Bio-engineered hyper-functional “super” helicases

Information

  • Patent Grant
  • 12173334
  • Patent Number
    12,173,334
  • Date Filed
    Monday, November 29, 2021
    3 years ago
  • Date Issued
    Tuesday, December 24, 2024
    10 days ago
Abstract
Conformationally-constrained helicases having improved activity and strength are provided. Methods of making conformationally-constrained helicases having improved activity and strength are provided. Methods of using conformationally-constrained helicases having improved activity and strength are provided.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present disclosure relates to compositions and methods for helicase-mediated DNA unwinding activity.


BACKGROUND

A traditional definition of a helicase is an enzyme that catalyzes the reaction of separating/unzipping/unwinding the helical structure of nucleic acid duplexes (DNA, RNA or hybrids) into single-stranded components, using nucleoside triphosphate (NTP) hydrolysis as the energy source (such as ATP). However, it should be noted that not all helicases fit this definition anymore. A more general definition is that they are motor proteins that move along the single-stranded or double stranded nucleic acids (usually in a certain direction, 3′ to 5′ or 5 to 3, or both), i.e. translocases, that can or cannot unwind the duplexed nucleic acid encountered. In addition, some helicases simply bind and “melt” the duplexed nucleic acid structure without an apparent translocase activity.


Helicases exist in all living organisms and function in all aspects of nucleic acid metabolism. Helicases are classified based on the amino acid sequences, directionality, oligomerization state and nucleic-acid type and structure preferences. The most common classification method was developed based on the presence of certain amino acid sequences, called motifs. According to this classification helicases are divided into 6 super families: SF1, SF2, SF3, SF4, SF5 and SF6. SF1 and SF2 helicases do not form a ring structure around the nucleic acid, whereas SF3 to SF6 do. Superfamily classification is not dependent on the classical taxonomy.


DNA helicases are responsible for catalyzing the unwinding of double-stranded DNA (dsDNA) molecules to their respective single-stranded nucleic acid (ssDNA) forms. Although structural and biochemical studies have shown how various helicases can translocate on ssDNA directionally, consuming one ATP per nucleotide, the mechanism of nucleic acid unwinding and how the unwinding activity is regulated remains unclear and controversial (T. M. Lohman, E. J. Tomko, C. G. Wu, “Non-hexameric DNA helicases and translocases: mechanisms and regulation,” Nat Rev Mol Cell Biol 9:391-401 (2008)). Since helicases can potentially unwind all nucleic acids encountered, understanding how their unwinding activities are regulated can lead to harnessing helicase functions for biotechnology applications.


BRIEF SUMMARY OF THE INVENTION

The present invention is based on the discovery of novel modified helicases that show dramatically enhanced helicase activity and increased strength as compared to unmodified helicases. As described further herein, it has been surprisingly discovered that, by controlling the conformation of certain subdomains such that the helicase remains in a closed form (e.g., by covalently crosslinking the 2B domain to the 1A domain or the 1B domain in a Rep helicase), a highly active and strong form of the helicase is achieved.


In one aspect, a composition for catalyzing an unwinding reaction on double-stranded DNA is provided that includes a conformationally-constrained helicase.


In another aspect, a method of catalyzing an unwinding reaction of a double-stranded DNA is provided. The method includes the step of contacting the double-stranded DNA with a conformationally-constrained helicase in the presence of ATP.


In another aspect, an isolated nucleic acid that encodes a helicase polypeptide having the capability to be constrained in a conformation by an intramolecular crosslinking agent is provided.


In another aspect, a modified helicase comprising a first subdomain having a first amino acid and a second subdomain having a second amino acid is provided. Said first amino acid is at least about 30 Å from said second amino acid when the helicase is in an inactive conformation, and said first amino acid is less than about 20 Å from said second amino acid when the helicase is in an active conformation. A side chain of the first amino acid is covalently crosslinked to a side chain of the second amino acid with a linker to form an active, conformationally-constrained helicase.


In certain exemplary embodiments, the modified helicase is a Super Family 1 (SF1) helicase (e.g., an SF1A or an SF1B helicase) or a Super Family 2 (SF2) helicase.


In certain exemplary embodiments, the first amino acid is less than about 20 Å, about 19 Å, about 18 Å, about 17 Å, about 16 Å, about 15 Å, about 10 Å, about 9 Å, about 8 Å, about 7 Å, about 5 Å, or about 4 Å from the second amino acid when the helicase is in an active conformation.


In certain exemplary embodiments, the first amino acid is at least about 30 Å, about 40 Å, about 50 Å, about 55 Å, about 60 Å, about 65 Å, about 70 Å, about 75 Å, about 80 Å or about 85 Å from the second amino acid when the helicase is in an inactive conformation.


In certain exemplary embodiments, the helicase is selected from the group consisting of a Rep helicase (e.g., from E. coli.), a UvrD helicase (e.g., from E. coli.) and a PcrA helicase (e.g., from B. stearothermophilus).


In certain exemplary embodiments, the first amino acid is at any one of positions 84-116 or 178-196 of the modified helicase amino acid sequence, and the helicase is a Rep, PcrA or UvrD helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid is at any one of positions 92-116 or 178-196 of the modified helicase amino acid sequence, and the helicase is a PcrA helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid is at any one of positions 84-108 or 169-187 of the modified helicase amino acid sequence, and the helicase is a Rep helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid is at any one of positions 90-114 or 175-193 of the modified helicase amino acid sequence, and the helicase is a UvrD helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid at position 178 of the modified helicase amino acid sequence, and the helicase is a Rep helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid is at position 187 of the modified helicase amino acid sequence, and the helicase is a PcrA helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid is present in an amino acid sequence having at least 20% amino acid sequence identity to SEQ ID NO:13 or SEQ ID NO:14, and the helicase is a Rep helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is present in an amino acid sequence having at least 20% amino acid sequence identity to SEQ ID NO:15 or SEQ ID NO:16, and the helicase is a Rep helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid residue is at any one of positions 388-411, 422-444 and 518-540 of the modified helicase amino acid sequence, and the helicase is a Rep, PcrA or UvrD helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is at any one of positions 397-411, 431-444 or 526-540 of the modified helicase amino acid sequence, and the helicase is a PcrA helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is at any one of positions 388-402, 422-435 or 519-531 of the modified helicase amino acid sequence, and the helicase is a Rep helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is at any one of positions 393-407, 427-440 or 523-540 of the modified helicase amino acid sequence, and the helicase is a UvrD helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is at position 400 of the modified helicase amino acid sequence, and the helicase is a Rep helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is at position 409 of the modified helicase amino acid sequence, and the helicase is a PcrA helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid is at any one of positions 60-82 of the modified helicase amino acid sequence, and the helicase is a Rep helicase, or homolog thereof. In certain exemplary embodiments, the first amino acid is at any one of positions 68-79 of the modified helicase amino acid sequence, and the helicase is a Rep helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid is at any one of positions 69-89 of the modified helicase amino acid sequence, and the helicase is a PcrA helicase, or homolog thereof. In certain exemplary embodiments, the first amino acid is at any one of positions 77-87 of the modified helicase amino acid sequence, and the helicase is a PcrA helicase, or homolog thereof.


In certain exemplary embodiments, the first amino acid is at any one of positions 67-87 of the modified helicase amino acid sequence, and the helicase is a UvrD helicase, or homolog thereof. In certain exemplary embodiments, the first amino acid is at any one of positions 75-85 of the modified helicase amino acid sequence, and the helicase is a UvrD helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is at any one of positions 509-536 of the modified helicase amino acid sequence, and the helicase is a Rep helicase, or homolog thereof. In certain exemplary embodiments, the second amino acid is at any one of positions 519-525 of the modified helicase amino acid sequence, and the helicase is a Rep helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is at any one of positions 516-534 of the modified helicase amino acid sequence, and the helicase is a PcrA helicase, or homolog thereof. In certain exemplary embodiments, the second amino acid is at any one of positions 526-532 of the modified helicase amino acid sequence, and the helicase is a PcrA helicase, or homolog thereof.


In certain exemplary embodiments, the second amino acid is at any one of positions 513-531 of the modified helicase amino acid sequence, and the helicase is a UvrD helicase, or homolog thereof. In certain exemplary embodiments, the second amino acid is at any one of positions 523-529 of the modified helicase amino acid sequence, and the helicase is a UvrD helicase, or homolog thereof.


In certain exemplary embodiments, said first subdomain and said second subdomain comprise no more than a total of two cysteine residues.


In certain exemplary embodiments, the helicase comprises one cysteine residue and/or is from a bacterium selected from the group consisting of Deinococcus geothermalis, Meiothermus sp., Marinithermus hydrothermalis, Marinithermus hydrothermalis and Oceanithermus profundus.


In certain exemplary embodiments, the helicase comprises one cysteine residue or no cysteine residues and/or is from a bacterium selected from the group consisting of Thermococcus sp. EXT9, Thermococcus sp. IRI48, Thermococcus sp. IRI33, Thermococcus sp. AMT7, Thermococcus nautili, Thermococcus onnurineus (strain NA1), Thermococcus kodakarensis (strain ATCC BAA-918/JCM 12380/KOD1) (Pyrococcus kodakaraensis (strain KOD1)), Thermococcus sibiricus (strain MM 739/DSM 12597), Thermococcus paralvinellae, Thermus aquaticus Y51MC23, Thermus aquaticus Y51MC23, Thermus aquaticus Y51MC23, Thermus sp. RL, Thermus sp. RL, Thermus sp. 2.9, Salinisphaera hydrothermalis C41B8, Thermus filiformis, Meiothermus ruber, Thermus sp. NMX2.A1, Thermus thermophilus JL-18, Thermus scotoductus (strain ATCC 700910/SA-01), Thermus scotoductus (strain ATCC 700910/SA-01), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Thermus oshimai JL-2, Thermus oshimai JL-2, Thermus oshimai JL-2, Thermomonospora curvata (strain ATCC 19995/DSM 43183/JCM 3096/NCIMB 10081), Thermodesulfatator indicus (strain DSM 15286/JCM 11887/CIR29812), Geobacillus stearothermophilus (Bacillus stearothermophilus), Coprothermobacter proteolyticus (strain ATCC 35245/DSM 5265/BT), Meiothermus silvanus (strain ATCC 700542/DSM 9946/VI-R2) (Thermus silvanus), Anaerolinea thermophila (strain DSM 14523/JCM 11388/NBRC 100420/UNI-1), Thermoanaerobacterium thermosaccharolyticum M0795, Meiothermus ruber (strain ATCC 35948/DSM 1279/VKM B-1258/21) (Thermus ruber), Meiothermus ruber (strain ATCC 35948/DSM 1279/VKM B-1258/21) (Thermus ruber), Deinococcus radiodurans (strain ATCC 13939/DSM 20539/JCM 16871/LMG 4051/NBRC 15346/NCIMB 9279/R1/VKM B-1422), Thermodesulfobium narugense DSM 14796, Thermus thermophilus (strain HB8/ATCC 27634/DSM 579), Dictyoglomus thermophilum (strain ATCC 35947/DSM 3960/H-6-12), Thermus thermophilus (strain SG0.5JP17-16), Thermus thermophilus (strain SG0.5JP17-16), Thermus thermophilus (strain SG0.5JP17-16), Thermus sp. CCB_US3_UF1, Deinococcus geothermalis (strain DSM 11300), Thermus thermophilus (strain HB27/ATCC BAA-163/DSM 7039), Thermus thermophilus (strain HB27/ATCC BAA-163/DSM 7039), Marinithermus hydrothermalis (strain DSM 14884/JCM 11576/T1).


In certain exemplary embodiments, the first amino acid and the second amino acid are each independently an unnatural amino acid or a natural amino acid.


In certain exemplary embodiments, one or more of an amino acid of the helicase is substituted with an unnatural amino acid or a natural amino acid (e.g., a cysteine or a homocysteine).


In certain exemplary embodiments, said helicase comprises a sequence selected from SEQ ID NOs:4 and 12.


In certain exemplary embodiments, the first amino acid is covalently crosslinked to the second amino acid by a disulfide bond or by a chemical crosslinker (e.g., a chemical crosslinker having a length of from about 6 Å to about 25 Å).


In certain exemplary embodiments, the chemical crosslinker is a bis-maleimide crosslinker.


In certain exemplary embodiments, the chemical crosslinker is selected from the group consisting of




embedded image


In certain exemplary embodiments, the chemical crosslinker is




embedded image


In one aspect, a modified helicase comprising a first subdomain having a first amino acid and a second subdomain having a second amino acid, wherein said first amino acid is at least about 30 Å from said second amino acid when the helicase is in an inactive conformation, and said first amino acid is less than about 20 Å from said second amino acid when the helicase is in an active conformation, and wherein a side chain of the first amino acid is chemically crosslinked to a side chain of the second amino acid using




embedded image



1-[2-(2,5-dioxopyrrol-1-yl)ethyl]pyrrole-2,5-dione to form an active, conformationally-constrained helicase is provided.


In another aspect, a modified Rep, PcrA or UvrD helicase or homolog thereof, comprising a first subdomain having a first amino acid at any one of positions 84-116 and a second subdomain having a second amino acid at any one of positions 388-411, 422-444 and 518-540, wherein a side chain of the first amino acid is covalently crosslinked to a side chain of the second amino acid with a linker to form an active, conformationally-constrained Rep, PcrA or UvrD helicase, or homolog thereof is provided.


In another aspect, a modified Rep helicase or homolog thereof comprising an amino acid at position 178 covalently crosslinked to an amino acid at position 400 to form an active, conformationally-constrained Rep helicase or homolog thereof is provided.


In another aspect, a modified Rep helicase or homolog thereof comprising an amino acid at position 187 covalently crosslinked to an amino acid at position 409, to form an active, conformationally-constrained helicase is provided.


In another aspect, a modified helicase comprising a first subdomain having a first amino acid and a second subdomain having a second amino acid, wherein said first amino acid is at least about 30 Å from said second amino acid when the helicase is in an inactive conformation, and said first amino acid is less than about 20 Å from said second amino acid when the helicase is in an active conformation, and wherein a side chain of the first amino acid is covalently crosslinked to a side chain of the second amino acid with a chemical crosslinker to form an active, conformationally-constrained helicase, and wherein one or more of an amino acid of the helicase is substituted with an unnatural amino acid or a natural amino acid is provided.


In one aspect, a method of making an active, conformationally-constrained helicase is provided. The method includes the steps of selecting in a helicase a first amino acid in a first subdomain that is at least about 30 Å from a second amino acid in a second subdomain when the helicase is in an inactive conformation, and the first amino acid is less than about 20 Å from the second amino acid when the helicase is in an active conformation, and covalently crosslinking the first amino acid to the second amino acid when the helicase is in an active conformation to form an active, conformationally-constrained helicase.


In a certain exemplary embodiment, the method includes two steps. The first step includes expressing a helicase polypeptide having the capability to be constrained in a conformation by an intramolecular crosslinking agent from an isolated nucleic acid selected from a group consisting of SEQ ID NOs: 2, 3, 5 and 6. The second step includes reacting the helicase polypeptide with an intramolecular crosslinking agent to form the conformationally-constrained helicase.


In certain exemplary embodiments, the modified helicase is a Super Family 1 (SF1) helicase (e.g., SF1 Å or SF1B) or a Super Family 2 (SF2) helicase.


In certain exemplary embodiments, the first subdomain comprises a 1 Å subdomain or a 1B subdomain and the second subdomain comprises a 2B subdomain.


In certain exemplary embodiments, the first amino acid is less than about 20 Å, about 19 Å, about 18 Å, about 17 Å, about 16 Å, about 15 Å, about 10 Å, about 9 Å, about 8 Å, about 7 Å, about 5 Å, or about 4 Å from the second amino acid when the helicase is in an active conformation.


In certain exemplary embodiments, the first amino acid is at least about 30 Å, about 35 Å, about 40 Å, about 45 Å, about 50 Å, about 55 Å, about 60 Å, about 65 Å, about 70 Å, about 75 Å, about 80 Å or about 85 Å from the second amino acid when the helicase is in an inactive conformation.


In certain exemplary embodiments, the helicase is selected from the group consisting of a Rep helicase, a UvrD helicase and a PcrA helicase.


In certain exemplary embodiments, the helicase comprises a sequence selected from SEQ ID NOs:4 and 12.


In certain exemplary embodiments, the first amino acid is covalently linked to the second amino acid by a disulfide bond or a chemical crosslinker.


In another aspect, a method of catalyzing an unwinding reaction of a double-stranded DNA, comprising contacting the double-stranded DNA with a modified helicase comprising a first subdomain having a first amino acid and a second subdomain having a second amino acid is provided. Said first amino acid is at least about 30 Å from said second amino acid when the helicase is in an inactive conformation, and said first amino acid is less than about 20 Å from said second amino acid when the helicase is in an active conformation. A side chain of the first amino acid is covalently crosslinked to a side chain of the second amino acid with a linker to form an active, conformationally-constrained helicase.


In certain exemplary embodiments, the conformationally-constrained helicase comprises SEQ ID NO: 4 or SEQ ID NO:12.


In certain exemplary embodiments, the conformationally-constrained helicase is chemically crosslinked.


In certain exemplary embodiments, the linker comprises an alkyl having a length in the range from C7 to C23 or from C8 to C13.


In another aspect, a method of performing isothermal DNA amplification, comprising combining a DNA template, the conformationally-constrained helicase described above and amplification reagents. under conditions compatible for performing isothermal DNA amplification.


In certain exemplary embodiments, the method includes two steps. The first step includes forming a mixture. The mixture includes a double-stranded DNA template having a first strand and a second strand; a conformationally-constrained helicase; a DNA-dependent DNA polymerase; a first oligonucleotide primer complementary to a portion of the first strand; a second oligonucleotide primer complementary to a portion of the second strand; and an amplification buffer cocktail. The second step includes incubating the mixture at a temperature compatible for activating the conformationally-constrained helicase and DNA-dependent DNA polymerase.


In certain exemplary embodiments, the conformationally-constrained helicase comprises SEQ ID NO:4 or 12. In certain exemplary embodiments, the DNA-dependent DNA polymerase is selected from a group consisting of E. coli DNA Pol I, E. coli DNA Pol I Large Fragment, Bst 2.0 DNA Polymerase, Bst DNA Polymerase, Bst DNA Polymerase Large Fragment, Bsu DNA Polymerase I Large Fragment, T4 DNA Polymerase, T7 DNA polymerase, PyroPhage® 3173 DNA Polymerase and phi29 DNA Polymerase.


In certain exemplary embodiments, the conformationally-constrained helicase is chemically crosslinked.


In certain exemplary embodiments, the chemical crosslinker comprises a length in the range from about 6 Å to about 25 Å.


In certain exemplary embodiments, the chemical crosslinker comprises an alkyl having a length in the range from C7 to C23 or from C8 to C13.


In another aspect, a kit for performing helicase dependent amplification is provided. The kit includes a conformationally-constrained helicase and amplification reagents (e.g., an amplification buffer cocktail).


In certain exemplary embodiments, the conformationally-constrained helicase is selected from SEQ ID NOs: 4 and 12.


In certain exemplary embodiments, the kit further comprising a DNA-dependent DNA polymerase, e.g., selected from a group consisting of E. coli DNA Pol I, E. coli DNA Pol I Large Fragment, Bst 2.0 DNA Polymerase, Bst DNA Polymerase, Bst DNA Polymerase Large Fragment, Bsu DNA Polymerase I Large Fragment, T4 DNA Polymerase, T7 DNA polymerase, PyroPhage® 3173 DNA Polymerase and phi29 DNA Polymerase.


In one aspect, an isolated nucleic acid encoding a modified helicase described herein is provided.


In certain exemplary embodiments, the isolated nucleic acid is selected from the group consisting of SEQ ID NOs: 2, 3, 10 and 11.


In one aspect, a modified E. coli. Rep helicase comprising a first subdomain having a first amino acid, a second subdomain having a second amino acid, and an axis vector defined by the alpha carbon of ILE371 from which the vector originates and the alpha carbon of SER280 or the alpha carbon of ALA603, wherein theta is an angle of rotation of said first amino acid and said second amino acid around the axis vector is provided. A first theta between said first amino acid and said second amino acid is between about 60 degrees and about 155 degrees when the helicase is in an inactive conformation, and a second theta between said first amino acid and said second amino acid is between about 355 degrees and about 25 degrees when the helicase is in an active conformation. A side chain of the first amino acid is covalently crosslinked to a side chain of the second amino acid with a linker to form an active, conformationally-constrained helicase.


In certain exemplary embodiments, the first theta is about 133 degrees and/or the second theta is about 0 degrees.


In certain exemplary embodiments, the axis vector is defined by the alpha carbon of ILE371 and the alpha carbon of SER280.


In certain exemplary embodiments, the first amino acid is at any one of positions 84-108 or 169-187 or at position 178 of the modified helicase amino acid sequence. In certain exemplary embodiments, the first amino acid is present in an amino acid sequence having at least 20% amino acid sequence identity to SEQ ID NO:13 or SEQ ID NO:14. In certain exemplary embodiments, the first amino acid is at any one of positions 60-82 of the modified helicase amino acid sequence. In certain exemplary embodiments, the first amino acid is at any one of positions 68-79 of the modified helicase amino acid sequence.


In certain exemplary embodiments, the second amino acid is at any one of positions 388-402, 422-435 or 519-531 or at position 400 of the modified helicase amino acid sequence. In certain exemplary embodiments, the first amino acid is present in an amino acid sequence having at least 20% amino acid sequence identity to SEQ ID NO:15 or SEQ ID NO:16. In certain exemplary embodiments, the second amino acid is at any one of positions 509-536 of the modified helicase amino acid sequence. In certain exemplary embodiments, the second amino acid is at any one of positions 519-525 of the modified helicase amino acid sequence.


These and other features, objects and advantages of the present invention will become better understood from the description that follows. In the description, reference is made to the accompanying drawings, which form a part hereof and in which there is shown by way of illustration, not limitation, embodiments of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the present invention will be more fully understood from the following detailed description of illustrative embodiments taken in conjunction with the accompanying drawings. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1A depicts the closed form Rep crystal structure (PDB entry 1UAA), wherein subdomains are colored and named accordingly and 3′ end of the ssDNA (gray) is visible. Residues that were mutated to cysteine and crosslinked to lock the conformation are shown as pink, blue and red van der Waals spheres in both conformations as reference. Boxed area is magnified view showing the two residues that were crosslinked for engineering Rep-X.



FIG. 1B depicts the open form Rep crystal structure (PDB entry 1UAA), wherein subdomains are colored and named accordingly and 3′ end of the ssDNA (gray) is visible. Residues that were mutated to cysteine and crosslinked to lock the conformation are shown as pink, blue and red van der Waals spheres in both conformations as reference. Boxed area is magnified view showing the two residues that were crosslinked for engineering Rep-Y.



FIG. 1C depicts a schematic showing that helicase-catalyzed unwinding of a DNA labeled with a donor and an acceptor would convert high FRET efficiency (EFRET) to low EFRET. Shading level of the donor and acceptor color represents the relative intensity changes. Figure discloses “(dT)10” as SEQ ID NO: 33.



FIG. 1D depicts an ensemble unwinding kinetics of DNA from FIG. 1C by Rep and Rep-X shows the enhanced helicase activity of Rep-X over Rep as measured via ensemble EFRET. Solid lines are fitted exponential decay curves as guides to the eye.



FIG. 1E depicts exemplary data of ensemble unwinding kinetics of the Rep-Y, Rep-X and non-crosslinked Rep using an assay containing 10 nM helicase, 5 nM 50-bp ensemble unwinding DNA with 3′-(dT)30 (SEQ ID NO: 17) overhang in buffer D and 1 mM ATP).



FIG. 2A depicts a schematic of unwinding stages of dual labeled DNA by a Rep-X monomer. Color lightness of the donor (green) and acceptor (red) on the DNA represents the change in the emission intensities as the unwinding progresses.



FIG. 2B depicts representative single molecule time traces show the DNA binding, unwinding and dissociation for the acceptor strand for Rep-X, wherein the donor fluorescence signal is in green, acceptor in red and EFRET in blue.



FIG. 2C depicts representative single molecule time traces showing the DNA binding, unwinding and dissociation for the donor strand for Rep-X, wherein the donor fluorescence signal is in green, acceptor in red and EFRET in blue. Unwinding period is denoted by Δt.



FIG. 2D depicts representative single molecule time traces showing the DNA binding and dissociation behavior for the donor strand for Rep, wherein the donor fluorescence signal is in green, acceptor in red and EFRET in blue.



FIG. 2E depicts representative single molecule time traces showing the DNA binding and dissociation behavior for the donor strand for Rep-Y, wherein the donor fluorescence signal is in green, acceptor in red and EFRET in blue.



FIG. 2F depicts a representative distribution of Rep-X unwinding period Δt.



FIG. 2G depicts fractions of DNA binding events that led to unwinding (i.e. exhibited an EFRET increase phase) in smFRET experiments for Rep, Rep-Y and Rep-X. Error bars represent 95% confidence bounds.



FIG. 3A depicts a schematic of the optical tweezers assay depicts a Rep-X molecule tethered to the bead surface that just loaded on the free ssDNA overhang and started to unwind the 6-kbp DNA=.



FIG. 3B depicts unwinding traces showing the extent of processive unwinding by Rep-X on the 6-kbp DNA (colored according to conditions of overhang length, SSB and force, and offset for clarity). Background is color coordinated with the inset to show the two laminar flows.



FIG. 3C depicts an exemplary distribution of Rep-X unwinding velocities (N=38). Mean velocity of unwinding and the standard deviation for each molecule were plotted above (colors as in B). Figure discloses “(dT)10,” “(dT)15” and “(dT)75” as SEQ ID NOS 33-35, respectively.



FIG. 3D depicts exemplary data comparing the fraction of the complete DNA binding events for Rep, Rep-Y and Rep-X. Error bars represent the 95% confidence bounds.



FIG. 3E depicts unwinding by five representative Rep-X molecules in the fixed trap assay are plotted. Pulling force increases during unwinding as the Rep-X pulls the beads closer. Tether breaks appear as sudden force drops.



FIG. 3F depicts exemplary data showing the average of normalized unwinding velocities of 58 Rep-X molecules plotted against the pulling force that shows the high force tolerance of the engineered super-helicase Rep-X. Error bars represent standard error of the mean.



FIG. 4A illustrates a consensus sequence alignment of TxGx motif for 27 organisms within 10 out 11 families, wherein Cys is present at position 96. Leuconostocaceae family species have an alanine at this position. Figure discloses SEQ ID NOS 109-142, respectively, in order of appearance.



FIG. 4B illustrates a consensus sequence alignment of motif III for 27 organisms within 10 families, wherein Cys is present at position 247. Leuconostocaceae family species have an alanine at this position. Figure discloses SEQ ID NOS 143-176, respectively, in order of appearance.



FIG. 5A depicts exemplary ATPase activity of mutant PcrA before (“PcrA”) and after crosslinking (“PcrA-X”). Error bars represent standard deviation over multiple preparations.



FIG. 5B depicts exemplary data of an ensemble unwinding assay for PcrA-X and wild type PcrA. Solid lines are fitted exponential decay curves as visual guides.



FIG. 6A depicts representative single molecule time traces for DNA binding and unwinding by PcrA-X monomers.



FIG. 6B depicts representative single molecule time traces for DNA binding and unwinding by t PcrA monomers, which are incapable of DNA unwinding.



FIG. 6C depicts exemplary data of fractions of enzyme-DNA binding events that led to an unwinding phase for PcrA and PcrA-X in the smFRET assay. Error bars represent the 95% confidence bounds



FIG. 6D depicts exemplary data showing processive unwinding of 6-kbp DNA by four representative PcrA-X molecules in the optical tweezers assay. Figure discloses “(dT)15” and “(dT)75” as SEQ ID NOS 34 and 35, respectively.



FIG. 6E depicts exemplary data for fractions of enzyme-DNA binding that led to the unwinding of 6-kbp DNA in the optical tweezers assay. Error bars represent the 95% confidence bounds



FIG. 6F depicts a schematic (in subpanel (i)) of the conformational effect of RepD, a stimulatory partner of PcrA, on PcrA as measured in a smFRET assay and EFRET histograms (sub-panel (ii)) showing that the PcrA bound to RepD adduct is biased toward the closed form (high EFRET population) compared to PcrA bound to the bare ori-D DNA.



FIG. 7A shows an exemplary SDS-PAGE analysis of Rep-Y intra-crosslinking, wherein the typical three-band pattern on SDS polyacrylamide gels is evident. Rep-X intra-crosslinking pattern is shown for comparison, wherein the dominant middle band is slightly shifted for Rep-X compared with the corresponding band for Rep-Y. Lane designated as Rep is non-crosslinked Rep.



FIG. 7B shows an exemplary SDS-PAGE analysis of Rep-Y intra-crosslinking in comparison to uncrosslinked Rep (“Rep”). Lane denoted as Rep-Y*depicts (β-ME reduced Rep-Y (crosslinked with a di-sulfide crosslinker DTME).



FIG. 7C shows an exemplary size exclusion chromatography (SEC) elution profile for Rep (dotted line) and the Rep-Y sample (solid line).



FIG. 7D shows an exemplary SDS-PAGE analysis of Rep-Y fractions, F1-F7, collected from SEC (FIG. 5C) in comparison with Rep-Y.



FIG. 7E depicts exemplary data of ssDNA dependent ATPase levels of Rep-Y and Rep. Error bars represent standard deviation over multiple preparations.



FIG. 8 depicts a schematic of an isothermal DNA amplification process called helicase dependent amplification, wherein in step 1: DNA helicase (104) contacts a double-stranded DNA (101) to unwind the first and second single strands (102 and 103) and first and second oligonucleotide primers (105 and 106) hybridize to the first and second single strands (102 and 103), respectively; in step 2: DNA-dependent DNA polymerases (107) bind to the 3′-termini of the first and second oligonucleotide primers (105 and 106) to initiate chain elongation of new strands (108 and 109); and in step 3: continued DNA polymerization results in DNA amplification and formation of new double-stranded DNA (110 and 111).



FIG. 9A shows target residues in Rep (SEQ ID NO: 32), PcrA (SEQ ID NO: 177) and UvrD (SEQ ID NO: 178), for-X form crosslinking, calculated based on the criteria and crystal structures in open (inactive) and closed (active) conformations. One residue is chosen from 1A or 1B domain (shaded), and another from 2B (shaded).



FIG. 9B shows 56 representative Rep homologs/orthologs with 90% identity to and 80% overlap, and the corresponding region of domain 1A where crosslinking residues can be chosen. FIGS. 9B-9C disclose SEQ ID NOS 179-235, respectively, in order of appearance.



FIG. 9C shows 56 representative Rep homologs/orthologs with 90% identity to and 80% overlap, and the corresponding region of domain 1B where crosslinking residues can be chosen.



FIG. 9D shows 56 representative Rep homologs/orthologs with 90% identity to and 80% overlap, and the corresponding region of domain 2B where crosslinking residues can be chosen. FIGS. 9D-9F disclose SEQ ID NOS 236-292, respectively, in order of appearance.



FIG. 9E shows 56 representative Rep homologs/orthologs with 90% identity to and 80% overlap, and the corresponding region of domain 2B where crosslinking residues can be chosen in addition to those shown in FIG. 9D.



FIG. 9F shows 56 representative Rep homologs/orthologs with 90% identity to and 80% overlap, and the corresponding region of domain 2B where crosslinking residues can be chosen in addition to those shown in FIG. 9E.



FIG. 9G shows target residues in drUvrD, Rep, PcrA and UvrD, for-X form crosslinking, calculated based on the criteria and crystal structures in open (inactive) and closed (active) conformations. One residue is chosen from 1A or 1B domain (shaded), and another from 2B (shaded). Figure discloses SEQ ID NOS 293-304, respectively, in order of appearance.



FIG. 10 shows the reaction of maleimide-activated compounds to sulfhydryl-bearing compounds.



FIG. 11 shows a closed form crystal structure of D. radiodurans UvrD (drUvrD; Q9RTI9) with target crosslinking regions of domains 1A, 1B and 2B indicated by arrows.



FIG. 12 shows selected target residue pairs for crosslinking, and the specific distances between the pairs, in a ribbon diagram of a structure of RecD2.



FIG. 13 is a ribbon diagram of a CsRecQ/DNA crystal structure.



FIG. 14 shows a schematic diagram of RecQ DNA helicase, and an overlay of RecQ structures which highlight the mobility of the WH domain.



FIG. 15 shows alternate ribbon diagrams of a RecQ1 crystal structure.



FIG. 16 shows a stereo view of a ribbon diagram of a 5′-3′ SF1 superhelicase (T4 Dda).



FIG. 17 shows Rep helicase's 2B domain structure in two different orientations that differ through a rotation around an axis coming out of the plane of the paper. 2B domain orientation can be described by the rotation angle θ with respect to the closed form. θ=0 when the helicase is in the closed form, and θ is 133 degrees when the 2B rotates to the open form.





DETAILED DESCRIPTION

The present disclosure provides details of the discovery of robust enzymes of the superfamily 1 helicases. The helicase enzymes are engineered as crosslinked, conformationally-constrained monomeric configurations providing enhanced unwinding activity on dsDNA substrates. The “super” helicases display inherently strong physical properties having superior characteristics to all presently known natural helicases. The disclosed helicases have utility in isothermal PCR and helicase-dependent amplification processes, as well as in next generation sequencing applications, including nanopore sequencing methods and the like.


Terminology and Definitions

The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. With respect to the use of plural and/or singular terms herein, those having skill in the art can translate from the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for the sake of clarity.


Terms used herein are intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).


Furthermore, in those instances where a convention analogous to “at least one of A, B and C, etc.” is used, in general such a construction is intended in the sense of one having ordinary skill in the art would understand the convention (e.g., “a system having at least one of A, B and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description or figures, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or ‘B or “A and B.”


All language such as “up to,” “at least,” “greater than,” “less than,” and the like, include the number recited and refer to ranges which can subsequently be broken down into sub-ranges.


A range includes each individual member. Thus, for example, a group having 1-3 members refers to groups having 1, 2, or 3 members. Similarly, a group having 1-6 members refers to groups having 1, 2, 3, 4, or 6 members, and so forth.


The modal verb “may” refers to the preferred use or selection of one or more options or choices among the several described embodiments or features contained within the same. Where no options or choices are disclosed regarding a particular embodiment or feature contained in the same, the modal verb “may” refers to an affirmative act regarding how to make or use and aspect of a described embodiment or feature contained in the same, or a definitive decision to use a specific skill regarding a described embodiment or feature contained in the same. In this latter context, the modal verb “may” has the same meaning and connotation as the auxiliary verb “can.”


The present invention provides modified helicases that have enhanced enzymatic activity. As used herein, a “helicase” refers to a class of enzymes that function as motor proteins which move directionally along a nucleic acid phosphodiester backbone, separating two annealed nucleic acid strands (i.e., DNA, RNA, or RNA-DNA hybrid) using energy derived from ATP hydrolysis. Helicases are often used to separate strands of a DNA double helix or a self-annealed RNA molecule using the energy from ATP hydrolysis, a process characterized by the breaking of hydrogen bonds between annealed nucleotide bases. They also function to remove nucleic acid-associated proteins and catalyze homologous DNA recombination. Metabolic processes of RNA such as translation, transcription, ribosome biogenesis, RNA splicing, RNA transport, RNA editing, and RNA degradation are all facilitated by helicases. Helicases move incrementally along one nucleic acid strand of the duplex with a directionality and processivity specific to each particular enzyme.


Six super families of helicases are known in the art that are classified based on their shared sequence motifs. Helicases not forming a ring structure are classified in Super Families 1 (SF1) and 2 (SF2). Ring-forming helicases form Super Families 3 (SF3), 4 (SF4), (SF5) and 6 (SF6).


SF1 is further subdivided into SF1 Å and SF1B helicases. In this group, helicases can have either 3′-5′ (SF1 Å subfamily) or 5′-3′(SF1B subfamily) translocation polarity. SF1 Å helicases include, but are not limited to are Rep and UvrD in gram-negative bacteria and PcrA helicase from gram-positive bacteria. SF1B helicases include, but are not limited to RecD and Dda helicases.


SF2 is the largest family of helicases, which are involved in varied cellular processes. They are characterized by the presence of nine conserved motifs: Q, I, Ia, Ib, and II through VI. This family primarily comprises DEAD-box RNA helicases (“DEAD” disclosed as SEQ ID NO: 18). Other helicases in SF2 family are the RecQ-like family and Snf2-like enzymes. Most of the SF2 helicases are type A, with a few exceptions such as the XPD family.


SF3 comprises helicases encoded mainly by small DNA viruses and some large nucleocytoplasmic DNA viruses. They have a 3′-5′ translocation directionality (therefore they are all type A helicases). SF3 helicase include viral helicases such as the papilloma virus E1 helicase.


SF4 helicases have a type B polarity (5′-3′), and function in bacterial or bacteriophage DNA replication. Gp4 from bacteriophage T7 is an SF4 helicase.


SF5 helicases have a type B polarity (5′-3′), and include only the bacterial termination factors Rho.


SF6 helicases contain the core AAA+ that is not included in the SF3 classification. SF6 helicases include, but are not limited to, Mini Chromosome Maintenance (MCM), RuvB, RuvA, and RuvC.


