changing the contact area in order to obtain stable electric signals from a body. For that purpose, the bio-electrode preferably has tackiness. It also needs stretchability and flexibility to cope with expansion and contraction as well as change of bending of skin.


Urethane is processable to a soft gel state after curing. Water-containing bio-electrodes based on urethane gel have been proposed for the bio-electrode use described above (Patent Literature 7).


CITATION LIST
Patent Literature



  • Patent Literature 1: International Patent Laid-Open Publication No. WO 2013/039151

  • Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2015-100673

  • Patent Literature 3: Japanese Unexamined Patent Application Publication No. H5-095924

  • Patent Literature 4: Japanese Unexamined Patent Application Publication No. 2003-225217

  • Patent Literature 5: Japanese Unexamined Patent Application Publication No. 2015-019806

  • Patent Literature 6: Japanese Unexamined Patent Application Publication No. 2005-320418

  • Patent Literature 7: Japanese Unexamined Patent Application Publication No. 2011-201955



SUMMARY OF INVENTION
Technical Problem

The present invention has been accomplished to solve the foregoing problems, and an object thereof is to provide a bio-electrode composition capable of forming a living body contact layer for a bio-electrode that is excellent in electric conductivity and biocompatibility, light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried; a bio-electrode in which the living body contact layer is formed from the bio-electrode composition; and a method for manufacturing the bio-electrode.


Solution to Problem

To solve the above problems, the present invention provides a bio-electrode composition comprising:

    • a resin having a urethane bond and a silicone chain in the main chain; and
    • an electro-conductive material,
    • wherein the electro-conductive material is a polymer compound having one or more repeating units selected from the group consisting of fluorosulfonic acid salts shown by the following formula (1)-1, fluorosulfonic acid salts shown by the following formula (1)-2, sulfonimide salts shown by the following formula (1)-3, and sulfonamide salts shown by the following formula (1)-4,




embedded image



wherein Rf1 and Rf2 each represent a hydrogen atom, a fluorine atom, a trifluoromethyl group, or an oxygen atom, provided that when Rf1 represents an oxygen atom, Rf2 also represents an oxygen atom to form a carbonyl group together with a carbon atom bonded therewith; Rf3 and Rf4 each represent a hydrogen atom, a fluorine atom, or a trifluoromethyl group, provided that one or more fluorine atoms are contained in Rf1 to Rf4; Rf5, Rf6, and Rf7 each represent a fluorine atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, provided that one or more fluorine atoms are contained;


X+ represents a sodium ion, a potassium ion, or a cation having an ammonium ion structure shown by the following formula (1)-5; and “m” is an integer of 1 to 4,




embedded image



wherein R1 to R4 each represent a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, optionally having an ether group, a thiol group, an ester group, a carbonyl group, a sulfonyl group, a cyano group, an amino group, a nitro group, an alkenyl group having 6 to 10 carbon atoms, or a halogen atom, and optionally bonded to each other to form a ring.


The inventive bio-electrode composition is capable of forming a living body contact layer for a bio-electrode that is excellent in electric conductivity and biocompatibility, light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried.


The electro-conductive material is preferably a polymer compound having a repeating unit of a sulfonamide salt shown by the formula (1)-4.


The bio-electrode composition using an electro-conductive material that has the repeating unit like this is favorably used for a bio-electrode with lower irritant to skin.


It is preferable that the one or more repeating units selected from the group consisting of fluorosulfonic acid salts shown by the formula (1)-1, fluorosulfonic acid salts shown by the formula (1)-2, sulfonimide salts shown by the formula (1)-3, and sulfonamide salts shown by the formula (1)-4 be one or more repeating units selected from repeating units a1 to a7 shown by the following formulae (2),




embedded image



wherein R5, R7, R9, R12, R14, R15, and R17 each independently represent a hydrogen atom or a methyl group; R6, R8, R10, R13, and R16 each independently represent any of a single bond, an ester group, or a linear, branched, or cyclic hydrocarbon group having 1 to 12 carbon atoms optionally having either or both of an ether group and an ester group; R11 represents a linear or branched alkylene group having 1 to 4 carbon atoms, and one or two of the hydrogen atoms in R11 are optionally substituted with a fluorine atom; Z1, Z2, Z3, Z4, and Z6 each independently represent any of a single bond, a phenylene group, a naphthylene group, an ether group, an ester group, or an amide group; Z5 represents any of a single bond, an ether group, or an ester group; Z7 represents a single bond, an arylene group having 6 to 12 carbon atoms, or —C(═O)—O—Z8—; and Z8 represents a linear, branched, or cyclic alkylene group having 1 to 12 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms, optionally having an ether group, a carbonyl group, or an ester group in Z8; Y represents an oxygen atom or an —NR18— group; R18 represents a hydrogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, optionally bonded to R8 to form a ring; “m” is an integer of 1 to 4; a1, a2, a3, a4, a5, a6, and a7 satisfy 0≤a1≤1.0, 0≤a2≤1.0, 0≤a3≤1.0, 0≤a4≤1.0, 0≤a5≤1.0, 0≤a6≤1.0, 0≤a7≤1.0, and 0≤a1+a2+a3+a4+a5+a6+a7≤1.0; and Rf5, Rf6, Rf7, and X+ have the same meanings as defined above.


With the bio-electrode composition using an electro-conductive material that has the repeating unit like this, the effect of the present invention can be more improved.


It is preferable that the resin having a urethane bond and a silicone chain in the main chain have a structure shown by the following formula (3)-1 or (3)-2,




embedded image



wherein R21 and R24 each represent a linear or branched alkylene group having 1 to 40 carbon atoms, optionally having either or both of an ether group and a thiol group; R22 and R23 each represent a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, a phenyl group, or a 3,3,3-trifluoropropyl group; “m” and “n” are integers of 1 to 100, and “p” is an integer of 2 to 10.


The bio-electrode composition that contains the resin like this is favorably used for a bio-electrode with more enhanced flexibility and repellency.


It is preferable that the resin having a urethane bond and a silicone chain in the main chain have a structure containing a polyether main chain shown by the following formula (4)-1 or (4)-2,




embedded image



wherein R21 and R24 each represent a linear or branched alkylene group having 1 to 40 carbon atoms, optionally having either or both of an ether group and a thiol group; R22 and R23 each represent a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, a phenyl group, or a 3,3,3-trifluoropropyl group; “m” and “n” are integers of 1 to 100, “p” is an integer of 2 to 10; R25 represents a linear, branched, or cyclic alkylene group having 2 to 12 carbon atoms; and “q”, “r”, “s”, and “t” satisfy 0<q<1.0, 0<r<1.0, 0<s<1.0, and 0<t<1.0.


The bio-electrode composition that contains the resin like this is favorably used for a bio-electrode that has enhanced strength, higher ionic conductivity, and higher sensitivity.


It is preferable that the resin having a urethane bond and a silicone chain in the main chain be a reaction product of a silicone compound having a hydroxy group selected from the silicone compounds shown by the following formulae (5)-1 and (5)-2, a polyether compound having a hydroxy group at the terminal, and a compound having an isocyanate group,




embedded image



wherein R21 and R24 each represent a linear or branched alkylene group having 1 to 40 carbon atoms, optionally having either or both of an ether group and a thiol group; R22 and R23 each represent a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, a phenyl group, or a 3,3,3-trifluoropropyl group; “m” and “n” are integers of 1 to 100, “p” is an integer of 2 to 10.


The reaction product like this facilitates to form a living body contact layer for a bio-electrode that is excellent in electric conductivity and biocompatibility, light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried.


It is preferable that the bio-electrode composition further comprise an organic solvent.


This further improve the coating properties of the bio-electrode composition.


It is preferable that the bio-electrode composition further comprise a carbon material.


The bio-electrode composition like this is capable of forming a living body contact layer with more improved electric conductivity.


It is preferable that the carbon material be either or both of carbon black and carbon nanotube.


In the bio-electrode composition of the present invention, it is possible to use these carbon materials particularly favorably.


The present invention also provides a bio-electrode comprising an electro-conductive base material and a living body contact layer formed on the electro-conductive base material;


wherein the living body contact layer is a cured material of the inventive bio-electrode composition described above.


The inventive bio-electrode is excellent in electric conductivity and biocompatibility, light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried.


It is preferable that the electro-conductive base material comprise one or more species selected from gold, silver, silver chloride, platinum, aluminum, magnesium, tin, tungsten, iron, copper, nickel, stainless steel, chromium, titanium, and carbon.


In the bio-electrode of the present invention, it is possible to use electro-conductive base material like this particularly favorably.


The present invention also provides a method for manufacturing a bio-electrode having an electro-conductive base material and a living body contact layer formed on the electro-conductive base material, comprising:


applying the bio-electrode composition of the present invention described above onto the electro-conductive base material; and curing the bio-electrode composition; thereby forming the living body contact layer.


The inventive method for manufacturing a bio-electrode makes it possible to easily manufacture a bio-electrode that is excellent in electric conductivity and biocompatibility, light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried.