Exemplary helicases according to the invention include, but are not limited to RecD, Upfl, PcrA, Rep, UvrD, Hel308, Mtr4, XPD, NS3, Mssl 16, Prp43, RecG, RecQ, TIR, RapA, Hef, RecB, Pifl, Dna2, Dda, Ul5, RecD2, Tral, Senlp, SETX, IBP160, ZNFX1, Upflp, UPF1, Hes1p, IGHMBP2, Dna2p, DNA2, Mttlp, MOV10, MOV10L1, HELZ, PR285, ptMRDFL1 and the like.


In certain embodiments of the invention, a helicase comprises subdomains. For example, SF1 helicases comprise subdomains 1A, 1B, 2A and 2B. The 2B subdomain has been shown to rotate between an open conformation and a closed conformation.


As used herein, an “open conformation” refers to the inactive conformation of a helicase in which minimal or no helicase activity occurs. As used herein, a “closed conformation” refers to the active form of a helicase which has helicase activity. Crystal structures depicting the open and/or closed conformations of many helicases have been published in the art.


As described further herein, it has been discovered that, by stabilizing the active (i.e., closed) conformation and destabilizing the inactive (i.e., open) conformation, a modified helicase can be obtained having greatly enhanced helicase activity and strength relative to the corresponding unmodified helicase. According to certain embodiments of the invention, a modified helicase that stabilizes the active (i.e., closed) conformation and destabilizes the inactive (i.e., open) conformation can be generated by covalently linking one or more amino acids in the 2B subdomain to one or more amino acids in the 1A and/or the 1B domain of the helicase. Such a modified helicase is referred to herein as an “active, conformationally constrained helicase” or a “helicase-x polypeptide.” Exemplary helicase-x polypeptides include, but are not limited to, Rep-x, PcrA-x and UvrD-x. In certain embodiments, a helicase-x polypeptide forms a loop around a target nucleic acid sequence (e.g., a DNA sequence). In other embodiments, a helicase-x polypeptide does not form a loop around a target nucleic acid sequence (e.g., a DNA sequence).


In other embodiments, a helicase is provided that is stabilized in its inactive (i.e., open) conformation and destabilized in its active (i.e., closed) conformation. Such a helicase is referred to as an “inactive, conformationally constrained helicase” or a “helicase-Y polypeptide.” Helicase-Y polypeptides exhibit little or no helicase activity.


In certain embodiments, a helicase-x polypeptide has an increased nucleic acid (e.g., DNA) unwinding activity relative to a corresponding unmodified helicase. In certain aspects, the number of base pairs that can be unwound by a helicase-x polypeptide is increased by about 1000%, about 10,000%, about 100,000% or more (or any ranges or points within the ranges) relative to a corresponding unmodified helicase.


In certain embodiments, a helicase-x polypeptide can unwind at least about 500 base pairs, about 1000 base pairs, about 1500 base pairs, about 2000 base pairs, about 2500 base pairs, about 3000 base pairs, about 3500 base pairs, about 4000 base pairs, about 4500 base pairs, about 5000 base pairs, about 5500 base pairs, about 6000 base pairs, about 6500 base pairs, about 7000 base pairs, about 7500 base pairs, about 8000 base pairs, about 8500 base pairs, about 9000 base pairs, about 9500 base pairs, about 10,000 base pairs or more (or any ranges or points within the ranges) without dissociating from the nucleic acid sequence (e.g., DNA).


In certain embodiments, a helicase-x polypeptide is stronger that the corresponding unmodified helicase, withstanding opposing forces of at least about 10 pN, about 15 pN, about 20 pN, about 25 pN, about 30 pN, about 35 pN, about 40 pN, about 45 pN, about 50 pN, about 55 pN, about 60 pN, or more (or any ranges or points within the ranges).


In certain embodiments, a helicase-x polypeptide comprises a first subdomain comprising a first amino acid and a second subdomain comprising a second amino acid, wherein the first amino acid is at least about 35 Å from the second amino acid when the helicase is in an inactive conformation, and wherein the first amino acid is less than about 25 Å from the second amino acid when the helicase is in an active conformation. In certain embodiments, the first amino acid is at least about 40 Å, about 45 Å, about 50 Å, about 55 Å, about 60 Å, about 65 Å, about 70 Å, about 75 Å, about 80 Å, about 85 Å, or more from the second amino acid (or any ranges or points within these ranges) when the helicase is in an inactive (i.e., open) conformation. In certain embodiments, the first amino acid is at most about 20 Å, about 15 Å, about 10 Å, about 9 Å, about 8 Å, about 7 Å, about 6 Å, about 5 Å, about 4 Å, or less from the second amino acid (or any ranges or points within the ranges) when the helicase is in an active (i.e., closed) conformation. In certain embodiments, the linker in a helicasex polypeptide has a length in the range from about 6 Å to about 25 Å.


In certain embodiments, the first amino acid of a helicase-x polypeptide is present in a 1 Å or a 1B subdomain and the second amino acid of a helicasex polypeptide is present in a 2B subdomain.


In certain embodiments, the Rep-x polypeptide forms a loop around the target nucleic acid (e.g., DNA) sequence. In certain embodiments, the first amino acid of a Rep-x polypeptide that forms a loop is at any one of positions 84-108 or 169-187, or at position 178 of the Rep amino acid sequence. In certain embodiments, the second amino acid of a Repx polypeptide that forms a loop is at any one of positions 388-402, 422-435 or 519-536, or at position 400 of the Rep amino acid sequence.


In certain embodiments, the PcrA-x polypeptide forms a loop around the target nucleic acid (e.g., DNA) sequence. In certain embodiments, the first amino acid of a PcrA-x polypeptide that forms a loop is at any one of positions 92-116 or 178-196, or at position 187 of the PcrA amino acid sequence. In certain embodiments, the second amino acid of a PcrA-x polypeptide that forms a loop is at any one of positions 397-411, 431-444 or 526-540, or at position 409 of the PcrA amino acid sequence.


In certain embodiments, the UvrD-x polypeptide forms a loop around the target nucleic acid (e.g., DNA) sequence. In certain embodiments, the first amino acid of a UvrD-x polypeptide that forms a loop is at any one of positions 90-114 or 175-193 of the UvrD amino acid sequence. In certain embodiments, the second amino acid of a UvrD-x polypeptide that forms a loop is at any one of positions 393-407, 427-440 or 523-540 of the UvrD amino acid sequence.


In certain embodiments, the Rep-x polypeptide does not form a loop around the target nucleic acid (e.g., DNA) sequence. In certain embodiments, the first amino acid of the Rep-x polypeptide that does not form a loop is at any one of positions 60-82 (i.e., at any one of AREMKERVGQTLGRKEARGLMIS (SEQ ID NO: 19)), or at any one of positions 68-79 (i.e., at any one of GQTLGRKEARGL (SEQ ID NO: 20)) of the Rep amino acid sequence. In certain embodiments, the second amino acid of the Rep-x polypeptide that does not form a loop is at any one of positions 509-536 (i.e., at any one of FSWMTEMLEGSELDEPMTLTQVVTRFTL (SEQ ID NO: 21)), or at any one of positions 519-525 (i.e., at any one of SELDEPM (SEQ ID NO: 22)) of the Rep amino acid sequence.


In certain embodiments, the PcrA-x polypeptide does not form a loop around the target nucleic acid (e.g., DNA) sequence. In certain embodiments, the first amino acid of the PcrA-x polypeptide that does not form a loop is at any one of positions 69-89 (i.e., at any one of AREMRERVQSLLGGAAEDVWI (SEQ ID NO: 23)), or at any one of positions 77-87 (i.e., at any one of QSLLGGAAEDV (SEQ ID NO: 24)) of the PcrA amino acid sequence. In certain embodiments, the second amino acid of the PcrA-x polypeptide that does not form a loop is at any one of positions 516-534 (i.e., at any one of LSVTKHFENVSDDKSLIAF (SEQ ID NO: 25)), or at any one of positions 526-532 (i.e., at any one of SDDKSLI (SEQ ID NO: 26)) of the PcrA amino acid sequence.


In certain embodiments, the UvrD-x polypeptide does not form a loop around the target nucleic acid (e.g., DNA) sequence. In certain embodiments, the first amino acid of the UvrD-x polypeptide that does not form a loop is at any one of positions 67-87 (i.e., at any one of AAEMRHRIGQLMGTSQGGMWV (SEQ ID NO: 27)), or at any one of positions 75-85 (i.e., at any one of GQLMGTSQGGM (SEQ ID NO: 28)) of the UvrD amino acid sequence. In certain embodiments, the second amino acid of the UvrD-x polypeptide that does not form a loop is at any one of positions 513-531 (i.e., at any one of VTATRQFSYNEEDEDLMPL (SEQ ID NO: 29)), or at any one of positions 523-529 (i.e., at any one of EEDEDLM (SEQ ID NO: 30)) of the UvrD amino acid sequence.


In certain embodiments, the first amino acid and/or the second amino acid of a helicase-x polypeptide is present in a particular amino acid sequence having at least about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% or more sequence identity to that of a reference sequence (e.g., a Rep helicase, A PcrA helicase, a UvrD helicase, or a homolog or ortholog thereof).


In certain embodiments, the first amino acid is present in a Rep helicase at an amino acid sequence having at least about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% or more amino acid sequence identity (or any ranges or points within the ranges) to FHTLGLDIIKREYAALGMKANFSLF (SEQ ID NO:13). In certain embodiments, the first amino acid is present in a Rep helicase at an amino acid sequence having at least about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% or more amino acid sequence identity (or any ranges or points within the ranges) to GLYDAHLKACNVLDFDDLI (SEQ ID NO:14).


In certain embodiments, the second amino acid is present in a Rep helicase at an amino acid sequence having at least about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% amino acid sequence identity (or any ranges or points within the ranges) to AYLRVLTNPDDDSAF (SEQ ID NO:15). In certain embodiments, the second amino acid is present in a Rep helicase at an amino acid sequence having at least about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% or about 99% amino acid sequence identity (or any ranges or points within the ranges) to GEWAMTRNKSMFTA (SEQ ID NO:16).


Suitable amino acid positions for modifying to engineer helicase-x polypeptides (and homologs and orthologs thereof) according to the invention can be identified by one of ordinary skill in the art using this disclosure and well-known local sequence alignment tools.


Techniques for determining nucleic acid and amino acid “sequence identity” are known in the art. Typically, such techniques include determining the nucleotide sequence of genomic DNA, mRNA or cDNA made from an mRNA for a gene and/or determining the amino acid sequence that it encodes, and comparing one or both of these sequences to a second nucleotide or amino acid sequence, as appropriate. In general, “identity” refers to an exact nucleotide-to-nucleotide or amino acid-to-amino acid correspondence of two polynucleotides or polypeptide sequences, respectively. Two or more sequences (polynucleotide or amino acid) can be compared by determining their “percent identity.” The percent identity of two sequences, whether nucleic acid or amino acid sequences, is the number of exact matches between two aligned sequences divided by the length of the shorter sequences and multiplied by 100.


An approximate alignment for nucleic acid sequences is provided by the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981). This algorithm can be applied to amino acid sequences by using the scoring matrix developed by Dayhoff, Atlas of Protein Sequences and Structure, M. O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA, and normalized by Gribskov (1986) Nucl. Acids Res. 14:6745. An exemplary implementation of this algorithm to determine percent identity of a sequence is provided by the Genetics Computer Group (Madison, Wis.) in the “BestFit” utility application. The default parameters for this method are described in the Wisconsin Sequence Analysis Package Program Manual, Version 8 (1995) (available from Genetics Computer Group, Madison, Wis.).


One method of establishing percent identity in the context of the present invention is to use the MPSRCH package of programs copyrighted by the University of Edinburgh, developed by John F. Collins and Shane S. Sturrok, and distributed by IntelliGenetics, Inc. (Mountain View, Calif.). From this suite of packages, the Smith-Waterman algorithm can be employed where default parameters are used for the scoring table (for example, gap open penalty of 12, gap extension penalty of one, and a gap of six). From the data generated the “match” value reflects “sequence identity.” Other suitable programs for calculating the percent identity or similarity between sequences are generally known in the art, for example, another alignment program is BLAST, used with default parameters. For example, BLASTN and BLASTP can be used using the following default parameters: genetic code=standard; filter=none; strand=both; cutoff=60; expect=10; Matrix=BLOSUM62; Descriptions=50 sequences; sort by.dbd.HIGH SCORE; Databases=non-redundant, GenBank+EMBL+DDBJ+PDB+GenBank CDS translations+Swiss protein+Spupdate+PIR. Details of these programs can be found at the NCBI/NLM web site.


In certain embodiments of the invention, a helicase is provided that is conformationally-constrained. The term “conformationally-constrained” refers to a conformation having a least one degree of freedom (that is, motion or range of motion) that is less than a reference conformation. In certain embodiments, a conformationally-constrained helicase has a least one degree of freedom that is less than a helicase that is not conformationally constrained.


In certain embodiments of the invention, a helicase is constrained via a covalent linkage between two or more amino acids of the helicase. A covalent linkage is a chemical linkage between two atoms or radicals formed by the sharing of a pair of electrons (i.e., a single bond), two pairs of electrons (i.e., a double bond) or three pairs of electrons (i.e., a triple bond). Covalent linkages are also known in the art as electron pair interactions or electron pair bonds.


In certain embodiments, a covalent linkage is formed via a crosslink between the side chains of two (or more) amino acids of a polypeptide (e.g., between two (or more) amino acids of a modified helicase).


As used herein the term “crosslink” refers to the joining of two or more molecules by a covalent bond. Crosslinking can occur via disulfide bonds, e.g., between cysteine residues. Crosslinking can occur via the use of crosslinking reagents (or chemical crosslinkers), which are molecules that contain two or more reactive ends capable of chemically attaching to specific functional groups (primary amines, sulfhydryls, etc.) on proteins or other molecules.


The terms “intramolecular crosslinking agent” and “chemical crosslinking agent” refer to a compound that can form covalent bonds via specific functional groups (e.g., primary amines, sulfhydryls, etc.) on proteins or other molecules. An example of an intramolecular or chemical crosslinking agent includes a compound having two bifunctional groups in its structure.


Chemical crosslinkers are known in the art, and are commercially available (e.g., from Thermo Fisher Scientific, Waltham, MA). In certain embodiments, a crosslinker is cleavable (e.g., by reducing one or more of the functional groups of the crosslinker). In other embodiments, a crosslinker is not cleavable.


Examples of chemical crosslinkers include, but are not limited to, those having the following functional groups: maleimide, active esters, succinimide, azide, alkyne (such as dibenzocyclooctynol (DIBO or DBCO), difluoro cycloalkynes and linear alkynes), phosphine (such as those used in traceless and non-traceless Staudinger ligations), haloacetyl (such as iodoacetamide), phosgene type reagents, sulfonyl chloride reagents, isothiocyanates, acyl halides, hydrazines, disulphides, vinyl sulfones, aziridines and photoreactive reagents (such as aryl azides, diaziridines). Reactions between amino acids and functional groups may be spontaneous, such as cysteine/maleimide, or may require external reagents, such as Cu(I) for linking azide and linear alkynes.


Linkers can comprise any molecule that stretches across the distance required. Linkers can vary in length from one carbon (phosgene-type linkers) to many Angstroms. In certain embodiments, the linker includes an alkyl having a length in the range from C7 to C23. In some embodiments, the linker includes an alkyl having a length in the range from C8 to C13.


Examples of linear molecules include but are not limited to, polyethyleneglycols (PEGs), polypeptides, polysaccharides, deoxyribonucleic acid (DNA), peptide nucleic acid (PNA), threose nucleic acid (TNA), glycerol nucleic acid (GNA), saturated and unsaturated hydrocarbons, and polyamides. These linkers may be inert or reactive, in particular they may be chemically cleavable at a defined position, or may be themselves modified with a ligand. In certain embodiments, the linker is resistant to dithiothreitol (DTT).


Examples of crosslinkers include, but are not limited to 2,5-dioxopyrrolidin-1-yl 3-(pyridin-2-yldisulfanyl)propanoate, 2,5-dioxopyrrolidin-1-yl 4-(pyridin-2-yldisulfanyl)butanoate and 2,5-dioxopyrrolidin-1-yl 8-(pyridin-2-yldisulfanyl)octananoate, di-maleimide PEG 1k, di-maleimide PEG 3.4k, di-maleimide PEG 5k, di-maleimide PEG 10k, bis(maleimido)ethane (BMOE), bis-maleimidohexane (BMH), 1,4-bis-maleimidobutane (BMB), 1,4 bis-maleimidyl-2,3-dihydroxybutane (BMDB), BM[PEO]2 (1,8-bis-maleimidodiethyleneglycol), BM[PEO]3 (1, 11-bis-maleimidotriethylene glycol), tris[2-maleimidoethyl]amine (TMEA), dithiobismaleimidoethane (DTME), bis-maleimide PEG3, bis-maleimide PEGU, DBCO-maleimide, DBCO-PEG4-maleimide, DBCO-PEG4-NH2, DBCO-PEG4-NHS, DBCO-NHS, DBCO-PEG-DBCO 2.8 kDa, DBCO-PEG-DBCO 4.0 kDa, DBCO-15 atoms-DBCO, DBCO-26 atoms-DBCO, DBCO-35 atoms-DBCO, DBCO-PEG4-S—S-PEG3-biotin, DBCO-S-S-PEG3-biotin, DBCO-S-S-PEGI 1-biotin and (succinimidyl 3-(2-pyridyldithio)propionate (SPDP).


In certain embodiments, a covalent linkage refers to the linkage between two or more amino acids. One or more of the linked amino acids may be naturally occurring or non-naturally occurring. One or more of the linked amino acids may be chemically modified.


As used herein, a “natural amino acid” refers to the twenty genetically encoded alpha-amino acids. See, e.g., Biochemistry by L. Stryer, 3rd ed. 1988, Freeman and Company, New York, for structures of the twenty natural amino acids.


As used herein, an “unnatural amino acid,” “modified amino acid” or “chemically modified amino acid” refers to any amino acid, modified amino acid, or amino acid analogue other than the twenty genetically encoded alpha-amino acids. Unnatural amino acids have side chain groups that distinguish them from the natural amino acids, although unnatural amino acids can be naturally occurring compounds other than the twenty proteinogenic alpha-amino acids. In addition to side chain groups that distinguish them from the natural amino acids, unnatural amino acids may have an extended backbone such as beta-amino acids.


Non-limiting examples of unnatural amino acids include selenocysteine, pyrrolysine, homocysteine, an O-methyl-L-tyrosine, an L-3-(2-naphthyl)alanine, a 3-methyl-phenylalanine, an O-4-allyl-L-tyrosine, a 4-propyl-L-tyrosine, a tri-O-acetyl-GlcNAcβ-serine, an L-Dopa, a fluorinated phenylalanine, an isopropyl-L-phenylalanine, a p-azido-L-phenylalanine, a p-acyl-L-phenylalanine, a p-benzoyl-L-phenylalanine, an L-phosphoserine, a phosphonoserine, a phosphonotyrosine, a p-iodo-phenylalanine, a p-bromophenylalanine, a p-amino-L-phenylalanine, an isopropyl-L-phenylalanine, an unnatural analogue of a tyrosine amino acid; an unnatural analogue of a glutamine amino acid; an unnatural analogue of a phenylalanine amino acid; an unnatural analogue of a serine amino acid; an unnatural analogue of a threonine amino acid; an alkyl, aryl, acyl, azido, cyano, halo, hydrazine, hydrazide, hydroxyl, alkenyl, alkynl, ether, thiol, sulfonyl, seleno, ester, thioacid, borate, boronate, phospho, phosphono, phosphine, heterocyclic, enone, imine, aldehyde, hydroxylamine, keto, or amino substituted amino acid, or any combination thereof; an amino acid with a photoactivatable cross-linker; a spin-labeled amino acid; a fluorescent amino acid; an amino acid with a novel functional group; an amino acid that covalently or noncovalently interacts with another molecule; a metal binding amino acid; a metal-containing amino acid; a radioactive amino acid; a photocaged and/or photoisomerizable amino acid; a biotin or biotin-analogue containing amino acid; a glycosylated or carbohydrate modified amino acid; a keto containing amino acid; amino acids comprising polyethylene glycol or polyether; a heavy atom substituted amino acid; a chemically cleavable or photocleavable amino acid; an amino acid with an elongated side chain; an amino acid containing a toxic group; a sugar substituted amino acid, e.g., a sugar substituted serine or the like; a carbon-linked sugar-containing amino acid; a redox-active amino acid; an a-hydroxy containing acid; an amino thio acid containing amino acid; an α,α disubstituted amino acid; a β-amino acid; and a cyclic amino acid other than proline. In an embodiment of the helicases described herein, one or more amino acids of the helicase are substituted with one or more unnatural amino acids and/or one or more natural amino acids.


In certain embodiments, a helicase-X is a closed form, conformationally-constrained helicase monomer generated from a helicase polypeptide that was reacted with an intramolecular crosslinking agent. In certain embodiments, a helicase-Y is an open form, conformationally-constrained helicase monomer generated from a helicase polypeptide that was reacted with an intramolecular crosslinking agent.


The chemical structures described herein are named according to IUPAC nomenclature rules and include art-accepted common names and abbreviations where appropriate. The IUPAC nomenclature can be derived with chemical structure drawing software programs, such as ChemDraw® (PerkinElmer, Inc.), ChemDoodle® (iChemLabs, LLC) and Marvin (ChemAxon Ltd.). The chemical structure controls in the disclosure to the extent that an IUPAC name is misnamed or otherwise conflicts with the chemical structure disclosed herein. E. coli Rep mutants can be engineered that are intramolecularly crosslinked to constrain the 2B subdomain in open or closed conformations. Residues for the cysteine substitution mutagenesis and the length of the bis-maleimide crosslinkers were selected such that when crosslinked, the 2B subdomain cannot rotate appreciably, effectively locking the protein in one conformation (FIG. 1A, B). The closed form of a helicase that is crosslinked in a constrained conformation is denoted with the suffix “-X”, and the open form of a helicase that is crosslinked in a constrained conformation is denoted with the suffix “-Y.” For Rep, Rep-X and Rep-Y represent the conformationally-constrained closed and open forms, respectively. Enzymatic activities of Rep-X and Rep-Y monomers were studied in single molecule and ensemble assays employing fluorescence resonance energy transfer (FRET), total internal reflection fluorescence (TIRF) microscopy, and optical tweezers force spectroscopy.


The Rep mutant sequences used to generate Rep-X and Rep-Y include those nucleotide and amino acid sequences identified in Table 1.









TABLE 1 







Amino Acid and Nucleotide Sequences for exemplary Rep-X


and Rep-Y proteins








Polypeptide/DNA/RNA
5′→3′ (nucleotide sequence) 


(SEQ ID NO:_)
N→C (amino acid sequence)





Wild type Rep helicase
ATGCGTCTAAACCCCGGCCAACAACAAGCTGTCGAATTCGTT


(gene sequence)
ACCGGCCCCTGCCTGGTGCTGGCGGGCGCGGGTTCCGGTAAA


>gi|556503834:3960677-
ACTCGTGTTATCACCAATAAAATCGCCCATCTGATCCGCGGTT


3962698
GCGGTTATCAGGCGCGGCACATTGCGGCGGTGACCTTTACTA



Escherichia coli

ATAAAGCAGCGCGCGAGATGAAAGAGCGTGTAGGGCAGACG


str. K-12
CTGGGGCGCAAAGAGGCGCGTGGGCTGATGATCTCCACTTTC


substr. MG1655,
CATACGTTGGGGCTGGATATCATCAAACGCGAGTATGCGGCG


complete genome
CTTGGGATGAAAGCGAACTTCTCGTTGTTTGACGATACCGATC


(SEQ ID NO: 31)
AGCTTGCTTTGCTTAAAGAGTTGACCGAGGGGCTGATTGAAG



ATGACAAAGTTCTCCTGCAACAACTGATTTCGACCATCTCTAA



CTGGAAGAATGATCTCAAAACACCGTCCCAGGCGGCAGCAAG



TGCGATTGGCGAGCGGGACCGTATTTTTGCCCATTGTTATGGG



CTGTATGATGCACACCTGAAAGCCTGTAACGTTCTCGACTTCG



ATGATCTGATTTTATTGCCGACGTTGCTGCTGCAACGCAATGA



AGAAGTCCGCAAGCGCTGGCAGAACAAAATTCGCTATCTGCT



GGTGGATGAGTATCAGGACACCAACACCAGCCAGTATGAGCT



GGTGAAACTGCTGGTGGGCAGCCGCGCGCGCTTTACCGTGGT



GGGTGACGATGACCAGTCGATCTACTCCTGGCGCGGTGCACG



TCCGCAAAACCTGGTGCTGCTGAGTCAGGATTTTCCGGCGCTG



AAGGTGATTAAGCTTGAGCAGAACTATCGCTCTTCCGGGCGT



ATTCTGAAAGCGGCGAACATCCTGATCGCCAATAACCCGCAC



GTCTTTGAAAAGCGTCTGTTCTCCGAACTGGGTTATGGCGCGG



AGCTAAAAGTATTAAGCGCGAATAACGAAGAACATGAGGCTG



AGCGCGTTACTGGCGAGCTGATCGCCCATCACTTCGTCAATAA



AACGCAGTACAAAGATTACGCCATTCTTTATCGCGGTAACCAT



CAGTCGCGGGTGETTGAAAAATTCCTGATGCAAAACCGCATC



CCGTACAAAATATCTGGTGGTACGTCGTTTTTCTCTCGTCCTG



AAATCAAGCACTTGCTGGCTTATCTGCGCGTGCTGACTAACCC



GGACGATGACAGCGCATTTCTGCGTATCGTTAACACGCCGAA



GCGAGAGATTGGCCCGGCTACGCTGAAAAAGCTGGGTGAGTG



GGCGATGACGCGCAATAAAAGCATGTTTACCGCCAGCTTTGA



TATGGGCCTGAGTCAGACGCTTAGCGGACGTGGTTATGAAGC



ATTGACCCGCTTCACTCACTGGTTGGCAGAAATCCAGCGTCTG



GCGGAGCGGGAGCCGATTGCCGCGGTGCGTGATCTGATCCAT



GGCATGGATTATGAATCCTGGCTGTACGAAACATCGCCCAGC



CCGAAAGCCGCCGAAATGCGCATGAAGAACGTCAACCAACTG



TTTAGCTGGATGACGGAGATGCTGGAAGGCAGTGAACTGGAT



GAGCCGATGACGCTCACCCAGGTGGTGACGCGCTTTACTTTGC



GCGACATGATGGAGCGTGGTGAGAGTGAAGAAGAGCTGGATC



AGGTGCAACTGATGACTCTCCACGCGTCGAAAGGGCTGGAGT



TTCCTTATGTCTACATGGTCGGTATGGAAGAAGGGTTTTTGCC



GCACCAGAGCAGCATCGATGAAGATAATATCGATGAGGAGCG



GCGGCTGGCCTATGTCGGCATTACCCGCGCCCAGAAGGAATT



GACCTTTACGCCTGTGTAAAGAACGCCGTCAGTACGGCGAACT



GGTGCGCCCGGAGCCGAGCCGCTTTTTGCTGGAGCTGCCGCA



GGATGATCTGATTTGGGAACAGGAGCGCAAAGTGGTCAGCGC



CGAAGAACGGATGCAGAAAGGGCAAAGCCATCTGGCGAATCT



GAAAGCGATGATGGCGGCAAAACGAGGGAAATAA





Wild type Rep helicase
MRLNPGQQQAVEFVTGPCLVLAGAGSGKTRVITNKIAHLIRGCG


(amino acid sequence)
YQARHIAAVTFTNKAAREMKERVGQTLGRKEARGLMISTFHTLG


>gi|48994965|gb 
LDIIKREYAALGMKANFSLFDDTDQLALLKELTEGLIEDDKVLLQ


AAT48209.1|DNA helicase 
QLISTISNWKNDLKTPSQAAASAIGERDRIFAHCYGLYDAHLKAC


and single-stranded 
NVLDFDDLILLPTLLLQRNEEVRKRWQNKIRYLLVDEYQDTNTS


DNA-dependent ATPase
QYELVKLLVGSRARFTVVGDDDQSIYSWRGARPQNLVLLSQDFP


[Escherichia coli str. 
ALKVIKLEQNYRSSGRILKAANILLANNPHVFEKRLFSELGYGAEL


K-12 substr. MG16]
KVLSANNEEHEAERVTGELIAHHFVNKTQYKDYAILYRGNHQSR


(SEQ ID NO: 32)
VFEKFLMQNRIPYKISGGTSFFSRPEIKDLLAYLRVLTNPDDDSAF



LRIVNTPKREIGPATLKKLGEWAMTRNKSMFTASFDMGLSQTLS



GRGYEALTRFTHWLAEIQRLAEREPIAAVRDLIHGMDYESWLYE



TSPSPKAAEMRMKNVNQLFSWMTEMLEGSELDEPMTLTQVVTR



FTLRDMMERGESEEELDQVQLMTLHASKGLEFPYVYMVGMEEG



FLPHQSSIDEDNIDEERRLAYVGITRAQKELTFTLCKERRQYGELV



RPEPSRFLLELPQDDLIWEQERKVVSAEERMQKGQSHLANLKAM



MAAKRGK





Rep-X polypmtide1
MRLNPGQQQAVEFVTGPLLVLAGAGSGKTRVITNKIAHLIRGSG


(SEQ ID NO: 1)
YQARHIAAVTFTNKAAREMKERVGQTLGRKEARGLMISTFHTLG



LDIIKREYAALGMKANFSLFDDTDQLALLKELTEGLIEDDKVLLQ



QLISTISNWKNDLKTPSQAAASAIGERDRIFAHVYGLYDAHLKAC



NVLDFDDLILLPTLLLQRNEEVRKRWQNKIRYLLVDEYQDTNTS



QYELVKLLVGSRARFTWGDDDQSIYSWRGARPQNLVLLSQDFP



ALKVIKLEQNYRSSGRILKAANILIANNPHVFEKRLFSELGYGAEL



KVLSANNEEHEAERVTGELLAHHFVNKTQYKDYAILYRGNHQSR



VFEKFLMQNRIPYKISGGTSFFSRPEIKDLLAYLRVLTNPDDDCAF



LRIVNTPKREIGPATLKKLGEWAMTRNKSMFTASFDMGLSQTLS



GRGYEALTRFTHWLAEIQRLAEREPIAAVRDLIHGMDYESWLYE



TSPSPKAAEMRMKNVNQLFSWNTEMLEGSELDEPMTLTQVVTR



FTLRDMMERGESEEELDQVQLMTLHASKGLEFPYVYMVGMEEG



FLPHQSSIDEDNIDEERRLAYVGITRAQKELTFTLAKERRQYGELV



RPEPSRFLLELPQDDLIWEQERKVVSAEERMQKGQSHLANLKAM



MAAKRGK





Rep-X DNA2
ATGCGTCTAAACCCCGGCCAACAACAAGCTGTCGAATTCGTT


(SEQ ID NO: 2)
ACCGGCCCCTTGCTGGTGCTGGCGGGCGCGGGTTCCGGTAAA



ACTCGTGTTATCACCAATAAAATCGCCCATCTGATCCGCGGTA



GCGGGTACCAGGCGCGGCACATTGCGGCGGTGACCTTTACTA



ATAAAGCAGCGCGCGAGATGAAAGAGCGTGTAGGGCAGACG



CTGGGGCGCAAAGAGGCGCGTGGGCTGATGATCTCCACTTTC



CATACGTTGGGGCTGGATATCATCAAACGCGAGTATGCGGCG



CTTGGGATGAAAGCGAACTTCTCGTTGTTTGACGATACCGATC



AGCTTGCTTTGCTTAAAGAGTTGACCGAGGGGCTGATTGAAG



ATGACAAAGTTCTCCTGCAACAACTGATTTCGACCATCTCTAA



CTGGAAGAATGATCTCAAAACACCGTCCCAGGCGGCAGCAAG



TGCGATTGGCGAGCGGGACCGTATTTTTGCCCATGTTTATGGG



CTGTATGATGCACACCTGAAAGCCTGTAACGTTCTCGACTTCG



ATGATCTGATTTTATTGCCGACGTTGCTGCTGCAACGCAATGA



AGAAGTCCGCAAGCGCTGGCAGAACAAAATTCGCTATCTGCT



GGTGGATGAGTATCAGGACACCAACACCAGCCAGTATGAGCT



GGTGAAACTGCTGGTGGGCAGCCGCGCGCGCTTTACCGTGGT



GGGTGACGATGACCAGTCGATCTACTCCTGGCGCGGTGCACG



TCCGCAAAACCTGGTGCTGCTGAGTCAGGATTTTCCGGCGCTG



AAGGTGATTAAGCTTGAGCAGAACTATCGCTCTTCCGGGCGT



ATTCTCAAAGCGGCGAACATCCTGATCGCCAATAACCCGCAC



GTCTTTGAAAAGCGTCTGTTCTCCGAACTGGGTTATGGCGCGG



ACTCTAAAAGTATTAAGCGCGAATAACGAAGAACATGAGGCTG



AGCGCGTTACTGGCGAGCTGATCGCCCATCACTTCGTCAATAA



AACGCAGTACAAAGATTACGCCATTCTTTATCGCGGTAACCAT



CAGTCGCGGGTGTTTGAAAAATTCCTGATGCAAAACCGCATC



CCGTACAAAATATCTGGTGGTACGTCGTTTTTCTCTCGTCCTG



AAATCAAGGACTTGCTGGCTTATCTGCGCGTGCTGACTAACCC



GGACGATGACTGCGCATTTCTGCGTATCGTTAACACGCCGAA



GCGAGAGATTGGCCCGGCTACGCTGAAAAAGCTGGGTGAGTG



GGCGATGACGCGCAATAAAAGCATGTTTACCGCCAGCTTTGA



TATGGGCCTGAGTCAGACGCTTAGCGGACGTGGTTATGAAGC



ATTGACCCGCTTCACTCACTGGTTGGCAGAAATCCAGCGTCTG



GCGGAGCGGGAGCCGATTGCCGCGGTGCGTGATCTGATCCAT



GGCATGGATTATGAATCCTGGCTGTACGAAACATCGCCCAGC



CCGAAAGCCGCCGAAATGCGCATGAAGAACGTCAACCAACTG



TTTAGCTGGATGACGGAGATGCTGGAAGGCAGTGAACTGGAT



GAGCCGATGACGCTCACCCAGGTGGTGACGCGCTTTACTTTGC



GCGACATGATGGAGCGTGGTGAGAGTGAAGAAGAGCTGGATC



AGGTGCAACTGATGACTCTCCACGCGTCGAAAGGGCTGGAGT



TTCCTTATGTCTACATGGTCGGTATGGAAGAAGGGTTTTTGCC



GCACCAGAGCAGCATCGATGAAGATAATATCGATGAGGAGCG



GCGGCTGGCCTATGTCGGCATTACCCGCGCCCAGAAGGAATT



GACCTTTACGCTGGCTAAAGAACGCCGTCAGTACGGCGAACT



GGTGCGCCCGGAGCCGAGCCGCTTTTTGCTGGAGCTGCCGCA



GGATGATCTGATTTGGGAACAGGAGCGCAAAGTGGTCAGCGC



CGAAGAACGGATGCAGAAAGGGCAAAGCCATCTGGCGAATCT



GAAAGCGATGATGGCGGCAAAACGAGGGAAATAA





Rep-X RNA3
AUGCGUCUAAACCCCGGCCAACAACAAGCUGUCGANUUCGU


(SEQ ID NO: 3)
UACCGGCCCCUUGCUGGUGCUGGCGGGCGCGGGUUCCGGUA



AAACUCGUGUUAUCACCAAUAAAAUCGCCCAUCUGAUCCGC



GGUAGCGGGUACCAGGCGCGGCACAUUGCGGCGGUGACCUU



UACUAAUAAAGCAGCGCGCGAGAUGAAAGAGCGUGUAGGGC



AGACGCUGGGGCGCAAAGAGGCGCGUGGGCUGAUGAUCUCC



ACUUUCCAUACGUUGGGGCUGGAUAUCAUCAAACGCGAGUA



UGCGGCGCUUGGGAUGAAAGCGAACUUCUCGUUGUUUGACG



AUACCGAUCAGCUUGCUUUGCUUAAAGAGUUGACCGAGGGG



CUGAUUGAAGAUGACAAAGUUCUCCUGCAACAACUGAUUUC



GACCAUCUCUAACUGGAAGAAUGAUCUCAAAACACCGUCCC



AGGCGGCAGCAAGUGCGAUUGQCGAGCGGGACCGUAUUUUU



GCCCAUGUUUAUGGGCUGUAUGAUGCACACCUGAAAGCCUG



UAACGUUCUCGACUUCGAUGAUCUGAUUUUAUUGCCGACGU



UGCUGCUGCAACGCAAUGAAGAAGUCCGCAAGCGCUGGCAG



AACAAAAUUCGCUAUCUGCUGGUGGAUGAGUAUCAGGACAC



CAACACCAGCCAGUAUGAGCUGGUGAAACUGCUGGUGGGCA



GCCGCGCGCGCUUUACCGUGGUGGGUGACGAUGACCAGUCG



AUCUACUCCUGGCGCGGUGCACGUCCGCAAAACCUGGUGCU



GCUGAGUCAGGAUUUUCCGGCGCUGAAGGUGAUUAAGCUUG



AGCAGAACUAUCGCUCUUCCGUGCGUAUUCUGAAAGCGGCG



AACAUCCUGAUCGCCAAUAACCCGCACGUCUUUGAAAAGCG



UCUGUUCUCCGAACUGGGUUAUGGCGCGGAGCUAAAAGUAU



UAAGCGCGAAUAACGAAGAACAUGAGGCUGAGCGCGUUACU



GGCGAGCUGAUCGCCCAUCACUUCGUCAAUAAAACGCAGUA



CAAAGNUUACGCCAUUCUUUAUCGCGGUAACCAUCAGUCGC



GGGUGUUUGAAAAAUUCCUGAUGCAAAACCGCAUCCCGUAC



AAAAUAUCUGGUGGUACGUCGUUUUUCUCUCGUCCUGAAAU



CAAGGACUUGCUGGCUUAUCUGCGCGUGCUGACUAACCCGG



ACGAUGACUGCGCAUUUCUGCGUAUCGUUAACACGCCGAAG



CGAGAGAUUGGCCCGGCUACGCUGAAAAAGCUGGGUGAGUG



GGCCAUGACGCGCAAUAAAAGCAUGUUUACCGCCAGCUUUG



AUAUGGGCCUGAGUCAGACGCUUAGCGGACGUGGUUAUGAA



GCAUUGACCCGCUUCACUCACUGGUUGGCAGAAAUCCAGCG



UCUGGCGGAGCGGGAGCCGAUUGCCGCGGUGCGUGAUCUGA



UCCAUGGCAUGGAUUAUGAAUCCUGGCUGUACGAAACAUCG



CCCAGCCCGAAAGCCGCCGAAAUGCGCAUGAAGAACGUCAA



CCAACUGUULAGCUGGAUGACGGAGAUGCUGGAAGGCAGUG



AACUGGAUGAGCCGAUGACGCUCACCCAGGUGGUGACGCGC



UUUACUUUGCGCGACAUGAUGGAGCGUGGUGAGAGUGAAG



AAGAGCUGGAUCAGGUGCAACUGAUGACUCUCCACGCGUCG



AAAGGGCUGGAGUUUCCUUAUGUCUACAUGGUCGGUAUGG



AAGAAGGGUUUUUGCCGCACCAGAGCAGCAUCGAUGAAGAU



AAUAUCGAUGAGGAGCGGCGGCUGGCCUAUGUCGGCAUUAC



CCGCGCCCAGAAGGAAUUGACCUUUACGCUGGCUAAAGAAC



GCCGUCAGUACGGCGAACUGGUGCGCCCGGAGCCGAGCCGC



UUUUUGCUGGAGCUGCCGCAGGAUGAUCUGAUUUGUGAACA



GGAGCGCAAAGUGGUCAGCGCCGAAGAACGGAUGCAGAAAG



GGCAAAGCCAUCUGGCGAAUCUGAAAGCGAUGAUGGCGGCA



AAACGAGGGAAAUAA





Rep-X polypeptide4
SEQ ID NO: 1 and formula no 2 in Table 2 


(SEQ ID NO: 4)
(1-[2-(2,5-dioxopyrrol-1-yl)ethyl]pyrrole-2,



5-dione)