It is preferable that the electro-conductive base material comprise one or more species selected from gold, silver, silver chloride, platinum, aluminum, magnesium, tin, tungsten, iron, copper, nickel, stainless steel, chromium, titanium, and carbon.


The electro-conductive base material like this is usable for the inventive method for manufacturing a bio-electrode particularly favorably.


Advantageous Effects of Invention

As described above, the inventive bio-electrode composition makes it possible to form a living body contact layer for a bio-electrode that is capable of conducting electric signals efficiently from skin to a device (i.e., excellent in electric conductivity), free from the risk of causing allergies even when it is worn on skin for a long time (i.e., excellent in biocompatibility), light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried. The electric conductivity can be more improved by adding a carbon material. It is possible to manufacture a bio-electrode with high flexibility and stretchability to be always in contact with skin by combining flexible urethane gel. Accordingly, the inventive bio-electrode, with the living body contact layer being formed by using the inventive bio-electrode composition like this, is particularly suitable as a bio-electrode used for a medical wearable device. Moreover, the inventive method for manufacturing a bio-electrode makes it possible to manufacture such a bio-electrode easily at low cost.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic sectional view showing an example of the inventive bio-electrode;



FIG. 2 is a schematic sectional view showing an example of the inventive bio-electrode worn on a living body;



FIG. 3(a) is a schematic view of the bio-electrode produced in Examples of the present invention viewed from the living body contact layer side; and FIG. 3(b) is a schematic view of the bio-electrode produced in Examples of the present invention viewed from the electro-conductive base material side; and



FIG. 4 is a photograph of a scene of measuring impedance on the surface of skin by using the bio-electrode produced in Examples of the present invention.





DESCRIPTION OF EMBODIMENTS

As described above, it has been desired to develop a bio-electrode composition capable of forming a living body contact layer for a bio-electrode that is excellent in electric conductivity and biocompatibility, light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried; a bio-electrode in which the living body contact layer is formed from the bio-electrode composition; and a method for manufacturing the same.


The bio-electrode has a function to convert concentration change of ions released from skin to electric signals. Accordingly, it is necessary to increase the ionic conductivity in the film. Metal films have very high electron conductivity, but have lower performance as a bio-electrode. This is due to lower ionic conductivity of metal films. Water or polar solvent that contains ions has higher ionic conductivity, and bio-electrodes of water-soluble gel that contain hydrous water-soluble polymers and ions have been used widely. However, it has a drawback of lowering the ionic conductivity when the water is dried as described above. It has been required for a dry bio-electrode with high ionic conductivity without containing water or organic solvent.


The method for improving the ionic conductivity other than the addition of a salt of ion electrolyte include combination of polyether or polycarbonate and a salt. The ions move on the oxygen functional groups of these polymers such that they are hopping. In comparison between polyether and polycarbonate, polyether has stretchability, but polycarbonate does not have stretchability. Since the bio-electrode adhered on skin have to stretch along with the expansion and contraction of skin, polyether is more preferable.


The bio-electrode film composed of a bio-electrode composition is required to be always in contact with skin without fluctuating the area. Fluctuation of contact area is not preferable since it changes the electric conductivity. Accordingly, the bio-electrode film has to be a soft film. As long as it is a soft film, the tackiness is inessential. A soft bio-electrode in a gel state can be always in contact with skin to give stable biological signals. Polyurethane in which a polyether group is introduced is excellent in flexibility. In this case, the urethane resin is formed by the reaction of an isocyanate compound and polyether having hydroxy groups at the terminals. A soft urethane resin with tackiness in a gel state can be produced by reducing the crosslinking density.


Illustrative examples of the salt of ion electrolyte include ionic liquid. Ionic liquids are characterized by high thermal and chemical stability as well as excellent electric conductivity, thereby having been widely used for battery uses. Illustrative examples of known ionic liquid include hydrochloric acid salt, hydrobromic acid salt, hydroiodic acid salt, trifluoromethanesulfonic acid salt, nonafluorobutanesulfonic acid salt, bis(trifluoromethanesulfonyl)imidic acid salt, hexafluorophosphate salt, and tetrafluoroborate salt of sulfonium, phosphonium, ammonium, morpholinium, pyridinium, pyrrolidinium, and imidazolium. However, these salts (particularly, the ones with low molecular weight) are generally liable to hydrate. Therefore, in a bio-electrode in which the living body contact layer is formed from a bio-electrode composition added with these salts, there is the defect of lowering the electric conductivity due to extraction of the salt with perspiration or by washing. In addition, there is the problem that the tetrafluoroborate salt is highly toxic, and the other salts have high solubility in water to easily permeate into skin, each of which causes rough dry skin (i.e., highly irritative to skin).


Additionally, urethane resins have higher hydrophilicity and are degraded by gradual hydrolysis of the urethane bonds. To decrease the hydrolysis, it is effective to increase the hydrophobicity. Accordingly, silicone-urethanes having a silicone bond have been investigated.


For highly-sensitive bio-electrodes, which can detect weak biological signals, higher ionic conductivity is necessary. Silicones are insulators, but urethanes are allowed to have improved ionic conductivity by introducing polyether into the chain extending part. From this viewpoint, urethanes base adhesive having introduced polyether is more preferable than polysiloxane base adhesive. Among the polyethers, polyethylene glycol chains have highest electric conductivity and are preferable.


Accordingly, the inventors have diligently investigated the above problems to find that bio-electrode compositions that contain a resin having a urethane bond and a silicone chain in the main chain as well as an electro-conductive material excels in repellency and electric conductivity, and to find that bio-electrode compositions with the electro-conductive material being a polymeric salt do not cause lowering of electric conductivity due to water extraction or passing through skin to irritate the skin; thereby bringing the present invention to completion.


That is, the present invention is a bio-electrode composition comprising:

    • a resin having a urethane bond and a silicone chain in the main chain; and
    • an electro-conductive material,
    • wherein the electro-conductive material is a polymer compound having one or more repeating units selected from the group consisting of fluorosulfonic acid salts shown by the following formula (1)-1, fluorosulfonic acid salts shown by the following formula (1)-2, sulfonimide salts shown by the following formula (1)-3, and sulfonamide salts shown by the following formula (1)-4,




embedded image



wherein Rf1 and Rf2 each represent a hydrogen atom, a fluorine atom, a trifluoromethyl group, or an oxygen atom, provided that when Rf1 represents an oxygen atom, Rf2 also represents an oxygen atom to form a carbonyl group together with a carbon atom bonded therewith; Rf3 and Rf4 each represent a hydrogen atom, a fluorine atom, or a trifluoromethyl group, provided that one or more fluorine atoms are contained in Rf1 to Rf4; Rf5, Rf6, and Rf7 each represent a fluorine atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, provided that one or more fluorine atoms are contained; X+ represents a sodium ion, a potassium ion, or a cation having an ammonium ion structure shown by the following formula (1)-5; and “m” is an integer of 1 to 4,




embedded image



wherein R1 to R4 each represent a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, optionally having an ether group, a thiol group, an ester group, a carbonyl group, a sulfonyl group, a cyano group, an amino group, a nitro group, an alkenyl group having 6 to 10 carbon atoms, or a halogen atom, and optionally bonded to each other to form a ring.


Hereinafter, the present invention will be described specifically, but the present invention is not limited thereto.


<Bio-Electrode Composition>


The inventive bio-electrode composition contains an electro-conductive material (polymeric ionic material) and a resin having a urethane bond and a silicone chain in the main chain. Hereinafter, each component will be described more specifically.


[Electro-Conductive Material (Salt)]


The salt to be added to the inventive bio-electrode composition as an electro-conductive material is a polymer compound having one or more repeating units selected from the group consisting of fluorosulfonic acid salts shown by the following formulae (1)-1 or (1)-2, sulfonimide salts shown by the following formula (1)-3, and sulfonamide salts shown by the following formula (1)-4,




embedded image



wherein Rf1 and Rf2 each represent a hydrogen atom, a fluorine atom, a trifluoromethyl group, or an oxygen atom, provided that when Rf1 represents an oxygen atom, Rf2 also represents an oxygen atom to form a carbonyl group together with a carbon atom bonded therewith; Rf3 and Rf4 each represent a hydrogen atom, a fluorine atom, or a trifluoromethyl group, provided that one or more fluorine atoms are contained in Rf1 to Rf4; Rf5, Rf6, and Rf7 each represent a fluorine atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, provided that one or more fluorine atoms are contained; X+ represents a sodium ion, a potassium ion, or a cation having an ammonium ion structure shown by the following formula (1)-5; and “m” is an integer of 1 to 4,




embedded image



wherein R1 to R4 each represent a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, optionally having an ether group, a thiol group, an ester group, a carbonyl group, a sulfonyl group, a cyano group, an amino group, a nitro group, an alkenyl group having 6 to 10 carbon atoms, or a halogen atom, and optionally bonded to each other to form a ring.


The electro-conductive material used for the inventive bio-electrode composition, being the salt as described above, is excellent in electric conductivity, and being a polymeric salt (ionic polymer), has extremely low water solubility and does not pass through skin.