Rep-Y polypeptide5
MRLNPGQQQAVEFVTGPLLVLAGAGSGKTRVITNKIAHLIRGSG


(SEQ ID NO: 5)
YQARHIAAVTFTNKAAREMKERVGQTLGRKEARGLMISTFHTLG



LDIIKREYAALGMKANFSLFDDTDQLALLKELTEGLIEDDKVLLQ



QLISTISNWKNDLKTPSQAAASAIGERDRIFAHVYGLYDAHLKAC



NVLDFDDLILLPTLLLQRNEEVRKRWQNKIRYLLNDEYQDTNTS



QYELVKLLVGSRARFTVVGDDDQSIYSWRGARPQNLVLLSQDFP



ALKVIKLEQNYRSSGRILKAANILIANNPHVFEKRLFSELGYGAEL



KVLSANNEEHEAERVTGELIAHHFVNKTQYKDYAILYRGNHQSR



VFEKFLMQNRIPYKISGGTSFFSRPEIKDLLAYLRVLTNPDDDCAF



LRIVNTPKREIGPATLKKLGEWAMTRNKSMFTASFDMGLSQTLS



GRGYEALTRFTHWLAEIQRLAEREPIAAVRDLIHGMDYESWLYE



TSPSPKAAEMRMKNVNQLFSWMTEMLEGSELDEPMTLTQVVTR



FTLRDMMERGESEEELDQVQLMTLHASKGLEFPYVYMVGMEEG



FLPHQSSIDEDNIDEERRLAYVGITRAQKELTFTLAKERRQYGELV



RPEPSRFLLELPDDLIWEQERKVVSAEERMQKGQSHLANLKAM



MAAKRGK





Rep-Y DNA6
ATGCGTCTAAACCCCGGCCAACAACAAGCTGTCGAATTCGTT


(SEQ ID N0:6)
ACCGGCCCCTTGCTGGTGCTGGCGGGCGCGGGTTCCGGTAAA



ACTCGTGTTATCACCAATAAAATCGCCCATCTGATCCGCGGTA



GCGGGTACCAGGCGCGGCACATTGCGGCGGTGACCTTTACTA



ATAAAGCAGCGCGCGAGATGAAAGAGCGTGTAGGGCAGACG



CTGGGGCGCAAAGAGGCGCGTGGGCTGATGATCTCCACTTTC



CATACGTTGGGGCTGGATATCATCAAACGCGAGTATGCGGCG



CTTGGGATGAAAGCGAACTTCTCGTTGTTTGACGATACCGATC



AGCTTGCTTTGCTTAAAGAGTTGACCGAGGGGCTGATTGAAG



ATGACAAAGTTCTCCTGCAACAACTGATTTCGACCATCTCTAA



CTGGAAGAATGATCTCAAAACACCGTCCCAGGCGGCAGCAAG



TGCGATTGGCGAGCGGGACCGTATTTTTGCCCATGTTTATGGG



CTGTATGATGCACACCTGAAAGCCTGTAACGTTCTCGACTTCG



ATGATCTGATTTTATTGCCGACGTTGCTGCTGCAACGCAATGA



AGAAGTCCGCAAGCGCTGGCAGAACAAAATTCGCTATCTGCT



GGTGGATGAGTATCAGGACACCAACACCAGCCAGTATGAGCT



GGTGAAACTGCTGGTGGGCAGCCGCGCGCGCTTTACCGTGGT



GGGTGACGATGACCAGTCGATCTACTCCTGGCGCGGTGCACG



TCCGCAAAACCTGGTGCTGCTGAGTCAGGATTTTCCGGCGCTG



AAGGTGATTAAGCTTGAGCAGAACTATCGCTCTTCCGGGCGT



ATTCTGAAAGCGGCGAACATCCTGATCGCCAATAACCCGCAC



GTCTTTGAAAAGCGTCTGTTCTCCGAACTGGGTTATGGCGCGG



AGCTAAAAGTATTAAGCGCGAATAACGAAGAACATGAGGCTG



AGCGCGTTACTGGCGAGCTGATCGCCCATCACTTCGTCAATAA



AACGCAGTACAAAGATTACGCCATTCTTTATCGCGGTAACCAT



CAGTCGCGGGTGTTTGAAAAATTCCTGATGCAAAACCGCATC



CCGTACAAAATATCTGGTGGTACGTCGTTTTTCTCTCGTCCTG



AAATCAAGGACTTGCTGGCTTATCTGCGCGTGCTGACTAACCC



GGACGATGACTGCGCATTTCTGCGTATCGTTAACACGCCGAA



GCGAGAGATTGGCCCGGCTACGCTGAAAAAGCTGGGTGAGTG



GGCGATGACGCGCAATAAAAGCATGTTTACCGCCAGCTTTGA



TATGGGCCTGAGTCAGACGCTTAGCGGACGTGGTTATGAAGC



ATTGACCCGCTTCACTCACTGGTTGGCAGAAATCCAGCGTCTG



GCGGAGCGGGAGCCGATTGCCGCGGTGCGTGATCTGATCCAT



GGCATGGATTATGAATCCTGGCTGTACGAAACATCGCCCAGC



CCGAAAGCCGCCGAAATGCGCATGAAGAACGTCAACCAACTG



TTTAGCTGGATGACGGAGATGCTGGAAGGCAGTGAACTGGAT



GAGCCGATGACGCTCACCCAGGTGGTGACGCGCTTTACTTTGC



GCGACATGATGGAGCGTGGTGAGAGTGAAGAAGAGCTGGATC



AGGTGCAACTGATGACTCTCCACGCGTCGAAAGGGCTGGAGT



TTCCTTATGTCTACATGGTCGGTATGGAAGAAGGGTTTTTGCC



GCACCAGAGCAGCATCGATGAAGATAATATCGATGAGGAGCG



GCGGCTGGCCTATGTCGGCATTACCCGCGCCCAGAAGGAATT



GACCTTTACGCTGGCTAAAGAACGCCGTCAGTACGGCGAACT



GGTGCGCCCGGAGCCGAGCCGCTTTTTGCTGGAGCTGCCGCA



GGATGATCTGATTTGGGAACAGGAGCGCAAAGTGGTCAGCGC



CGAAGAACGGATGCAGAAAGGGCAAAGCCATCTGGCGAATCT



GAAAGCGATGATGGCGGCAAAACGAGGGAAATAA





Rep-Y RNA7
AUGCGUCUAAACCCCGGCCAACAACAAGCUGUCGAAUUCGU


(SEQ ID NO: 7)
UACCGGCCCCUUGCUGGUGCUGGCGGGCGCGGGUUCCGGUA



AAACUCGUGUUAUCACCAAUAAAAUCGCCCAUCUGAUCCGC



GGUAGCGGGUACCAGGCGCGGCACAUUGCGGCGGUGACCUU



UACUAAUAAAGCAGCGCGCGAGAUGAAAGAGCGUGUAGGGC



AGACGCUGGGGCGCAAAGAGGCGCGUGGGCUGAUGAUCUCC



ACUUUCCAUACGUUGGGGCUGGAUAUCAUCAAACGCGAGUA



UGCGGCGCUUGGGAUGAAAGCGAACUUCUCGUUGUUUGACG



AUACCGAUCAGCUUGCUUUGCUUAAAGAGUUGACCGAGGGG



CUGAUUGAAGAUGACAAAGUUCUCCUGCAACAACUGAUUUC



GACCAUCUCUAACUGGAAGAAUGAUCUCAAAACACCGUCCC



AGGCGGCAGCAAGUGCGAUUGGCGAGCGGGACCGUAUUUUU



GCCCAUGUUUAUGGGCUGUAUGAUGCACACCUGAAAGCCUG



UAACGUUCUCGACUUCGAUGAUCUGNUUUUAUUGCCGACGU



UGCUGCUGCAACGCAAUGAAGAAGUCCGCAAGCGCUGGCAG



AACAAAAUUCGCUAUCUGCUGGUGGAUGAGUAUCAGGACAC



CAACACCAGCCAGUAUGAGCUGGUGAAACUGCUGGUGGGCA



GCCGCGCGCGCUUUACCGUGGUGGGUGACGAUGACCAGUCG



AUCUACUCCUGGCGCGGUGCACGUCCGCAAAACCUGGUGCU



GCUGAGUCAGGAUUUUCCGGCGCUGAAGGUGAUUAAGCUUG



AGCAGAACUAUCGCUCUUCCGGGCGUAUUCUGAAAGCGGCG



AACAUCCUGAUCGCCAAUAACCCGCACGUCUUUGAAAAGCG



UCUGUUCUCCGAACUGGGUUAUGGCGCGGAGCUAAAAGUAU



UAAGCGCGAAUAACGAAGAACAUGAGGCUGAGCGCGUUACU



GGCGAGCUGAUCGCCCAUCACUUCGUCAAUAAAACGCAGUA



CAAAGAUUACGCCAUUCUUUAUCGCGGUAACCAUCAGUCGC



GGGUGUUUGAAAAAUUCCUGAUGCAAAACCGCAUCCCGUAC



AAAAUAUCUGGUGGUACGUCGUUUUUCUCUCGUCCUGAAAU



CAAGGACUUGCUGGCUUAUCUGCGCGUGCUGACUAACCCGG



ACGAUGACUGCGCAUUUCUGCGUAUCGUUAACACGCCGAAG



CGAGAGAUUGGCCCGGCUACGCUGAAAAAGCUGGGUGAGUG



GGCGAUGACGCGCAAUAAAAGCAUGUUUACCGCCAGCUUUG



AUAUGGGCCUGAGUCAGACGCUUAGCGGACGUGGUUAUGAA



GCAUUGACCCGCUUCACUCACUGGUUGGCAGAAAUCCAGCG



UCUGGCGCAGCGGCAGCCGAUUGCCGCGGUGCGUGAUCUGA



UCCAUGGCAUGGAUUAUGAAUCCUGGCUGUACGAAACAUCG



CCCAGCCCGAAAGCCGCCGAAAUGCGCAUGAAGAACGUCAA



CCAACUGUUUAGCUGGAUGACGGAGAUGCUGGAAGGCAGUG



AACUGGAUGAGCCGAUGACGCUCACCCAGGUGGUGACGCGC



UUUACUUUGCGCGACAUGAUGGAGCGUGGUGAGAGUGAAG



AAGAGCUGGAUCAGGUGCAACUGAUGACUCUCCACGCGUCG



AAAGGGCUGGAGUUUCCUUAUGUCUACAUGGUCGGUAUGG



AAGAAGGGUUUUUGCCGCACCAGAGCAGCAUCGAUGAAGAU



AAUAUCCAUGAGGAGCGGCGGCUGGCCUAUGUCGGCAUUAC



CCGCGCCCAGAAGGAAUUGACCUUUACGCUGGCUAAAGAAC



GCCGUCAGUACGGCGAACUGGUGCGCCCGGAGCCGAGCCGC



UUUUUGCUGGAGCUGCCGCAGGAUGAUCUGAUUUGGGAACA



GGAGCGCAAAGUGGUCAGCGCCGAAGAACGGAUGCAGAAAG



GGCAAAGCCAUCUGGCGAAUCUGAAAGCGAUGAUGGCGGCA



AAACGAGGGAAAUAA





Rep-Y polypeptide8
SEQ ID NO: 5 and formula no 2 in Table 2 


(SEQ ID NO: 8)
(1-[2-(2,5-dioxopyrrol-1-yl)ethyl]pyrrole-2,



5-dione).






1This Rep mutant encodes mutations removing natural cysteine residues found in the wild-type Rep and include further amino acid mutations to facilitate intramolecular crosslinking to an intramolecular crosslinking agent to generate the Rep-x polypeptide.




2The DNA sequence corresponds to the open reading frame that encodes the polypeptide of SEQ ID NO: 1.




3The RNA sequence corresponds to the open reading frame that encodes the polypeptide of SEQ ID NO: l.




4The Rep-X polypeptide closed foim monomer following reaction of Repx polypeptide (SEQ ID NO: 1) with an intramolecular crosslinking agent:




5This Rep mutant encodes mutations that remove natural cysteine residues found in the wild-type Rep and include further amino acid mutations to facilitate intramolecular crosslinking to an intramolecular crosslinking agent to generate the Rep-y polypeptide.




6The DNA sequence corresponds to the open reading frame that encodes the polypeptide of SEQ ID NO: 5.




7The RNA sequence corresponds to the open reading frame that encodes the polypeptide of SEQ ID NO: 5.




8The Rep-Y polypeptide open forui monomer following reaction of Repy polypeptide (SEQ ID NO: 5) with an intramolecular crosslinking agent:







The intramolecular crosslinking agents suitable for generating versions of Rep-x and Rep-Y include those identified in Table 2.









TABLE 2







Exemplary intramolecular crosslinking agents for generating Rep-X and Rep-Y








Formula



No.
Compound Structure (IUPAC Name)





1


embedded image







2


embedded image







3


embedded image







4


embedded image







5


embedded image







6


embedded image











These intramolecular crosslinking agents yield intramolecular crosslinked monomer structures when reacted with Rep-X and Rep-Y polypeptides. The linkers can have a length in the range from about 6 Å to about 25 Å. These types of linkers have an alkyl length in the range corresponding from about C7 to about C20, wherein highly preferred linkers have a length in the range from about C10 to about C12. Methods and conditions for generating intramolecular crosslink formation in proteins are well known in the art for these types of intramolecular crosslinking agents, and such methods and conditions are applicable to the helicases of this disclosure.


Rep-x would be inefficient in DNA unwinding even at high concentrations that make the wild type Rep active if the closed form is inactive for unwinding. In multiple turnover ensemble unwinding reactions using FRET-labeled DNA (see, for example, FIG. 1C), however, Rep-X unwound an 18-bp substrate with a 3′-(dT)10 overhang (SEQ ID NO: 33) at a much faster rate and higher reaction amplitude than the wild type Rep (FIG. 1D). In contrast, Rep-Y unwinding rates were similar to that of Rep (FIG. 1E), indicating that the dramatic unwinding enhancement is specifically achieved in the closed conformation. Because the large enhancement in unwinding activity observed in bulk solution can result from the activation of a monomer or from enhanced oligomerization, single molecule FRET (smFRET) experiments were performed to test if a single Rep-X can unwind DNA.


Rep and Rep-X monomers were immobilized to a polymer-passivated quartz surface using antibodies against the N-terminal hexa-histidine-tag (SEQ ID NO: 36) on the protein (FIG. 2A) to ensure that the observed activity belonged to monomers (T. Ha et al., Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638-641 (2002)). For the unwinding substrate, we used a 18-bp duplex DNA with a 3′-(dT)20 overhang (SEQ ID NO: 37) labeled with a donor (Cy3) and an acceptor (Cy5) at two opposite ends of the DNA duplex, allowing us to identify unwinding reactions as increases in FRET efficiency (EFRET)(FIG. 2A) (G. Lee, M. A. Bratkowski, F. Ding, A. Ke, T. Ha, Elastic Coupling Between RNA Degradation and Unwinding by an Exoribonuclease. Science (New York, N.Y 336, 1726-1729 (2012)). When the DNA and ATP were added to the reaction chamber, we could observe the capture of a single DNA molecule by a single protein as the sudden appearance of fluorescence signal (FIG. 2B-E). Subsequent DNA unwinding generated ssDNA strands that coil up due to high flexibility and EFRET increased (M. C. Murphy, I. Rasnik, W. Cheng, T. M. Lohman, T. Ha, Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophysical journal 86, 2530-2537 (2004)). Once the duplex was completely unwound, the acceptor-labeled strand was released, which was marked by sudden disappearance of the acceptor signal and recovery of the donor signal. The donor-labeled strand then dissociated, resulting in complete loss of fluorescence. The mean duration of unwinding measured from the EFRET increase to acceptor strand release was ˜0.6 s, giving a lower limit on the unwinding speed of 30 bp/s for the 18-bp substrate (FIG. 2F). About 82% of the DNA molecules (661 out of 809) that initially bound to Rep-X monomers were unwound (FIG. 2G). In contrast, only 2% of the DNA molecules (13 out of 847) that bound to Rep (i.e. without crosslinking) showed unwinding, and the unwinding yield for Rep-Y was 16% (357 out of 2212) (FIG. 2G), showing that constraining Rep into the closed form selectively activates the unwinding activity of a monomer. The nonzero amplitude of unwinding for Rep and Rep-Y may be due to conformational constraints caused by surface tethering in a small fraction of molecules.


In vitro studies have shown that the unwinding processivity of Rep and related helicases is limited even in their oligomeric forms, ranging from 30-50 bp (A. Niedziela-Majka, M. A. Chesnik, E. J. Tomko, T. M. Lohman, Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. The Journal of biological chemistry 282, 27076-27085 (2007); Ha et al. (2008) supra; J. A. Ali, T. M. Lohman, Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science (New York, N.Y 275, 377-380 (1997)). In order to investigate the processivity of Rep-X, we employed a dual optical tweezers assay (FIG. 3A; J. R. Moffitt et al., Intersubunit coordination in a homomeric ring ATPase. Nature 457, 446-450 (2009)) that can monitor unwinding amplitudes and speeds over thousands of base pairs of DNA. The two traps held two streptavidin functionalized sub-micron sized polystyrene beads. The first was coated with 6-kbp dsDNA attached via a biotin on the blunt end and containing a 3′ poly-dT ssDNA overhang on the other end ((dT)10 (SEQ ID NO: 33), (dT)15 (SEQ ID NO: 34), and (dT)75 (SEQ ID NO: 35) see Example 7)). The other bead was coated with Rep-X molecules via biotinylated antibody against the hexa-histidine-tag (SEQ ID NO: 36). A laminar flow cell with two parallel streams of buffer was created for controlling the initiation of the unwinding reaction (inset of FIG. 3B; L. R. Brewer, P. R. Bianco, Laminar flow cells for single-molecule studies of DNA-protein interactions. Nature methods 5, 517-525 (2008)). When the two beads were brought in proximity in the first laminar stream (Buffer C with 100 μM ATP and 100 μM ATP-γS), a single Rep-X binding to the 3′ overhang of the DNA formed a tether between the two beads without initiating unwinding. When the tethered beads were moved to the second laminar stream (Buffer C and 1 mM ATP), the DNA tether between the beads progressively shortened as the Rep-X monomer unwound and pulled the DNA. Unless otherwise stated, SSB was added to the second laminar stream in order to prevent any subsequent interaction of unwound ssDNA with other Rep-X on the bead surface. The optical tweezers experiments that were performed without SSB yielded the same Rep-X behavior (Example 7). By operating the trap under force feedback control, the tension was maintained on the DNA at 10-22 pN, as indicated. Additional controls and considerations ascertained that the observed activity stemmed from a single Rep-X regardless of the 3′-tail length and inclusion/omission of SSB (Example 7). Remarkably, 95% (38 out of 40) of the Rep-X-DNA complexes tethered through a 3′-tail unwound the entire 6-kbp DNA in a processive manner (FIG. 3B, D) and the average pause-free speed was 136 bp/s (FIG. 3C). In comparison, only 3% (2 out of 61 at 4 pN tension, none at higher forces) of wild type Rep and 7% (5 out of 70) of Rep-Y complexes displayed such processive unwinding events (FIG. 3D). Rep-X may have even greater processivity than 6-kbp, currently only limited by the length of the DNA used. The processive activity of a crosslinked Rep-X monomer shows the innate potential of these helicases that can be harnessed via conformational control.


The amount of force Rep-x can generate during unwinding was evaluated by performing measurements without the force feedback. Fixing trap positions led to a rapid build-up of force on the Rep-x in the opposite direction of unwinding until the measurement was terminated due to the breakage of connection between the two beads (FIG. 3E). The highest loads achieved in this experiment were not enough to stall the helicase permanently. More detailed analysis showed that the pause free unwinding rate of Rep-x was not impeded by increasing loads up to the limits of the linear regime of our trap (FIG. 3F), approximately 60 pN. These results suggest that the engineered Rep-X is the strongest helicase known to date (T. T. Perkins, H. W. Li, R. V. Dalal, J. Gelles, S. M. Block, Forward and reverse motion of single RecBCD molecules on DNA. Biophysical journal 86, 1640-1648 (2004); J. G. Yodh, M. Schlierf, T. Ha, Insight into helicase mechanism and function revealed through single-molecule approaches. Quarterly reviews of biophysics 43, 185-217 (2010)) In order to test if generation of a super active helicase can be reproduced for other helicases, thereby providing additional evidence of the conformational control mechanism, a PcrA-X helicase was engineered from Bacillus stearothermophilus PcrA. The Rep mutant sequences used to generate PcrA-x include those nucleotide and amino acid sequences identified in Table 3.









TABLE 3 







Amino Acid and Nucleotide Sequences for exemplary PcrA-X proteins








Polypeptide/DNA/RNA



(SEQ ID NO:_)
5′→3′ (nucleotide sequence) N→C (amino acid sequence)





Wild type PcrA helicase
ATGAACTTTTTATCGGAACAGCTGCTCGCCCATTTAAACAAAG


(gene sequence)
AGCAACAAGAAGCCGTCAGGACGACGGAAGGCCCGCTGCTCA


>gi|696477066:c17795-
TTATGGCGGGGGCGGGAAGCGGGAAAACGCGGGTGTTGACGC


15621 Geobacillus
ACCGCATCGCCTATTTGATGGCGGAAAAGCATGTGGCGCCGT



stearothermophilus

GGAACATTTTGGCCATTACGTTTACGAACAAGGCGGCGCGCG


ATCC 7953
AAATGCGGGPACGTGTGCAGTCGCTCTTAGGTGGGGCGGCGG


GBScontig0000036_2,
AAGACGTCTGGATTTCGACGTTCCACTCGATGTGCGTCCGCAT


whole genome shotgun
TTTGCGCCGCGACATTGACCGCATCGGCATCAACCGCAATTTT


sequence (SEQ ID NO: 
TCCATCCTTGATCCGACGGACCAGCTTTCAGTCATGAAAACGA


38)
TTTTAAAAGAAAAAAACATAGACCCGAAAAAATTTGAGCCGC



GGACGATTTTAGGCACGATCAGCGCGGCGAAAAACGAGCTGT



TGCCTCCGGAGCAATTCGCGAAGCGGGCCTCGACGTATTACG



AAAAAGTCGTCAGCGATGTGTATCAAGAATACCAACAGCGCC



TGCTTCGCAATCATTCGCTCGATTTTGACGATTTGATCATGAC



GACGATCCAACTGTTTGACCGCGTGCCGGATGTGCTTCACTAT



TACCAATATAAGTTTCAGTACATTCATATTGATGAGTACCAGG



ATACGAACCGCGCTCAATATACGCTGGTCAAAAAGCTGGCGG



AACGCTTTCAAAACATTTGCGCCGTCGGCGACGCCGACCAAT



CGATTTATCGGTGGCGCGGGGCGGACATCCAAAACATTTTGTC



GTTCGAGCGCGACTATCCGAACGCAAAAGTCATTTTGCTTGAA



CAAAACTACCGCTCGACGAAGCGCATTTTGCAAGCGGCGAAC



GAAGTCATCGAGCATAACGTCAACCGGAAGCCGAAACGGCTT



TGGACGGAAAACCCGGAAGGAAAGCCGATTCTTTATTATGAG



GCGATGAACGAAGCGGACGAAGCGCAGTTTGTCGCTGGACGC



ATCCGCGAGGCGGTGGAGCGCGGCGAACGCCGCTACCGTGAT



TTTGCTGTCTTGTACCGGACGAACGCCCAGTCGCGTGTCATGG



AGGAAATGTTGCTGAAAGCGAACATTCCGTATCAAATTGTCG



GCGGCTTAAAGTTCTATGACCGGAAAGAAATTAAAGACATTC



TCGCCTATTTGCGCGTCATTGCCAATCCGGACGATGATTTAAG



CTTGCTTCGCATCATTAACGTGCCAAAACGCGGCATTGGCGCC



TCGACGATCGACAAACTCGTCCGCTATGCAGCCGATCATGAG



CTGTCCTTGTTTGAGGCGCTCGGCGAGCTAGAGATGATCGGGC



TTGGCGCCAAAGCGGCCGGGGCGCTCGCCGCGTICCGCAGCC



AGCTCGAGCAATGGACACAGCTGCAAGAATACGTCTCCGTCA



CCGAACTCGTCGAAGAAGTGCTCGACAAATCGGGCTACCGCG



AGATGCTCAAGGCGGAGCGGACGATTGAAGCACAAAGCCGG



CTCGAGAACTTGGATGAGTTTTTGTCGGTGACGAAGCATTTTG



AAAATGTGAGCGACGATAAATCGCTCATCGCCTTTTTAACCGA



CTTGGCGCTCATTTCCGATTTGGACGAGCTGAACGGGACGGA



ACAGGCCGCTGAAGGAGATGCCCGTCATGTTGATGACGTTGCA



TGCCGCCAAAGGGCTCGAGTTTCCGGTCGTCTTTTTGATCGGC



ATGGAAGAAGGCATTTTCCCGCACAACCGCTCTCTCGAGGAT



GACGATGAGATGGAAGAAGAACGGCGGCTGGCGTACGTCGG



CATCACCCGCGCGGAGGAAGAACTTGTGCTGACGAGCGCGCA



AATGCGGACGTTGTTTGGCAACATCCAAATGAACCCGCCGTC



GCGCTTTTTGAATGAAATTCCGGCGCATTTGCTTGAGACAGCC



TCGCGCCGCCAAGCGGGCGCCTCCCGCCCGGCCGTTTCGCGCC



CGCAGGCAAGCGGCGCCGTGGGATCGTGGAAAGTCGGCGATC



GGGCGAATCACCGGAAATGGGGCATCGGCACCGTCGTCAGCG



TCCGCGGCGGCGGCGACGACCAAGAGCTCGACATCGCCTTCC



CGAGCCCGATCGGCATTAAACGGTTGCTTGCCAAATTTGCGCC



GATTGAGAAAGTGTAG





Wild type PcrA helicase
MNFLSEQLLAHLNKEQQEAVRTTEGPLLIMAGAGSGKTRVLTHR


(amino acid sequence)
IAYLMAEKHVAPWNILAITFTNKAAREMRERVQSLLGGAAEDV


>gi|696477065|ref|
WISTHSMCVRILRRDIDRIGINRNFSILDPTDQLSVMKTILKEKNI


WP_033016687.1 ATP-
DPKKFEPRTILGTISAAKNELLPPEQFAKRASTYYEKVVSDVYQE


dependent DNA helicase
YQQRLLRNHSLDFDDLIMTTIQLFDRVPDVLHYYQYKYFQYIHIDE


PcrA [Geobaciilus
YQDTNRAQYTLVKKLAERFQNICAVGDADQSIYRWRGADIQNIL



stearothermophilus]