The irritation to skin is higher as the acid is stronger before neutralization with sodium, potassium, ammonium, etc. Among the electro-conductive materials described above, the sulfonamide shown by the formula (1)-4 has the lowest acidity and lowest irritation to skin thereby, and is preferably used.


It is preferable that the one or more repeating units selected from the group consisting of fluorosulfonic acid salts shown by the formula (1)-1, fluorosulfonic acid salts shown by the formula (1)-2, sulfonimide salts shown by the formula (1)-3, and sulfonamide salts shown by the formula (1)-4 be one or more repeating units selected from repeating units a1 to a7 shown by the following formulae (2),




embedded image



wherein R5, R7, R9, R12, R14, R15, and R17 each independently represent a hydrogen atom or a methyl group; R6, R8, R10, R13, and R16 each independently represent any of a single bond, an ester group, and a linear, branched, or cyclic hydrocarbon group having 1 to 12 carbon atoms optionally having either or both of an ether group and an ester group; R11 represents a linear or branched alkylene group having 1 to 4 carbon atoms, and one or two of the hydrogen atoms in R11 are optionally substituted with a fluorine atom; Z1, Z2, Z3, Z4, and Z6 each independently represent any of a single bond, a phenylene group, a naphthylene group, an ether group, an ester group, and an amide group; Z5 represents any of a single bond, an ether group, and an ester group; Z7 represents a single bond, an arylene group having 6 to 12 carbon atoms, or —C(═O)—O—Z8—; and Z8 represents a linear, branched, or cyclic alkylene group having 1 to 12 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms, optionally having an ether group, a carbonyl group, or an ester group in Z; Y represents an oxygen atom or an —NR18— group; R18 represents a hydrogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, optionally bonded to R8 to form a ring; “m” is an integer of 1 to 4; a1, a2, a3, a4, a5, a6, and a7 satisfy 0≤a1≤1.0, 0≤a2≤1.0, 0≤a3≤1.0, 0≤a4≤1.0, 0≤a5≤1.0, 0≤a6≤1.0, 0≤a7≤1.0, and 0≤a1+a2+a3+a4+a5+a6+a7≤1.0; and Rf5, Rf6, Rf7, and X have the same meanings as defined above.


The fluorosulfonic acid salt monomer to obtain the repeating unit a1 in the formulae (2) is not particularly limited, and illustrative examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, R5 and X have the same meanings as defined above.


The fluorosulfonic acid salt monomer to obtain the repeating unit a2 in the formulae (2) is not particularly limited, and illustrative examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, R7 and X have the same meanings as defined above.


The fluorosulfonic acid salt monomer to obtain the repeating unit a3 in the formulae (2) is not particularly limited, and illustrative examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, R9 and X have the same meanings as defined above.


The fluorosulfonic acid salt monomer to obtain the repeating unit a4 in the formulae (2) is not particularly limited, and illustrative examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, R12 and X have the same meanings as defined above.


The fluorosulfonic acid salt monomer to obtain the repeating unit a5 in the formulae (2) is not particularly limited, and illustrative examples thereof include the following.




embedded image


embedded image



In the formulae, R14 and X have the same meanings as defined above.


The sulfonimide salt monomer to obtain the repeating unit a6 in the formulae (2) is not particularly limited, and illustrative examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, R15 and X have the same meanings as defined above.


The sulfonamide salt monomer to obtain the repeating unit a7 in the formulae (2) is not particularly limited, and illustrative examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, R17 and X have the same meanings as defined above.


The ammonium cation structure shown by the formula (1)-5 is not particularly limited, and illustrative examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The bio-electrode composition used for the present invention preferably contains an ionic polymer that has a repeating unit(s) of an ionic monomer shown by a1 to a7, but the ionic polymer may also be copolymerized with a repeating unit b having tackiness function. The monomer for obtaining the repeating unit b that brings tackiness is not particularly limited, and concrete examples thereof include the following.




embedded image


embedded image



In the formulae, R represents a hydrogen atom or a methyl group.


To improve the repellency, it is also possible to copolymerize a repeating unit c, which contains a silicon. The monomer for obtaining the repeating unit c containing a silicon is not particularly limited, and concrete examples thereof include the following.




embedded image


embedded image


embedded image



In the formulae, “v” is an integer of 0 to 100.


Additionally, it is also possible to copolymerize a repeating unit d, which has a glyme chain, to improve the electric conductivity. The monomer for obtaining the repeating unit d having a glyme chain is not particularly limited, and concrete examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, R represents a hydrogen atom or a methyl group.


The electro-conductive material contained in the inventive bio-electrode composition can be a copolymer with a glyme chain-containing monomer that has two polymerizable double bonds in the molecule (repeating unit e) in addition to the repeating units a1 to a7, “b”, “c”, and “d” described above. The constituent of repeating unit e like this allows the electro-conductive material to have improved crosslinking property and improved ionic conductivity.


The monomer for obtaining the repeating unit e is not particularly limited, and concrete examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Additionally, by bonding an electro-conductive material to be added to the inventive bio-electrode composition and a urethane gel to be the base of the bio-electrode, the electro-conductive material and the urethane gel are integrated, thereby making it possible to prevent elution of the electro-conductive material. The electro-conductive material and the urethane gel can be bonded by the method of copolymerizing a repeating unit f, which has a hydroxy group, an oxirane group, an oxetane group, or an isocyanate group, in the urethane polymer to form the urethane gel in the presence of the electro-conductive material. The monomer for obtaining the repeating unit f having a hydroxy group, an oxirane group, an oxetane group, or an isocyanate group is not particularly limited, and concrete examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, R represents a hydrogen atom or a methyl group.


As the method for synthesizing these polymer compounds to produce the electro-conductive material, heat polymerization can be performed, for example, on a desired monomer(s) that contains one or more repeating units a1 to a7 among the monomers to give the repeating unit a1, a2, a3, a4, a5, a6, a7, “b”, “c”, “d”, “e”, and/or “f” by adding a radical polymerization initiator in an organic solvent to give an electro-conductive material as a polymer compound of copolymer.


As the organic solvent used in the polymerization, toluene, benzene, tetrahydrofuran, diethyl ether, dioxane and so on can be exemplified. Illustrative examples of the polymerization initiator include 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis(2,4-dimethylvaleronitrile), dimethyl 2,2-azobis(2-methylpropionate), benzoyl peroxide, and lauroyl peroxide.


The temperature in the heat polymerization is preferably 50 to 80° C. The reaction time is preferably 2 to 100 hours, more preferably 5 to 20 hours.


The ratios of the repeating units a1 to a7, “b”, “c”, “d”, “e”, and “f” are preferably 0≤a1≤1.0, 0≤a2≤1.0, 0≤a3≤1.0, 0≤a4≤1.0, 0≤a5≤1.0, 0≤a6≤1.0, 0≤a7≤1.0, 0≤a1+a2+a3+a4+a5+a6+a7≤1.0, 0≤b≤1.0, 0≤c≤1.0, 0≤d≤1.0, 0≤e≤1.0, and 0≤f≤1.0; more preferably 0≤a1≤0.9, 0≤a2≤0.9, 0≤a3≤0.9, 0≤a4≤0.9, 0≤a5≤0.9, 0≤a6≤0.9, 0≤a7≤0.9, 0.1≤a1+a2+a3+a4+a5+a6+a7≤0.9, 0 b≤0.9, 0≤c≤0.9, 0≤d≤0.8, 0≤e≤0.5, and 0 f≤0.5; and further preferably 0≤a1≤0.8, 0≤a2≤0.8, 0≤a3≤0.8, 0≤a4≤0.8, 0≤a5≤0.8, 0≤a6≤0.8, 0≤a7≤0.8, 0.2≤a1+a2+a3+a4+a5+a6+a7≤0.8, 0 b≤0.8, 0≤c≤0.8, 0≤d≤0.7, 0≤e≤0.5, and 0 f≤0.5.


Incidentally, a1+a2+a3+a4+a5+a6+a7+b+c+d+e+f=1, for example, means that the total amount of repeating units a1 to a7, “b”, “c”, “d”, “e”, and “f” is 100 mol % on the basis of the total amount of the whole repeating units in a polymer compound that contains repeating units a1 to a7, “b”, “c”, “d”, “e”, and “f”; and a1+a2+a3+a4+a5+a6+a7+b+c+d+e+f<1 means that the total amount of repeating units a1 to a7, “b”, “c”, “d”, “e”, and “f” is less than 100 mol % on the basis of the total amount of the whole repeating units, and another repeating unit(s) is contained other than the repeating units a1 to a7, “b”, “c”, “d”, “e”, and “f”.


The molecular weight of the polymer, as a weight average molecular weight, is preferably 500 or more, more preferably in a range of 1000 or more and 1000000 or less, further preferably in a range of 2000 or more and 500000 or less. In case of the presence of a large amount of residual monomer, which is not incorporated into the polymer after polymerization of ionic monomers, they can permeate to skin in a biocompatibility test to cause allergy. Accordingly, the amount of residual monomer(s) has to be decreased. The amount of residual monomer(s) is preferably 10 mass % or less when the whole polymer is 100 parts by mass.


The amount of the ionic polymer blended as an electro-conductive material is preferably in a range of 0.1 to 300 parts by mass, more preferably 1 to 200 parts by mass on the basis of 100 parts by mass of the urethane resin. The ionic polymer blended as an electro-conductive material may be used singly or in admixture of two or more kinds.


As a method for synthesizing the salt shown by a1 to a7 in the formulae (2) when X is a cation having an ammonium structure shown by the formula (1)-5, the method described in JP 2010-113209A can be exemplified, for example. More specifically, it can be obtained by a method in which sodium fluorosulfonate containing the fluorosulfonate anion is mixed with quaternary ammonium chloride containing a cation having one or two quaternary ammonium cation structure described above in an organic solvent, for example. In this case, it is preferable to remove sodium chloride that is formed as a bi-product by washing with water.


[Resin Having Urethane Bond and Silicone Chain in Main Chain (Urethane Resin)]


The resin to be blended in the inventive bio-electrode composition is a component to hold the electro-conductive material and an electric conductivity improver such as carbon to improve the electric conductivity, and has to be soft as well as flexible and stretchable to be in contact with skin in accordance with the motion, and is required to have tackiness in some cases. A gel type electrode, which is particularly soft, is required as a bio-electrode used in exercise. As such a material, urethane resins are preferable. Among them, a resin based on urethane gel (urethane gel composition) is preferably used. In order to exhibit the functions as a bio-electrode without being affected by water, repellency is also necessary. Accordingly, silicone-urethane gel is preferably used.


The urethane gel composition can be obtained by mixing a hydroxy compound and an isocyanate compound, for example, and by adding a catalyst to promote the reaction in some cases. The urethane gel with lower hardness can be obtained by reducing the crosslinking density or totally inhibiting the crosslinking. Accordingly, it is preferable to avoid addition of a cross-linkable hydroxy group-containing compound that has three or more of hydroxy groups in one molecule as possible or to reduce the amount.


The method for forming urethane gel can be exemplified by a one shot method of mixing a hydroxy compound, an isocyanate compound, a hydroxy compound that contains a silicone chain, and an ionic polymer, followed by curing thereof by heating, etc. The one shot method has an advantage of higher productivity, but sometimes lowers the strength or stretchability due to remaining of unreacted hydroxy groups or isocyanate groups.


It is also possible to exemplify a prepolymer method in which a hydroxy compound and an isocyanate compound are previously mixed, and then a hydroxy compound, an isocyanate compound, a hydroxy compound that contains a silicone chain, and an ionic polymer are additionally mixed, followed by curing. In this case, the hydroxy groups and the isocyanate groups have sufficiently reacted, and there is a feature of lower ratio of residual isocyanate groups. When the prepolymer is prepared, the hydroxy compound that contains a silicone chain can also be mixed not only the hydroxy compound and the isocyanate compound. In case of preparing the prepolymer, it is preferable that excess isocyanate groups has been mixed to make the terminals of prepolymer be isocyanate.


The urethane resin contained in the inventive bio-electrode composition preferably has a structure shown by the following formula (3)-1 or (3)-2, which has a urethane bond and a silicone chain in the main chain. This makes it possible to improve the repellency and to form a soft gel. In order to be in contact with skin continually, the bio-electrode have to contain a gel type bio-electrode film with soft properties. Additionally, in the urethane resin that has a silicone introduced into the main chain, the repellency is improved, and the urethane bond is successfully prevented from hydrolysis.




embedded image



In the formulae, R21 and R24 each represent a linear or branched alkylene group having 1 to 40 carbon atoms, optionally having either or both of an ether group and a thiol group; R22 and R23 each represent a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, a phenyl group, or a 3,3,3-trifluoropropyl group; “m” and “n” are integers of 1 to 100, and “p” is an integer of 2 to 10.


The resin having a urethane bond and a silicone chain in the main chain preferably has a structure containing a polyether main chain shown by the following formula (4)-1 or (4)-2. The polyurethane having a polyether main chain makes it possible to form a flexible living body contact layer and to improve the ionic conductivity.




embedded image



In the formulae, R21 and R24 each represent a linear or branched alkylene group having 1 to 40 carbon atoms, optionally having either or both of an ether group and a thiol group; R22 and R23 each represent a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, a phenyl group, or a 3,3,3-trifluoropropyl group; “m” and “n” are integers of 1 to 100, “p” is an integer of 2 to 10; R25 represents a linear, branched, or cyclic alkylene group having 2 to 12 carbon atoms; and “q”, “r”, “s”, and “t” satisfy 0<q<1.0, 0<r<1.0, 0<s<1.0, and 0<t<1.0.


The resin having a urethane bond and a silicone chain in the main chain is preferably a reaction product of a silicone compound having a hydroxy group selected from the silicone compounds shown by the following formulae (5)-1 and (5)-2 (hydroxysilicone compound), a polyether compound having a hydroxy group at the terminal, and a compound having an isocyanate group.




embedded image



In the formulae, R21 and R24 each represent a linear or branched alkylene group having 1 to 40 carbon atoms, optionally having either or both of an ether group and a thiol group; R22 and R23 each represent a linear, branched, or cyclic alkyl group having 1 to 6 carbon atoms, a phenyl group, or a 3,3,3-trifluoropropyl group; “m” and “n” are integers of 1 to 100, “p” is an integer of 2 to 10.


The hydroxy silicone compound preferably has 2 to 23 silicon atoms. When the number of silicon atom is in this range, the stretchable film does not have a risk of lowering the strength. The repellency is sufficiently improved by a short chain silicon-containing group having 2 to 23 silicon atoms.


The hydroxy silicone compound is not particularly limited, and concrete examples thereof include the following.




embedded image


In producing the urethane resin contained in the inventive bio-electrode composition, it is preferable to add a compound that has a plurality of hydroxy groups (hydroxy compound) in addition to the hydroxy silicone compound for extending the chain length or crosslinking.


The hydroxy compound is not particularly limited, and concrete examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, each parenthesized repeating unit may be repeated in any numbers.


By mixing a hydroxyl group-containing compound (a hydroxy silicone compound and a hydroxyl compound) and an isocyanate group-containing compound, urethane bonds are formed to promote the reaction for curing, thereby forming a urethane resin. Incidentally, polyether compounds each having a hydroxyl group(s) at the terminal(s) are particularly preferable among the hydroxy compounds described above.


The isocyanate group-containing compound to be used for the reaction with the hydroxy group-containing compound is not particularly limited, and concrete examples thereof include the following.




embedded image


embedded image


embedded image


embedded image


embedded image



In the formulae, “w” is an integer of 1 or more.


As the isocyanate compound, it is preferable to use a compound having a blocked isocyanate group in which the isocyanate group is protected by a substituent. This facilitates to control the reaction even when the reactivity with the hydroxy group-containing compound is high. The isocyanate compound sometimes reacts with moisture in the air during the storage to cause inactivation of the isocyanate group, and requires full attention such as fully preventing moisture for the storage. In the compound having a blocked isocyanate group, however, these phenomena can be prevented.


The blocked isocyanate group is a group, the blocked group of which is deprotected by heating to be an isocyanate group. Illustrative examples thereof include isocyanate groups substituted with alcohol, phenol, thioalcohol, imine, ketimine, amine, lactam, pyrazol, oxime, and R-diketone.


In order to decrease the temperature for deprotecting the blocked isocyanate group, a catalyst can be added. This catalyst is not particularly limited, and known examples thereof include organic tin compounds such as dibutyl tin dilaurate, bismuth salts, and zinc carboxylate such as zinc 2-ethylhexanoate and zinc acetate.


It is preferable to use zinc α,β-unsaturated carboxylate as a catalyst for dissociation of blocked isocyanate as described in JP 2012-152725A.


In the synthesis of urethane resin contained in the inventive bio-electrode composition, it is also possible to add a compound that has an amino group(s). Reaction of an isocyanate group and an amino group forms a urea bond. The parts of urethane bond and urea bond are called hard segments, and their hydrogen bonds improve the strength. It is possible to improve the strength by introducing a urea bond(s) in addition to the urethane bond(s) not only the urethane bond(s) alone. The compound that has an amino group may also be a silicone compound not only a compound of hydrocarbon base.