SFERDYPNAKVILLEQNYRSTKRILQAANEVIEHNVNRKPKRLWT


(SEQ ID NO: 39)
ENPEGKPILYYEAMNEADEAQFVAGRIREAVERGERRYRDFAVL



YRTNAQSRVMEEMLLKANIPYQIVGGLKFYDRKEIKDILAYLRVI



ANPDDDLSLLRIINVPKRGIGASTIDKLVRYAADHELSLFEALGEL



EMIGLGAKAAGALAAFRSQLEQWTQLQEYVSVTELVEEVLDKS



GYREMLKAERTIEAQSRLENLDEFLSVTKHFENVSDDKSLIAFLT



DLALISDLDELNGTEQAAEGDAVMLMTLHAAKGLEFPVVFLIGM



EEGIFPHNRSLEDDDEMEEERRLAYVGITRAEEELVLTSAQMRTL



FGNIQMNPPSRFLNEIPAHLLETASRRQAGASRPAVSRPQASGAV



GSWKVGDRANHRKWGIGTVVSVRGGGDDQELDIAFPSPIGIKKL



LAKFAPIEKV





PcrA-X polypeptide1
MNFLSEQLLAHLNKEQQEAVRTTEGPLLIMAGAGSGKTRVLTHR


(SEQ ID NO: 9)
IAYLMAEKHVAPWNILAITFTNKAAREMRERVQSLLGGAAEDV



WISTFHSMAVRILRRDIDRIGINRNFSILDPTDQLSVMKTILKEKNI



DPKKFEPRTILGTISAAKNELLPPEQFAKRASTYYEKVVSDVYQE



YQQRLLRCHSLDFDDLIMTTIQLFDRVPDVLHYYQYKFQYIHIDE



YQDTNRAQYTLVKKLAERFQNIAAVGDADQSIYRWRGADIQNIL



SFERDYPNAKVILLEQNYRSTKRILQAANEVIEHNVNRKPKRLWT



ENPEGKPILYYEAMNEADEAQFVAGRIREAVERGERRYRDFAVL



YRTNAQSRVMEEMLLKANIPYQIVGGVKFYDRKEIKDILAYLRVI



ANPDDDCSLLRIINVPKRGIGASTIDKLVRYAADHELSLFEALGEL



EMIGLGAKAAGALAAFRSQLEQWTQLQEYVSVTELVEEVLDKS



GYREMLKAERTIEAQSRLENLDEFLSVTKHFENVSDDKSLIAFLT



DLALISDLDELNGTEQAAEGDAVMLMTLHAAKGLEFPVVFLIGM



EEGIFPHNRSLEDDDEMEEERRLAYVGITRAEEELVLTSAQMRTL



FGNIQMNPPSRFLNEIPAHLLETASRRQAGASRPAVSKPQASGAV



GSWKVGDRANHRKWGIGTVVSVRGGGDDQELDIAFPSPIGIKRL



LAKFAPIEKV





PcrA-X DNA2
ATGAACTTTTTATCGGAACAGCTGCTCGCCCATTTAAACAAAG


(SEQ ID NO: 10)
AGCAACAAGAAGCCGTCAGGACGACGGAAGGCCCGCTGcrcA



TTATGGCGGGGGCGGGAAGCGGGAAAACGCGGGTGTTGACGC



ACCGCATCGCCTATTTGATGGCGGAAAAGCATGTGGCGCCGT



GGAACATTTTGGCCATTACGTTTACGAACAAGGCGGCGCGCG



AAATGCGGGAACGTGTGCAGTCGCTCTTAGGTGGGGCGGCGG



AAGACGTCTGGATTTCGACGTTCCACTCGATGGCCGTCCGCAT



TTTGCGCCGCGACATTGACCGCATCGGCATCAACCGCAATTTT



TCCATCCTTGATCCGACGGACCAGCTTTCAGTCATGAAAACGA



TTTTAAAAGAAAAAAACATAGACCCGAAAAAATTTGAGCCGC



GGACGATTTTAGGCACGACAGCGCGGCGAAAAACGAGCTGT



TGCCTCCGGAGCAATTCGCGAAGCGGGCCTCGACGTATTACG



AAAAAGTCGTCAGCGATGTGTATCAAGAATACCAACAGCGCC



TGCTTCGCTGTCATTCGCTCGATTTTGACGATTTGATCATGACG



ACGATCCAACTGTTTGACCGCGTGCCGGATGTGCTTCACTATT



ACCAATATAAGTTTCAGTACATTCATATTGATGAGTACCAGGA



TACGAACCGCGCTCAATATACGCTGGTCAAAAAGCTGGCGGA



ACGCTTCAAAACATTGCCGCCGTCGGCGACGCCGACCAATC



GATTTATCGGTGGCGCGGGGCGGACATCCAAAACATTTTGTC



GTTCGAGCGCGACTATCCGAACGCAAAAGTCATTTTGCTTGAA



CAAAACTACCGCTCGACGAAGCGCATTTTGCAAGCGGCGAAC



GAAGTCATCGAGCATAACGTCAACCGGAAGCCGAAACGGCTT



TGGACGGAAAACCCGGAAGGAAAGCCGATTCTTTATTATGAG



GCGATGAACGAAGCGGACGAAGCGCAGTTTGTCGCTGGACGC



ATCCGCGAGGCGGTGGAGCGCGGCGAACGCCGCTACCGTGAT



TTTGCTGTCTTGTACCGGACGAACGCCCAGTCGCGTGTCATGG



AGGAAATGTTGCTGAAAGCGAACATTCCGTATCAAATTGTCG



GCGGCGTAAAGTTCTATGACCGGAAAGAAATTAAAGACATTC



TCGCCTATTTGCGCGTCATTGCCAATCCGGACGATGATTGCAG



CTTGCTTCGCATCATTAACGTGCCAAAACGCGGCATTGGCGCC



TCGACGATCGACAAACTCGTCCGCTATGCAGCCGATCATGAG



CTGTCCTTGTTTGAGGCGCTCGGCGAGCTAGAGATGATCGGGC



TTGGCGCCAAAGCGGCCGGGGCGCTCGCCGCGTTCCGCAGCC



AGCTCGAGCAATGGACACAGCTGCAAGAATACGTCTCCGTCA



CCGAACTCGTCGAAGAAGTGCTCGACAAATCGGGCTACCGCG



AGATGCTCAAGGCGGAGCGGACGATTGAAGCACAAAGCCGG



CTCGAGAACTTGGATGAGTTTTTGTCGGTGACGAAGCATTTTG



AAAATGTGAGCGACGATAAATCGCTCATCGCCTTTTTAACCGA



CTTGGCGCTCATTTCCGATTTGGACGAGCTGAACGGGACGGA



ACAGGCCGCTGAAGGAGATGCCGTCATGTTGATGACGTTGCA



TGCCGCCAAAGGGCTCGAGTTTCCGGTCGTCTTTTTGATCGGC



ATGGAAGAAGGCATTTTCCCGCACAACCGCTCTCTCGAGGAT



GACGATGAGATGGAAGAAGAACGGCGGCTGGCGTACGTCGG



CATCACCCGCGCGGAGGAAGAACTTGTGCTGACGAGCGCGCA



AATGCGGACGTTGTTTGGCAACATCCAAATGAACCCGCCGTC



GCGCTTTTTGAATGAAATTCCGGCGCATTTGCTTGAGACAGCC



TCGCGCCGCCAAGCGGGCGCCTCCCGCCCGGCCGTTTCGCGCC



CGCAGGCAAGCGGCGCCGTGGGATCGTGGAAAGTCGGCGATC



GGGCGAATCACCGGAAATGGCUGCATCGGCACCGTCGTCAGCG



TCCGCGGCGGCGGCGACGACCAAGAGCTCGACATCGCCTTCC



CGAGCCCGATCGGUATTAAACGGTTGCTTGCCAAATTTGCGCC



GATTGAGAAAGTGTAG





PcrA-X RNA3
AUGAACUUUUUAUCGGAACAGCUGCUCGCCCAUUUAAACAA


(SEQ ID NO: 11)
AGAGCAACAAGAAGCCGUCAGGACGACGGAAGGCCCGCUGC



UCAUUAUGGCGGGGGCGGGAAGCGGGAAAACGCGGGUGUU



GACGCACCGCAUCGCCUAUUUGAUGGCGGAAAAGCAUGUGG



CGCCGUGGAACAUUUUGGCCAUUACGUUUACGAACAAGGCG



GCGCGCGAAAUGCGGGAACGUGUGCAGUCGCUCUUAGGUGG



GGCGGCGGAAGACGUCUGGAUUUCGACGUUCCACUCGAUGG



CCGUCCGCAUUUUGCGCCGCGACAUUGACCGCAUCGGCAUC



AACCGCAAUUUUUCCAUCCUUGAUCCGACGGACCAGCUUUC



AGUCAUGAAAACGAUUUUAAAAGAAAAAAACAUAGACCCG



AAAAAAUUUGAGCCGCGGACGAUUUUAGGCACGAUCAGCGC



GGCGAAAAACGAGCUGUUGCCUCCGGAGCAAUUCGCGAAGC



GGGCCUCGACGUAUUACGAAAAAGUCGUCAGCGAUGUGUAU



CAAGAAUACCAACAGCGCCUGCUUCGCUGUCAUUCGCUCGA



UUUUGACGAUUUGAUCAUGACGACGAUCCAACUGUUUGACC



GCGUGCCGGAUGUGCUUCACUAUUACCAAUNUAAGUUUCAG



UACAUUCAUAUUGAUGAGUACCAGGAUACGAACCGCGCUCA



AUAUACGCUGGUCAAAAAGCUGGCGGAACGCUUUCAAAACA



UUGCCGCCGUCGGCGACGCCGACCAAUCGAUUUAUCGGUGG



CGCGGGGCGGACAUCCAAAACAUUUGUCGUUCGAGCGCGA



CUAUCCGAACGCAAAAGUCAUUUUGCUUGAACAAAACUACC



GCUCGACGAAGCGCAUUUUGCAAGCGGCGAACGAAGUCAUC



GAGCAUAACGUCAACCGGAAGCCGAAACGGCUUUGGACGGA



AAACCCGGAAGGAAAGCCGAUUCUUUAUUAUGAGGCGAUGA



ACGAAGCGGACGAAGCGCAGUUUGUCGCUGGACGCAUCCGC



GAGGCGGUGGAGCGCGGCGAACGCCGCUACCGUGAUUUUGC



UGUCUUGUACCGGACGAACGCCCAGUCGCGUGUCAUGGAGG



AAAUGUUGCUGAAAGCGAACAUUCCGUAUCAAAUUGUCGGC



GGCGUAAAGUUCUAUGACCGGAAAGAAAUUAAAGACAUUC



UCGCCUAUUUGCGCGUCAUUGCCAAUCCGGACGAUGAUUGC



AGCUUGCUUCGCAUCAUUAACGUGCCAAAACGCGGCAUUGG



CGCCUCGACGAUCGACAAACUCGUCCGCUAUGCAGCCGAUC



AUGAGCUGUCCUUGUUUGAGGCGCUCGGCGAGCUAGAGAUG



AUCGGGCUUGGCGCCAAAGCGGCCGGGGCGCUCGCCGCGUU



CCGCAGCCAGCUCGAGCAAUGGACACAGCUGCAAGAAUACG



UCUCCGUCACCGAACUCGUCGAAGAAGUGCUCGACAAAUCG



GGCUACCGCGAGAUGCUCAAGGCGGAGCGGACGAUUGAAGC



ACAAAGCCGGCUCGAGAACUUGGAUGAGUUUUUGUCGGUGA



CGAAGCAUUUUGAAAAUGUGAGCGACGAUAAAUCGCUCAUC



GCCUUUUUAACCGACUUGGCGCUCAUUUCCGAUUUGGACGA



GCUGAACGGGACGGAACAGGCCGCUGAAGGAGAUGCCGUCA



UGUUGAUGACGUUGCAUGCCGCCAAAGGGCUCGAGUUUCCG



GUCGUCUUUUUGAUCGGCAUGGAAGAAGGCAUUUUCCCGCA



CAACCGCUCUCUCGAGGAUGACGAUGAGAUGGAAGAAGAAC



GGCGGCUGGCGUACGUCGGCAUCACCCGCGCGGAGGAAGAA



CUUGUGCUGACGAGCGCGCAAAUGCGGACGUUGUUUGGCAA



CAUCCAAAUGAACCCGCCGUCGCGCUUUUUGAAUGAAAUUC



CGGCGCAUUUGCUUGAGACAGCCUCGCGCCGCCAAGCGGGC



GCCUCCCGCCCGGCCGUUUCGCGCCCGCAGUCAAGCGGCGCC



GUGGGAUCGUGGAAAGUCGGCGAUCGGGCGAAUCACCGGAA



AUGUGGCAUCGGCACCGUCGUCAGCGUCCGCGGCGGCGGCG



ACGACCAAGAGCUCGACAUCGCCUUCCCGAGCCCGAUCGGC



AUUAAACGGUUGCUUGCCAAAUUUGCGCCGAUUGAGAAAGU



GUAG


PerA-X polypeptide4
SEQ ID NO: 9 and formula no 1 in Table 2 


(SEQ ID NO: 12)
(1-[2-[2-[2-(2,5-dioxopyrrol-1-



yl)ethoxy]ethoxy]ethyl]pyrrole-2,5-dime).






1This PcrA mutant encodes mutations removing natural cysteine residues found in the wild-type PcrA and include further amino acid mutations to facilitate intramolecular crosslinking to an intramolecular crosslinking agent to generate the PcrA-X polypeptide.




2The DNA sequence corresponds to the open reading frame that encodes the polypeptide of SEQ ID NO: 9.




3The RNA sequence corresponds to the open reading frame that encodes the polypeptide of SEQ ID NO: 9.




4The PcrA-X polypeptide closed form monomer following reaction of PcrA-X polypeptide (SEQ ID NO: 9) with an intramolecular crosslinking agent.







Exemplary intramolecular crosslinking agents suitable for generating versions of PcrA-x include those identified in Table 2. Methods and conditions for generating intramolecular crosslink formation in proteins are well known in the art for these types of intramolecular crosslinking agents, and such methods and conditions are applicable to the PcrA helicases of this disclosure.


Mutations involved replacing two highly conserved Cys residues in this helicase (FIG. 4A, B) which reduced the apparent ssDNA-dependent ATPase activity from approximately 40 ATP/s (wild type) to 5 ATP/s. Upon crosslinking in the closed form, PcrA-x retained the low ATPase activity (4.3 ATP/s), but exhibited an enhanced helicase activity in comparison to both the wild type and non-crosslinked mutant in ensemble reactions (FIG. 5A, B). smFRET experiments showed that PcrA-X monomers can unwind 39% (228 out of 578) of the 18-bp dsDNA they bind compared to only 4% (26 out of 617) for wild type PcrA (FIG. 6A-C). In the optical tweezers assay, PcrA-X monomers, like Rep-X, were capable of processively unwinding of 1-6 kbp long DNA, albeit at a much lower rate (2-15 bp/s, FIG. 6D) whereas no PcrA molecule (0 out of 51) was able to do the same (FIG. 6E). Despite the impaired activity levels of the PcrA mutant, conversion to PcrA-X made its monomers into highly processive helicases, thus indicating a general mechanism of conformational control for this class of helicases.


Strong helicase activity of Rep-X and PcrA-X raises the possibility that the cellular partners of Rep or PcrA may switch on the powerful unwinding activity intrinsic to these enzymes by constraining them in the closed conformation. One such partner of PcrA is RepD, a plasmid replication initiator protein from Staphylococcus aureus that recognizes and forms a covalent adduct with the oriD sequence of the plasmid, and then recruits PcrA for highly processive unwinding (A. F. Slatter, C. D. Thomas, M. R. Webb, PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD. Biochemistry 48, 6326-6334 (2009); W. Zhang et al., Directional loading and stimulation of PcrA helicase by the replication initiator protein RepD. Journal of molecular biology 371, 336-348 (2007); C. Machon et al., RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD. Nucleic acids research 38, 1874-1888 (2010)). Based on the similar results from PcrA-X and the homologous E. coli counterpart Rep-X, but not Rep-Y, we hypothesized that the RepD-induced PcrA activity enhancement is in fact the result of the conformational constraint of the helicase in the PcrA-X-like closed form. To test this prediction, we prepared an oriD DNA-RepD adduct, and measured the intramolecular conformation of PcrA bound to this adduct. We used a double cysteine mutant of PcrA, PcrA-DM1, stochastically labeled with a mixture of donor and acceptor fluorophores that would be expected to generate high EFRET in the closed form and low EFRET in the open form (J. Park et al., PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142, 544-555 (2010); (FIG. 6F). The EFRET distributions of PcrA-DM1 bound to the oriD DNA-RepD adduct and the oriD DNA alone are shown in FIG. 6F. Only the PcrA-DM1 molecules with a fluorescence active Cy3-Cy5 pair were included in the analysis. The results revealed that the presence of RepD indeed biases PcrA toward the closed high EFRET conformation. Without the invention being limited to any particular mechanism, the regulation mechanism of this class of helicases may involve in vivo partner proteins that constrain the conformation of 2B subdomain to the closed form to activate its function.


The basis for constraining Rep and PcrA into the closed form that converts an enzyme with undetectable unwinding activity to a super helicase is unknown. One possibility is that the intrinsic unwinding activity itself requires the closed form, for example via the torque-wrench mechanism proposed for UvrD (J. Y. Lee, W. Yang, UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127, 1349-1360 (2006)). Another possibility is that the open form inhibits helicase function and crosslinking to the closed form prevents this inhibitory mechanism. Without the invention being limited to any particular theory of operation, we prefer the latter for the following reasons. First, Rep-Y crosslinked in the open form does unwind DNA as well as the wild type when the protein is at high concentrations in excess of DNA (FIG. 1E). Therefore, the closed form per se is not absolutely required for unwinding activity. Second, using ultra-high resolution optical tweezers combined with smFRET capability, we found that UvrD assumes the closed conformation when it unwinds DNA but after it unwinds about 10 bp it switches to the open conformation and rewinds the DNA likely after strand switching. Therefore, we suggest that Rep-X becomes a highly processive super-helicase because crosslinking prevents the open conformation required for strand-switching and rewinding that have been observed for UvrD (M. N. Dessinges, T. Lionnet, X. G. Xi, D. Bensimon, V. Croquette, Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proc. Natl. Acad. Sci., U.S.A. 101, 6439-6444 (2004)) and BLM (J. G. Yodh, B. C. Stevens, R. Kanagaraj, P. Janscak, T. Ha, BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. The EMBO journal 28, 405-416 (2009)). The enhancement of unwinding activity via the deletion of 2B domain in Rep (W. Cheng et al., The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity. Proc. Natl. Acad. Sci., U.S.A. 99, 16006-16011 (2002)) may also be due to inhibition of strand switching (M. J. Comstock, K. D. Whitley, H. Jia, T. M. Lohman, T. Ha and Y. R. Chemla, “Direct observation of structure-function relationship in a nucleic acid processing enzyme,” Science 348: 352-354 (2015).


Most conformational control of protein functions demonstrated so far first locks the naturally active protein to an artificially inhibited conformation so that additional controls imposed by researchers can be used to recover the original activity (B. Choi, G. Zocchi, Y. Wu, S. Chan, L. Jeanne Perry, Allosteric control through mechanical tension. Phys Rev Lett 95, 078102 (2005); M. Tomishige, R. D. Vale, Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change. J Cell Biol 151, 1081-1092 (2000); D. M. Veine, K. Ohnishi, C. H. Williams, Jr., Thioredoxin reductase from Escherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines. Protein science: a publication of the Protein Society 7, 369-375 (1998); B. X. Huang, H. Y. Kim, Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry. Mol Cell Proteomics 5, 1045-1053 (2006)). Our work is innovative and unique in that we found a conformational control that activates a naturally inhibited unwinding function, and the resulting enzyme is a super-helicase that has unprecedentedly high processivity for a single motor helicase. RecBCD, another SF-1 helicase, has similarly high processivity but contains two motors and associated nucleases. Moreover it is known to backslide at opposing forces below 10 pN whereas Rep-X can be active against forces as high as 60 pN (Perkins et al. (2004) supra). This super helicase with high processivity and high tolerance against load without nuclease activities may also be useful for biotechnological applications such as single molecule nanopore sequencing (D. Branton et al., The potential and challenges of nanopore sequencing. Nature biotechnology 26, 1146-1153 (2008); A. H. Laszlo et al., Decoding long nanopore sequencing reads of natural DNA. Nature biotechnology, (2014)) and isothermal DNA amplification (M. Vincent, Y. Xu, H. Kong, Helicase-dependent isothermal DNA amplification. EMBO reports 5, 795-800 (2004).


In this regard, one type of isothermal DNA amplification for which these super helicases have application include helicase dependent amplification. Referring to FIG. 8, the helicase dependent amplification can be characterized in three steps. In step 1, DNA helicase (104) contacts a double-stranded DNA (101) to unwind the first and second single strands (102 and 103) to provide the ability of first and second oligonucleotide primers (105 and 106) hybridize to the first and second single strands (102 and 103), respectively. In step 2: DNA-dependent DNA polymerases (107) bind to the 3′-termini of the first and second oligonucleotide primers (105 and 106) to initiate chain elongation of new strands (108 and 109). In step 3. continued DNA polymerization results in DNA amplification and formation of new double-stranded DNA (110 and 111).


Nucleic Acid Amplification


In certain exemplary embodiments, methods for amplifying nucleic acid sequences are provided. Exemplary methods for amplifying nucleic acids include the polymerase chain reaction (PCR) (see, e.g., Mullis et al. (1986) Cold Spring Harb. Symp. Quant. Biol. 51 Pt 1:263 and Cleary et al. (2004) Nature Methods 1:241; and U.S. Pat. Nos. 4,683,195 and 4,683,202), anchor PCR, RACE PCR, ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91:360-364), self-sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87:1874), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86:1173), Q-Beta Replicase (Lizardi et al. (1988) BioTechnology 6:1197), recursive PCR (Jaffe et al. (2000) J. Biol. Chem. 275:2619; and Williams et al. (2002) J. Biol. Chem. 277:7790), the amplification methods described in U.S. Pat. Nos. 6,391,544, 6,365,375, 6,294,323, 6,261,797, 6,124,090 and 5,612,199, isothermal amplification (e.g., rolling circle amplification (RCA), hyperbranched rolling circle amplification (HRCA), strand displacement amplification (SDA), helicase-dependent amplification (HDA), PWGA, or any other nucleic acid amplification method using techniques well known to those of skill in the art.


“Polymerase chain reaction,” or “PCR,” refers to a reaction for the in vitro amplification of specific DNA sequences by the simultaneous primer extension of complementary strands of DNA. In other words, PCR is a reaction for making multiple copies or replicates of a target nucleic acid flanked by primer binding sites, such reaction comprising one or more repetitions of the following steps: (i) denaturing the target nucleic acid, (ii) annealing primers to the primer binding sites, and (iii) extending the primers by a nucleic acid polymerase in the presence of nucleoside triphosphates. Usually, the reaction is cycled through different temperatures optimized for each step in a thermal cycler instrument. Particular temperatures, durations at each step, and rates of change between steps depend on many factors well-known to those of ordinary skill in the art, e.g., exemplified by the references: McPherson et al., editors, PCR: A Practical Approach and PCR 2: A Practical Approach (IRL Press, Oxford, 1991 and 1995, respectively). For example, in a conventional PCR using Taq DNA polymerase, a double stranded target nucleic acid may be denatured at a temperature greater than 90° C., primers annealed at a temperature in the range 50-75° C., and primers extended at a temperature in the range 72-78° C.


The term “PCR” encompasses derivative forms of the reaction, including but not limited to, RT-PCR, real-time PCR, nested PCR, quantitative PCR, multiplexed PCR, assembly PCR and the like. Reaction volumes range from a few hundred nanoliters, e.g., 200 nL, to a few hundred microliters, e.g., 200 microliters. “Reverse transcription PCR,” or “RT-PCR,” means a PCR that is preceded by a reverse transcription reaction that converts a target RNA to a complementary single stranded DNA, which is then amplified, e.g., Tecott et al., U.S. Pat. No. 5,168,038. “Real-time PCR” means a PCR for which the amount of reaction product, i.e., amplicon, is monitored as the reaction proceeds. There are many forms of real-time PCR that differ mainly in the detection chemistries used for monitoring the reaction product, e.g., Gelfand et al., U.S. Pat. No. 5,210,015 (“Tagman”); Wittwer et al., U.S. Pat. Nos. 6,174,670 and 6,569,627 (intercalating dyes); Tyagi et al., U.S. Pat. No. 5,925,517 (molecular beacons). Detection chemistries for real-time PCR are reviewed in Mackay et al., Nucleic Acids Research, 30:1292-1305 (2002). “Nested PCR” means a two-stage PCR wherein the amplicon of a first PCR becomes the sample for a second PCR using a new set of primers, at least one of which binds to an interior location of the first amplicon. As used herein, “initial primers” in reference to a nested amplification reaction mean the primers used to generate a first amplicon, and “secondary primers” mean the one or more primers used to generate a second, or nested, amplicon. “Multiplexed PCR” means a PCR wherein multiple target sequences (or a single target sequence and one or more reference sequences) are simultaneously carried out in the same reaction mixture, e.g. Bernard et al. (1999) Anal. Biochem., 273:221-228 (two-color real-time PCR). Usually, distinct sets of primers are employed for each sequence being amplified. “Quantitative PCR” means a PCR designed to measure the abundance of one or more specific target sequences in a sample or specimen. Techniques for quantitative PCR are well-known to those of ordinary skill in the art, as exemplified in the following references: Freeman et al., Biotechniques, 26:112-126 (1999); Becker-Andre et al., Nucleic Acids Research, 17:9437-9447 (1989); Zimmerman et al., Biotechniques, 21:268-279 (1996); Diviacco et al., Gene, 122:3013-3020 (1992); Becker-Andre et al., Nucleic Acids Research, 17:9437-9446 (1989); and the like.


In one aspect of the invention, a method of performing isothermal DNA amplification is provided. The method can includes two steps. The first step includes forming a mixture. The mixture includes a double-stranded DNA template having a first strand and a second strand; a conformationally-constrained helicase; a DNA-dependent DNA polymerase; a first oligonucleotide primer complementary to a portion of the first strand; a second oligonucleotide primer complementary to a portion of the second strand; and an amplification buffer cocktail. The second step includes incubating the mixture at a temperature compatible for activating the conformationally-constrained helicase and DNA-dependent DNA polymerase. In some embodiments of this aspect, the conformationally-constrained helicase is selected from SEQ ID NOs: 4 and 12.


Nucleic Acid Sequencing


In certain exemplary embodiments, methods of determining the sequence identities of nucleic acid sequences are provided. Determination of the sequence of a nucleic acid sequence of interest can be performed using variety of sequencing methods known in the art including, but not limited to, sequencing by hybridization (SBH), sequencing by ligation (SBL), quantitative incremental fluorescent nucleotide addition sequencing (QIFNAS), stepwise ligation and cleavage, fluorescence resonance energy transfer (FRET), molecular beacons, TaqMan reporter probe digestion, pyrosequencing, fluorescent in situ sequencing (FISSEQ), FISSEQ beads (U.S. Pat. No. 7,425,431), wobble sequencing (PCT/US05/27695), multiplex sequencing (U.S. 2008/0269068; Porreca et al (2007) Nat. Methods 4:931), polymerized colony (POLONY) sequencing (U.S. Pat. Nos. 6,432,360, 6,485,944 and 6,511,803, and PCT/US05/06425), nanogrid rolling circle sequencing (ROLONY) (U.S. 2009/0018024), nanopore sequencing (using platforms such as those from Agilent, Oxford, Sequenom, Noblegen, NABsys, Genia), allele-specific oligo ligation assays (e.g., oligo ligation assay (OLA), single template molecule OLA using a ligated linear probe and a rolling circle amplification (RCA) readout, ligated padlock probes, and/or single template molecule OLA using a ligated circular padlock probe and a rolling circle amplification (RCA) readout) and the like. High-throughput sequencing methods, e.g., on cyclic array sequencing using platforms such as Roche 454, Illumina Solexa, ABI-SOLiD, ION Torrents, Complete Genomics, Pacific Bioscience, Helicos, Polonator platforms (Worldwide Web Site: Polonator.org), and the like, can also be utilized. High-throughput sequencing methods are described in U.S. 2010/0273164. A variety of light-based sequencing technologies are known in the art (Landegren et al. (1998) Genome Res. 8:769-76; Kwok (2000) Pharmocogenomics 1:95-100; and Shi (2001) Clin. Chem. 47:164-172).


In certain exemplary embodiments, the DNA-dependent DNA polymerase is selected from a group consisting of E. coli DNA Pol I, E. coli DNA Pol I Large Fragment, Bst 2.0 DNA Polymerase, Bst DNA Polymerase, Bst DNA Polymerase Large Fragment, Bsu DNA Polymerase I Large Fragment, T4 DNA Polymerase, T7 DNA polymerase, PyroPhage® 3173 DNA Polymerase and phi29 DNA Polymerase. In some embodiments, the conformationally-constrained helicase includes a helicase selected from superfamily 1, wherein the helicase has a first amino acid residue and a second amino acid reside, and wherein the first and second amino acid residues are in proximity. The conformationally-constrained helicase also includes a linker, wherein the linker comprises a first covalent bond with the first amino acid residue and a second covalent bond with the second amino acid residue. In some embodiments of this aspect, the conformationally-constrained helicase includes a crosslinked, closed form helicase monomer.


Expression of Helicase-X Polypeptides


The nucleic acids encoding the Rep-X and PcrA-X polypeptides can be adapted to suitable expression systems for producing the helicasex polypeptides for helicase-x production. For DNAs encoding helicasex genes, the representative genes can be operably-linked to suitable expression vectors for expressing the proteins in bacterial, fungal, insect or other suitable expression host. For RNAs encoding helicase-x polypeptides, the representative RNAs can be engineered for enabling efficient expression in vitro of the polypeptides in extract lysates produced from bacterial, fungal, insect or other suitable expression host sources. Such systems are well known in the art. Following expression, the helicase-x polypeptides can be purified by methods known in the art, including affinity-tag chromatography, SDS-PAGE, and size-exclusion chromatography, among others.


In certain exemplary embodiments, vectors such as, for example, expression vectors, containing a nucleic acid encoding one or more helicase-x polypeptides described herein are provided. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid,” which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “expression vectors.” In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


In certain exemplary embodiments, the recombinant expression vectors comprise a nucleic acid sequence (e.g., a nucleic acid sequence encoding one or more helicase-x polypeptides described herein) in a form suitable for expression of the nucleic acid sequence in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably linked” is intended to mean that the nucleotide sequence encoding one or more helicase-x polypeptides is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term “regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cells and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors described herein can be introduced into host cells to thereby produce proteins or portions thereof, including fusion proteins or portions thereof, encoded by nucleic acids as described herein (e.g., one or more helicasex polypeptides).


Recombinant expression vectors of the invention can be designed for expression of one or more encoding one or more helicase-x polypeptides in prokaryotic or eukaryotic cells. For example, one or more vectors encoding one or more helicase-x polypeptides can be expressed in bacterial cells such as E. coli, insect cells (e.g., using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D. B. and Johnson, K. S. (1988) Gene 67:31-40); pMAL (New England Biolabs, Beverly, Mass.); and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


In another embodiment, the expression vector encoding one or more helicase-x polypeptides is a yeast expression vector. Examples of vectors for expression in yeast S. cerevisiae include pYepSec1 (Baldari, et. al., (1987) EMBO J. 6:229-234); pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943); pJRY88 (Schultz et al., (1987) Gene 54:113-123); pYES2 (Invitrogen Corporation, San Diego, Calif.); and picZ (Invitrogen Corporation).


Alternatively, one or more helicase-x polypeptides can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf9 cells) include the pAc series (Smith et al. (1983) Mol. Cell. Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).


In certain exemplary embodiments, a nucleic acid described herein is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see Green M., and Sambrook, J. Molecular Cloning: A Laboratory Manual. 4th, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2012.


In certain exemplary embodiments, host cells into which a recombinant expression vector of the invention has been introduced are provided. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


A host cell can be any prokaryotic or eukaryotic cell. For example, one or more helicase-x polypeptides can be expressed in bacterial cells such as E. coli, viral cells such as retroviral cells, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


Delivery of nucleic acids described herein (e.g., vector DNA) can be by any suitable method in the art. For example, delivery may be by injection, gene gun, by application of the nucleic acid in a gel, oil, or cream, by electroporation, using lipid-based transfection reagents, or by any other suitable transfection method.


As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection (e.g., using commercially available reagents such as, for example, LIPOFECTIN™ (Invitrogen Corp., San Diego, Calif.), LIPOFECTAMINE™ (Invitrogen), FUGENE™ (Roche Applied Science, Basel, Switzerland), JETPEI™ (Polyplus-transfection Inc., New York, N.Y.), EFFECTENE™ (Qiagen, Valencia, Calif.), DREAMFECT™ (OZ Biosciences, France) and the like), or electroporation (e.g., in vivo electroporation). Suitable methods for transforming or transfecting host cells can be found in Green and Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 4th, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2012), and other laboratory manuals.


Kits


In another aspect, kits are contemplated in this disclosure. For example, a kit for performing helicase dependent amplification is provided. The kit can include a conformationally-constrained helicase and an optional amplification buffer cocktail. The conformationally-constrained helicase of the kit includes one or more helicasex polypeptides having a covalent linkage (e.g., reacted with a suitable intramolecular crosslinking agent) to form closed form helicase-x monomers having super helicase activity of the type described for Rep-X and PcrA-X. In particular, the conformationally-constrained helicase can be generated form reacting SEQ ID NOs:4 and 9 with a suitable intramolecular crosslinking agent. Representative conformationally-constrained helicases include those of SEQ ID NOs:4 and 12.


The kit can further include a DNA-dependent DNA polymerase. Exemplary DNA-dependent DNA polymerases for inclusion in kit include a polymerase selected from a group consisting of E. coli DNA Pol I, E. coli DNA Pol I Large Fragment, Bst 2.0 DNA Polymerase, Bst DNA Polymerase, Bst DNA Polymerase Large Fragment, Bsu DNA Polymerase I Large Fragment, T4 DNA Polymerase, T7 DNA polymerase, PyroPhage® 3173 DNA Polymerase, phi29 DNA Polymerase and the like.


EXAMPLES
Example 1. Mutagenesis and Purification of Protein

Preparation of pET expression plasmids containing cysteine-less rep (C18L, C43S, C167V, C178A, C612A) and pcrA (C96A/C247A) with N-terminal hexa-histidine-tags (SEQ ID NO: 36) were performed as described previously (Park et al. (2005) supra; I. Rasnik, S. Myong, W. Cheng, T. M. Lohman, T. Ha, DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. J. Mol. Biol. 336, 395-408 (2004)). Site-directed mutations to introduce two Cys residues for crosslinking (Rep-X: A178C/5400C, Cys178 is a native cysteine in the wild type, Rep-Y: D127C/S494C, PcrA-X: N187C/L409C) were done using QuikChange Lightning kit (Life Technologies, Inc.) and mutagenic primer oligonucleotides (Integrated DNA Technologies Inc., Coralville, IA). Protein purifications were performed as described previously (Park et al. (2005) supra; Rasnik et al. (2004) supra). Catalytic activity levels of purified proteins as well as those of the crosslinked samples were determined in a ssDNA-dependent ATPase activity assay using the Invitrogen EnzChek phosphate assay kit (Life Technologies Inc.), the oligonucleotide (dT)45 (SEQ ID NO: 305) and 1 mM ATP in buffer D (see ensemble FRET unwinding assay).


Wild type RepD from Staphylococcus aureus was purified as described in (Slatter et al. ((2009) supra; Zhang et al., (2007) supra) with the following differences. A wt-RepD encoding pET11m-RepD plasmid was constructed for expression in B834 (pLysS). The gene sequence contained silent mutations to introduce restriction sites for AgeI, PstI, SacI, and to modify the nick site (TCT′AAT to TCGAAT) to prevent premature cleavage by RepD during expression. An ammonium sulfate precipitated pellet (from 0.5 L culture) was resuspended and run through serially connected 5 ml Q-Sepharose (removed once the sample was through) and 5 ml heparin-Sepharose cartridges connected in series (GE Healthcare), and eluted on an AKTA purifier 10 FPLC system.


Example 2. Intra-Crosslinking of Rep and PcrA

Dual-cysteine Rep mutants were incubated overnight at 4° C. with 2- to 100-fold excess of bis-maleimide crosslinkers DTME (13 Å) and BMOE (8 Å) purchased from Thermo Fisher Scientific, Rockford, IL (FIG. 10). PcrA-X was crosslinked with DTME and BM(PEG)2 (14.7 Å) from the same manufacturer. Excess crosslinkers were removed by Bio-Rad P-30 desalting column. Crosslinked Rep-X, Rep-Y and PcrA-X samples were stored at −20° C. or −80° C. as described (Park et al. (2005) supra; Rasnik et al. (2004) supra). Data presented in this manuscript used BMOE (8 Å), but other crosslinkers of various lengths gave similar results. DTME is a di-sulfide containing crosslinker that we reduced with β-mercaptoethanol (β-ME) or tris(2-carboxyethyl) phosphine (TCEP) to revert the crosslinked helicase to the non-crosslinked form for control purposes.


Crosslinking of the double Cys mutants with the bis-maleimide linkers has the potential of producing covalently attached multimeric species, in addition to the intended internally crosslinked monomeric species. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) can distinguish these species from the non-crosslinked monomers (I. L. Urbatsch et al., Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein. J Biol. Chem. 276, 26980-26987 (2001)). Here we show a representative analysis of a crosslinked Rep-Y sample. Crosslinked Rep-X and Rep-Y produced three bands on a SDS polyacrylamide gel (FIG. 7A): a bottom band at ˜76 kDa that was the same as the non-crosslinked Rep, a slightly retarded dominant middle band at ˜100 kDa for Rep-Y and ˜90 kDa for Rep-X and a much more slowly migrated, very faint top band at ˜300 kDa. FIG. 7B shows three such bands of a Rep-Y sample (lane Rep-Y) crosslinked with a cleavable di-sulfide containing crosslinker (DTME). The dominant middle band and the fainter top band were the crosslinked species because they disappeared upon cleavage of the crosslinker using beta-mercaptoethanol (β-ME) (lane Rep-Y*). Relative shift between the middle bands of Rep-X and Rep-Y (FIG. 7A) was a strong indication of an internally crosslinked monomeric species, because the denatured Rep-X and Rep-Y would be likely to migrate at different rates due to the different size of peptide loops introduced by the internal crosslinker (denatured Rep-Y has a loop of 368 amino acids (aa) whereas Rep-X loop is 223 aa long). In order to ensure that the dominant middle band is not multimeric but is the intramolecularly crosslinked monomeric species, a Rep-Y sample was fractionated according to molecular size on a Superdex 200 size exclusion chromatography (SEC) column controlled by an FPLC apparatus. Elution profiles of Rep-Y and non-crosslinked Rep are shown in the FIG. 7C. Eluted fractions were analyzed on an SDS polyacrylamide gel (FIG. 7D, lanes F1-F7). The multimeric species that was eluted in the early SEC fractions (11-13 ml) displayed only the top band whereas the dominant middle band was eluted together with the non-crosslinked Rep monomer in the SEC analysis, showing that the middle band represents the intramolecularly crosslinked species and the top band is multimeric. After establishing that the intra-crosslinked protein shows up as a retarded band compared to the non-crosslinked form on the SDS polyacrylamide gels (such as the Rep-Y data presented here), we used this assay to check the efficiency of crosslinking reactions for Rep-X, Rep-Y and PcrA-X (86%, 73% and 58% respectively for the samples used in this manuscript). The Rep-Y form exhibited ATPase activity on par with non-crosslinked Rep (FIG. 7E).


Example 3. Size Exclusion Chromatography and SDS-PAGE Analysis

Crosslinked Rep and PcrA samples were separated from multimeric byproducts using Superdex 200 grade 10/300GL or HiLoad 16/600 gel filtration columns on an AKTA purifier 10 FPLC system. The crosslinking efficiency was monitored by SDS-PAGE analysis on 7.5-10% Tris-glycine gels (Bio-Rad). As needed for gel analysis, reduction of samples crosslinked with DTME was achieved by adding 5% (v/v) R-ME during the SDS denaturation step.


Example 4. Ensemble FRET Unwinding Assay

Multiple turnover ensemble unwinding kinetics was used to gauge the effect of the mutations and conformational modifications to the helicase activity. We used an 18-bp FRET labeled DNA substrate with a 3′-(dT)10 overhang (SEQ ID NO: 33) (FIG. 1C), constructed by annealing complementary oligonucleotides DNA7 (Cy5-GCC TCG CTG CCG TCG CCA (SEQ ID NO: 40)) and amino-dT labeled DNA8 (TGG CGA CGG CAG CGA GGC-(T-Cy3)-T10 (SEQ ID NO: 41)). Alternatively, another similarly labeled 50-bp DNA with a 3′-(dT)30 overhang (SEQ ID NO: 17) was also used. This construct was made by annealing oligonucleotides DNA9 (Cy5-TCA ACT AGC AGT CAT AGG AGA AGT ATT AAC ATG CCT CGC TGC CGT CGC CA (SEQ ID NO: 42)) and amino-dT labeled DNA10 (TG GCG ACG GCA GCG AGG CAT GTT AAT ACT TCT CCT ATG ACT GCT AGT TGA (T-Cy3) T29 (SEQ ID NO: 43)). Unless otherwise stated, 5 nM ensemble FRET DNA was mixed with 50 nM helicase in buffer D (10 mM Tris-HCl [pH 8.0], 15 mM NaCl, 10 mM MgCl2, 10% (v/v) glycerol, 0.1 mg/ml BSA) and 1 mM ATP was added to start the unwinding reaction in a quartz cuvette. A Cary Eclipse fluorescence spectrophotometer was used to measure the donor (I555nm) and the acceptor signals (I667 nm) under 545-nm excitation (5-nm slit, 2-10 Hz acquisition rate and 600-900V photomultiplier voltage). Unwinding of the substrate was monitored by the decrease in ensemble EFRET value, defined as EFRET-ensemble=I667nm/(I555nm−Io+I667nm) where Io was the baseline donor signal of unpaired Cy3 prior to addition of ATP.


Example 5. smFRET Unwinding and RepD-PcrA Interaction Assays

All smFRET experiments were conducted on a custom-built prism type TIRF microscopy stage with an Andor EMCCD camera as described in R. Roy, S. Hohng, T. Ha, A practical guide to single-molecule FRET. Nat Methods 5, 507-516 (2008) and C. Joo, T. Ha, in Cold Spring Harb Protoc. (2012), vol. 2012. Reaction chambers were formed by quartz slides and glass coverslips passivated with polyethyleneglycol (PEG) and 1% biotinylated PEG (mPEG-SC and bio-PEG-SC, Laysan Bio, Arab, AL), followed by 5 min incubation with Neutravidin (Thermo Scientific, Newington, N.H.) for immobilization of biotinylated molecules on the chamber surface as described below.


For the smFRET unwinding experiments, the reaction chamber was first incubated with biotinylated anti penta-histidine tag (SEQ ID NO: 44) antibody (Qiagen, Valencia, CA), followed by 10-30 min incubation of His6-tagged (SEQ ID NO: 36) helicase sample (0.5-1 nM). The unwinding of the DNA was initiated by flowing 1 nM smFRET DNA and 1 mM ATP in the reaction buffer A (10 mM Tris-HCl [pH 8.0], 10 mM MgCl2, 15 mM NaCl, 10% (v/v) glycerol, 1% (v/v) gloxy and 0.2% (w/v) glucose, an oxygen scavenging system (Y. Harada, K. Sakurada, T. Aoki, D. D. Thomas, T. Yanagida, Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol. Biol. 216, 49-68 (1990).) and 3-4 mM Trolox (T. Yanagida, M. Nakase, K. Nishiyama, F. Oosawa, Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58-60 (1984); I. Rasnik, S. A. McKinney, T. Ha, Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3, 891-893 (2006)). The smFRET DNA substrate was constructed by annealing the oligonucleotides DNA3 (Cy5-GCC TCG CTG CCG TCG CCA (SEQ ID NO: 40)) and DNA4 (Cy3-TGG CGA CGG CAG CGA GGC-T20 (SEQ ID NO: 45)). The PcrA-RepD interaction assay involved preparation of the RepD-oriD DNA adduct as described in Slatter et al. (2009) supra. A biotinylated oriD DNA substrate was constructed by annealing oligonucleotides DNA1 (CTA ATA GCC GGT TAA GTG GTA ATT TTT TTA CCA CCC AAA GCC TGA AGA GCT AAT CGT TCG G (SEQ ID NO: 46)) and DNA2 (biotin-CCG AAC GAT TAG CTC TTC AGG CTT TGG GTG GTA AAA AAA TTA CCA CTT T15 (SEQ ID NO: 47)). In one chamber, only oriD DNA (50-100 μM) was immobilized on the surface. In a second chamber the RepD-oriD DNA adduct was immobilized. 100-500 μM dual labeled PcrA-DM1 was injected into the chambers in buffer B (10 mM Tris [pH7.5], 10% glycerol, 15 mM NaCl, 50 mM KCl, 5 mM MgCl2, 3.4 mM Trolox, 1% (v/v) gloxy, 0.2% (w/v) glucose). Short movies of multiple chamber regions were recorded. Since the two Cys residues of PcrA-DM1 were randomly labeled with Cy3-Cy5 mixture, each movie contained a brief initial 633-nm laser excitation period to determine the molecules with a fluorescent Cy5, followed by turning on the 532-nm laser for Cy3 excitation. Only the PcrA-DM1 molecules with a colocalized donor-acceptor pair were factored in the EFRET histograms.


smFRET signals were acquired by an Andor EMCCD camera operated with a custom software at 16-100-ms time resolution. EFRET was calculated as described in R. Roy, S. Hohng, T. Ha, A practical guide to single-molecule FRET. Nat Methods 5, 507-516 (2008). Unwinding periods were measured as described in the text. The fraction of unwinding events was calculated as the proportion of the all DNA binding events that displayed an EFRET increase phase. Error bars were calculated according to Clopper-Pearson binomial proportion confidence interval method (C. J. Clopper, E. S. Pearson, The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404-413 (1934)).


Example 6. Optical Tweezers Assay

The optical trap handle was a 6098-bp long DNA, amplified from k-phage DNA and flanked by a 5′-biotin and a 3′-(dT)10,15,75 overhang (SEQ ID NOS 33-35, respectively) on the other end. First, a 5′-tailed 6083-bp fragment was amplified by the autosticky PCR reaction (J. Gal, R. Schnell, S. Szekeres, M. Kalman, Directional cloning of native PCR products with preformed sticky ends (autosticky PCR). Mol Gen. Genet. 260, 569-573 (1999)) using primers P1 (biotin-GGC AGG GAT ATT CTG GCA (SEQ ID NO: 48)) and P2 (GAT CAG TGG ACA GA-abasic-A AGC CTG AAG AGC TAA TCG TTC GG (SEQ ID NO: 49)). Subsequently the amplicon was annealed and ligated with oligonucleotide DNA5 (TTC TGT CCA CTG ATC-(T)10,15,75 (SEQ ID NOS 50-52, respectively)) to create the 3′-overhang for the initial helicase binding (10, 15 or 75-nt, as specified in figures). DNA beads were prepared by adding biotinylated 6-kbp DNA to the streptavidin-coated polystyrene beads (0.79 μm in diameter, Spherotech, Lake Forest, IL), and incubated at 25° C. for 30 min. Protein samples were pre-incubated with biotinylated anti penta-histag (SEQ ID NO: 44) antibody (Qiagen, Valencia, CA) on ice for 1 hour. One microliter of this mixture, 1 μl of streptavidin beads, and 8 μl buffer (100 mM Tris-HCl [pH 7.5], 100 mM NaCl, 10% glycerol (v/v)) were mixed and incubated for 30 min on ice to make the protein coated beads. Reactions were performed in laminar flow chambers that were designed and assembled as described in Z. Qi, R. A. Pugh, M. Spies, Y. R. Chemla, Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. Elife (Cambridge) 2, e00334 (2013). Reaction buffer C consisted of 100 mM Tris pH 8.0, 15 mM NaCl, 10% (v/v) glycerol, 10 mM MgCl2, and an oxygen scavenging system (100 μg/ml glucose oxidase, 20 μg/ml catalase, and 4 mg/ml glucose) to reduce photo damage to the sample (M. P. Landry, P. M. McCall, Z. Qi, Y. R. Chemla, Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophysical journal 97, 2128-2136 (2009)). The reaction chamber contained two laminar streams of buffer C with different ATP, ATP-γS and SSB concentrations as described in the text. The dual-trap optical tweezers were set up and calibrated as described in (C. Bustamante, Y. R. Chemla, J. R. Moffitt, High-resolution dual-trap optical tweezers with differential detection. Single-molecule techniques: a laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2008); K. Berg-Sorensen, H. Flyvbjerg, Power spectrum analysis for optical tweezers. Review of Scientific Instruments 75, 594-612 (2004)). All measurements were recorded at 100 Hz with a custom LabView software (8.2; National Instruments, Austin, TX) and smoothed with a 100 Hz boxcar filter. In the “force-feedback” mode, unwinding was allowed to occur against a constant force of 10-22 pN (as specified). The contour length of DNA was calculated from the measured force and end-to-end extension of the molecule and using the worm-like chain model (persistence length of 53 nm, stretch modulus of 1,200 pN and distance per base-pair of 0.34 nm). The velocity of DNA unwinding in the force feedback mode was determined from a linear fit of the contour length of DNA in a sliding window of 0.2 s (21 data points). Pauses longer than 0.2 s were removed and then the velocity was averaged in is bins. Error for the fraction of unwinding events per tether formation was calculated with the Clopper-Pearson binomial proportion confidence interval method (Clopper et al. (1934) supra)).


The force dependence of Rep-X unwinding activity was measured in the “fixed-trap” mode, by stopping the force feedback. The force data (100 Hz) was smoothed with a gaussian filter (by applying a 33-Hz moving average filter 10 times). Paused regions (velocity<10 bp/s) were removed. The pause-free unwinding velocities were calculated and normalized by the velocity at 20 pN for each molecule, and binned against the dynamic force values up to 60 pN to create the Vnorm vs. F plot (FIG. 3F). We previously found that the force response of our trap was linear against bead displacements up to 72 nm (determined in a separate experiment measuring where the force vs. extension curve of dsDNA started to deviate from the theoretical worm like chain. At a trap stiffness of 0.167 pN/nm, the deviation occurred above 12 pN). Hence we calculated the maximum reliable force to be at least 59 pN at a trap stiffness of 0.82 pN/nm.


Example 7. Ensuring Monomeric Rep-X Activity in Optical Tweezers Assay

We considered the possibility that the highly processive unwinding observed in our optical tweezers assay was caused by multiple Rep-X acting on the same DNA. If multimeric Rep-X had been required for highly processive unwinding, then the majority of binding events (i.e. formation of a tether) would not have displayed unwinding activity, because single Rep-X binding is the statistically the most probable event during the brief period of contact between the two beads. However, the majority of tethers formed displayed highly processive unwinding, suggesting that the processive unwinding is caused by a single Rep-X protein.


To further establish that the unwinding of the 6-kbp DNA was achieved by single Rep-X molecule, we repeated the experiment using beads incubated in lower concentrations of Rep-X, thus decreasing the number of Rep-X molecules per bead. Consequently, Rep-X binding (tether formation) took longer and required more trials of bumping the two beads. As the Rep-X concentration was lowered (20 nM, 4 nM and 0.4 nM) during the pre-incubation with 20 nM biotinylated antibody, the efficiency of tether formation was also reduced (7 out of 11, 9 out of 27 and 2 out of 16 beads, respectively). However, the subsequent unwinding was still the prevalent behavior (7 out of 7, 8 out of 9 and 2 out of 2 tethers, respectively).


As another test to ensure that the highly processive unwinding was due to a single Rep-X molecule, not multiple molecules, we compared the unwinding reaction of DNA with 75nt vs. 10- and 15-nt 3′ overhangs. Since the footprint of Rep is reported to be 8-10 nt (S. Korolev, J. Hsieh, G. H. Gauss, T. M. Lohman, G. Waksman, Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635-647 (1997)), 10 or 15-nt overhang would increase the chance of single Rep-X binding. Rep-X exhibited the same highly processive behavior on the short overhang DNA molecules (17 out of 18 tethers formed with 10- and 15-nt overhang DNA vs. 21 out of 22 tethers formed with 75 nt overhang DNA, FIG. 3B, C), further indicating that the high processivity of unwinding is the property of a Rep-X monomer.


To test the possibility that the unwound ssDNA interacted with additional Rep-X on the bead surface, possibly increasing the processivity of unwinding, we added 66 nM of E. coli ssDNA binding protein (SSB) in the unwinding reaction stream in order to render the unwound ssDNA inaccessible to other Rep-X molecules. Inclusion of SSB did not change the highly processive behavior of unwinding (17 out of 18 tethers formed in the absence of SSB vs. 21 out of 22 tethers formed in the presence of SSB, FIG. 3B), suggesting that DNA unwinding by Rep-X is highly processive whether the unwound ssDNA is sequestered by SSB or not. This observation is probably due to the design of the dual optical tweezers assay, in which the DNA is under tension only between the “front runner” Rep-X molecule and the streptavidin on the other bead. Binding of a second Rep-X to the already unwound ssDNA should not affect the measurements because the second Rep-X, which is also tethered to the bead, cannot interact with the front runner that is tethered elsewhere on the bead.


Example 8. Selection of Crosslinking Sites and Crosslinker Length

Open (inactive) and closed (active) form crystal structures of Rep and similar helicases were used as a visual guide. The target residue pair for crosslinking and the crosslinker were selected based on these criteria.


One target residue of the target residue pair should be located on the mobile 2B domain and the other target residue should be located on the immobile body of the helicase (for example on 1B or 1A domains). Preferably, target residue pair should not be part of functional helicase motifs known in the literature to prevent detrimental effects of amino acid engineering. Preferably the target residue pair should not be conserved residues. Preferably the target residue pair should be as far away as possible from the ssDNA binding sites. These measures reduce the potentially detrimental effects of the target residue mutations and crosslinking on the basic translocation function of the helicase.


The target residues should be as close as possible to each other in the closed (active) conformation of 2B domain, and at the same time should be as far as possible from each other in the open (inactive) conformation. For example, the distance between the target residue pair should be less than 15 Å in the closed form (measured from alpha carbon coordinates) and should increase by more than 30 Å during transition to open form, so that a short crosslinker can prohibit the transition to an inactive (open) form. Residues that satisfy such criteria can be determined for helicases with known crystal structures in closed or open forms.


By sequence alignment, the corresponding crosslinking target residues can be found in helicases with unknown structures to convert those to superhelicases, as well. Sequence homology models can also be employed.


Target residues should be preferably on the surface of the protein, and their side chains should be facing outward and more preferably facing toward each other.


The crosslinker should be as short as possible, preferably only long enough to efficiently link the target residue pair in the desired conformation. Crosslinker length should be considerably shorter than the distance between the target residues in the unwanted conformation.


A representative 56 Rep homologs/orthologs with 90% identity to and 80% overlap are shown in Table 4, which are also shown in FIGS. 9A-G. The target residues of FIGS. 9A-G were selected from one residue from domain 1A or domain 1B, and one residue from domain 2B which satisfy the all these considerations. For PcrA, or a homolog thereof, the target residues are selected from residues 92-116 of domain 1A or 178-196 of domain 1B, and 397-411, 431-444 or 526-540 of domain 2B. For Rep, or a homolog thereof, the target residues are selected from 84-108 of domain 1A or 169-187 of domain 1B, and 388-402, 422-435 or 519-536 of domain 2B. For UvrD, or a homolog thereof, the target residues are selected from residues 90-114 of domain 1 Å or 175-193 of domain 1B, and 393-407, 427-440 or 523-540 of domain 2B.










TABLE 4





Rep homolog
Organism







REP_BUCAP

Buchnera aphidicola subsp. Schizaphis





graminum (strain Sg)



REP_BUCAI

Buchnera aphidicola subsp. Acyrthosiphon





pisum (strain APS) (Acyrthosiphon pisum




symbiotic bacterium)


REP_ECOLI

Escherichia coli (strain K12)



REP_HAEIN

Haemophilus influenzae (strain ATCC 51907/




DSM 11121/KW20/Rd)


REP_SALTY

Salmonella typhimurium (strain LT2/




SGSC1412/ATCC 700720)


A0A077ZIR6_TRITR

Trichuris trichiura (Whipworm)




(Trichocephalus trichiurus)


S3IEG5_9ENTR

Cedecea davisae DSM 4568



J1R585_9ENTR

Kosakonia radicincitans DSM 16656



K8ABZ8_9ENTR

Cronobacter muytjensii 530



A0A060VJ91_KLEPN

Klebsiella pneumoniae



A0A090V5M6_ESCVU

Escherichia vulneris NBRC 102420



A0A083YZC2_CITAM

Citrobacter amalonaticus



A0A0J6D7T8_SALDE

Salmonella derby



A0A085ITL8_RAOPL

Raoultella planticola ATCC 33531



E7T4Q1_SHIBO

Shigella boydii ATCC 9905



A0A085GMM2_9ENTR

Buttiauxella agrestis ATCC 33320



A0A085HAK1_9ENTR

Leclercia adecarboxylata ATCC 23216 =




NBRC 102595


D4BE16_9ENTR

Citrobacter youngae ATCC 29220



A0A0H5PMJ7_SALSE

Salmonella senftenberg



A0A0J1JQT3_CITFR

Citrobacter freundii



A0A0J8VI05_9ENTR

Cronobacter sp. DJ34



F5S3F4_9ENTR

Enterobacter hormaechei ATCC 49162



D2ZMA5_9ENTR

Enterobacter cancerogenus ATCC 35316



A0A084ZTW9_9ENTR

Trabulsiella guamensis ATCC 49490



A0A038CLT3_RAOOR

Raoultella ornithinolytica (Klebsiella





ornithinolytica)



Q8Z385_SALTI

Salmonella typhi



Q83IX8_SHIFL

Shigella flexneri



A0A0D5WYP4_9ENTR

Klebsiella michiganensis



A0A0H3FM31_ENTAK

Enterobacter aerogenes (strain ATCC 13048/




DSM 30053/JCM 1235/KCTC 2190/



NBRC 13534/NCIMB 10102/NCTC



10006) (Aerobacter aerogenes)


A0A0H2WUK6_SALPA

Salmonella paratyphi A (strain ATCC 9150/




SARB42)


A0A0H3H1F3_KLEOK

Klebsiella oxytoca (strain ATCC 8724/DSM




4798/JCM 20051/NBRC 3318/NRRL B-



199/KCTC 1686)


X7I146_CITFR

Citrobacter freundii UCI 31



A0A0H3CTF5_ENTCC

Enterobacter cloacae subsp. cloacae




(strain ATCC 13047/DSM 30054/NBRC 13535/



NCDC 279-56)


D2TH67_CITRI

Citrobacter rodentium (strain ICC168)




(Citrobacter freundii biotype 4280)


Q329V6_SHIDS

Shigella dysenteriae serotype 1 (strain Sd197)



W6J7C4_9ENTR

Kosakonia sacchari SP1



I2BE87_SHIBC

Shimwellia blattae (strain ATCC 29907/




DSM 4481/JCM 1650/NBRC 105725/



CDC 9005-74) (Escherichia blattae)


B5EZ38_SALA4

Salmonella agona (strain SL483)



A0A0F5SGU2_CITAM

Citrobacter amalonaticus



G9YY11_9ENTR

Yokenella regensburgei ATCC 43003



A0A090UXU3_9ENTR

Citrobacter werkmanii NBRC 105721



A9MJ31_SALAR

Salmonella arizonae (strain ATCC BAA-731/




CDC346-86/RSK2980)


Q3YVI6_SHISS

Shigella sonnei (strain Ss046)



D3RHB6_KLEVT

Klebsiella variicola (strain At-22)



Q57HT8_SALCH

Salmonella choleraesuis (strain SC-B67)



B5RFS5_SALG2

Salmonella gallinarum (strain 287/91/NCTC




13346)


A0A089Q204_9ENTR

Cedecea neteri



A0A0H3BNR1_SALNS

Salmonella newport (strain SL254)



C9Y4T0_SICTZ

Siccibacter turicensis (strain DSM 18703/




LMG 23827/z3032) (Cronobacter turicensis)


B7LU77_ESCF3

Escherichia fergusonii (strain ATCC 35469/




DSM 13698/CDC 0568-73)


A0A0H3TAW8_SALEN

Salmonella enteritidis



G2S5J6_ENTAL

Enterobacter asburiae (strain LF7a)



A0A0F7JC30_SALET

Salmonella enterica I



A7MQI4_CROS8

Cronobacter sakazakii (strain ATCC BAA-




894) (Enterobacter sakazakii)


L0M8J0_ENTBF
Enterobacteriaceae bacterium (strain FGI 57)


A0A0K0HFU2_SALBC

Salmonella bongori (strain ATCC 43975/




DSM 13772/NCTC 12419)


A8ACT1_CITK8

Citrobacter koseri (strain ATCC BAA-895/




CDC 4225-83/SGSC4696)









Use of shorter crosslinkers increase the efficiency of crosslinking reaction by favoring the intramolecularly crosslinked species rather than intermolecularly crosslinked multimeric species. These rules also ensure that the 2B domain is restricted to the active (closed) conformation, and cannot attain an open (inactive) conformation. Thus conformational control is achieved, and the possibility of 2B domain to swinging open to access an inactive (open) conformation is virtually eliminated.


Without being bound by theory, one possible explanation for the super activation would be the decreased dissociation rate due to the crosslinked protein encircling the ssDNA strand (indicated by the crystal structure, so that the protein cannot dissociate from the ssDNA easily. However, it was found that despite both Rep-X and Rep-Y encircling the ssDNA (as indicated by the crystal structure), only Rep-X was super-active. Thus, in order to create the super active helicase, immobilization of the correct conformational state of the 2B domain is necessary.


Example 9. Identifying Suitable Crosslinking Sites in Homologous Helicases

Based on the crosslinking target site selection criteria established in Example 8, potential crosslinking target residues in helicases were determined using known crystal structures. By sequence alignment and structural homology modeling, the corresponding crosslinking target residues are identified in helicases with unknown structures. Subsequently these helicases can be converted to superhelicase forms. For example, based on the criteria that the distance between the target residue pairs should be less than 15 Å in closed form and should increase by more than 30 Å in open form, we identified the residues in Rep, PcrA and UvrD helicases as shown in FIGS. 9A-G. Homologous helicases are identified, for example, by 50% sequence identity and 80% overlap to the helicase with the known structure. For example, we found 3147 such proteins homologous to E. coli Rep, 1747 proteins homologous to B. st PcrA, and 1209 proteins homologous to E. coli UvrD helicases were found (Tables 5-7, respectively). Then the corresponding crosslinking residues are identified in any of the homologs. For example, we chose an example of 56 Rep homologs (Table4), and found the regions where the crosslinking residues can be engineered (FIGS. 9A-G). Despite the fact that the three model superfamily 1 helicases, UvrD, Rep and PcrA, have only 35-40% sequence identity, they exhibit >90% structural homology according to their crystal structures. Hence it is reasonable to expect a highly similar structural homology from the proteins with 50% identity to and 80% overlap to the helicase with the known crystal structure; these are suitable candidates for crosslinking in the superhelicase (−X) form.



E. coli UvrD (ecUvrD) has 33% sequence identity with E. coli Rep (ecRep) and 42% sequence identity with Bacillus stearothermophillus PcrA (bsPcrA). Highlighted regions in FIGS. 9A and 9G show the crosslinking sites obtained from the open form and closed form crystal structures and the criteria established in Example 8. These regions align well in the sequence showing that a sequence alignment can be used in helicases with unknown structures to determine the crosslinking target sites in helicases with unknown structures. For example, the crosslinking regions (boxed sequences of FIG. 9G) in D. radiodurans UvrD (drUvrD) were found by aligning its sequence to bsPcrA, ecRep and ecUvrD, 1A/1B residues: 92-116, 182-200, 2B residues: 400-414, 434-447 and 528-544. drUvrD (Q9RTI9) has 33%, 36% and 41% sequence identity to bsPcrA, ecUvrD and ecRep, respectively. These four proteins have 21% sequence identity as a group. Only closed form crystal structures of drUvrD are known. Boxed regions shown in FIG. 9G are shown in the crystal structure of drUvrD (FIG. 11) to demonstrate the suitability of the regions for crosslinking.



D. radiodurans UvrD (drUvrD, Q9RTI9_DEIRA) has only 1 Cys residue, and a crystal structure is known. drUvrD has 31 entries in the 50% identity cluster of the Uniprot database, some of which are mildly thermophilic (40° C.-68° C.; optimum growth at 60° C.), making them better candidates for helicase dependent nucleic acid amplifications. In certain exemplary embodiments, a suitable UvrD helicase is selected from following species: Deinococcus geothermalis, Meiothermus sp., Marinithermus hydrothermalis, Marinithermus hydrothermalis, Oceanithermus profundus. Selected thermophilic ortholog species of drUvrD are shown in Table 8.


In another embodiment, the helicase is selected from those shown in Tables 9 and Table 10.









TABLE 5





List of 3137 unique non-redundant helicases that have 50% sequence identity and 80% overlap with