[Organic Solvent]


The inventive bio-electrode composition may contain organic solvent. Illustrative examples of the organic solvent include aromatic hydrocarbon solvent such as toluene, xylene, cumene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, styrene, α-methylstyrene, butylbenzene, sec-butylbenzene, isobutylbenzene, cymene, diethylbenzene, 2-ethyl-p-xylene, 2-propyltoluene, 3-propyltoluene, 4-propyltoluene, 1,2,3,5-tetramethyltoluene, 1,2,4,5-tetramethyltoluene, tetrahydronaphthalene, 4-phenyl-1-butene, tert-amylbenzene, amylbenzene, 2-tert-butyltoluene, 3-tert-butyltoluene, 4-tert-butyltoluene, 5-isopropyl-m-xylene, 3-methylethylbenzene, tert-butyl-3-ethylbenzene, 4-tert-butyl-o-xylene, 5-tert-butyl-m-xylene, tert-butyl-p-xylene, 1,2-diisopropylbenzene, 1,3-diisopropylbenzene, 1,4-diisopropylbenzene, dipropylbenzene, 3,9-dodecadiyne, pentamethylbenzene, hexamethylbenzene, hexylbenzene, and 1,3,5-triethylbenzene; aliphatic hydrocarbon solvent such as n-heptane, isoheptane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, 1,6-heptadiene, 5-methyl-1-hexyn, norbornane, norbornene, dicyclopentadiene, 1-methyl-1,4-cyclohexadiene, 1-heptyne, 2-heptyne, cycloheptane, cycloheptene, 1,3-dimethylcyclopentane, ethylcyclopentane, methylcyclohexane, 1-methyl-1-cyclohexene, 3-methyl-1-cyclohexene, methylenecyclohexane, 4-methyl-1-cyclohexene, 2-methyl-1-hexene, 2-methyl-2-hexene, 1-heptene, 2-heptene, 3-heptene, n-octane, 2,2-dimethylhexane, 2,3-dimethylhexane, 2,4-dimethylhexane, 2,5-dimethylhexane, 3,3-dimethylhexane, 3,4-dimethylhexane, 3-ethyl-2-methylpentane, 3-ethyl-3-methylpentane, 2-methylheptane, 3-methylheptane, 4-methylheptane, 2,2,3-trimethylpentane, 2,2,4-trimethylpentane, cyclooctane, cyclooctene, 1,2-dimethylcyclohexane, 1,3-dimethylcyclohexane, 1,4-dimethylcyclohexane, ethylcyclohexane, vinylcyclohexane, isopropylcyclopentane, 2,2-dimethyl-3-hexene, 2,4-dimethyl-1-hexene, 2,5-dimethyl-1-hexene, 2,5-dimethyl-2-hexene, 3,3-dimethyl-1-hexene, 3,4-dimethyl-1-hexene, 4,4-dimethyl-1-hexene, 2-ethyl-1-hexene, 2-methyl-1-heptene, 1-octene, 2-octene, 3-octene, 4-octene, 1,7-octadiene, 1-octyne, 2-octyne, 3-octyne, 4-octyne, n-nonane, 2,3-dimethylheptane, 2,4-dimethylheptane, 2,5-dimethylheptane, 3,3-dimethylheptane, 3,4-dimethylheptane, 3,5-dimethylheptane, 4-ethylheptane, 2-methyloctane, 3-methyloctane, 4-methyloctane, 2,2,4,4-tetramethylpentane, 2,2,4-trimethylhexane, 2,2,5-trimethylhexane, 2,2-dimethyl-3-heptene, 2,3-dimethyl-3-heptene, 2,4-dimethyl-1-heptene, 2,6-dimethyl-1-heptene, 2,6-dimethyl-3-heptene, 3,5-dimethyl-3-heptene, 2,4,4-trimethyl-1-hexene, 3,5,5-trimethyl-1-hexene, 1-ethyl-2-methylcyclohexane, 1-ethyl-3-methylcyclohexane, 1-ethyl-4-methylcyclohexane, propylcyclohexane, isopropylcylohexane, 1,1,3-trimethylcyclohexane, 1,1,4-trimethylcyclohexane, 1,2,3-trimethylcyclohexane, 1,2,4-trimethylcyclohexane, 1,3,5-trimethylcyclohexane, allylcyclohexane, hydrindane, 1,8-nonadiene, 1-nonyne, 2-nonyne, 3-nonyne, 4-nonyne, 1-nonene, 2-nonene, 3-nonene, 4-nonene, n-decane, 3,3-dimethyloctane, 3,5-dimethyloctane, 4,4-dimethyloctane, 3-ethyl-3-methylheptane, 2-methylnonane, 3-methylnonane, 4-methylnonane, tert-butylcyclohexane, butylcyclohexane, isobutylcyclohexane, 4-isopropyl-1-methylcyclohexane, pentylcyclopentane, 1,1,3,5-tetramethylcyclohexane, cyclododecane, 1-decene, 2-decene, 3-decene, 4-decene, 5-decene, 1,9-decadiene, decahydronaphthalene, 1-decyne, 2-decyne, 3-decyne, 4-decyne, 5-decyne, 1,5,9-decatriene, 2,6-dimethyl-2,4,6-octatriene, limonene, myrcene, 1,2,3,4,5-pentamethylcyclopentadiene, α-phellandrene, pinene, terpinene, tetrahydrodicyclopentadiene, 5,6-dihydrodicyclopentadiene, 1,4-decadiyne, 1,5-decadiyne, 1,9-decadiyne, 2,8-decadiyne, 4,6-decadiyne, n-undecane, amylcyclohexane, 1-undecene, 1,10-undecadiene, 1-undecyne, 3-undecyne, 5-undecyne, tricyclo[6.2.1.02,7]undeca-4-ene, n-dodecane, 2-methylundecane, 3-methylundecane, 4-methylundecane, 5-methylundecane, 2,2,4,6,6-pentamethylheptane, 1,3-dimethyladamantane, 1-ethyladamantane, 1,5,9-cyclododecatriene, 1,2,4-trivinylcyclohexane, isoparaffin; ketone solvent such as cyclohexanone, cyclopentanone, 2-octanone, 2-nonanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-hexanone, 3-hexanone, diisobutyl ketone, methylcyclohexanone, and methyl n-pentyl ketone; alcohol solvent such as 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, and 1-ethoxy-2-propanol; ether solvent such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, diisopropyl ether, diisobutyl ether, diisopentyl ether, di-n-pentyl ether, methyl cyclopentyl ether, methyl cyclohexyl ether, di-n-butyl ether, di-sec-butyl ether, di-sec-pentyl ether, di-tert-amyl ether, di-n-hexyl ether, and anisole; ester solvent such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, tert-butyl acetate, tert-butyl propionate, propylene glycol mono-tert-butyl ether acetate; lactone solvent such as γ-butyrolactone.


The amount of organic solvent is preferably in a range of 10 to 50,000 parts by mass on the basis of 100 parts by mass of the resin.


[Carbon Material]


The inventive bio-electrode composition can contain a carbon material as an electric conductivity improver to further enhance the electric conductivity. The carbon material may be exemplified by carbon black, carbon nanotube, and the like, and is preferably either or both of them. The carbon nanotube may be either single layer or multilayer, and the surface may be modified with an organic group(s). The amount of carbon material is preferably in a range of 1 to 50 parts by mass on the basis of 100 parts by mass of the resin.


[Electric Conductivity Improver Other than Carbon Material]


The inventive bio-electrode composition also can contain an electric conductivity improver other than the carbon material. Illustrative examples thereof include particles of resin coated with noble metal such as gold, silver, and platinum; nanoparticles of gold, silver, and platinum; particles of metal oxide such as indium-tin oxide (ITO), indium-zinc oxide (IZO), tin oxide, and zinc oxide; as well as silver nanowire.


As described above, the inventive bio-electrode composition makes it possible to form a living body contact layer for a bio-electrode that is capable of conducting electric signals efficiently from skin to a device (i.e., excellent in electric conductivity), free from the risk of causing allergies even when it is worn on skin for a long time (i.e., excellent in biocompatibility), light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried.


It is possible to improve the electric conductivity still more by adding a carbon material, and to manufacture a particularly soft bio-electrode with high stretchability by combining urethane resin with flexibility and stretchability. Furthermore, it is possible to improve the stretchability and tackiness to skin by additives, and to control the stretchability and tackiness by adjusting the composition of the urethane resin and the thickness of the living body contact layer appropriately.


<Bio-Electrode>


The present invention also provides a bio-electrode comprising an electro-conductive base material and a living body contact layer formed on the electro-conductive base material; wherein the living body contact layer is a cured material of the inventive bio-electrode composition described above.


Hereinafter, the inventive bio-electrode will be specifically described by reference to the FIGS., but the present invention is not limited thereto.



FIG. 1 is a schematic sectional view showing an example of the inventive bio-electrode. The bio-electrode 1 of FIG. 1 has the electro-conductive base material 2 and the living body contact layer 3 formed on the electro-conductive base material 2. The living body contact layer 3 is a layer in which the electro-conductive material 4 and the carbon material 5 are dispersed in the urethane resin 6. Provided that, the carbon material 5 is an optional component.


When using the bio-electrode 1 of FIG. 1 like this, electric signals are picked from the living body 7 through the electro-conductive material 4 and the carbon material 5 while bringing the living body contact layer 3 (i.e., the layer in which the electro-conductive material 4 and the carbon material 5 are dispersed in the urethane resin 6) into contact with the living body 7, and then conducted to a sensor device (not shown) through the electro-conductive base material 2 as shown in FIG. 2. As described above, the inventive bio-electrode is capable of coping with both electric conductivity and biocompatibility by using the electro-conductive material described above, improving the electric conductivity further by adding electric conductivity improver such as a carbon material in accordance with needs, and obtaining electric signals from skin stably in high sensitivity because the contact area with skin is kept constant due to the tackiness thereof.