E. coli Rep. (Uniref50_P09980 cluster, citable UniProtKB and UniParc accession numbers are shown).





















P09980
UPI00051877AD
UPI00050997D4
A0A063KTD1
W0QF97
A0A0C3I5L6


A0A0G3HMG0
UPI0002CB7C3E
UPI00041BBC9F
A0A0F9UW26
A3MZ01
UPI0005EDEB6E


A0A069YUU2
UPI0002CB6CB4
Q31J65
UPI00057A0DA3
A0A0A7MFM3
Q4F7B3


A0A069XK09
UPI0003EF7150
UPI0004A7511F
UPI00042735E9
UPI00037127A9
H2IB31


A0A090J554
A0A0B5IRM0
J3VUI0
A0A0B2JU34
W0QB54
UPI00039DFE76


J2LMP0
UPI0005F8A649
B3PF82
A0Y242
D9P8T6
UPI0002D3CD90


A0A0E1CLG8
UPI00036A6E72
W1J4L6
G7F259
B0BT27
UPI00031FC355


W8VIF4
E7T4Q1
A0A068QMH5
F3BJI5
E0EII5
A0A034TPW5


A0A0J2JAV4
UPI0002C94EDF
UPI000645DEF6
UPI0004641B09
A0A011P892
UPI0003B1A99F


A0A0H4Z590
UPI0004A19D90
A0A0J1C9T2
W1Z619
UPI00047C9D5E
A0A090P8C9


A0A0H4YMK4
A0A024KL85
A0A077P2A7
N6W1D7
W0QMN7
U3AJD4


A0A0H4ZZ54
A0A029K3Y0
A0A077PGN3
G7EU46
B3H0C1
A0A0H0Y6H0


W1HB14
A0A029LST3
A0A077Q5V6
UPI0003F6330E
E0FKS8
D0WV97


A0A0H4ZHU7
A0A074IDU1
A0A0B6XFA1
UPI0004175A32
E0E690
UPI00039CA46E


A0A0G3T252
A0A070UMT6
D3VHW6
G7EBR9
E8KIM6
K5UKZ2


A0A0H3GKB6
A0A0H0NZ89
N1NN52
UPI0002317DDE
KOFXU5
A0A061Q0T1


A0A0K0GSG9
UPI0004DACF34
A0A0A8NWA1
UPI000412695D
A0A0D6UGN8
D0X594


A0A0G8G0X7
UPI000543FDCF
W1J8H9
A0A099L6T2
M9X512
UPI0006814400


A0A060VJ91
A0A0H3MJI3
A0A077NN58
UPI0002DA5F7A
D9P4Y2
UPI0006AA085C


W1HUU8
UPI0002A2C4E1
A0A068RA85
UPI0003162143
UPI0002556C8C
UPI00039C63E0


W1EG06
A0A0H0KMW7
A0A0A8LWM3
U1MBQ7
A0A0B0HCL6
UPI0005EFDC1A


W1HYL7
F4NQI1
A0A077PLN5
U1JK11
UPI00041A33FA
UPI00063C4F58


W1EC12
A0A0G9FGL3
A0A077PEC1
U1IZP2
A0A081FYF7
UPI0002B70576


V0AP50
UPI0005305422
D3V6L9
Q3IJF4
A0A0B3BWV0
UPI00023755B4


W1E3B2
I2X0N8
A0A0J5FTN5
E6RJ61
A0A0B2DBM6
UPI00069FBA0A


A0A080SZ33
UPI00063C108B
A0A077N2X7
Z9K3Y4
UPI000337D905
A7K6B6


A6TGG4
UPI00053AB8E4
UPI00037EA902
G7G5E8
D2TCP1
U4DZN2


W1BG54
UPI000390341B
A0A094NXP4
UPI00034C744C
UPI0001960924
L8XB50


Q57HT8
UPI0002C97E36
F9QBX8
A0A0F4PWX2
V5Z3P5
UPI0005975B9F


C0Q2V7
T8JFG3
UPI000364DEC7
I3CJI7
UPI00065FAA51
UPI00039C5A41


A0A0G2NT58
A0A0J0IRL7
A3V094
A1T091
UPI00054F6EBB
UPI0005F0AEC8


V2QUW5
J1GHC8
UPI0002D3C2F3
UPI00036133E4
UPI000554232A
A7N1B5


B5RFS5
UPI0005EFAD7E
F9SI11
A0A0A8UTG2
UPI00044B0A82
U4K9S4


H3N5E4
A0A0D7LCG7
UPI00065FA69F
UPI0002624F9F
W0T2G5
U3ATU8


UPI00030AD7A3
UPI0005EFAEC1
UPI0003122A61
UPI000465C470
A0A014LYL5
A0A0C1YTU5


A0A0J2K868
UPI00058EBC4A
UPI00030ED944
UPI0004E14814
E3DCZ6
A6AVT6


A0A0E2RBB6
A0A0J5E886
UPI0003151B6B
A3YC72
UPI00069D7BD3
UPI0003B1A0B5


A0A0G3S4X6
UPI0004D3B9EA
UPI0002EE9ECE
A0A0F4QZY4
D8MKR6
UPI0006A5B784


A0A0H3H1F3
UPI0005B485C4
F6CZU1
UPI00036B36CA
UPI00058F6E3E
A0A0D0JDJ7


A0A068HB64
V2SM85
A6W1H3
B5JVS4
I3IF96
UPI00069EC01E


A0A0J8Z8W0
UPI0003AC5FE5
X7E960
M4U1U4
UPI00066FB81F
UPI0006A5FC2D


UPI00066AC9B7
UPI00057BEBAB
W1RWL7
A0A0E4C1E5
UPI0005866DF0
UPI00026C4ED4


H3MDG6
A0A0C2ELY7
UPI00037950B0
C4K8X2
UPI00037B74A6
UPI0005EF44E2


UPI0002F9F873
U9Y0B8
A0A0J8GYA3
UPI0004762303
V5VG28
UPI0005EFA2F9


A0A0A0FJZ3
A0A0H0JVJ4
UPI0003F7784F
UPI000558F88A
D0C9R6
A0A0C1Z376


A0A077ZIR6
UPI0002CC3FC4
I1E2U9
A0A0E9M3L1
A0A014AME8
A0A061PWI7


A0A0H7U3H0
A0A0D1Q3M4
Q0VLG2
UPI000415F58C
A0A062IS38
A0A090RFC6


A0A0H7UZL4
N2JD25
B4X088
UPI0003736C3A
A0A062RV86
F7S1D5


W1YGM8
N3FAJ0
A0A095S578
UPI00047DD116
A0A014QUN9
UPI00037B6B31


W1F515
D7XDE9
U7FXU8
UPI00051B59BB
A0A0J1AD48
UPI0004DB80FB


W1AVB8
J1R585
L0W9M5
A3WIV3
A0A011J490
UPI0002559C1C


UPI00050B4286
A0A063XPH7
A0A095SJP8
UPI00058ED431
A0A009L4W9
UPI0004226D1B


UPI000699BCA0
UPI00046E61E1
UPI0003096010
A0A0B7IYA3
A0A062ET27
UPI0005A04CC3


UPI0001BCF307
UPI0005CFB922
Q5QZ79
A0A0D7FE58
A0A062B4C4
UPI00036751C4


UPI000291E920
F1ZPM5
A0A0B4XU81
N2J9F8
K6NBZ9
UPI0004A71315


UPI0005CECD30
E9Z170
V4LHL4
H0JBY0
A0A062HCL9
G7LUC7


UPI000699485E
I2RDB4
UPI00048D495E
UPI000307EC21
U1UEQ4
C6DHF7


UPI0006995E89
G9YY11
UPI00066EC8FC
UPI00056B6FFA
N9HSF4
A0A0G4JUN2


A0A0H7XVC5
UPI0005A8BE84
A0A0E0Y6R4
UPI000694928A
A0A009GJZ6
UPI0003AAB78C


A0A0H7ZBU6
B7N271
F2G1X5
W9SXN9
A0A009HQM2
UPI0003A1DD75


A0A0H8QAW7
A0A029IHD3
S5C3L8
G2E0G6
L9NZJ0
UPI0003AA3036


T9GN10
A0A029HDM3
S5AI16
H5V6K1
A0A011IKX6
UPI00039E8574


U9YW53
UPI00005EFD38
UPI00057CAFFD
K8AD99
A0A062FYV6
UPI0003A8ECA5


E1ITJ2
UPI0005175495
K0CYB3
UPI0002F4EC6B
N8ZCZ6
UPI0003A98BB4


A0A029L915
UPI0004D67711
K0EB21
K8AIR9
A0A022JJ04
UPI00039EFED1


S0UVF6
UPI00038F4A0A
A0A0B3Y7T5
UPI0002F0AB46
K1FLW5
UPI000532BCE2


I2SR57
UPI0004ED858A
A0A075P1K0
UPI0003747342
N8UCZ4
UPI0003AAAD9F


I4S298
S1FND5
UPI000509BB4B
A0A0D1MQD1
A0A010EBV1
U6ZJ94


D7ZUA2
S1LRE3
F5Z5Y6
F8FZI5
A0A009SCE5
UP10005539481


A0A069X2C0
S1CH47
UPI0003556595
UPI0004706F0C
N9GH50
UPI00039F0A65


F3WQ14
L2VMG7
A0A010PKS2
UPI0004870A8C
A0A0J1AU91
UPI000399CBB8


E1J5T7
UPI0005EDE9CE
A0A0C5ITU1
UPI0005B76FDE
A0A009JME7
UPI00039E8082


M9FM00
UPI0002CA0423
UPI0005D7D9DE
UPI0004838E3B
A0A062TQ97
UPI00039A51A2


S1HS46
UPI0004E384CD
J2S9U8
A0A0C5RPA5
A0A009QEV1
UPI00039E8236


D7YBV4
UPI000675EB35
UPI0002E4097E
F0E436
A0A010UBN4
V3TUV7


D7YG19
V0Z8Q3
UPI000641D99E
J3E3S1
A0A062FMG3
A0A0A8FH34


V0RR51
D7ZDM9
J3D7I1
T2HEW7
A0A013G992
UPI000532D788


V0AF21
V5B2V3
J2T1B6
B0KQ68
A0A0J1A474
D2BYS8


E9YLU8
V1I8U1
J3EAI0
UPI00048196DC
N8YU24
C6CGH3


I6CD40
T9SAP6
A0A0J6H1C3
A0A084C8X6
K6LHM0
A0A089V9A1


E1HWT5
A0A0I1J330
J2MEX6
A0A099E6T7
A0A062DHL7
A0A0A3ZID8


A0A070FCA9
A0A0J3J6C1
UPI0004653130
A0A088NVW6
A0A009TH79
Q9K599


V0TJ44
L0M8J0
UPI000370037D
A0A0F7Y5R7
A0A0J0ZSY5
A0A0B2TLM6


S1H2A1
UPI0002C957E6
UPI00054B503C
A0A099N7M2
F5I0P2
E0SKR5


E6BNJ7
UPI00033C37F9
UPI0005A8A319
V7DDK2
A0A010K6Q8
J8TIB8


D6I334
UPI0003EF8387
L1M697
L0FS45
F5IED5
UPI00050455DF


S1ESS4
UPI00040AF69D
A0A0F4VBH8
V9V750
N9KF69
A0A0B3XKC6


S1CGG8
W8XM69
J2XVS9
A0A059V3S3
S3TL87
D0KC43


I2WCN5
F0JWU2
J2NB92
B1J4P9
A0A009MSS6
A0A0H3IEB9


A0A070DIV3
A0A0J2D6H5
S6JBD8
UPI000627A5A1
A0A0J0ZPS4
A0A0J5XQ16


A0A079D8A1
L5GW15
J2UYW0
UPI0003A45A0C
A0A010GGU7
UPI000505D45B


A0A080I8Z6
S1P4F9
I4JZZ1
UP10004901875
A0A0J0ZKR3
A0A0J6AFU6


L4IUS8
UPI0006187646
A0A0J8G475
UPI000312CC5F
B0V8Y9
A0A0B3Y0I6


L3IPS4
UPI0002CA3627
A0A038GJS8
V6JD09
A0A0E1PVY4
UPI0004E7AD0D


V6FPL2
S1IH44
J2NTP4
A0A0C1IE71
A0A0E0WM10
UPI0005010995


F4T625
UPI0001FB5104
UPI00054BC40B
U5VL93
A3M323
A0A0E2ZQ64


A0A073VUA5
UPI0006A60648
A0A0J6JAQ4
UPI0003B82996
A0A0J0Z9E3
A0A0J5UIH7


F4V8A1
UPI000666D818
A0A0J6I536
A0A089YA93
G2JCT3
A0A093TZI5


K3KG62
UPI00028CDADE
K0WMX7
N9W558
A0A028IQG4
A0A0B2TAM5


M9E9G4
UPI0005182B07
UPI00069ECA48
V9X4R6
A0A0C0CBD9
A0A086ER15


D6JH94
UPI000246F098
UPI0003D2AA53
UPI0006836835
A0A0C0CIL5
J7L4K8


E0J414
UPI0002CBC547
A0A0C5ETI6
S2KQL9
UPI0003DF9CA6
A0A0B2W727


W8U2K7
A0A0A5IKM0
A0A075PD74
R9VCP0
A0A062DT29
A0A093S787


E8Y8U4
UPI00046F99E1
D7HTE0
U2U6Q9
N8VAV1
Q6CZD7


A0A0E0U640
UPI00066D2906
S6JE83
UPI000480BE0F
A0A0F3L889
A0A0J5R7U1


A0A0E1SVC5
A0A0G3QEH2
J2LR66
UPI00062A24F9
V2VX37
A0A094RXX6


A0A0E2TLG7
W0AUJ4
J2Q4M5
UPI00040A96BC
V2TSL6
UPI00057CA70B


C6EG35
UPI0006A5EC48
UPI0003FAF552
A0A0J8UZS6
L9MEI1
UPI00057CDC60


Q3YVI6
R8WQW7
UPI000289EE48
I7BAY2
A0A009ZWD9
UPI0001A44592


J2YVU0
S0XDU9
UPI0006419BD9
A0A0A7PUM7
N9SD17
UPI00057F7392


A7ZTX9
UPI0002514D84
UPI0006A612B6
I3UUX4
N9C3A1
UPI000652BF86


A0A0E1M3S0
UPI0005CF34C7
A0A0F7A011
A5WAY2
UPI0004497B0F
UPI0002D49EE5


I6BAF2
UPI0005AA6C75
F3JF49
Q88CB7
UPI0002BB404B
U1LCU7


A0A090NEE8
UPI0002CB348F
L7H1R3
A0A0A7JV78
UPI0004457216
U1JRW9


A0A0A7A0X5
UPI00039014F0
Q500M3
UPI000417E5AB
UPI00044C3A7B
A0A0F4P9F7


E2X573
N2Q8R5
S3NDD8
Q1I2W2
A0A0A7XTN0
A0A0F4PG18


Q329V6
UPI0003B29D20
F3GZK5
UPI0004A76E61
A0A022ILU3
A0A0C1LH68


F4TMM3
UPI0005F81F2E
UPI0005CA31AB
A0A0E9ZS43
A0A066PI57
UPI00061D116D


U9YTK0
UPI0002CA5EAC
UPI00035D1EA1
UPI000615E3F7
A0A062G9S1
A0Y9C9


B3X5G0
UPI000462FEC5
W0MPM6
A0A0H5W4I1
L9LZ08
Q2S8F2


I6CYC2
A0A070DGP2
A0A0A1Z8J9
A0A0H6ING7
A0A010KUF7
K2JN56


A0A0A0GP02
S3IEG5
W2DE98
UPI00069F04C6
K9BCT1
UPI00067E742C


F4SRI4
UPI0002CC411A
A0A0F4TYK8
UPI00053BC90E
A0A0E2G0N2
A0A084IL47


UPI0006981AFC
UP10005718CCF
UPI00041035FD
UPI00069E6D92
A0A0E2GP36
IJPT0006697E7E


V0ST83
UPI00036A6951
F2ZPZ1
A0A0H7D3K2
UPI00044F9626
C9PMC5


T8WTG6
UPI0002A38058
UPI00045100E9
D2YQS5
UPI00044ACF5B
UPI000402FD5E


A0A071C0Z5
A0A0I1VLP8
UPI0006458FD3
D2YET1
UPI00044D2485
UPI0004802687


V0XTH9
UPI0002CB6DE1
A0A098SWG7
A0A085TFB6
UPI0005AB250E
H0PYR0


D8C4A4
T5NUB4
A0A0D1NXC0
UPI00051D019F
UPI00044F9882
UPI00037C100B


T9AU26
A0A0D7F5Y8
UPI000589F9C7
A0A0F2IJ11
A0A013NSE0
UPI00067D4203


E1HNU3
A0A070RX93
UPI000614591D
UPI00050288CA
UPI0003558246
UPI0002FE41B0


H4URG0
H3MUT6
UPI000370CF7F
A0A099MUD3
A0A062L2N7
UPI0005BC9A68


A0A070SPZ6
A0A070H7B2
UPI00061DB54E
UPI00042A59FC
A0A014DQT7
A0A0J6NLY1


A0A073HDV7
UPI00025B202A
UPI00048A25A1
C9QBF3
A0A014BGK8
A0A0J6KGG3


S1HND8
A0A064CY65
UPI000463D380
UPI00028D4D13
A0A014E4S6
UPI0005BBAD58


A0A079FCR6
UPI0004D5922D
A0A0F4SXJ2
A0A085PFD0
UPI0002FB179F
B0UTK9


A0A073UI24
UPI00038FE44C
E2Y0S2
UPI0002F9A474
A0A0B2XRW1
Q0I2R4


V6FCI2
UPI00057C0F18
UPI00054B1EC3
UPI0005C96744
N8S5C9
A0A0F6RAV7


W1BJG8
UPI0004D7032E
A0A0J6KIB8
A0A0H6I9T4
UPI0004537654
B7S2C9


A0A064T0J2
A0A0J4XAT3
UPI0004157785
A0A0H3AKZ5
UPI0004526A41
H1G3C3


A0A070Y1X0
UPI0002C8F3D6
UPI00031D1029
A0A0H3QD21
A0A014CAF7
UPI00048A6F57


A0A073GI88
UPI00061449A9
UPI00046A96D2
Q9KVH9
UPI00061AF1D4
K2KA81


V8KBQ0
A0A0F5SGU2
UPI000287BEB4
C3LQ06
UPI000665B4E7
UPI0005A75154


A0A070NWA9
A0A0C1ZV53
UP10004882B64
UPI00053C3831
N9IYA6
A0A0F6KJ15


A0A071AHD9
UPI0002CB0481
UPI0004937205
A0A0H6DK35
A0A062KZU0
UPI00053802DA


A0A079GY22
A0A029P5M4
A0A0B8VQT6
A0A0H6WUV7
UPI0005A67365
A0A0E2LUW8


A0A074HJN3
UPI0002A43CB4
UPI0004E6F9D0
UPI0000F34C0E
A0A013IDC6
K1JFB9


V1AR00
C9Y4T0
UPI0005B4FF04
A0A0H6U8U2
A0A013P0S9
A0A023RRT0


A0A080HY13
UPI00049ED8E4
K9NS95
UPI00069E3D50
A0A009LQZ8
UPI0005AA85F9


L3QA81
R5WQS0
J2QIN9
UPI00069F740E
A0A062FFT3
UPI0005AA6DC7


I2X3U6
UPI0002C9A11F
S6I847
UPI00069D81D6
UPI00056E426A
UPI0005CE86ED


L3K8G1
UPI0003901F07
A0A085URN7
UPI000472B301
A0A009EYA5
K1K4T1


A0A080GHT9
K8CHU4
UPI0006762E20
UPI0005B3F2F7
Q6FDR1
UPI0005C13448


A0A070PMD4
F5VKN6
A0A0D6C968
UPI000419FA2F
A0A014CQR5
UPI00068176EC


A0A079FM03
A0A0J1M6F0
A0A0D6BRV6
UPI00019F6F0B
A0A014FSY6
UPI0005A8197B


A0A071CG57
A0A0J1MPE2
UPI0004659D49
D7HG42
A0A014DDU2
UPI0005EE918B


H1C5A6
K0XCY3
A0A0B7DG99
UPI0006154522
A0A062SQW5
UPI0005A7CCE7


A0A071DLR9
UPI000483904F
UPI0005789654
UPI0004E46C62
A0A062MW11
A0A091AMQ6


V6E2G2
UPI0002CA7454
A0A099SK66
A0A0D1ESY4
F0KFL5
A0A0A5MTL6


D8AZU3
UPI0002CA7442
UPI0002887A69
UPI0004A3DD97
A0A010KWI7
A0A070ARJ5


I4J555
UPI0002C8C519
UPI0004E363B2
C2HS26
A0A009GU89
UPI0005B21AAA


D8AJN2
UPI0002CAD3B5
UPI0004711D03
UPI0004939A0F
A0A009RTE6
UPI0005B4D264


L3NTU4
UPI0005AB8E86
A0A0C2R6G2
UPI00041D5461
A0A013S7D9
UPI000206A54C


A0A017JGH1
E3G401
UPI00036390E5
UPI00053C556B
A0A011KJ92
UPI0005A9E387


E6B0V7
A0A0D6J066
Q4K3U4
UPI0006B26D10
W3T1R8
UPI00057A3319


G0F684
A0A0G3J3X1
UPI000467F1C8
UPI0003DDF141
A0A013T0B3
UPI00067160F8


T5ZL14
A0A0G2SEI1
UPI00035F9085
UPI00041C3DE6
A0A062GLJ2
UPI0005BE5278


A0A023LHN8
Q1R4G1
S6MAY1
D0IMK5
A0A022KT37
UPI0005B44CBF


B1LLV1
A0A0H2Z4L9
A0A0D0PI96
UPI0004D45E01
A0A013LNZ0
A0A0A5LAX4


A0A0G3KG39
B7MGI8
W8PZL5
UPI00064AB4CA
R8YFJ5
UPI0005A92C34


A0A0E3N453
A0A0E2KYV2
A0A0A1HZQ3
UPI00027344D7
A0A010JTN9
UPI0005AA862F


H9UYX9
UPI0005AABAAC
A0A067A109
UPI000157DCC7
A0A062E1I9
UPI000589B3FB


W1WIT4
UPI0005A9C3D7
M4K6D4
UPI00042503B9
U4NIT0
UPI00067ED86E


D2ABU8
M8YJ27
L7HM91
UPI0004223C0C
A0A009MNG3
UPI0005A81507


UPI00050A88E3
A0A084ZTW9
UPI0003631017
UPI000418E3F8
A0A062M340
UPI0005A6CF02


I6FUG1
V0V039
Q3K4P8
UPI0006A57310
A0A009GIH8
N9TZ36


I6FTV3
UPI00038FD937
UPI000490BE66
UPI00042555E5
A0A013TVZ0
UPI000305A965


A0A0C7MGG8
UPI0005436CE7
A0A085VMC8
UPI00019F31E6
A0A010GR47
UPI00051BB915


Q83IX8
UPI00063CF1BC
A0A0C1WQJ9
F0LQ07
D6JS35
UPI00036C158E


A0A0G3KSI3
A0A0D5WYP4
V8QZB9
UPI00041CEAFC
A0A062DGV2
UPI0005A8ECB0


A0A0F6EJW3
UPI000448752F
A0A010RSD4
UPI0006A6C949
UPI000447CI58
V9ZTN7


R4Y441
A0A017I2W6
UPI0005C45ABE
UPI0003575C86
UPI00044634D9
UPI0005BA54D7


C8T0L2
R8WJV4
A0A0J6KKN8
UPI000218F470
UPI000571CB80
UPI00029B427F


D3H3Y7
UPI00033B8BA8
V9R4G1
UPI000408ADF6
A0A011BSP6
UPI00044B3D00


Q0SYW8
F5P1M9
A0A0B4EK54
UPI0004E46B12
UPI000449E802
UPI0004633883


A0A0F6MJB5
UPI0002C91A03
F3FQI2
UPI000427E347
B0VTE6
UPI00028072AE


UPI0002DF73BD
UPI00064025BA
UPI000497D00B
UPI0003FAAAB1
UPI00044AA4AB
UPI0005AB7E0E


D2TH67
UPI0003EF0793
UPI00069BD02D
UPI0002BC24BA
A0A0E2GQQ9
A0KQV9


A0A0J0GM61
I2RVV7
UPI00062AF47B
UPI00021A9545
K9C7H8
T0PHI0


UPI000664EF6E
UPI00057A8D97
A0A0A4GEX8
UPI00053C5E2E
A0A010WGE0
UPI000589CE10


UPI0006656E52
UPI00057BF87B
A0A0H5ABK2
UPI000424C2A2
A0A022J6H8
UPI0005D91456


UPI00062C1AFB
UPI0002CCC14E
UPI000579419A
UPI00046EF0F3
UPI0004474D0C
UPI000666021A


UPI00046642F8
A0A0H3XA26
UPI0005CB3DAB
UPI0002A3539C
UPI000406B18C
UPI0006A60313


UPI0004E14727
UPI0005CC970C
W0H3A6
UPI0004112BDB
A0A013J7P7
UPI000372D3BE


A0A090UXU3
UPI0004F91B50
UPI0001E29EE7
A0A072J517
A0A013IEY9
UPI0005B1DD9B


UPI000598D943
UPI0005F03F71
UPI0006435FC4
A0A0DlGPU1
A0A010LP37
A0A0D0P607


UPI0005893785
UPI0005CD8DCC
A0A0C2A864
A0A0D1F105
A0A013V1J9
UPI0004937CC6


A0A0F0QX40
H7EDJ9
C3K451
X7NM08
A0A011IN70
UPI00059B6C6A


Y1GHZ4
UPI0002BA9774
UPI0003031244
A6B4T3
A0A011GFN4
A0A0A5Q092


A0A0J0JWN6
A0A073TQR6
UPI000376837D
A0A0F6M2K0
A0A009I9W9
UPI0006996A18


A0A0J0RY26
A0A0J8XHE7
A0A023C475
A0A0E2PRB3
A0A062JC54
UPI0005A7E00F


A0A0F1BFH2
A0A0D8LLA3
A0A0J6GRZ4
Q87TM8
A0A062T611
X5HRY7


UPI000668CF1D
A8ACT1
F3K6V6
A0A0F6LVP7
A0A062IXJ9
A0A0G3BY85


A0A0J0NMD9
UPI0003EF7A22
E7PGN6
Z2EEI2
N9BR66
UPI00051C6305


UPI0006AA4E04
UPI0004D811CA
F3EC88
A0A0A3VAZ6
UPI00036B0A84
UPI0005B1FBE6


A0A0F0VNG6
A0A0I2AP98
Q48QC4
Z2EDP1
UPI000426CED1
A0A023E407


V3CMI1
UPI0002328C93
E7NYU2
UPI0004A2C7E5
V4N4Z7
A0A081LLX9


A0A0J5K4Z7
UPI000369897B
J2RG73
A0A0A3V6V0
UPI0002836BF4
UPI0005AA429F


UPI0006AC63C4
A0A089VYB3
J2UNX5
UPI000472ADBC
A0A0K0HLP9
UPI0003603F0F


UPI00041ACFD5
UPI000541FC4B
UPI00069F8C81
Z2EJN6
J5N8B5
A0A0J1M7R1


A0A0F2AQL9
UPI000579035F
A0A0F0EFQ7
UPI00041561ED
J6CRI5
UPI0006489688


A0A0F5B4Y8
I2BE87
W2DRJ6
UPI00021A9FCC
UPI0003D82FE7
K1J828


A0A0J1RFK1
UPI0004E1359A
A0A089YRC6
UPI0001BAD8BD
Q9CLZ0
UPI0005AAFC0D


A0A0J0RJ15
A0A085GMM2
A0A0G3GBQ2
UPI00053C3D1D
J4SJC5
A0A0A5NK04


A0A066NY31
UPI00039B2EBD
J3ICZ1
UPI0005C160B8
J6CUJ6
UPI00051C9AF5


A0A0J0LMR4
UPI000540F32C
J2UE96
UPI0004D7564A
UPI0002828EB6
A4SHB5


A0A0F1A8L1
UPI00057BFF33
J2U1B0
UPI000541DCCF
UPI00025912D9
R1GU16


UPI00049A4378
UPI0002C9F7CC
J0P5Y9
A0A085T413
UPI000256A08F
Q5YL02


A0A0H3BNR1
UPI0003FFEF4B
F3IWL2
UPI0003591073
UPI00061A7F96
A0A0J5SCJ7


UPI00036B51A5
UPI0002CC6D1E
A0A0D0SPI8
UPI00069CC245
UPI0002F21178
UPI00040E493E


A0A0F3ZKX7
A0A0H3FM31
Q88BA4
UPI00069D2456
UPI00056150A9
UPI00026C7DD5


A0A064DDL2
UPI000463D3B8
A0A0F0F2C4
UPI0004E3009B
F2MWQ4
UPI00034AEF0E


UPI0005EEABA8
UPI0002A4658A
UPI0006425E29
UPI000682B11B
H7EWN0
K4KNG9


A0A0F1B160
UPI0006684CD5
UPI00048CEACE
UPI0004D918FF
UPI00046225F6
UPI0005916203


A0A0J1VF42
UPI0002CCBD72
F2K6U9
UPI00064977DD
A0A028VHX2
Q1MXX3


A0A0J1RH04
A0A0JUQT3
I4N769
UPI00021A928F
A0A0F3G1C6
R1J2K6


UPI0003BDCA59
Q8XAT6
UPI00054B3B22
A0A0H6V1C5
A0A0F3G1H1
A0A0F5ZTG2


UPI0005F8E6D5
R6U5R3
UPI00034B3DE4
UPI00041CDED6
A0A0D7EEU5
UPI0002D73F2D


A0A0F3YH15
A0A0F6GUR2
UPI00054BF274
M5NBE2
A0A0I9SHZ4
UPI0002E30D8F


V3DS68
M8JSN4
UPI00035C9B5D
UPI0005A612B3
I4CY47
D0I4E4


UPI00067FBCBD
UPI0005EF606F
UPI000466DC2D
A0A067BE00
A0A098FXA5
UPI0004826336


A0A0H0BBR0
C3SKS7
A0A031J819
A0A0E2KH36
F8H8H9
UPI0005F7AFD8


W7NPC9
H5E8V7
A0A0E2JIS7
A0A011RY08
L0GNC3
A1SAR2


UPI000237CAE2
A0A073G4J2
F3DX19
UPI000218FD46
A0A0B5C9B4
A0A0F7M0Q2


A0A0H0B833
E9TMZ3
S6WCS6
A0A0H6I7N5
UPI0004752163
A0A067A0E9


X5GBQ8
M9HCU8
UPI00069D83B7
UPI0004DF1506
F6AK49
UPI00056F77EF


UPI000480BC4B
N2GRQ0
F3EY12
UPI00040CF721
S6JQB6
UPI00046459AD


UPI0003BF53EE
V8FGU6
A0A024EDQ4
UPI0002C171C1
UPI0005A6CCD1
R8ASG1


UPI00043B1758
W1G9Y1
UPI0003A5CF66
S5IY40
V4QKI1
UPI00057A6730


UPI0003288250
D8E9I5
UPI000473172F
A0A0H6RK46
V4PVZ8
UPI000647EC3B


A0A0F4B9X9
A0A080FRF1
UPI0004837A57
UPI0003FCEE4D
A4XNW1
X6QAT8


UPI0005EA547A
A0A074HNG7
A0A0D9A8H9
D0HB12
UPI0005B96553
A0A0E2Q742


A0A0E1J7G4
D6IG13
M5R504
A0A0H6U223
A0A0D0KWI3
UPI00065DE691


A9MJ31
N3JTF2
J3FAA8
A0A0H5V3D7
UPI0004CF668E
UPI00029BA482


V1K9F5
J7R7U6
A0A0J6G1D6
A0A0H6XKF0
UPI00027874F3
D1P301


A0A0H3CTF5
A0A0A8UGH0
UPI00069EC1FC
UPI0003F7284F
UPI000483B47F
W3YJP2


A0A0J0I6K1
A0A026UZB6
A0A031GCP2
F3LEK2
UPI00066DB41B
B6XD39


A0A0H0C2Z0
M8L4U0
U1SSX9
M4RF91
M2TXC8
K8WDI3


A0A0J0K9E8
F8XAU8
V7E1I4
UPI000290E44C
UPI000646559F
D4C425


A0A0F0TB35
I0VX84
A0A0A6DIW0
K6YD96
A0A0H3YQ39
K8WMJ7


UPI0003546D46
M9GR01
UPI0006465369
UPI0005254C58
UPI0006274DB0
B2Q4K1


A0A090ULL0
A0A028CB68
UPI000640671F
C7R609
A0A0A1YQ26
I0DV03


V2HH02
F4W233
A0A077FGC9
UPI000483BB31
U2Z897
K8WW49


A0A0E2JMN1
A0A073FPG7
A0A077LKD4
UPI00041E0643
UPI00048929DA
A0A099DD54


A0A0J0LZB7
V0XEM3
F3DEB8
S6BLM3
UPI0004CF0F54
UPI0005B3D15C


A0A0J0TKA0
H5J8G9
A0A0F4TWU8
A0A0H2QE7
A0A023WXA7
A0A0A7ED48


A0A0J0CC39
D8ERM8
W6VH72
A0A0H4HX48
W6QPC3
U1M4M6


W0BFN6
A0A079Y2M7
I4K9P3
A0A0H4HA84
A0A087F8M6
UPI0005EAE7B0


G8LKX8
L4UZJ8
UPI00069DE63B
A0A0H4GYY0
A0A061CNF1
UPI0003813008


UPI0005CF9B3D
T6GRI5
G8Q5Z2
Q7VNG5
U3HS13
N6X102


UPI000665E6B2
H5IRB6
S6I6M5
A0A0H4GVY1
UPI000306C138
UPI0003A42C04


A0A023V5X5
A0A027YRN5
A0A0F4XJX5