Hereinafter, each component composing the inventive bio-electrode will be more specifically described.


[Electro-Conductive Base Material]


The inventive bio-electrode comprises an electro-conductive base material. This electro-conductive base material is usually connected electrically with a sensor device and so on, and conducts electrical signals picked from a living body through the living body contact layer to the sensor device and so on.


As the electro-conductive base material, any electro-conductive material can be used without being limited to particular ones. However, it is preferable to comprise one or more species selected from gold, silver, silver chloride, platinum, aluminum, magnesium, tin, tungsten, iron, copper, nickel, stainless steel, chromium, titanium, and carbon, for example.


The electro-conductive base material may be a hard electro-conductive substrate, an electro-conductive film having flexibility, a cloth with the surface being coated with electro-conductive paste, or a cloth into which electro-conductive polymer is kneaded without being limited to particular substrates. The electro-conductive substrate may be flat, uneven, or mesh-form of woven metal wires, which can be appropriately selected in accordance with the use of the bio-electrode.


[Living Body Contact Layer]


The inventive bio-electrode comprises a living body contact layer formed on the electro-conductive base material. This living body contact layer is a part to be actually in contact with a living body when using the bio-electrode, and is a urethane resin that has electric conductivity and repellency. The living body contact layer is a cured material of the inventive bio-electrode composition described above, that is to say, a resin layer having a urethane bond and a silicone chain in the main chain containing the resin and the electro-conductive material (salt) described above, together with additives such as a carbon material in accordance with needs.


The living body contact layer of the bio-electrode preferably has a thickness of 1 μm or more and 5 mm or less, more preferably 2 μm or more and 3 mm or less. As the living body contact layer is thinner, the tackiness lowers, but the flexibility is improved, and the weight decreases to improve the compatibility with skin. The thickness of the living body contact layer can be selected based on the balance of flexibility, tackiness, and texture.


The inventive bio-electrode may be provided with a tacky film separately on the living body contact layer as previous bio-electrodes (e.g., the bio-electrode described in JP 2004-033468A) in order to prevent peeling off of the bio-electrode from a living body during the use. When the tacky film is prepared separately, the tacky film may be formed by using a raw material for the tacky film such as an acrylic type, a urethane type, and a silicone type. Particularly, the silicone type is suitable because of the high transparency of oxygen, which enables breathing through the skin while pasting the same, the high water repellency, which decreases lowering of tackiness due to perspiration, and the low irritation to skin. It is to be noted that the inventive bio-electrode does not necessarily require the tacky film that is prepared separately described above, because peeling off from a living body can be prevented by adding tackifier to the bio-electrode composition or using a resin having good tackiness to a living body as described above.


When the inventive bio-electrode is used as a wearable device, wiring between the bio-electrode and a sensor device, and other components are not limited to particular ones. For example, it is possible to apply the ones described in JP 2004-033468A.


As described above, the inventive bio-electrode is capable of conducting electric signals efficiently from skin to a device (i.e., excellent in electric conductivity), free from the risk of causing allergies even when it is worn on skin for a long time (i.e., excellent in biocompatibility), light in weight, manufacturable at low cost, and free from large lowering of the electric conductivity even when it is wetted with water or dried, because the living body contact layer is formed from a cured material of the inventive bio-electrode composition described above. It is possible to improve the electric conductivity still more by adding a carbon material, and to manufacture a highly stretchable bio-electrode that is always in contact with skin by combining a urethane resin that has flexibility and stretchability. This urethane resin, having a silicone chain in the main chain, is excellent in flexibility and repellency, is closely stuck to skin not only at rest but also in exercise, and is highly biocompatible not only unaffected by perspiration or water by repelling them. Additionally, this urethane resin has improved strength since it has a urethane main chain, and when it also has a polyether main chain, exhibits higher ionic conductivity and functions as a highly sensitive bio-electrode thereby. It is also possible to improve the stretchability and tackiness to skin by additives, and to control the stretchability and tackiness by adjusting the composition of the resin and the thickness of the living body contact layer appropriately. Accordingly, the inventive bio-electrode described above is particularly suitable as a bio-electrode used for a medical wearable device.


<Method for Manufacturing Bio-Electrode>


The present invention also provides a method for manufacturing a bio-electrode having an electro-conductive base material and a living body contact layer formed on the electro-conductive base material, comprising: applying the inventive bio-electrode composition described above onto the electro-conductive base material; and curing the bio-electrode composition; thereby forming the living body contact layer.


Incidentally, the electro-conductive base material, the bio-electrode composition, etc. used for the inventive method for manufacturing a bio-electrode are the same as those in the inventive bio-electrode described above.


As an example of a method for manufacturing a bio-electrode of the present invention, a living body contact layer based on a urethane resin is produced by mixing a hydroxy silicone compound, a hydroxy compound, an ionic polymer, an electric conductivity improver, etc., followed by mixing an isocyanate compound. Since the curing reaction occurs when the isocyanate compound is mixed, it is preferable to mix the isocyanate compound at the end. The living body contact layer is preferable not to have openings due to foaming.


Accordingly, it is preferable that the molar ratios of the isocyanate groups and the hydroxy groups be the same or the hydroxy groups be excess.


The bio-electrode composition can be formed from a material in which a hydroxy group-containing compound, an isocyanate compound, an ionic polymer, and an electric conductivity improver are mixed. In this case, the hydroxy group-containing compound and the isocyanate compound may be mixed at one time or may be mixed in stages.


The method for applying the inventive bio-electrode composition onto the electro-conductive base material is not limited to particular ones; and dip coating, spray coating, spin coating, roll coating, flow coating, doctor coating, screen printing, flexographic printing, gravure printing, and inkjet printing are suitable, for example.


The method for curing the bio-electrode composition can be appropriately selected based on a kind of resin used for the bio-electrode composition without being limited to particular methods. For example, the bio-electrode composition is preferably cured by either or both of heat and light. The foregoing bio-electrode composition can also be cured by adding a catalyst to generate acid or base to the bio-electrode composition, which causes a crosslinking reaction.


In case of heating, the temperature may be appropriately selected based on a kind of resin used for the bio-electrode composition without being limited to particular temperature. For example, it is preferable to be about 50 to 250° C., but it is also possible to cure by leaving the composition at room temperature for a long time.


When the heating and light irradiation are combined, it is possible to perform the heating and the light irradiation simultaneously, to perform the heating after the light irradiation, or to perform the light irradiation after the heating. It is also possible to perform air-drying to evaporate solvent before heating the coating film.


As described above, the inventive method for manufacturing a bio-electrode makes it possible to manufacture the inventive bio-electrode easily and at low cost, which is excellent in electric conductivity and biocompatibility, light in weight, and free from large lowering of the electric conductivity even when it is wetted with water or dried.


EXAMPLE

Hereinafter, the present invention will be specifically described by giving Examples and Comparative Examples, but the present invention is not limited thereto.


Ionic polymers 1 to 17 blended to solutions of bio-electrode composition as an electro-conductive material were synthesized as follows. Each 30 mass % monomer solution in PGMEA was introduced into a reaction vessel and mixed. The reaction vessel was cooled to −70° C. under a nitrogen atmosphere, and subjected to vacuum degassing and nitrogen blowing repeated for three times. After raising the temperature to room temperature, azobisisobutyronitrile (AIBN) was added thereto as a polymerization initiator in an amount of 0.01 mole per 1 mole of the whole monomers, this was warmed to a temperature of 60° C. and then allowed to react for 15 hours. The composition of obtained polymer was determined by 1H-NMR after drying the solvent, and the Mw and Mw/Mn were determined by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent.


The following are Ionic polymers 1 to 17 and Comparative Ammonium salts 1 to 2 each blended to the bio-electrode composition solution as an electro-conductive material.


Ionic Polymer 1






    • Mw=20,900

    • Mw/Mn=2.21







embedded image



Ionic Polymer 2

    • Mw=23,100
    • Mw/Mn=2.01




embedded image



Ionic Polymer 3

    • Mw=27,400
    • Mw/Mn=1.94




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 4

    • Mw=30,600
    • Mw/Mn=1.88




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 5

    • Mw=26,600
    • Mw/Mn=1.86




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 6

    • Mw=21,900
    • Mw/Mn=2.10




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 7

    • Mw=35,700
    • Mw/Mn=2.33




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 8

    • Mw=35,700
    • Mw/Mn=2.33




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 9

    • Mw=33,100
    • Mw/Mn=2.02




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 10

    • Mw=21,500
    • Mw/Mn=1.96




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 11

    • Mw=24,500
    • Mw/Mn=1.91




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 12

    • Mw=16,300
    • Mw/Mn=1.75




embedded image



Ionic Polymer 13

    • Mw=32, 100
    • Mw/Mn=2.03




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 14

    • Mw=48,300
    • Mw/Mn=1.93




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 15

    • Mw=43,300
    • Mw/Mn=1.98




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 16

    • Mw=51,800
    • Mw/Mn=1.79




embedded image



The repeating number in the formula shows the average value.