UPI000364DF85
F4DXY8
W0TMS6


W1FX72
G2AN10
UPI0006257434
UPI000312E129
A4VGV2
U7HXH2


A0A0G2MPB1
L3PUX5
F3IN68
U3B5Z6
U2B4P9
K0CFZ9


A0A0H2WUK6
V0Z4M2
A0A0D0N8H7
UPI000429C1C2
U1T3I8
A0A071LPA7


UPI0005ED7CE9
L3C1G4
S6RD61
V5HP10
Q088M5
UPI00041A839D


UPI0005749AE1
M2P3K5
S6T6P7
A0A0B8QVA0
K6YBB4
A0A078MHY5


W8XNK6
M8PIH5
UPI0003770316
UPI0002DF401C
UPI0003B45ED8
UPI0005CA5673


G2S5J6
I2UBA9
A0A083UT61
L0DT46
C2LKQ6
A0A031MHW5


A0A0J4QGK6
A0A026RV20
S2EZ50
UPI0005099D99
B4F1V1
UPI00048184EA


A0A060UXG1
A0A0H3JJN7
U7DPS2
UPI00041EBC8E
V6MEX9
UPI000480EBFA


V1SVN5
A0A0G3JMJ8
J2XUG2
UPI0003B66AF2
UPI00040DD930
A0A0A7RZK1


A0A0C9GL09
A0A027TGI5
A0A0E1ED74
E6Q994
A0A094VIT6
UPI0006656150


A0A0C9GYL4
D3QX71
I2BSP5
B7J5H5
A0A0G4QET2
F9H319


Q8Z385
A0A023Z524
I4LAD3
B5EKY0
C0AS08
UPI0002E7B4B9


UPI000500230C
A0A0H3EP47
A0A059KWW4
G0JPR1
A0A0J1FDF2
A0A0E1WIG4


A0A0J1UWJ0
L9HY53
W6V2S0
A0A060USE4
A0A0G4QJK0
UPI0002DA963E


A0A0E2M7J9
A0A0H3PQH4
UPI00037298BE
A0A099KS81
UPI000536EEA0
UPI000045EA18


A0A0J4NUP9
A0A027ZJD8
J2SK90
Q48A47
UPI00066713AB
UPI0005BEB3B1


M7P8Y2
A0A0F6FEN5
UPI00062A28D4
UPI000369C377
UPI00053159BF
UPI0005BEAFC8


V3KJ47
A0A0F6CB93
A0A0J6LHZ7
A0A099L585
UPI0005FB88C6
UPI00068166C9


X0NMP3
A0A028E3B5
A0A0J6IZ62
UPI00053E216F
UPI000538E59F
UPI000680F31D


A0A0J0MEC2
A0A025G7Y1
UPI00054BC3BF
A6VEA1
J7TSU4
A0A0E1SM32


UPI0002B9ECA4
K4VYE7
F3HE08
A0A086BUA3
A0A0A2R681
A4N6A7


UPI0003A99D9E
A0A025C056
UPI0004855F80
UPI0000D7267E
A0A0H2RF05
UPI0006699B6B


UPI0003BD7E08
B6I4B4
A0A0E2UZ31
UPI0004CEE864
UPI000665888E
UPI000682D126


UPI00017C01C2
A0A0H4S0M7
UPI0004B486C5
UPI0005C9EB61
UPI0004684BD5
UPI0001A3F561


A0A083YZC2
W8ZQB1
UPI000467E321
UPI00059FF9E6
M7CFP7
UPI0005AEEC55


UPI000633E857
C8UJG0
A0A0D9APL4
L8MSN6
UPI000509F66A
UPI0001545AFF


A0A0H0B767
A0A0E1ZWP5
A0A0B1Z6A5
UPI00048D30BD
UPI0004148097
UPI00062D80BD


UPI00049F603B
A0A0A0F921
A0A0C2I7D7
UPI0005BD2953
A0A0H2QVE0
F9GRY7


A0A0J5L5Y8
F4VLA2
K2SWK1
UPI0005CFE450
UPI00062C8767
A4N0M7


UPI0004A7224E
UPI0005CCA9B7
S6RKJ9
UPI00053E8C86
UPI0004632748
UPI000667602A


UPI0002E3DC58
UPI0005CF3F54
K2TIC3
UPI0004633730
A0A076LNV0
I3DT46


V2LMA2
A0A0F6VR07
F3GZK6
W5IS76
A0A034T5A5
E7A6L1


UPI0006AC7A4B
A7MQI4
A0A0E3K5L5
UPI00053D2EE8
A0A0H4Y5C6
UPI00049A786F


A0A0G2MI6
UPI0003EF9AA0
A0A0D5XSI5
UPI000281A7AB
D0Z969
A0A0D0HPX5


A0A0H0DGX5
UPI0004A0972A
F3GAT3
A0A024HPG4
A0A0H3DLQ4
F9H118


A0A0J0STY6
V4B7H4
U6ZWQ4
A0A0H3QKK2
A0A0E0YV25
UPI00014FD51C


A0A0J0B4N3
W1F1B8
A0A0D0N1N0
A0A081YDT2
C5BBB0
UPI000039A987


A0A0H0DLE1
UPI0002FA2529
UPI000291716A
UPI00021202D8
A0A0J7JPC0
UPI0006667D95


A0A0J0TZE8
UPI00066D0413
UPI00048B1910
UPI0002819173
M0QBY6
UPI0005AF4057


A0A0J0DI84
UPI0002CB68C1
E0WUJ5
UPI00053ECB14
D4F9S6
UPI0006658AEE


A0A0J0M6U1
A0A0A1R5L6
UPI000586ABB4
UPI0005D3900B
UPI0002FC6C68
UPI00062DA742


V7UEQ3
UPI0002CBCFF5
UPI00058FF140
UPI0004CE44FE
UPI0002EC2B1F
UPI00066825F9


A0A0J6MH73
UPI0002CAB9DA
A0A086D7H2
A0A071KY05
A0A0F7NRS6
UPI00062DA3B5


A0A089GCS8
UPI0002CA9661
Q1QSL3
W1MWV7
I1YH83
T2BJ41


UPI00057D22D2
A0A0J2DYF8
UPI0006507055
Z2DC34
A0A0C9NZX6
UPI00045A627C


A0A0J0DPX9
V0VJI0
K6ZDC1
Q9HTQ8
UPI0004814447
A0A0D6FR93


UPI0004DB41FA
L2X5H3
G4QEW3
A0A0H2ZJC9
UPI000485F550
A5UHE1


UPI000647BC86
T5TGV8
A0A094ITY3
V6ANV3
UPI000481ED5E
UPI0001F36303


UPI000464DFFA
A0A0J3V897
A0A078KWA8
A0A0E1B1Y8
UPI0005C7E8F6
UPI00066E1D5B


A0A0J0JNC2
U9YXY7
R9PLC1
UPI00066A1682
UPI00048C3840
A4P0W5


A0A0F1RDS8
X7NZP7
F9U5G0
UPI00053CF5E1
G8UU65
E1W2I7


V3ICZ9
S0VJS5
UPI0004214388
UPI000483B998
Q5ZRR4
UPI00066D46C5


UPI0002ED4344
UPI000553AB9C
A0A085HDC4
UPI000453754D
Q5WSZ4
A0A0E3LZ36


UPI0002BAF5C3
UPI00038FBA14
UPI0004899DBF
UPI00053E9238
A0A0C9MYI5
UPI00066C24A1


A0A0F0RUW6
UPI00069AF41C
A0A0G3CX27
UPI00044B92FC
I7HM78
UPI00066D30E4


A0A0J5X4F1
E9XUF9
U2EN75
UPI0004F243CA
UPI00048A337F
UPI0004763AF3


A0A0J6MA72
UPI000377C134
F7RTH7
UPI000281A2C7
UPI0001E3CB67
UPI00066D6A55


A0A0J0EMG6
UPI0006144C0E
UPI000560CC8C
UPI00025BA256
UPI0005A659E8
A0A0H3PBZ3


A0A0F0Y3A8
UPI0002C95440
A9L5H2
UPI0005B80B94
UPI000489B225
UPI00066EEC6E


V2L1P6
UPI0002A387C3
A3D9R5
M4X2N2
D5TAM2
F0EQH8


A0A038D4Q8
UPI00028D7E4A
B8E891
UPI000464F24C
A0A098GC77
F9GLZ1


V2AL75
UPI0003EF002B
Q8E9F8
UPI00053DFB5E
A0A0E3V4J7
UPI00068332D3


UPI0006AC6CB6
UPI000675F6B9
V1DQ01
A0A0H3RZC1
A0A0E2Z1G0
P44804


S5MWY3
UPI0002CB1048
B0TJQ2
UPI00053F27B9
Q3J9N2
A0A0E1WD80


UPI0005E6338A
UPI000666D01A
A0A073KJP1
UPI000580BD50
UPI0004E88D84
D1NF27


A0A0G3TQ60
UPI0003917D4F
A8GZF1
UPI0003B96CAA
D8K6Y2
UPI00066786CF


V5KMV0
M8S4Q2
A0KS48
UPI000627ABF2
H8GKB8
UPI0005BEB07A


A0A0H3TAW8
A0A0F6TYB8
Q0HQH5
S6AK57
UPI00045E6F7C
UPI00062D93E5


A0A0K0IDI8
UPI000667500F
UPI00005E53DE
U3HFM7
G4E537
H1LQ71


UPI0006678805
A0A0G9GD89
UPI00048E027C
A0A0D6T1C3
UPI000592722C
Q4QMR8


UPI0005CFE58C
UPI0001E172D8
UPI00057AE72B
A0A077K6N5
A0A0D8CVB0
F2BZJ0


V3R0S0
UPI0005A5D84A
E6XQS6
UPI00036968F6
UPI00037B7540
D1NGE3


UPI000667F205
K4WL59
UPI00048F743D
W9UTB0
UPI0005A79D1F
D1NDK2


UPI0003BCBEBD
UPI00057BF7EA
A4YBH4
UPI0004074F9F
UPI00048C3DFE
UPI0005891512


F5S3F4
A0A0J4KMU3
B8CHT8
UPI00037EAC87
I3D5Z6
E1XAV0


A0A089QXV4
UPI0004D4223E
UPI0005CD4AEB
UPI0006868A78
E4PK47
I3BJY2


UPI0005DE95D8
UPI0002C9357C
Q12S77
UPI000685365C
M7D8V7
UPI0006ABC8FB


R0EH56
A0A0A8KN31
UPI00046EB07E
UPI0006853B62
UPI00034BBD60
UPI00066B7069


A0A0A6H3D6
B7L8B9
UPI00015880E3
UPI0006878394
U7G1L2
UPI00066AD24C


UPI00068B0F23
A0A0E0Y664
UPI000468006F
UPI000688C08A
U7NT63
D3RTA9


A0A0H3RA37
A0A0D1BKY7
G0ATX3
UPI000687FD4C
A0A0J7J5V1
UPI0005D3DD99


A0A0G2NZC5
E3PNW8
UPI00005FDF28
UPI00068620CA
R8AXS8
A0A0D8PL98


UPI000353D040
N2IIK3
I3Y6V4
A0A081N6G5
H8WDK4
UPI0005314008


UPI0005E5AEEC
S1HQ90
E1VG66
F3KEE2
U7H536
A0A0A2Y273


A0A0J0WRS8
K5BLY1
M7PDW2
UPI0005F86AB0
U7NXR9
A0A0A2XH45


UPI00069B3A9E
T9CGI0
A0A081N9R3
W0SBD9
A1TXU4
A0A0A2YTN3


A0A0G4BD19
A0A0F1KJV2
A6VM58
UPI0003B7AAB8
A0A072MY82
UPI000530E664


UPI0005C61441
A0A0F6K2V6
B8GLW7
UPI000409CD7B
UPI00069EBA57
UPI0005314059


UPI0005F19921
UPI0002A2036B
UPI000570B5D1
UPI000410D42B
G6YNL9
UPI000531D6FE


A0A0J6D7T8
UPI0003915B14
UPI0005278D4D
W0HH80
UPI00031A8E93
A0A0A3A494


V2AVQ0
A0A0G9QFI5
A8G0X8
Q2NQB0
UPI0005230701
A0A0A3A7G2


V1GTV0
A0A0J1ZW66
UPI00048BE683
W0HNJ1
F4AHB5
U1I2Y4


UPI0003FA6617
V2S178
A3Q9M9
UPI0005609D73
Q15ZT6
F4HF21


UPI000665C816
N4NBQ8
B1KQB1
UPI0005C9970E
K6XTE6
UPI0005310D73


M4LS14
N4NKF8
A0A0C3QZI7
UPI0003FDF7C7
K7A404
A0A0A2XIV9


A0A0J5MXA1
N4NZ19
UPI00052F1E8D
UPI000484C7F7
K6YMY3
A0A0A2ZUW6


UPI00051391FD
A0A080EIA1
UPI0004908F35
A6EZW9
A1K1U9
A0A0A3AZE6


A0A0A5R3K5
L2VFP6
Q21PD1
UPI00058F11A8
G2FGY2
A0A0A2Y9K8


A0A0J0QVL7
M9ER59
O51889
A0A0F9NYG7
G2DBK1
UPI0005313184


A0A0J0R4I6
U9ZQ00
UPI00034A05A0
Q478X4
UPI000360CFDB
UPI000530C37C


A0A0F1HGA3
N3NAA8
G4SXF2
Q2BRL8
W0BEM2
UPI00053223C9


UPI0003298127
M9JK23
UPI0004E1B20E
UPI0004E83861
W2V1F8
A0A0F3KHK4


A0A0H0A7S1
N2JXH2
A0A084T7P6
UPI0004A193CB
A3JE71
UPI0004272D7B


Q9L6S1
A0A080EPX3
A6D9P6
U4SR36
A0A0H4I8W3
Q5P4B6


A0A0D6TML9
B7NF83
A0A090S7S9
U4SES2
UPI00037E8B5D
UPI0006A9A723


A0A0E8MKU3
A0A0H2VE70
A0A090SBH7
U4S459
M1FGB5
UPI000411120A


V1L7R7
UPI0002CACCD9
G3IVH2
UPI0002CBFAC9
UPI000572A7F6
UPI0004221DBE


A0A0J8M094
N2RLH9
UPI0004DF8545
UPI0003AC4DB6
UPI0004744F39
UPI000485D7F1


S4IGJ2
A0A0J1LII8
UPI00047F1C5C
UPI0004ED825E
A0A0F0DKQ4
UPI00045EA9DE


S4JI21
UPI0003DE3024
UPI0001ECFED8
U4RRC2
V9HKH3
B9YZ61


V1PEP5
A0A0A5RMD0
P57654
A0A063CT47
C4L8M5
G2J035


A0A0J8MRJ4
A0A085ITL8
UPI0004B2EA54
U4RTG0
UPI000467E424
UPI0004844892


A0A0J8I253
A0A038CLT3
A9CX24
A0A0E1RML1
N6XTH8
L8D9A1


T2Q8L1
UPI000699D02C
D4ZCT1
B8F834
N6X5A1
UPI0005DDA656


S4I960
UPI00053015A9
UPI0006860AC7
A0A084EXM6
S9ZLZ2
UPI0002DE6662


V7VTQ5
UPI0006A5F9C7
A0A080UY52
U4SEE3
N6YIH6
Q8D1K7


V1U623
UPI0002C9392A
L7Z9H4
UPI00049FFDBE
A0A0J8Q929
UPI000267BACB


A0A0J8MLX1
A0A090V5M6
A8G826
UPI0004DFBD5A
N6YW13
UPI0002679FF8


A0A0J8KIG6
UPI0005F02BB9
U2LS81
A0A0F5EXR4
C4ZMK0
UPI00036F034D


A0A0J8LPE0
A0A0G2XKH3
UPI00020E94C4
A0A0F5EPE0
N6XY51
A0A014M0T5


A0A0J8JI45
I6FIC7
UPI0002DABF6B
S6EML5
A0A0C3J2Q5
A0A0B6P3H3


A0A0J8NNW4
E7SHA3
L0MCV8
UPI000376F3D1
UPI00056F25D5
A0A0E8XKA8


A0A0J8M386
I6DJI8
A0A0G8B441
UPI0004921C45
E1SPI9
A0A0E1NWJ3


S4KQN0
B2TU14
UPI0002A42D68
UPI00036D6D23
UPI0003B58CFA
A0A0H3B897


A0A0J8HDW7
E7TCP3
UPI0006652A04
UPI0006737FF4
Q65VJ0
A0A0H3QMK7


S4JDD8
Q31UK7
U2L789
A0A0F9VQX3
I3DJM6
Q66G21


A0A0J8M6F4
UPI0002C9AB91
UPI00061B5F40
A0A094MWI0
UPI0005CAE678
Q0WAE0


V2N1K8
R9VPF2
UPI000325C91D
A0A0C1MVM0
UPI00069EE2BB
A0A0H2YE35


S4K7P0
K8CWZ5
UPI0006688668
U1LW91
UPI00069E268B
A0A0E8MJ70


A0A0J8LWR5
UPI0002C99AA5
A0A0J5CK09
A0A0F4QKC2
UPI00069D7318
A0A088KV63


A0A0J8HEC7
UPI00038FB95B
S5EBF4
V4JJ09
UPI0003FDFDBC
A0A0B6FKI9


A0A0J8JAK5
UPI0002C96518
A0A069CNT5
A0A0F6A4M8
A0A099KBQ4
A0A0H5LYI6


A0A0H5PMJ7
W9BJ58
A0A087L2V7
UPI0006270414
UPI0003FBA996
UPI0005DF0BEB


V2NGI2
A0A0I2BS34
A0A086G6L5
UPI0006271440
UPI00048E7C37
A0A0H5H7D3


V1SGL7
W6J7C4
W0L9M1
UPI0003618E19
UPI000482708E
UPI0006827E21


X5MWS2
UPI000500BF0E
UPI00066770B0
UPI0004BB1652
UPI00051D9F62
A0A0H5JCZ5


T2PQT7
K8BQX4
D4E004
I3BQA3
A0A0E9BPQ7
A0A0H3NX30


A0A0J8KVX1
UPI0002CBEEC2
UPI0006615922
H5TCX1
UPI000495F3A1
UPI00067863B0


A0A021WMC9
A0A0J4V9J3
UPI000408D809
A0A0B7J8T9
D4GGK8
A0A0F6ZK05


A0A0J8J9B6
A0A0B7GDH2
A0A0F7HAB5
A0A0C5WV68
A0A0H3L1U7
A0A0H5ETP1


V1I8P9
Z5CRA3
A0A0G9N4S7
UPI0005CBA06D
UPI00047515EA
W0UFJ9


S4LIK5
B5XYZ5
A0A0F6KPT4
D0Z154
A0A0E9B357
UPI0005E9ED67


V2A692
D3RHB6
A0A0J8P0E6
A0A0D8MPB6
A0A0E9BHY8
UPI0005DD7BF8


A0A0J8L0F3
UPI0004D7628C
S4YDU2
F2PBR6
UPI000468BFB9
UPI0005E79D67


V1MB85
UPI0003A3F66F
A0A0J1YD25
A0A066RXJ4
A0A0A1B4E0
C4U266


B3YF36
A0A0J4SW69
A0A0J5CHL9
UPI000307D228
A0A0A3YME8
UPI0005DB455D


S5ILC5
UPI000616F32D
UPI00046870F9
UPI00040F27C9
U2MK51
UPI0003029766


A0A098GZB1
UPI0002CA634B
A0A084A575
Q2C483
E0M1J4
A0A0H5IPV3


V1XST3
UPI00061449AA
S0A849
A0A0D8SB06
A0A0F5XV05
A1JI64


V8ME39
UPI0006A97B14
UPI00048AA12D
A0A0D8LLV6
UPI00036D7981
A0A0E1NPM1


V2JQQ7
UPI0005762BA1
UPI000487A67F
Q1ZK16
UPI00034BF070
W8U8V7


A0A0H3S2U0
I6FYC6
D3HNV7
A0A0D8LUA2
UPI0004E1A398
UPI0005E99F5C


X2KI94
A0A0J8VI05
C6C798
A0A0J1GP27
UPI000508FC34
UPI0005E00E96


A0A0H3SKK5
UPI000699B795
UPI0005615E14
A0A090RJP1
A0A0B1RCL6
A0A0B6HTA5


B5EZ38
C8TL39
UPI00040FFE96
A0A0J1H812
A0A0A6YFE9
UPI0005DDB975


A0A0H3ILF8
K3PM43
UPI0005684D6D
UPI0005D2DDB6
UPI000534D94B
UPI000173969B


A0A023N7J2
A0A026HND2
UPI00037540FD
UPI0005E822AD
A0A0D8YE92
UPI0005E5EB23


V2P0B4
B1ERC7
A0A0J8YX51
UPI0005E9034E
A0A059IDE0
A0A0E8MKS9


A0A0H3NHT9
S0TTI5
UPI0005E8F2FE
A0A0D8QVE1
U1TNM8
A0A0H5NCP1


A0A0H4V1S8
UPI0005309AD3
Q605Y2
A0A0J1H2I7
E1SK66
A0A0B6HCA7


V7RZ28
K8BE03
UPI000308B214
A0A0B9GYU2
J3D9Z5
A0A0H5MV89


M7S3Q8
UPI00044CED1F
UPI000413FA42
L8J7D2
UPI0002A6B5C9
A0A0H5PMI9


V1GIN0
K6KFS6
UPI00037FCD36
UPI0005959C45
U3TSP9
A0A0B6LTD8


S5HF97
UPI0006662A0A
A0A068Z3I4
UPI000509EA27
A0A0F3LWH1
C4UBW2


V0GNY3
UPI000448B406
E9CNV6
N8QMA4
UPI0005C52466
UPI0005E9D7FF


A0A0F0ITA3
UPI0004207793
A0A068RDD4
N9Q5H1
UPI00048B685F
A0A0H5MA43


A0A0E1CUB8
UPI0004468690
UPI00039B0A85
S3TBN2
UPI00069BBC9C
A0A0H4MX63


A0A0F7JC30
A0A0G3PTV9
A4BKH1
N9PM38
E6WHD8
UPI0005E84131


G4C8N2
A0A0J8ZB76
UPI0002E7F8E9
N9RHD1
UPI00050F5F1D
C4T540


A0A0D5WN88
A0A0J9AH95
UPI00036F75F9
A0A009KDR6
A0A0F5FBT2
UPI0005EA618B


A0A0F2ZS42
J5XNR1
UPI0004772558
N9MFP0
UPI00025848BE
UPI0005E2712E


V5ZRF3
A0A0E0WT30
D3SDE5
A0A022IP23
UPI0005358D4C
A7FD44


V2D3X3
UPI00066507BD
UPI000363C2C3
K9AX41
UPI00067631F8
C4SH32


B5Q5L3
UPI000665B1C4
UPI000381348D
A0A009KTD8
UPI0005342DB0
UPI0005E88594


V7IN29
UPI000664F825
UPI00036A352B
N8RGJ8
A0A0A3YQZ0
C4S2J8


E8XIM3
X4BC54
UPI0003638A7F
V2TJN5
J2UWK2
UPI0005E15072


A0A0F6B977
UPI000517D3E6
UPI000368CFC7
V2UWT0
UPI00066187B2
UPI0005DBB3AC


G5QS67
A0A0I0Y9Y8
UPI00036636AC
N9QAE1
H3RIT7
W8G789


G5LVZ4
A0A070TA81
UPI0003689D3E
N9KD21
D4HUI5
UPI0005E9DE69


UPI00067FCA22
F3VD48
UPI00035E83C6
N9TJB8
E5B0I1
UPI0005E6D02E


G5PV49
H4V842
UPI00036EBDFE
N9RBQ9
A0A0J8YTF5
A0A0B6GH85


G5RMY1
K8ABZ8
UPI00036CB07E
N8XKN2
B2VG71
UPI0005E21E25


G5SIZ2
V5U423
UPI000371CE96
N9MQT1
UPI0002CAE332
C4ULT0


X3X6G6
A0A085HAK1
UPI00037E26A7
N9N9M9
A0A0A0ZCV1
A0A085U6D1


UPI0003063B27
H5A4A8
UPI0003719672
UPI000570AC25
UPI00048B3568
UPI0005E333BA


G5PBC2
F5N8S8
UPI00056FCF90
UPI0005C62CED
Q6LVY9
UPI0005E682AA


G5QW51
A0A0J9AK28
UPI0003734BC2
N8VTA9
Q1YVV5
UPI0005E03B74


UPI0005E961AF
UPI00067DF499
UPI0003714E69
N8VZT9
UPI00062F612F
C4SRN3


G5MQG3
UPI0005CB2CD4
UPI000422ADAE
N9TDU3
A0A034U1R0
UPI0005E51855


UPI0005F2CBD5
X4JC12
A0A0G3FYM1
N8V910
UPI00030424F2
UPI0005788705


W1XLV9
G5P130
UPI00035DF508
N8UMY4
U5A599
UPI00046D0E5D


A0A0J0N6G9
UPI0003BCE0F3
UPI0003653619
N8U6B7
UPI0002F53240
M4R9M0


V2IST2
L0H0T7
UPI00035F46DD
R9ATC8
UPI0003081AE5
UPI00046D66BE


A0A0J8F6X7
UPI00062107C5
UPI00037A10E5
A0A0B0KKN3
UPI0002E72691
W0R997


V1SFT8
A0A0K0HP61
UPI00035F39C1
S7WVT1
B7VH95
A0A094IJP1


A0A0K0HFU2
A0A097QXR9
UPI000381010F
N9KJH2
UPI0005F9EDF7
H8Z171


UPI0005AB2AE4
A0A0B8ZV63
UPI000368288B
N9SJA9
UPI00063A1E73
C9R7F6


UPI00062081F9
UPI0005837FE4
UPI00036D136F
N8W759
A0A0C1NZP7
E6KV30


A0A0J5KVY8
G9Y0Y6
UPI00037F35BB
N8RKD0
UPI00064760CF
UPI0005194C73


UPI00029C3FF8
A0A0C5VQS4
UPI00035EC95C
V5C2I3
A0A0F4NTM0
U1S9B3


A0A0J1VMC9
W1FXH4
UPI000367CCE4
UPI00061832D7
A0A0A5HSY9
UPI000406D49B


D2ZMA5
A0A085GZB9
UPI000423C045
A0A061JWL5
A0A0A6T9A9
UPI000660A603


UPI0003A1A991
UPI00062253DC
UPI000373D30C
UPI00036CBF04
UPI0005E2F450
G4A8W6


D7XM77
UPI0003A59E18
UPI00036243F4
W8QTS8
F9RNX1
G3Z8Y9


UPI0002677FD2
C9P8Z5
UPI00037D0EF9
A0A078LYT9
A0A0F4NNJ4
I1XRY3


D4BE16
F2JTM7
UPI00037114DA
A0A099RR43
E8LUB9
UPI0006831C68


UPI0005794143
A4C7W3
B5FCU9
A0A0D9ATR1
UPI0002E710F1
G4AZ10


UPI000260B9F8
UPI00039F0D67
Q5E1T0
I4JQR3
UPI00031D8F80
L8UHA2


UPI00028307CF
UPI0002558A91
B6EP51
I7A9J8
F7YIE8
UPI00067CF184


UPI0006660AB8
UPI0005B86EE4
UPI000247865A
K5XG83
A0A066UM26
UPI0006815E34


A0A0E0VC55
A0A098G8R1
A0A090IP02
A0A0A1GK07
F9S363
H0KC96


T8Z104
UPI000326FBA0
T2L6T4
UPI00040F147B
UPI0003102D21
A0A0E1YSI3


S0YAD1
UPI00037E68F8
L9UDC2
UPI0004194356
A0A099LPD8
X2JQA6


S0X3V2
UPI00034D7EBF
UPI00037E36DB
UPI0003B39C7B
UPI0003167DE1
UPI00067FF093


S1DN83
UPI00056CF143
A0A0D7UZT0
UPI0005BA4855
UPI0002E0F676
C6AQX1


S0XCC9
A0A0B8V8Y9
A0A0F9VK34
UPI0005B7EB79
A0A0C2P7J1
UPI0006A71057


S1E4M9
U4TCI2
A0A0D5LWG2
A0A0C1EK43
A0A0C2JL07
G4ABR6


T9IPB3
A0A0H4R6J4
G4F9U9
U1AEW3
UPI00031E1DE0
L8UIY4


T6LBU7
A0A0B8USV8
A0A0B1PVT1
UPI000617AEB5
A0A0A5I590
Q7MYL0


S1GJ06
UPI000368EE93
H0J1C6
UPI0006182BB7
UPI0003043227
A0A022PH42


D8ADY5
A0A095VW14
UPI00048842D1
Q7NQR9
U3BS43
W3VA31


S0VUC6
A0A0C5UZZ5
UPI0002D5FF35
A0A0J6LGT4
UPI000571B2B4
A0A0A0CQ83


B7LU77
W8FU49
UPI000556BD4F
A0A0D8ZDY8
A0A086WW56
UPI0006203273


A0A070K818
M5DYB2
A0A0C3I966
UPI0004907BDE
F9T770
A0A0F7LMM1


A0A062XSU2
UPI00046D03A5
UPI0004843630
C5BIA4
UPI0005F11AED
UPI00055C23C6


UPT0002C9B880
R4YVB5
F7SNI3
UPI0003800078
UPI000699D72A
A0A0J9EYL2


UPI000651920D
H2G1G7
UPI0004AB49AE
UPI000382D783
UPI0005F118D8
C7BQK5


A0A0F3TFS9
UPI000379F9FB
A0A060B1U5
UPI0004227F3C
A5L7N9
U7R5K0


A0A0E2U8U7
UPI0001EC45E8
A0A0D6EF56
UPI00035C7304
UPI0001F55149
A0A081RWC7


C8TYS8
C6XCN5
G9EBD3
UPI000369273A
U0FTU6
UPI00058BF6A9


A0A0J2E1P9
UPI00035FCCBC
A0A0F4RA35
W8KPW4
UPI00030715AD
T0PH03


UPI0005B2C8D4
UPI00058D9CB0
W1N5Q2
D5C0J9
UPI0006303856
A0A085JM95


UPI0002C95CB8
A0A0A0BIG5
UPI0004CE4C17
A0A0A3AKX9
E3BPB4
A0A095VZP6


A4WG32
UPI0002DE5ECC
A0A081K8A4
UPI0006A9F0F0
E8MCD7
UPI00046F3C99


UPI0003420E0F
F5T1S3
UPI000477FE94
F7NR22
Q7MQG8
UPI0004A3375F


UPI00036F08F6
A0A0F9NIL3
A0A094JA28
A0A066T3V5
A0A087IWU5
A0A0F9VYU9


UPI0005C4EB5F
C0N7C2
A0A090KED5
A0A080LJV3
UPI0006A98AC0
I1XM63


UPI0002C91779
F6DAI6
A6FE65
X2GZR9
UPI0006A98232
I2JF40


A0A078L9V2
UPI0005C9F562
UPI00030A12FE
A0A0J5P3I3
UPI0002482DB8
F9ZY05


UPI000512B6F1
W0DYM2
UPI0002DF92C0
A0A0F2P6J6
F9REI7
A0A0F5V836


UPI0002CC209C
UPI00022C089B
UPI000464C875
W7R0N4
UPI0004F5E7D9
S6GDK2


A0A0D7LJA0
UPI0006844205
UPI000427CAB0
UPI0004752339
UPI00031835E8
S6HCZ4


A0A073VC48
W7QF72
B9CXM2
UPI0004E147DD
UPI00031E4412
I8U5K5


X7I146
UPI00058DEE31
C5RZQ1
UPI000479BC17
A0A0H2MLA0
H3ZE84


X7HFY3
UPI000289826B
UPI00035CAB1A
UPI00047B5018
UPI0006195856
J1YGP6


A0A089Q204
U7NY76
UPI0003B481E4
W9V341
UPI00067F4562
H2IWS7


UPI000675D9DD
A0A098RE99
UPI0004212DE4
UPI0005C15FEC
A0A097QPF1
UPI0005D339A3


UPI0004D8E29C
E1VCA4
A0A0C4WTU2
E0FET2
A0A0H0Y092
I0QQI6


B7UMN3
UPI00030B6E67
C1DJY5
UPI000248B5E1
UPI0002F588B8
UPI00038060C2


H4I3H7
UPI0006148CBA
M9YDT7
J4TTN5
A0A0G9M026
H8NUJ7


H4JUI7
UPI0005B789BB
UPI0004E1F9C3
S9YCL8
UPI0002DD07EC
A0A0H3FLE0


H4KPD2
S2KK42
W0E158
I2NC81
A0A0B4IM65
UPI000554A929


H4L565
UPI0003674641
A0A0F7K0Q6
UPI00031355EC
A0A0A3EMP0
A0A085G3A6


H3KW73
UPI000343B180
UPI00048BF236
E0F2E9
K5V6E0
UPI00041ABFF4


H4LJK6
UPI000376C869
UPI000395D43A
E0F8J5
UPI00066B2D3D
UPI0003089400


H4IZH1
S5T4K5
UPI00046F29D9
E0EW49
UPI0005F9A9ED
UPI0004719479


H4JFJ8
K0C8L7
A0A0F5ARC9
E2P8X6
M7RIV0
UPI00058F6D4E


H4K9V6
A0A0F9YVG2
Z5XTJ6
W0Q1J8
K5TSH9
C8NBT1


E3XW38
UPI0004057986
UPI0002AA68F1
UPI0005856421
C9QC04
UPI000660E94E


H4IIJ0
D2TWS6
A0A0F4S821
A0A0B5BWF7
A8T649
















TABLE 6





List of Bacillus stearothermophilus PcrA homologs that have 50% identity to and 80% overlap. 1747 members


of Uniref 50% identity cluster is shown (citable UniProtKB and UniParc accession numbers are shown).




