Ionic Polymer 17

    • Mw=85,800
    • Mw/Mn=2.88




embedded image



The repeating number in the formula shows the average value.


Comparative Ammonium Salts 1 and 2




embedded image


The following are Hydroxy silicone compounds 1 to 5 each blended to the bio-electrode composition as a raw material of the resin having a urethane bond and a silicone chain in the main chain.




embedded image


The following are hydroxy compounds 1 to 7 each blended to the bio-electrode composition.




embedded image



The repeating number in the formulae show the average values.


The following are isocyanate compounds 1 to 5 each blended to the bio-electrode composition.




embedded image


The following are electric conductivity improvers (carbon black, carbon nanotube, Au-coated particle, and Ag-coated particle) blended to the bio-electrode composition solution as an additive.

    • Carbon black: DENKA BLACK HS-100 manufactured by Denka Co., Ltd.
    • Multilayer carbon nanotube: manufactured by Sigma-Aldrich Co. LLC., with the diameter of 0.7 to 1.1 nm and the length of 300 to 2,300 nm
    • Au-coated particle: Micropearl AU (the diameter of 3 μm) manufactured by SEKISUI CHEMICAL CO. LTD.
    • Ag-coated particle: Ag-coated powder (the diameter of 30 μm) manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.


Examples 1 to 19, Comparative Examples 1 to 3

On the basis of each composition described in Tables 1 and 2, the ionic polymer, the hydroxy group-containing compound(s), and the additive (electric conductivity improver) were mixed and degassed, and the isocyanate compound(s) was mixed thereto at the end to prepare each bio-electrode composition solution (Bio-electrode composition solutions 1 to 19, Comparative bio-electrode composition solutions 1 to 3).













TABLE 1






Electro-





Bio-
conductive





electrode
material
Hydroxy group-containing
Isocyanate
Additive


composition
(parts by
compounds
compound
(parts


solution
mass)
(parts by mass)
(parts by mass)
by mass)







Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 1
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 1

Hdroxy compound 4 (10)




Bio-
Ionic
Hydroxy silicone compound 2 (5)
Isocyanate
Carbon


electrode
polymer 2
Hydroxy compound 3 (0.2)
compound 2 (2.6)
black


composition
(4)
Hydroxy compound 5 (10)

(2)


solution 2






Bio-
Ionic
Hydroxy silicone compound 3 (4)
Isocyanate
Carbon


electrode
polymer 3
Hydroxy compound 2 (1)
compound 3 (3.5)
black


composition
(4)
Hydroxy compound 3 (0.2)

(2)


solution 3

Hydroxy compound 6 (20)




Bio-
Ionic
Hydroxy silicone compound 4 (5)
Isocyanate
Carbon


electrode
polymer 4
Hydroxy compound 3 (0.2)
compound 3 (3.7)
black


composition
(4)
Hydroxy compound 4 (15)

(2)


solution 4

Hyddroxy compound 7 (2)




Bio-
Ionic
Hydroxy silicone compound 1 (4)
Isocyanate
Carbon


electrode
polymer 5
Hydroxy silicone compound 5 (1)
compound 3 (4.5)
black


composition
(4)
Hydroxy compound 3 (0.2)

(2)


solution 5

Hydroxy compound 4 (15)






Hydroxy compound 7 (2)




Bio-
Ionic
Hydroxy silicone compound 1 (4)
Isocyanate
Carbon


electrode
polymer 6
Hydroxy compound 4 (15)
compound 1 (4)
black


composition
(4)
Hydroxy compound 7 (2)
Isocyanate
(2)


solution 6


compound 4 (1)



Bio-
Ionic
Hydroxy silicone compound 1 (4)
Isocyanate
Carbon


electrode
polymer 7
Hydroxy compound 4 (15)
compound 1 (4)
black


composition
(4)
Hydroxy compound 7 (2)
Isocyanate
(2)


solution 7


compound 5 (0.2)



Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 8
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 8

Hydroxy compound 4 (10)




Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 9
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 9

Hydroxy compound 4 (10)




Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 10
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 10

Hydroxy compound 4 (10)




Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 11
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 11

Hydroxy compound 4 (10)




Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 12
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 12

Hydroxy compound 4 (10)




Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 13
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 13

Hydroxy compound 4 (10)




Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 14
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 14

Hydroxy compound 4 (10)




















TABLE 2






Electro-





Bio-
conductive





electrode
material
Hydroxy group-containing
Isocyanate
Additive


composition
(parts by
compounds
compound
(parts


solution
mass)
(parts by mass)
(parts by mass)
by mass)







Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 15
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 15

Hydroxy compound 4 (10)




Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


electrode
polymer 16
Hydroxy compound 1 (1)
compound 1 (4)
black


composition
(4)
Hydroxy compound 2 (0.5)

(2)


solution 16

Hydroxy compound 4 (10)




Bio-
Ionic
Hyddroxy silicone compound 1 (5)
Isocyanate
Muti-


electrode
polymer 17
Hydroxy compound 1 (1)
compound 1 (4)
layer


composition
(6)
Hydroxy compound 2 (0.5)

carbon


solution 17

Hydroxy compound 4 (10)

nano-






tube (2)


Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Ag


electrode
polymer 17
Hydroxy compound 1 (1)
compound 1 (4)
coated


composition
(6)
Hydroxy compound 2 (0.5)

particle


solution 18

Hydroxy compound 4 (10)

(6)


Bio-
Ionic
Hydroxy silicone compound 1 (5)
Isocyanate
Au-


electrode
polymer 17
Hydroxy compound 1 (1)
compound 1 (4)
coated


composition
(8)
Hydroxy compound 2 (0.5)

particle


solution 19

Hydroxy compound 4 (10)

(6)


Comparative
Comparative
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


Bio-
ammonium
Hydroxy compound 1 (1)
compound 1 (4)
black


electrode
salt 1 (2)
Hydroxy compound 2 (0.5)

(2)


composition

Hydroxy compound 4 (10)




solution 1






Comparative
Comparative
Hydroxy silicone compound 1 (5)
Isocyanate
Carbon


Bio-
ammonium
Hydroxy compound 1 (1)
compound 1 (4)
black


electrode
salt 2 (2)
Hydroxy compound 2 (0.5)

(2)


composition

Hydroxy compound 4 (10)




solution 2






Comparative
Ionic
Hydroxy compound 1 (1)
Isocyanate
Carbon


Bio-
polymer 1
Hydroxy compound 2 (2)
compound 1 (6.5)
black


electrode
(4)
Hydroxy compound 4 (10)

(2)


composition






solution 3










(Evaluation of Electric Conductivity)


Each bio-electrode composition solution was applied onto an aluminum disk having a diameter of 3 cm and a thickness of 0.2 mm by using an applicator. This was baked at 100° C. for 60 minutes under a nitrogen atmosphere by using an oven to be cured, thereby producing four pieces of bio-electrodes for each bio-electrode composition solution. Thus obtained bio-electrode was provided with the living body contact layer 3 at one side and provided with the aluminum disk 8 at the other side as an electro-conductive base material as shown in FIGS. 3(a) and (b). Then, the copper wiring 9 was pasted on the surface of the aluminum disk 8 with self-adhesive tape at the side that had not been coated with the living body contact layer to form a lead-out electrode, which was connected to an impedance measurement apparatus as shown in FIG. 3 (b). Two pieces of the bio-electrodes 1′ were pasted on a human arm at a distance of 15 cm from each other such that the side of each living body contact layer was in contact with the skin as shown in FIG. 4. The initial impedance was measured while altering the frequency by using an AC impedance measurement apparatus SI1260 manufactured by Solartron. Then, the remained two pieces of the bio-electrodes were immersed in pure water for 1 hour, and used for measuring the impedance on skin by the same method described above immediately after the immersion. Each impedance at the frequency of 1,000 Hz is shown in Table 3.


(Measurement of Thickness and Contact Angle of Living Body Contact Layer)


On each bio-electrode produced in the evaluation test of electric conductivity described above, the thickness of the living body contact layer was measured by using a micrometer. The contact angle with water of the surface of each living body contact layer was measured by using a contact angle meter. The results are shown in Table 3.


(Measurement of Hardness)


Each living body contact layer with the film thickness of 2 mm was formed under the conditions described above, and the hardness was measured in ASKER C in accordance with JIS K 7312. The results are shown in Table 3.















TABLE 3







Thick-



Impedance




ness of
Contact

Initial
after water



Bio-electrode
resin
angle
Hard-
impedance
immersion


Examples
composition solution
(μm)
(°)
ness
(Ω)
(Ω)





















Example 1
Bio-electrode compo-
520
103
12
8.8 E4
3.5 E4



sition solution 1







Example 2
Bio-electrode compo-
510
104
15
8.5 E4
6.0 E4



sition solution 2







Example 3
Bio-electrode compo-
470
103
14
7.2 E4
7.3 E4



sition solution 3







Example 4
Bio-electrode compo-
490
103
12
3.8 E4
4.5 E4



sition solution 4







Example 5
Bio-electrode compo-
540
102
10
2.6 E4
2.5 E4



sition solution 5







Example 6
Bio-electrode compo-
550
96
16
5.5 E4
6.1 E4



sition solution 6







Example 7
Bio-electrode compo-
510
98
15
5.1 E4
5.3 E4



sition solution 7







Example 8
Bio-electrode compo-
500
94
12
4.0 E4
6.1 E3



sition solution 8







Example 9
Bio-electrode compo-
520
95
14
6.2 E4
5.1 E4



sition solution 9







Example 10
Bio-electrode compo-
510
96
11
4.2 E4
4.3 E4



sition solution 10







Example 11
Bio-electrode compo-
530
95
16
6.1 E4
5.9 E4



sition solution 11







Example 12
Bio-electrode compo-
520
99
15
5.2 E4
4.5 E3



sition solution 12







Example 13
Bio-electrode compo-
710
94
16
7.2 E4
7.3 E4



sition solution 13







Example 14
Bio-electrode compo-
700
99
14
1.4 E4
1.9 E4



sition solution 14







Example 15
Bio-electrode compo-
480
94
15
5.2 E4
6.5 E4



sition solution 15







Example 16
Bio-electrode compo-
470
93
11
1.7 E4
1.4 E4



sition solution 16







Example 17
Bio-electrode compo-
500
98
16
1.2 E4
1.4 E4



sition solution 17







Example 18
Bio-electrode compo-
490
98
10
9.2 E4
9.4 E4



sition solution 18







Example 19
Bio-electrode compo-
480
94
11
9.4 E4
9.4 E4



sition solution 19







Comparative
Comparative bio-
510
94
12
5.2 E4
8.3 E6


Example 1
electrode composition








solution 1







Comparative
Comparative bio-
520
93
10
6.2 E4
8.9 E6


Example 2
electrode composition








solution 2







Comparative
Comparative bio-
520
70
25
5.1 E4
2.3 E3


Example
electrode composition








solution 3









As shown in Table 3, each of Examples 1 to 19, in which the inventive living body contact layer was formed, exhibited higher contact angle with water, flexibility with lower hardness, and lower initial impedance, without causing large increase of impedance by an order of magnitude after the water immersion and drying. That is, Examples 1 to 19 each gave a bio-electrode with higher initial electric conductivity without giving an uncomfortable feeling to skin or causing large change of the electric conductivity when it was wetted with water or dried.


On the other hand, each of Comparative Examples 1 and 2, in which each living body contact layer was formed using a bio-electrode composition solution containing a conventional salt, caused large increase of the impedance such that the order of magnitude was changed after water immersion and drying although the initial impedance was low. That is, each of Comparative Examples 1 and 2 only gave a bio-electrode in which the electric conductivity largely lowered when it was wetted with water or dried although the initial electric conductivity was high. Comparative Example 3, in which the urethane did not contain silicone whereas an ionic polymer was contained, exhibited higher hardness and lower contact angle with water, that is, higher hydrophilicity. As a result, the bio-electrode soaked up water after water immersion to lower the impedance, causing a result that the impedance was changed due to an influence of water.


As described above, it was revealed that the bio-electrode, with the living body contact layer being formed by using the inventive bio-electrode composition, was excellent in electric conductivity, biocompatibility, and adhesion properties to an electro-conductive base material; excellent in holding the electro-conductive materials such as an ionic polymer and carbon black to prevent large lowering of electric conductivity even when it was wetted with water or dried; light in weight, and manufacturable at low cost.


It is to be noted that the present invention is not restricted to the foregoing embodiment. The embodiment is just an exemplification, and any examples that have substantially the same feature and demonstrate the same functions and effects as those in the technical concept described in claims of the present invention are included in the technical scope of the present invention.

Claims
  • 1. A bio-electrode composition comprising: a resin having a urethane bond and a silicone chain in a main chain; andan electro-conductive material,wherein the electro-conductive material is a polymer compound having one or more repeating units selected from the group consisting of fluorosulfonic acid salts shown by the following formula (1)-1, fluorosulfonic acid salts shown by the following formula (1)-2, sulfonimide salts shown by the following formula (1)-3, and sulfonamide salts shown by the following formula (1)-4,
  • 2. The bio-electrode composition according to claim 1, wherein the electro-conductive material is a polymer compound having a repeating unit of a sulfonamide salt shown by the formula (1)-4.
  • 3. The bio-electrode composition according to claim 2, wherein the repeating unit of the sulfonamide salt shown by the formula (1)-4 is a repeating unit a7 shown by the following formula (2),
  • 4. The bio-electrode composition according to claim 3, wherein the resin having a urethane bond and a silicone chain in the main chain has a structure shown by the following formula (3)-1 or (3)-2,
  • 5. The bio-electrode composition according to claim 3, wherein the resin having a urethane bond and a silicone chain in the main chain has a structure containing a polyether main chain shown by the following formula (4)-1 or (4)-2,
  • 6. The bio-electrode composition according to claim 1, wherein the one or more repeating units selected from the group consisting of fluorosulfonic acid salts shown by the formula (1)-1, fluorosulfonic acid salts shown by the formula (1)-2, sulfonimide salts shown by the formula (1)-3, and sulfonamide salts shown by the formula (1)-4 is one or more repeating units selected from repeating units a1 to a7 shown by the following formulae (2),
  • 7. The bio-electrode composition according to claim 1, wherein the resin having a urethane bond and a silicone chain in the main chain has a structure shown by the following formula (3)-1 or (3)-2,
  • 8. The bio-electrode composition according to claim 2, wherein the resin having a urethane bond and a silicone chain in the main chain has a structure shown by the following formula (3)-1 or (3)-2,
  • 9. The bio-electrode composition according to claim 6, wherein the resin having a urethane bond and a silicone chain in the main chain has a structure shown by the following formula (3)-1 or (3)-2,
  • 10. The bio-electrode composition according to claim 1, wherein the resin having a urethane bond and a silicone chain in the main chain has a structure containing a polyether main chain shown by the following formula (4)-1 or (4)-2,
  • 11. The bio-electrode composition according to claim 2, wherein the resin having a urethane bond and a silicone chain in the main chain has a structure containing a polyether main chain shown by the following formula (4)-1 or (4)-2,
  • 12. The bio-electrode composition according to claim 6, wherein the resin having a urethane bond and a silicone chain in the main chain has a structure containing a polyether main chain shown by the following formula (4)-1 or (4)-2,
  • 13. The bio-electrode composition according to claim 1, wherein the resin having a urethane bond and a silicone chain in the main chain is a reaction product of a silicone compound having a hydroxy group selected from the silicone compounds shown by the following formulae (5)-1 and (5)-2, a polyether compound having a hydroxy group at the terminal, and a compound having an isocyanate group,
  • 14. The bio-electrode composition according to claim 1, further comprising an organic solvent.
  • 15. The bio-electrode composition according to claim 1, further comprising a carbon material.
  • 16. The bio-electrode composition according to claim 15, wherein the carbon material is either or both of carbon black and carbon nanotube.
  • 17. A bio-electrode comprising an electro-conductive base material and a living body contact layer formed on the electro-conductive base material; wherein the living body contact layer is a cured material of the bio-electrode composition according to claim 1.
  • 18. The bio-electrode according to claim 17, wherein the electro-conductive base material comprises one or more species selected from gold, silver, silver chloride, platinum, aluminum, magnesium, tin, tungsten, iron, copper, nickel, stainless steel, chromium, titanium, and carbon.
  • 19. A method for manufacturing a bio-electrode having an electro-conductive base material and a living body contact layer formed on the electro-conductive base material, comprising: applying the bio-electrode composition according to claim 1 onto the electro-conductive base material; and curing the bio-electrode composition; thereby forming the living body contact layer.
  • 20. The method for manufacturing a bio-electrode according to claim 19, wherein the electro-conductive base material comprises one or more species selected from gold, silver, silver chloride, platinum, aluminum, magnesium, tin, tungsten, iron, copper, nickel, stainless steel, chromium, titanium, and carbon.
Priority Claims (1)
Number Date Country Kind
2018-001014 Jan 2018 JP national
US Referenced Citations (3)
Number Name Date Kind
20100119970 Ohsawa et al. May 2010 A1
20150175722 Hatakeyama Jun 2015 A1
20160155530 Someya et al. Jun 2016 A1
Foreign Referenced Citations (12)
Number Date Country
H05-095924 Apr 1993 JP
2003-225217 Aug 2003 JP
2004-033468 Feb 2004 JP
2005-320418 Nov 2005 JP
2010-113209 May 2010 JP
2011-201955 Oct 2011 JP
2012-152725 Aug 2012 JP
2015-019806 Feb 2015 JP
2015-100673 Jun 2015 JP
2016181448 Oct 2016 JP
2016181448 Oct 2016 JP
2013039151 Mar 2013 WO
Related Publications (1)
Number Date Country
20190209740 A1 Jul 2019 US