P56255
J7M5U5
T0TN09
A0A0I6PI88
R3VBE4
UPI0005CD7F53


S7T032
A0A0H2UUM0
F8LQ03
A5LVX9
E0G4K8
UPI000417C0DE


UPI00051815BF
Q1JLF2
C2LSM3
UPI0005E41D7E
E6GJJ0
UPI0005CD905E


A0A098L684
UPI0003C7B0E5
UPI00065FC663
S7YIM5
S4DY07
G7SM20


U2YC97
UPI000254D55F
UPI00066E20BD
UPI00066CDBC6
C2H162
UPI0004062509


G8N340
Q1J6A6
E3CPD8
E1LG87
R3D1M0
UPI0004051F87


T0Q4M4
A0A0G2V0F7
W3XXV6
A0A0I6BPW7
X6SFW2
UPI000411FB5C


A0A063Z1I8
M4YYG1
T0T6T2
A0A0I9JBK7
X6RK63
UPI0004022BA7


L7ZT56
A0A0G4DFH5
UPI0002AEC4C7
UPI0005E02B0B
R4CW85
UPI0004188987


V6VMU8
UPI0001E10349
UPI00065FB970
UPI0005DC8263
X6RKD4
UPI0005CE22CD


Q5L3C0
UPI00000D9968
UPI0003167399
UPI0005E61B75
X6SVN5
UPI000400A66B


UPI0005CD09ED
A0A0G3U9S6
A0A0A1DXP2
UPI00066DCA04
R4DBG2
UPI0005CD5B4A


A0A0D8BW89
Q48T98
A0A0F3HAQ8
E0Q0Y1
C7WG78
UPI0005BE8F33


A0A087LEV1
UPI00038E29D2
V6Q5R6
UPI00066CD043
C7W6F8
UPI0005CC9805


UPI00066FD17E
A0A0H3BYK1
A0A0C2HKT0
UPI00066D16C5
R3EDY6
UPI0005CC91DA


UPI000519CC89
UPI00050BF55F
UPI0004E153F7
UPI0005E1DA5A
E0GYA3
G5L3H4


A0A0G3XVN0
UPI0004BE2C5F
UPI000288F7E6
UPI0005E04403
R3L6W4
UPI00040C9E90


A4IJY5
UPI0004F92D8A
A0A031IBW4
A0A0I6R2B8
E6FGS3
UPI0005CE3BAA


UPI0005CCA9FF
UPI00066C9AA9
B1YJ16
UPI0005E64F07
UPI00031E170D
UPI0005CCD039


S5YVH0
E7PYJ1
UPI0006AA2516
UPI00066B4226
E2Z449
UPI0005CD5201


UPI0004DF596F
UPI0004BE34CB
UPI00047948D2
A0A0I7U0N9
UPI0002F39C67
UPI00040A255C


A0A0E0T7W1
UPI0004BE2973
UPI000683717C
UPI0005DBFF52
E6IN81
UPI000419AA26


UPI0006A962ED
C5WGR7
UPI00041CB696
A0A081PQV0
UPI00031A4BB4
UPI00040A186C


UPI00017E56F4
F5U8K1
K0A8A5
E8KBG6
S4G3W1
UPI0004221FBB


UPI0001D581E8
A0A0E4B7C5
U6BA96
UPI00017C1A3F
S4FMR9
UPI0005CDC9EE


UPI000424F449
Q5XBW2
UPI00047AE0FA
A0A0I8Y7H2
C7VZ55
UPI0004624A9B


A0A0J0V9H4
Q1JGI8
UPI000494D4D3
UPI0005E6A918
C7UKX9
F4EF32


A0A093UDD5
UPI00044FEC83
UPI0004792A31
A0A0F2E3V6
A0A0E1C082
UPI0005CF3160


UPI000539F1EA
K4Q9V2
UPI000494A958
UPI00066DA31C
R1KTX5
UPI000400B1DD


N4W917
UPI000617EC21
U7USF2
UPI0002AF45D8
UPI00045B8E48
UPI00040B8112


UPI00055386C0
UPI0003C7BD0F
A0A0E0UWM6
UPI00066EE4B6
R2UDI9
B9WTD9


UPI0005590F34
A0A0F5P2U0
A0A0E1R8Q5
A0A0I8ZZI4
R3B3J0
UPI00041EA41C


UPI00020D9901
UPI0003C7D5B0
A0A0E1Y218
E0SZL7
R3J9A8
UPI0005CEFECB


I8UBH1
UPI0006181569
A0A0B8RF49
UPI00025ABE1B
UPI00032DCFB5
UPI00041FE6F0


UPI000555B2C6
I7WIP9
UPI000035D23A
A0A0I7UZI3
UPI00032F5E7D
UPI0005CE9E1B


UPI00059000A4
A0A0G2V4A4
UPI0001B43587
UPI0002313C8F
A0A0H1TNE2
UPI0005CED2C1


A0A089XIR5
I1ZL68
UPI0003591B75
UPI00066E2824
R3C367
UPI0004128A2C


T0TNV3
E8K3X2
UPI0005128D3B
A0A0I8XVX0
R3VC46
UPI0005CF2FFD


A0A0H1RMM4
W1Y2G0
UPI0003EC8641
UPI0005E6A956
V7ZS55
UPI0003FA464B


D2BQM2
W1VGX2
A0A0H4NBP6
X8KE98
C7YF48
UPI0005CDDD5E


A0A0A7T646
UPI0002F353EC
A0A097B674
UPI00027EA587
R3W0C9
UPI0005CD2C43


T0W2G0
F8DFS6
A0A0F5Z989
A0A0E7WHF5
C7UTX1
UPI0005CE703E


H5SYV7
UPI00031E513E
E3ZRG0
UPI0005E9B66A
C7UDZ4
UPI0005B9BF22


A0A0B8QL14
E7SC56
UPI0006282029
A0A0I5V7V4
C7WW04
UPI0005CCB173


G6FEQ4
UPI00021BD63E
UPI00052F1B16
UPI0005EA0304
R3KHA0
UPI0005CD2248


Q9CGH6
I2NTT3
A0A0H0TBR3
UPI00066ED988
R3KQT9
UPI0003F9DC72


F2HJH7
UPI00065F8C03
UPI0001975CA4
A0A0B7LAG3
U7S5K0
A0A075SIP2


T0V8Q3
UPI00066A6FE6
UPI00003CA336
M5K5E4
R3Y2U6
UPI0005CCB671


U6EMQ9
U5P378
A0A0H3GCW7
M5K8F4
R3ATF7
D5AH63


A0A084A9A3
A0A0F3H3Y1
A0A0H3IUG2
M3IAM8
R1LJ35
UPI0002195DB2


Q02Z69
W1VGW0
UPI000431635A
D3H992
R3NBA7
UPI000367B16E


U5PKA6
UPI00066BB1D3
UPI000396C49F
UPI0005DADCC0
R3PMA1
UPI00040780E6


A2RL58
U5PAT9
UPI00057E5CD1
A0A081QTN0
C7WTA5
UPI00047DE9FC


T2F5M7
UPI0004E25F53
UPI000541B044
A0A0F2DL31
C7V916
A0A0D6A4Q8


K7VSC5
UPI0006600922
UPI00065E0E60
E9FH57
C7VLS1
UPI0003079325


T0VAM5
UPI00066E3612
UPI00059B4903
K0ZJQ5
R2VJF4
W1SU53


UPI0006172C2A
V8BFU1
UPI00064CDA40
UPI0005EA108D
C7VRD8
K6DTK1


G8P2F6
UPI0006605290
A0AJL2
A0A0I8KXT3
R3I2U9
UPI00058D7294


S6FGR2
UPI00066EBF4B
UPI0004F3EE62
G6R9C9
R3I1C1
UPI0005F025AA


UPI0005838B59
F9M2F0
UPI000570B4C0
A0A0I8MDZ1
U7SAR7
UPI00055EBF2F


T0UFT5
UPI00066C8E1F
H1G7W7
X8HMR1
R3DJQ9
A0A0F3RNZ7


Y1QH73
UPI00066A3914
UPI0004D59A43
J4Q880
R1JZF5
UPI0005534922


UPI000629DD6D
UPI00066CB902
G2ZBE3
W3XTS5
R4ALC3
E7FSU1


Y1Q968
E3CEE7
A0A0G2WHH3
UPI00066C1FD6
R4B5K9
G2SLV9


UPI000376C4D7
UPI00066DB632
A0A0G2W8X5
UPI00066BE89C
Q837V7
A0A0G8G5N5


A0A0D6DXQ0
UPI00066D30C4
Q92AP9
UPI0005E8CD89
A0A0E1RBS1
R6S5W5


R2SEZ2
K8MRD3
Q8Y6C9
K1ABC3
A0A0F5AWZ1
A0A0G8G9A4


UPI0003F7ADC6
UPI00066D94ED
A0A0G2VQM3
K1AGK6
A0A059N1T2
A0A0B4B1V1


F9DT42
UPI00066CDADB
A0A0G2VT50
K0ZZ87
S7U796
F7R373


UPI00054EA513
A0A0F3HXT7
UPI0001EBB745
A0A0I6M9Y8
D4EPU4
UPT00062CB1C4


UPI00030811AC
I7IYF1
UPI00066D78F0
UPI0005E36939
U6RZD7
UPI000409F2F6


UPI00036C3403
UPI000345D943
E6J2G2
UPI0005E225FD
E6ISD3
C0WZU5


S0KSL1
Q8ES83
UPI0002FD7F0C
A0A0I7LKZ4
J6NDX6
A0A0G9GFB1


A0A0A5GAU1
R2R7H3
W1TUK9
A0A0F2DPD4
S4GCT9
V4X193


UPI000414CEF0
R2VFE1
I0S6A8
UPI0005E11B6C
C0X2D5
A0A0F4HGR5


A0A078MEE0
R2RQ91
UPI000660E090
A0A081QG94
J6PVS6
U2HDV7


UPI0004103FCF
S0RUY8
F5U2X9
I0SZR9
J6ESY5
D8IIP0


M1Z7Z9
UPI00051A74A9
U2XKT4
UPI0005E14969
S4C6D0
T0SLF0


UPI0001850A35
W9EJ23
K8YYY0
UPI00066A9D62
J6GZ70
D0DT13


J1HTP8
UPI00028D8F83
T1ZV68
A0A0E8P896
E6H2K6
R4RJL7


F0ELG6
K0IW42
A0A0E2IST8
UPI0005E5529F
E0GC91
UPI000582B547


UPI0002E3189C
UPI00059D08F4
I0SM41
A0A0B7M600
E2YA71
UPI0006657CCS


T2NS83
E5WTD2
UPI00066B626D
A0A0I8X1A0
S4DTD6
B2GDT0


UPI00042432D9
UPI00047A5B10
UPI0003906A09
UPI00066A9CD2
E0HHS0
A0A0G9GHB4


S4E2N9
A0A0J5YRT7
J5H823
I0STF6
J6CZA7
A6CTQ5


UPI0004065D0D
UPI0006A9BD02
F9P5H7
UPI00066EB944
E2YXC8
UPI000468231D


S4B0D0
UPI00031F0DBB
UPI0006612AD9
A0A0H2UPX1
J6F8R9
A0A0A2TG25


UPI0004080059
W7KMF0
UPI0003908243
V8IKB2
E6HPG5
K9ECC9


C8ZW14
G5K2S6
UPI00066D6CAA
B2IQ19
J6LKR6
UPI00048127F0


G5ISN9
I4X463
G6A4N0
A0A0E7X876
J5ZVI4
G2KVV1


R2PGJ0
UPI00052FEEE4
UPI00023296C1
UPI0005DD5C54
J6QD02
G5KC28


C9CH47
A0A098EQM7
UPI00066A46EE
A0A0I9AQP0
J5DL74
F3L6C7


C9A7W5
W3AD61
UPI00066A7CBF
S9RFX3
J6EQP8
UPI0003106D0B


T0UB13
A0A0B4RAA8
T1ZDX9
UPI0005E228BC
J6NTK1
UPI000419C333


A0A0C2Y4G1
UPI00069FBE5D
X8HC25
UPI0005E426DE
J6PAC4
UPI00047C345A


A0A0D0Z5K2
F6CR29
A0A0C1HWD2
UPI0005E7453E
D4EZ78
UPI00069F1374


B4U2N2
G8PE15
UPI0001F606A4
S7XP08
E6IB45
A0A0J6BIJ7


UPI0005BB133A
V7HVC5
U2YEQ3
UPI0005E54BE5
E6EW25
UPI000345FA17


C0MG96
A0A0F4LU79
UPI00066AA721
UPI0005E4BCD8
J6LYS0
C0Z4D5


A0A0D0ZF61
C7XVU9
A0A0E9EVC1
A0A0B7L333
E0GI65
L5MLM9


A0A0E1DXS1
F6B7U9
UPI00066A249D
R0N6B7
C2DEW5
J2ICT3


A0A0D1AJJ8
UPI0001FAE64A
A0A0H4QJH6
A5MXJ1
E6HGC1
J2GML2


UPI0005BB6148
UPI0004119D25
A0A075QWT2
UPI00066CEE14
E6GUV7
UPI00036424CF


A0A0G7A7Q1
E1UN03
UPI0003821CF7
UPI000352C53C
E2YIL6
A0A0H0SII0


UPI0002175097
A0A0A0TU62
H0UC09
A0A0I6M0R5
T2P3G0
UPI000673AC8A


C0M8W6
UPI0006480DA4
UPI0003B19331
J0UC50
J6R7F3
UPI00037AD71B


A0A0G6YRU4
I2C272
A0A0F7BZE
F9PC08
J6QBF0
D6XYW2


A0A072ELK0
A0A0E1LP36
UPI0005556E3B
UPI0005E65946
T2P2M8
UPI0005A0C938


UPI0005B9A818
UPI000458757A
UPI00029B0B59
UPI0005DEEC80
C2JPD9
K0NSF0


N1ZT17
UPI0002458DDC
UPI0005A8DE74
UPI0005DB5FE3
F3R2R2
K0NWD9


A0A062X6V6
UPI000471D8DA
UPI0004936DE9
UPI0005DB0E2B
C2JPD8
I7JV33


UPI00046A8E16
A0A0G3V8X1
UPI0003104D4F
A0A0E9A2L0
J6F4X7
UPI00039E5A1A


UPI000219434D
A0A0D1IMY3
A0A0G2Z1V7
G6PSM2
UPI000665D580
UPI00066064E2


UPI00054D6FB4
U1YND2
A0A0H1T5V3
A5MAN0
UPI00053BEB7B
UPI0004959EB5


Q5FLL5
UPI00069E39D3
UPI0002BAE34A
H7JF57
W1VWC1
UPI00020DA0D4


A0A094K9S3
UPI0002F6BFBB
K0JN87
D6ZSN4
UPI0002FDF1DC
M7NB45


UPI0006735FF0
UPI00028966FC
UPI0002BAFF71
UPI00067E3BD1
UPI00032EF110
I4D367


UPI0002F19FB8
UPI0005F96F19
UPI0002E84A37
I0Q912
UPI00032ED949
A0A0J1FQT


F8DMZ0
A0A0G2YPJ5
A0A0H1VSP1
J0VYU9
UPI00032DF268
UPI0005A135DF


A0A073K223
M4KP62
A0A0H1VST5
A0A0I7N7X2
UPI0006611725
UPI000557D9AE


A0A081NN78
UPI000467CBC2
A0A0H1XJQ7
B2E1F7
R3KQ79
UPI00040DC1E5


UPI0002DA8E1F
UPI0004E7B7B4
S8PCV2
G6S5S7
UPI00032D8816
G5JVH9


S5N6B2
UPI0002A11EAA
S9B2B8
G6LMK2
UPI00032F27BE
A0A061N7C8


C0YY61
A0A0G2LYN9
F8Y0Z9
C1CE74
UPI0004244B9B
UPI0005525FE7


A0A0H4L928
UPI00046ED5B5
S9MTU2
A0A0I9HKT6
R3JUC0
UPI00034C8C5C


A5VLG7
UPI0006529B7C
S9CV37
A0A0I9C672
UPI00045A0DF5
D5D9D8


R9WGA8
L8PVW0
S8FGZ3
UPI0005E5C16F
C7CXQ3
G2RXJ7


F8KEB4
E0TU76
S9BAQ5
UPI0005DF7A6C
I7BW34
A0A0H4R638


B3XPD6
A0A0D5D2X4
E7S415
UPI00066DA9B2
A1HME8
D5DWY1


A0A0F4LTY8
UPI0002B6EC1D
UPI00046CB8EA
A0A0I7G3B6
Q5WJ31
A0A0F0J8P4


UPI000487320D
UPI0002891107
UPI0005E2BE93
A0A0F7Y925
UPI0002FD32D5
A0A0B6AB4


D5WUX8
D4G620
S8FZ09
UPI00039C59B5
UPI00067A2901
UPI0005B4512E


UPI0002F118C8
UPI0005AD3458
A0A0H1GG85
A0A0I5N723
S2XF35
UPI000682E43B


UPI0001E89712
UPI0002865556
Q8DZF9
A0A0E7ZAF0
UPI000679FA7D
A0A0J5USU5


A0A0J5GSJ3
O34580
A0A0H1WCN1
UPI0005E318B4
A0A0A8HNC8
A0A0J1IVB0


UPI00068A6D6D
G4EZ92
A0A0H1YVD6
A0A081PXD6
A0A069F1G6
UPI0004733E51


A0A062XR18
A0A0A1LU02
UPI0002BE4DD4
UPI0005E614FB
A0A085UDQ4
UPI00047C38B4


UPI00021964BD
L8ADL0
UPI0005DE829A
UPI0002735B06
UPI00036BDB49
A0A0J6WUD7


UPI000415247A
UPI00046730CE
A0A0H1IDA8
A0A0I5WGP4
A0A094WEU8
A0A098ESM7


V6Z3H5
I0F1C0
A0A076YVH2
A5LMH1
A4J705
UPI000423B330


UPI0004205ED9
UPI0003A70724
UPI000332E0DF
UPI0005E59371
UPI0006527050
UPI0003882373


UPI0003817B64
UPI000416C8D9
A0A0H1LVT6
UPI0005E5CDC9
UPI00053C5AB9
A0A024QGT6


A0A0J8G63
A0A0F5MHF6
UPI0002B9E962
UPI00066E2A51
A0A099YFE2
UPI00036A8D74


M3GSH8
UPI0002A13E19
UPI0002B9AAC1
UPI00066DCBF7
A0A0D4CNA9
H1LDA8


H7F3P6
UPI0002416823
S9MD09
UPI0005DAF614
UPI0003FBD3F6
UPI0002E51DEA


W7DTL5
A0A0F0AC16
S8NNN7
UPI00066C80E0
UPI000378183D
H3NEA0


G0UES1
I2HNA7
S8P6Y4
K8MSF0
UPI0002E4B790
UPI00058BA923


C5RBQ7
UPI0002E6650E
S8QFS6
C1C784
G5KGH3
A0A0A3TV65


D7UU99
UPI0002AA99BF
A0A0H1NAH8
UPI0005E0C55C
A0A0F3HRU1
K8E0T1


W7BIE4
UPI00057C2EC9
UPI0002F54753
A0A081QQF8
J7TJ76
UPI0003F5E34D


W7BQB1
UPI0003872E1B
UPI00028CE135
A0A0I6RW2
F0I8F9
A0A074LMV6


A0A091BQ28
A7Z260
UPI0002BE2494
UPI0005E787E3
F2CE01
W7CP40


B1SEW1
S6G180
A0A0H1HP61
A0A081Q205
E8KQC7
N0AL42


UPI0005C4C4A5
UPI000398030A
S8P0E2
UPI0005E3629B
A0A0F2CZP2
J0L6J5


S5RL61
UPI0003A660B0
Q8E525
UPI00023100D2
F2C6S2
UPI0004915921


UPI0005C46508
UPI000345B919
A0A0H1DLQ4
UPI0005E1CE26
N0CB15
UPI00035FC8AB


H6PBJ7
UPI000665EEF6
UPI0002E871D3
A0A0I7RCB5
A8AXV7
UPI000525E54F


UPI0005C676D5
A0A0D7XRK8
S8VI39
UPI0005DADB38
UPI00066BA6D4
R4KJT8


T0UQQ7
UPI00038048E7
UPI00030AEE41
UPI0005E20280
D0RVG1
UPI00024669AD


A0A060RKS5
UPI0005A43216
K0JMH9
A0A0I6RJI8
F0I0L3
A0A0A1IK06


F5X182
UPI00057BD0DF
UPI0002B8C27C
B1IBM7
F0FSG1
Q9S3Q0


UPI00066000C4
UPI0005EBB97E
UPI0002F07C72
UPI0002ADCFE5
UPI0006B25214
B1MXQ7


F5X6S0
UPI0006AE6F38
A0A0H1Z5L
A0A081QYR3
UPI00066A525C
A0A098BA44


E0PDX9
A0A0H3DY38
I7ISP9
UPI0005DF6E72
A0A0F2CRI4
H1WSK1


A0A0E1XF14
A0A080UNJ0
A0A0H1T3F9
UPI0005E41938
A0A0B7GK35
A0A069CV32


H2A6M7
UPI00022BA657
A0A0H1MS35
V8IC09
F2BSX1
UPI0005F00C2A


A0A081JHH2
A0A0C2PX57
A0A0H1V4C2
A0A0B7L5V0
UPI000660334B
A0A081BK49


UPI00051C02C3
UPI0002DC92B0
S9APZ9
I2J4H2
UPI0006616F5F
A0A0A3HZB


UPI000410E728
UPI00066FBF08
S8FYF6
A0A0I7VHR8
F0IU30
F4BLW5


UPI0004D4E3B7
G4NUA0
S8HPX5
UPI0005E06D6A
A0A0F5MJY5
U5SAC6


A0A091BNX2
A0A068LM65
UPI00046C8FD9
UPI000318BEDD
F3UWM7
A8U4Y8


E8JNI7
UPI00025F1BD8
K9AHW3
A0A064BXT9
UPI0006603308
UPI0005590D06


UPI00040D1DBE
I3DZY5
UPI000554B661
A0A098ZS00
F0INA4
UPI000550B1B9


UPI00041D9E3E
A0A0F4M491
C2E4W5
S2UT89
UPI0006605CF8
UPI00054D85C0


W7ZBP8
UPI0005145490
UPI0002FE2AC2
UPI0005DBEB5A
UPI0001FBB9D8
UPI000553C539


A0A060M0P3
A0A0F4LJ28
A0A087QEX7
UPI0005E44ED7
A0A0F2CJE0
UPI0005C4A619


V6M8R1
A0A0F4LIP7
UPI0000459CDE
UPI00067A8E24
UPI0003D2BF73
UPI0003B36792


A0A075LMV5
A0A089Y3J1
A0A0A8B472
UPI0005EA38C1
A3CM74
UPI0005CE4434


U5L6Q7
A0A0F4LHL3
UPI00057E310A
UPI0005DFA93B
UPI00066124BC
I7LCW7


Q2BBV3
UPI00066D84FA
F7SF58
UPI0005E43F38
UPI000204C9B3
UPI0004942515


J9YKR2
UPI00047168BE
UPI00069ED3EB
UPI0005EA228D
E8JTX8
U1N3Z8


B9E831
UPI00031D0F4F
D0R5K3
UPI0002D988F7
F3SII1
UPI0004DFB32B


A0A0A5GC60
A0A033UAP9
Q74I48
UPI00016C30E9
F3UBI9
UPI000495DE5F


UPI00068F9B5A
UPI00065B9E05
V5P429
A0A0E9GYK1
F0FE53
C4L2B1


D5XD67
UPI00030B5B12
F4AC33
UPI0005DF5506
F9E172
A0A099DEL3


S4D0X9
R2S3I5
UPI000660D235
UPI00066C8BEE
F9HGV1
UPI000554029F


UPI00040BD27E
UPI0005BB07E7
UPI00066974FD
D2ER82
F3URE9
S3FYE4


W4QBS4
A0A0D1LT71
UPI000665A968
G6JAI2
A0A0A0DGR7
UPI0004787EFF


UPI0001E98CB8
A0A0D1LUL0
UPI0003421E15
A0A0I8YKR7
UPI00066B8271
A0A069EVD4


C8PBZ7
UPI0002191623
UPI0001A57BCC
A0A081R5K4
W4F985
UPI000426A771


UPI0001E2B095
D8MGK9
D1YI75
A0A0B7MAG0
UPI0006A9F3B8
S2KHH9


UPI0001FDB18A
D5T1C2
UPI00050F2122
A0A0I9KK18
UPI00052475A3
Q1GBF8


UPI0002072E3B
F6DPJ5
UPI00050F4C6F
J1DH18
A0A087N1S5
UPI0006800765


A0A0E1XZC6
UPI0002E9BB91
A0A0J7K5W0
V8I629
A0A078MFK8
A0A061C4M6


E3BTD7
L0E9U7
A0A0J7HHM3
UPI0005E3DD18
UPI00037E072F
E4SWU2


G3YXZ2
UPI000401406C
D3L7Q3
UPI00066D82D8
UPI0002F64287
D8FRH5


E1NV43
A0A0A6NWI1
Q04GN7
E1LLK4
UPI00040FF648
F0HX91


UPI0001FD875B
UPI00047166B2
UPI00050F2BFE
A0A0I6S0N2
UPI0002FBC45B
Q71HW2


E1NLU9
A0A0A1MVS7
UPI00050DE508
I0QC96
S2XYX9
UPI0000510635


UPI0001E5D8E8
UPI000595B757
UPI00050F1464
UPI0005DCF59C
A0A0E4H7N7
A0A061CFU6


A0A061P6S2
J3F9X4
A0A0E2VR29
A0A0D6J8D1
UPI0004758748
UPI0006829E76


A0A061NMB4
UPI000410FF91
A0NL49
UPI00066CDBD2
T0BRJ1
F0K0A9


UPI000364DDD7
UPI0002F4C1DE
UPI000277B8D1
UPI0005E4C005
UPI0004CECB95
A0A061BVE6


A0A0A3I330
UPI00046A2EE8
UPI00050FB3CA
J5GJF0
UPI0002DA0189
G6F4X4


A0A0A3J757
F0NVP6
UPI000277B786
UPI0005E2E74F
UPI0002E0B711
UPI00032F7094


UPI0003107DC7
UPI0002DD6873
UPI00050DA477
A0A0E8AXP8
UPI00037D657F
A0A061CH35


UPI000465B065
W5XDQ0
UPI000277B3EF
F3VID1
UPI0005B651F3
A0A061BSV4


UPI0002B59EE5
UPI00046C96B8
UPI00050EBFE8
E0TNB3
UPI00031B78EB
A0A061C0Y8


UPI00031ED71B
C2KB80
C2EVD7
UPI00068136F1
UPI0002DA8172
G6EVU1


UPI0004225966
UPI0002E9360C
UPI0004953241
UPI0005DD3E82
UPI0002FE6543
UPI00069A32A5


UPI0002B55DD2
UPI0001B2ADB8
UPI0004256505
A0A0I6F783
UPI0002EB9E28
UPI00034B89F3


UPI000268A7D1
D5H1T9
R9TUH2
UPI000680414A
UPI000362867B
V4QC95


UPI0002DD3475
V5E0D8
A0A0J6H039
I0Q427
E3CGX4
UPI000287FE90


UPI0003140F32
U6FUY0
A0A0D7XCT2
UPI0005E1E1D9
UPI0003675904
UPI000493F21F


UPI0002DF577A
U6FDW7
A0A0D7XAM9
F9HM88
UPI0002BE1554
UPI0002F64068


UPI0002B52183
U4QEF3
UPI000470EB15
R0NC47
UPI00036D9746
G9ZMU8


UPI00030AAF28
C2ELL7
A0A0H4X8R6
UPI0005E3138C
UPI00031BD2D4
I7JG80


UPI0002B54D20
F6CEU6
T5HV53
F9HDZ5
U2KML1
UPI0002490095


UPI00030ED4DD
A0A0D5MK99
Q65MR3
UPI0005DF6040
UPI0002F0FB31
A0A069DTV4


UPI000317D564
U6F2P2
UPI0003A92B3A
UPI00066DF5D2
UPI0002DF3A61
UPI0003718539


UPI0002B5AC18
A8YTZ2
M5P7T2
UPI0005E78EF0
UPI000309D239
A0A0A5GG76


UPI0002B53160
UPI000468D9FF
A0A0F5KXW3
A0A0I7SUM9
UPI0002E4AADA
UPI00040E6B55


UPI0002B5578F
UPI000698FD57
A0A0J6ENX9
UPI000399E547
UPI0002EFE60F
UPI0005CD2072


UPI0002D5DE55
F0TDD1
A0A0J6ES4
UPI0005E5D243
UPI0003714975
UPI000487D20C


UPI0002FFCB1B
F2M355
UPI0005A16A5C
UPI0005DBEC58
UPI0003773AA6
UPI0003720301


UPI0002B50165
R5ZGC9
H6NTK0
UPI0005E3FBD1
UPI000375ABD2
M3HNA0


UPI0002B5E93C
E4SM94
F8FKW5
D4FT83
UPI0002DE0320
UPI00020CBEE6


UPI0002B560C6
C7XLR3
UPI0003F50A86
G6CA70
UPI00035FC09C
A0A0A6UX77


UPI0002B58B2
J4BVM3
G9WIE0
A0A0B7LL60
G5JQP7
A0A0E2USS7


A0A0E2ES03
D0DI93
UPI00054F4F52
R0MM09
UPI0002E29189
F1Z0K5


UPI00030C4A19
K1MXE4
A0A090IVN1
Q8DPU8
UPI00037CA55E
UPI00041B294C


UPI0004648E2C
U6FHU9
A0A0D0FW99
A0A0H2ZN88
UPI000379270F
UPI000513CEDF


UPI0002B588C8
F3MR07
A0A0D0FHN9
A0A0I5SPG
K8Z8B4
G0VS69


UPI0003111877
W7YRH9
A0A0D0F833
E0PRK3
A0A087EPN1
UPI0004221C8D


UPI0002DA340C
W7Z816
UPI0002195446
UPI00066AC65D
A0A063B7B8
UPI0004858886


UPI0002EE7FD7
V6J250
J2ZKY4
I2J7J6
UPI00054DF8E8
UPI000356EF52


UPI0002D4555C
C0WSC1
UPI0002192DE8
F5W0L7
UPI0006B251F7
R7MZQ6


UPI0002B513D0
C2D3L0
A0A0J1HWV3
S3BFG0
UPI0006B25740
UPI000550AF6D


UPI0002B5E0D9
C0XHM8
R9BWL2
E8K074
UPI0006B25166
A0A0B0IKT7


UPI0002D9F995
F5L444
A0A073JY52
UPI00066B28A6
A0A0C2WKV7
W4QVT6


UPI0002E8D24F
A0A0G9MI18
UPI000482AB97
J1S8C6
K0DDF5
UPI00054D3339


UPI0002B58C84
Q03Q12
A0A0E9GQ05
UPI00066E5C86
S0NID8
F9VEL8


UPI0002B53813
U2PJH7
UPI0002D32EA8
F9PWL8
UPI0003F6F988
V8ANU3


UPI0002B5E4B1
M5AEL4
G6LUK0
UPI00066E06C6
UPI00047D412F
UPI0006226EE6


UPI0002EFF9CD
A0A0H4QAV4
UPI00067AB63B
UPI00066CF5FD
UPI0004016A4F
UPI0002D66EB7


UPI0002B58C9A
UPI0005B64156
A0A0I8X5X0
A0A0F3H5E8
UPI00040AD781
K2PIY1


UPI0002B58360
UPI0004882072
UPI00066B62FD
UPI00066B0571
G7SH52
A0A098CN34


A0A0E2EHS3
A0A0C1PU47
UPI0001DDD26E
A0A0F2DYG6
UPI0003FB4C2E
UPI000266D5EF


UPI00030C12E8
UPI00041E7D06
UPI0005DB8FEA
A0A095ZC63
UPI0005CE1998
UPI0002FD1A27


UPI0002B55BAC
J7LCK3
UPI00066EE137
A0A081SAK2
UPI0005CD605D
UPI00031F2D35


UPI0002B4E249
A0A0A7U0Q8
I0SAQ0
UPI0005342342
UPI0005CDF885
UPI00031F5691


UPI0002EC6AC7
UPI00068191BE
F9MKL8
A0A081Q0K0
UPI000424E658
UPI0005AA507F


UPI000466520E
Q03YP2
F2QD74
UPI0005358034
UPI0005CCF850
UPI00040E6C2A


UPI0002B5A6DE
UPI0005A1E84F
A0A0F2DG50
UPI00067A78F3
UPI0003F512C0
UPI000472C523


UPI00046753B6
C2KL56
UPI00069CF310
UPI00067BFD62
UPI0005CCF8E5
UPI000373D4CE


UPI00031B4772
T0VWY9
A0A0F2D2Q6
H7QP48
UPI0003FB972A
UPI000672387D


UPI00046312FB
UPI0002341443
UPI0005EA00F8
J1V408
UPI0004079443
E7RJR7


UPI0002D7CB42
UPI0005A6A464
A0A0I8VWS0
E1MA03
UPI0004030821
A0A0A2UWH4


UPI000466DCC8
UPI00046CA6CE
A0A0I6VM15
UPI000411F965
UPI00040E7BC1
UPI0002880C4F


UPI0002B550C2
UPI0006814228
A0A0I8S594
UPI0003751A95
UPI0005CD07D9
A0A075TVF2


UPI0002B59082
A0A0H4N937
A0A081QA48
C8P6C2
UPI0005CDB669
UPI00054E004D


UPI0002B5EB7C
A0A095AHY9
A0A0I9J5Y7
UPI000312AA9F
UPI0005CEAA59
UPI0005A65B8B


UPI0004633B74
UPI00037F25A9
M5N794
E3CAD3
UPI0005CE6576
W9ANP4


UPI000264EF92
B9DUG5
UPI0005E67219
UPI00021A3A73
UPI000409F746
M9LGB1


UPI0002E7D773
UPI00062028C1
G0I9B0
K0U2M0
UPI0005D16915
H3S9K5


UPI0002D3B5B3
UPI0006203F88
A0A0E2P693
U1ES89
UPI0005CEBA00
UPI000378CC96


UPI0002B577F4
A0A0F5I4J0
F9NZH5
UPI000660DA3F
UPI00040F513E
K2FNB3


UPI0004662568
A0A0F5HRS0
UPI0005E921D9
C8WTI7
UPI0005CD9361
UPI00067F085F


UPI0002FBB47E
Q5M4H1
A0A0H5LNP6
B7DQB4
UPI0002322E59
UPI0001E2EBD3


UPI0002B5379E
UPI0002DE5460
A0A0E0X8J2
F8IDV6
UPI0005CF78F9
UPI0001FDB5AD


UPI0002B51579
V8LWU0
UPI0005E64E83
UPI0005599D20
R4NWS6
D4W731


UPI0002B4E9DA
E9DMH4
F9LXX0
UPI000509968E
UPI0005CEAB2F
UPI000490D40D


UPI000464DB1E
UPI0003121E5D
X8K6Y7
UPI0005CABE96
UPI00040E0B64
UPI000255C522


UPI0002B529E6
J7T7E4
I0T8M4
A0A0J5S290
UPI0005CD124C
A0A0F7D4N3


UPI0004671B60
UPI00031AFBDD
UPI0005E22D3B
A0A0J5WFP0
U5UIJ5
UPI00058E169D


UPI000319EA31
E8KV65
E1LS08
A0A0J5YA29
UPI00042996E4
UPI000624F4AA


UPI0002FFFF03
UPI0002E8600B
A0A024DEK7
UPI0006A9C586
UPI00042A2929
A0A0A8JEM1


Q8DTY6
F8HD36
UPI0005E2SBC5
C8NHG1
A4VUA8
UPI00047BFF10


UPI0002B59757
A0A0E2QHQ8
UPI0005E30B11
UPI0005874702
A0A0H3MVK6
I9B3V6


UPI00035CDC0C
F8LX97
E1M4S7
UPI00066C1DCE
UPI0005CD2519
A0A075K9S


A0A084GLL3
A0A0F6BVJ6
UPI0005E14CCC
D4YVQ1
UPI000409C6E9
I9NQ12


A0A084H1D9
A0A0E2RHF6
F5VXC9
E6FS51
UPI0003FE3351
UPI0004883363


E6TWN0
UPI000264F340
A0A0E8T7V0
UPI0002EA5AD2
UPI00041E695A
S4NRZ4


K1LG40
UPI0000E563DC
E6KMR2
S4CP69
UPI0005CDA05A
J9W320


F2F7J1
UPI000660EC4F
UPI0005E76F14
UPI0003FECF16
UPI0004038E95
F4FSH6


J1GP52
UPI00066C13CA
UPI0005E0C70E
F2MQT5
UPI0005CE89C0
UPI000403AE07


F8HYK0
F8LIZ1
UPI0005E6F0D4
UPI0002A3D37C
UPI0004018E0C
A0A084HBI0


UPI00044D3C3A
G2GTJ2
S7YYN6
E0H8L5
UPI000404D8AB
D3FTF3


A0A0C6G2S0
X8J9A0
A0A0I8TLZ0
R1W0H5
UPI00041CFDD8
U6SL82


U2W3N6
UPI00066AA528
E9FJW6
S4FW64
UPI0005CDED2A
UPI00036426F2


A0A0E1ENC5
A0A074IU47
UPI0005E93C3F
R3UP49
UPI0005D236D1
UPI00047A28D8


Q99ZE1
















TABLE 7





List of E. coli PcrA homologs that have 50% identity to and 80% overlap. 1029 members of Uniref


50% identity cluster is shown (citable UniProtKB and UniParc accession numbers are shown).




















P03018
K8BG21
UPI0002C8F355
UPI0005A9630D
UPI0003EF5338
A0A0J0DJ77


A0A0G3HMD3
A0A060VDV3
V1HN20
A0A0A3YR40
UPI0001F6648A
A0A0J0SUX3


U9ZBE3
A0A0E1CLV1
UPI0002C9B17D
UPI0005EB7A8B
UPI000678B341
A0A0J0M6S9


A0A071CB77
W8V249
UPI0006811593
UPI00058E54A4
A0A0K0IDG2
A0A0F0XZS7


S1J559
A0A0J2G3Q6
A0A0J4VXC9
H1C573
UPI0002CC80BD
UPI0005D0A9E9


V2S4E7
A0A0H4Z3E1
UPI00025C7C5C
UPI0005CD86D3
A0A0J5K2Q0
A0A0C8UHF8


A0A073G662
V0AU35
UPI0005304A96
UPI00044E7286
A0A0H3MJV2
A0A0C9HTD3


I2SQY0
A0A0H4YPU3
UPI0002CAB12A
UPI00037EE7F7
A0A0E0VDJ7
Q8Z3B0


B3X3W4
A0A0H5AHT5
UPI0005CCA08F
A0A0J0GVC5
A0A0G2SID2
A0A0E7LC59


N2GY76
W1HG62
UPI000330B244
A0A0H0CXK2
UPI000542989F
W6J799


W1F3C2
A0A0H4ZLF1
UPI0002CCBAB8
V3PV69
A0A070RYI3
UPI0004DA823D


E1HNQ6
W9BQA0
F3WPX7
A0A0D1KFS4
H3MUW4
V8MJC9


A0A070SNS2
A0A0H3GGJ9
A0A0F6YD20
H5V6H2
A0A070H7E9
UPI00049F5927


H4URJ5
A0A0K0GRR7
K8DQF9
D7YBR7
UPI0003BC8E89
N3EUQ7


M9G7C2
A6TGJ6
K8C9V5
UPI0002C8B609
UPI0003910486
UPI0004693D87


N2IIQ0
A0A0G8G1B7
F5VR52
UPI00063CD924
A0A090UJD6
UPI0002CCC2BC


S1HRC3
UPI00058FD925
A0A0D1QDQ1
A0A0C2AR33
UPI0004977D3D
F5N8N5


D8E9M5
UPI00058F49FC
A7MQJ8
M9I6S8
UPI0003EF3FD7
UPI0006A5855E


A0A074HPP5
W1HTQ0
V5U5I0
N3K330
UPI0002CC54C7
Q83IW7


L2VEY2
W0ZY91
UPI0005187950
I6CD07
A0A0G3S4T9
A0A0C7MG10


K5CJK9
F4T661
K8D2A7
E7SHD7
A0A0H3HA95
A0A0G3KPN2


D7YG58
F4V8D3
UPI0002CA0405
B2TUW9
A0A0E0WSN3
Q0SZ04


W1BJG9
F4TMH3
A0A0J0I5H8
UPI000390185B
A0A068H452
D2ABY6


N2QEY3
A0A029LAE5
UPI000579149A
UPI0005EEDAF9
UPI0004A0FDEC
A0A0F6MJ85


A0A069YVJ3
U9YHH0
UPI0006650689
B5RFP5
A0A0H0GX62
F5P1J3


A0A070Y0G0
A0A080IB93
N2J8A4
UPI0004733206
UPI0002CB804F
A0A0F6EK00


A0A073GWJ7
A0A083YZ93
A0A063XKV2
UPI00026721AF
UPI0002CB6B71
I6BAB7


V0RR87
UPI0005C48DC6
UPI0005C63608
UPI0003A80309
UPI0004D7856B
UPI00050B7641


V0ACC7
UPI0005A8BF01
E7T4T6
A8ACW1
A0A084ZTZ9
UPI00050B2FF7


N2RS67
UPI0003710649
A0A0G2XIC2
A0A0A5IRH8
A0A062Y212
I6FW66


A0A069XHA8
A4WG04
I6DJM1
A0A0F1WNC5
A0A064DKM1
UPI00067F497D


A0A079H1K8
A0A0J8F6L5
K0WUD4
V3DAP7
A0A080EWZ9
UPI000530716C


A0A074IWT6
UPI000666003A
E7TCS8
A0A0E2K1D2
UPI000668F9A7
A0A0B1RCP6


F8XAY4
A0A0I1EMQ9
Q31UH5
UPI0004D8D514
V5AU63
B6I4F4


A0A074HJR7
A0A0J5U9E7
A0A085HAH3
UPI0003EF42B5
UPI0002CC06C9
E9TMV0


V1BCC5
A0A0J6MG09
A0A0J5L085
UPI0005A87CA8
A0A0B1FRQ9
UPI0004D72F99


A0A080HWB3
UPI0006684F9F
I2BE57
UPI00016A0FB4
S1FP27
UPI00025ABCDF


I2X3X5
UPI00058D9C39
A0A0F1BI78
UPI000496CFDD
S1L396
UPI000627F480


A0A070FA84
A0A0A5RML6
A0A0J0RXX3
UPI0006ABEED8
S1CI55
UPI000326F8B9


L3K8J5
A0A085ITJ0
Y1GM95
UPI0004646130
L2VN93
A0A0F4HLT5


A0A080GHX3
A0A038CQJ1
E8C7D9
B7MR33
A0A089U9W2
T9FRL3


A0A073FPS6
A7ZU18
V2JXK2
A0A029IIQ6
D2TV17
H5E8S0


S1GRU8
UPI0002CA1DFD
V1LV18
A0A029HFI5
UPI000667BF5F
I4S2D3


H5J8D4
A0A0F3LUY4
E8D343
A0A0J9KSZ0
UPI0006207A91
V8FG33


D8ERJ1
UPI0002481DE4
S4INC0
A0A0H0KN67
I2X271
I2RVR0


D6I369
A0A0J8LYC2
E7ZSL5
UPI0002CB91AD
A0A0D6IZH2
A0A070D8G2


A0A071CFC4
A0A0J8MSQ3
A0A038D0Z4
C3SKC2
B7MH77
A0A026UZE9


M8SKZ8
A0A0J8HX73
E7YUD9
A0A0H8C28
A0A0E2KYP4
A0A028CBA2


S1EV38
A0A0J8QFU8
S4J0L5
V0VC55
UPI000512AED4
V0U5F8


S1CHB8
A0A0J8KFX8
E7YT71
V0SS57
UPI0002C8F6BF
H5A4E5


I6CYG1
A0A0J8IWX2
E8F002
T8ZCA9
G9YXY2
G2AN47


H5IRF1
A0A0J8NMQ9
E8EDF3
N4MZW5
UPI0002CC829C
K3QIJ3


I2WCK0
A0A0J8JFF5
G5LW37
A0A070K8G3
UPI0004B001CB
A0A070SY69


A0A071DAV1
A0A0J8M4K3
E8FVB6
W1BBJ0
UPI0004E37056
I2UC63


A0A070DJ71
A0A0J8HJM3
E7VG83
V0XWV9
UPI0002C98364
M9EF05


A0A079D807
A0A0J8M7Y3
E8AMN0
L2X7H9
UPI000267F8CE
A0A027TGT7


V0YB46
A0A0J8LY21
V1PEK5
T8JFJ4
UPI0002673104
A0A0E1SZY6


D8AZQ6
A0A0J8K6V3
E7ZUE1
T5TRC8
UPI00066D844D
A0A0E2U398


L3IME4
A0A0J8JD30
E8B3Y5
H4I3L1
UPI0005083EE7
A0A027ZJG3


I4J587
A0A0J8KYA0
G5PV87
A0A0J3V9C5
UPI0002CABCFF
C8TL04


T9CEL0
A0A0J8M2A9
T2Q2W7
N4NRN6
UPI0002C94803
A0A028E3K3


A0A070ULP7
A0A0J8KZU2
E7VUY1
U9Z163
UPI0005309A93
A0A026HN93


H4V876
J1GHE8
E8BI66
X7NZ16
A0A0J5MIB1
A0A025G7T3


F3VD13
UPI000472C058
S4IB83
S0YT63
UPI0002CC9136
K4VZX0


K3KG98
UPI0005F8A7CD
E7XYR0
H4JUM1
UPI000269547E
K4XMA4


G0F7H1
UPI0005ED3E27
V7WD74
A0A073H2N3
UPI00034730CE
A0A0H3XBG3


E6B0S3
S1I248
A0A0J6D7Q1
A0A017I312
UPI0003910F49
H9UZ11


E0J3Y2
UPI000512EA8D
V1U5Z5
A0A080ECD1
UPI00057C0D33
C8UJJ5


A0A037Y8I6
UPI0002CB816A
E8EQ65
L5GW49
A0A0G3PID9
A0A0A8UGD6


A0A0E2U8R4
UPI0006815C5F
E8GKX8
S1P4I2
A0A0J4WXG0
UPI0005B345AD


E8Y8R2
A0A0H7LQT5
E7Y7G4
V2T0S1
V3D6C7
I6FW96


A0A0E0U5P0
UPI0002CA127F
E7WDV6
A0A073UI66
A0A060UYE6
UPI0004713F51


B7L973
UPI0003BB4FC5
E8H1P2
V6FB56
M7P8V6
UPI0002CC83F4


E3PP00
UPI0002C92D2D
S4M012
J7RN24
W8XG71
A0A0F5SGW9


A0A0E0Y7I2
A0A0F0YW97
E8CHG5
S0XLH4
V3KJ79
UPI00069BE650


A0A0E3H4E0
A0A0F6K2Y9
S4JDI0
A0A064T2Q3
W8XNG3
A0A069X2G5


C8TYP3
UPI0002515E81
V2N400
M9F528
A0A098GXV9
A0A080FIP4


A0A0E1M3W0
UPI000699EF6E
S4LF58
S1D3C3
UPI0004D54D12
A0A073T7U4


A0A090L9E8
V3IA60
E8DQ33
H4KPG7
UPI0005EDDA48
A0A0F1AYX8


A0A0A0F8P2
A0A0I2HXR0
V2P0K5
V8KDE4
UPI0005F08B1C
A0A0J1YCS9


UPI0005E69EA7
UPI000579D3C9
A0A0H5PMN6
A0A070P4C7
UPI0002CC5FF6
A0A0J0HLB6


W1G679
A0A0J9AH48
V2ISV7
U9Y365
R0D8R6
A0A0F0RX59


C0VZH1
T9ARP5
V1SA88
V0YN02
UPI0002CB96B1
UPI0005CAF560


UPI0006978729
U9ZZ52
T2PQM4
V4B7K3
A0A0H0HV04
A0A0D7LBX3


UPI0003EE8CC5
B7NFB5
E8AAS2
E9YLR4
S3IGV1
H4JFN3


W1WHJ6
UPI000445D59E
E8CTA8
M8LCT6
UPI00068E1050
A0A0J1M123


D8ASL4
UPI0003EF87D0
E7WWF9
M9GJI0
A0A0J4LFX4
X7HIN0


UPI0006695A36
A0A0F4BA88
E8FMH0
L3Q9J9
A0A0H0CH29
A0A064CY91


UPI0002C95A23
V5KL37
E7WRB0
S0X3S7
A0A0J0K9Y5
S0TTK4


W1XFI9
V2MBS7
E7X696
V0Y7G3
W7NZ36
UPI0006520C97


UPI00050ADC02
A0A0H3T6D2
E8GBI9
A0A070PK74
B5EZS8
UPI0002CC3250


W1WI72
X5GT01
V1K5C8
H4L599
H7EDN3
UPI0002CB3E81


UPI0005097CC3
UPI00056EBE4B
X0NNF5
S1EDJ9
UPI0002E3BEE2
UPI0004DA7107


Q8KI59
J1QP03
V2AKC0
T9IU72
UPI0004E2422C
Q05311


UPI00044FBFBE
A0A0J2C8A9
E7VT49
A0A079Y2R2
A0A0J5MX43
A0A0D6IPI8


UPI0005CCFA15
E1ITF3
A0A0J6JML4
A0A0G3J263
A0A085HQF9
A0A0E8MI42


Q9R2U0
A0A0D1CQK0
V1I8L5
H3KWA8
A0A078LAH7
A0A021WR03


UPI00050A604C
V6FP78
E8E0U7
H4LJP0
A0A0H0R1B4
S5IH33


V0V674
V2ASN4
S4JVA6
T6GSY1
UPI0005575061
V2KFI5


A0A0A7A0U6
UPI000627EB24
E7ZFI6
T6LNG9
UPI0004D8B75C
A0A0H3SHZ2


E2X518
UPI000237C903
V2H9R2
H4IZK5
UPI000452C3C5
E8XJD9


Q329Y9
A0A0J5L635
E8BMX2
T5NEX8
R8WLR8
A0A0H3NUG9


A0A0J1JGH9
A0A085GMJ6
G5NKF6
N3MX37
S0XDX3
V7QPA0


W1FYY2
UPI0005E94CC5
V2A9V9
A0A029P4R5
A0A0A1B385
V1H945


A0A0A1R5N6
U1VBA4
A0A0G2MMZ1
A0A027YRP2
UPI00016C8460
A0A0F6B9B3


A0A073VBC0
UPI00066656EE
V1MAM1
L3PWK5
UPI000675DF85
A0A0F7JES7


I6FY95
A0A0H3FP62
B3YFM1
S1GVU2
A0A0E1LGB9
UPI0005F937F6


A0A0D7LIV8
UPI0005014921
A0A0H2WUN6
M9K6A8
D2ZMD4
L0MA89


X7I032
UPI00063C446F
V1XNT7
T9TBM0
UPI0003ED146B
UPI0004B98CEC


D4BE43
UPI0002CAC6D5
A0A0H3S2Q8
D7ZK11
A0A0E2A5Z6
E1I441


UPI0001C3403D
UPI00026947D6
X2KCL1
L3NT10
A0A0I2G829
D8ADU8


G5P1B6
UPI0002B60DFC
A0A0H3IIW8
H4K9Z1
UPI0002C8DC1E
UPI0001FB4B2C


G5LGM2
I6FIC1
C0Q3C2
S0VUG2
UPI00066659C9
D7XDB2


A0A0H2VE91
A0A073VVJ1
V2NKZ3
M2P544
UPI0003EF3546
UPI00050B0CB8


Q1R4C1
UPI0003F93F50
A0A0H4VNJ1
E3XW04
UPI000370A2F0
A0A0I0YDW9


W8ZQE8
L4IV51
V7UEH9
S0V315
A0A0J0PQF7
UPI0003FF3A54


A0A024KJK2
A0A0J8YSU2
M4LQ08
N2JTA5
E6WHH6
UPI00067E3DB0


UPI00050B495A
UPI0002CAC228
Q57HQ6
H4IIM4
UPI00057BE5A7
UPI00050ABBE7


A0A090ND62
A0A0F0R0L1
A0A089GCQ8
A0A026RVL8
UPI0003BF7FA1
UPI00050BC0F6


A0A024L7U7
U2MK71
S5HQI6
E9XUJ2
T8XXA5
UPI0001FB4D65


I0VX51
UPI000575034C
A0A0H3BQS9
A0A017JGC0
A0A0H0BBN2
A0A0I2EFX3


C9XT80
UPI000282E630
V1SQB1
D6JHC8
A0A0F3XJB2
V6E727


UPI0003027365
UPI0005307602
A0A0H3RDJ9
T5ZU25
A0A085PA08
V0VKJ6


K8BR96
UPI0006A629C6
V0GAX0
Q8X8P5
D6IG48
UPI000589632A


W0AUM0
UPI0006A6039B
A0A0F0IT73
B1LLY4
L4UZM9
UPI0002A4D3B7


UPI0002B9DE03
UPI0002CC68E2
A0A0D5WNL4
R6TVJ8
L3C1J2
UPI000628182D


K8A0N1
UPI0002CCA014
A0A0F2ZMT8
A0A0G3JMG2
UPI0004D7F7DF
UPI00062757E2


UPI0005196C1F
A0A0D5WY30
A0A0G2NZ21
D3QXA5
UPI0006800C6C
UPI00053A6F37


E3G3X3
A0A0K0HFZ6
V5ZRD0
D3H4V1
UPI0002CCBDA0
UPI0005CEF8A7


A0A0B5INH2
UPI00056ED442
V7IJT2
A0A023Z641
UPI0002CB0C5E
A0A0H7L7Z4


UPI0006969E0D
UPI0002CA6A43
V2D935
C6EG01
A0A0J1LKQ0
A0A0I1QVM4


A0A0J8ZBK9
F1ZPQ8
B5Q5I2
B7UND0
A0A0G2NT28
UPI0004643C70


UPI0002EE2722
E9Z1A2
V1RGT6
L9HYA4
V2PRV4
A0A0I2RPB4


A0A0J1RJH0
I2REU8
X4BR52
A0A0H3PUC7
UPI0002CBC0D7
UPI000281D683


A0A066P4B2
UPI0005EA4E43
UPI0004A8DEFA
A0A0F6GUU7
B3HAV2
A0A0I0V6U1


F5S3C5
UPI0003BCDF55
G5P176
Q3YVF3
UPI00050A9E00
W1WLH4


A0A0E2M6M6
UPI0002C935D9
G9WCL2
A0A0F6FES0
UPI0004D4FB82
UPI00069A9A9D


A0A0J0P9D3
A0A090V7I4
G5MAR0
A0A0G3KBA3
M8PMP0
A0A0H7RCS5


A0A0J0VSA8
A0A089Q428
UPI00067C89D7
A0A0F6CBC7
UPI000483DDB5
UPI00050B3740


A0A0J0QVP3
UPI00039807B5
UPI00067AC747
J2YWY3
A0A0D7ESI8
W1ASV1


A0A0J0LCW8
UPI0004DA8D8C
UPI00069F6BC0
B7LU43
A0A0J0DP92
W1DW14


A0A0A6EFN1
UPI0004635F02
UPI0002A6DF22
A0A025C616
UPI000352C78C
J2X0N7


A0A0F1A8N0
UPI000463708C
UPI00067D0E8D
A0A0H4S4M4
G4C8R9
G5LGM3


A0A0F1HGJ1
R9VNE2
UPI00028DE27E
A0A0H2Z4N7
UPI0005AA8C72
UPI0002B9DB1F


A0A074TPI3
UPI0002CC3EDA
UPI0005F857AB
F0JWA1
UPI0002CC9A6F
X3YLW0


A0A0J9AGF8
UPI0002695288
UPI0005797D3A
UPI0005EAF698
UPI0005C674E6
UPI0004381BCD


UPI000668E496
UPI00034D611A
J5W6W9
D7ZU66
UPI0006658EEE
UPI0002AEB5B0


A0A0J1SRM4
M7RF80
A0A0F1L5B3
UPI000696EBE1
A0A0J4TS24
G5QS93


A0A0H0ABS0
K8AAR4
UPI0006675A7B
UPI0006995D61
A0A0C7L099
G5MAU7


A0A0J2H3P7
A0A0I2D6J9
E1J5X4
UPI00053B46E6
Z5CP12
X3UNX0


A0A0E2R9B6
M8KEA1
E6BNN4
UPI000681EBB3
D3RH84
B3PGX1


UPI0004B58C5B
UPI000574FBCF
D7XMB5
UPI0002C925C5
B5XYK3
UPI0002DB7E81


A0A0J2FBS7
UPI0002A1343F
A0A079F6E9
B1ERG0
UPI0005CC1957
UPI0003B61D19


A0A0J9AI33
UPI000537C7CA
A0A071AVK4
UPI0002CB7FF2
UPI000666ABBF
UPI00037AE6F5


A0A0J8Z8W7
A0A0J8Y5W3
A0A079FJR3
A0A029K3W3
R5WI88
UPI00040A8AC5


H3MDK3
UPI000472771C
UPI0005AB1B13
A0A029LTL0
A0A089PHR7
A1SQW8


A0A0G3PTS1
UPI0002B580C6
UPI0002CBB03B
UPI000390DC2A
A0A0H3CV27
G5QNH0


A0A0I1EU55
E8DEL4
UPI00069C71E8
S5N2R7
A0A0H0C242
G5S3E4


UPI000669A104
E7XIB6
X5MS66
G2S5G8
A0A0F0TB45
G5SJ34


W0BDW4
UPI0003915F4D
UPI000614634C
A0A0F2AUK2
A0A071M1C1
X3XE62


G8LKV0
UPI00038FA10B
UPI0005ED8E6D
A0A0J0JZA2
UPI00035E9F50
UPI000689139D


A0A0J0TK85
A0A0F6TXR6
V1GX81
UPI0006769073
F4W269
G5R9I0


A0A0J0GZG0
UPI00037F6D42
A0A0G3QEA8
A0A090U681
UPI00038FA53E
G5P3F2


A0A0G4BNQ9
UPI0006145584
UPI000666A5AA
A0A023V4X1
A0A0B7GI73
UPI0003D2FA70


A0A0I0T9Z3
UPI0004DAE8E7
UPI000315529E
A0A0I2BUS0
A0A0G2MHY8
A0A084CN62


R4Y7F0
A0A0J8XHN7
A9MJ02
R8WJE0
A0A0H0DHS6
UPI00068E1512


C8T0H7
UPI0003BECD47
S1HNI3
A0A0J0IRI6
A0A0J0SSF2
UPI0005D093A3


F4VLD8
H3N5H9
UPI0003BB87D8
A0A0F3YGX7
A0A0J0B472
A0A0H4R3L7


F4SRL8
K6KT52
UPI000353E7DB
UPI0002CB932D
A0A0J0ENJ8
A0A0B8UZ32


F4NQE6
A0A0H3ENI0
A0A0F5B4P9
S0UJP4
A0A0H0DM28
A0A0B8V3X1


K8B2N0
UPI0004D4C5A1
UPI000250C01F
M8X9A7
A0A0J0PB20
U4TEK6


UPI0003A800E6
UPI000598DBB2
N4NWV1
















TABLE 8








D. radiodurans UvrD and its Orthologs in Thermophilic Species














Protein




Accession #
Entry name
names
Organism
Gene name





Q9RTI9
Q9RTI9_DEIRA
DNA

Deinococcus radiodurans (strain

DR_1775




helicase
ATCC 13939/DSM 20539/JCM






16871/LMG 4051/NBRC 15346/






NCIMB 9279/R1/VKM B-1422)



FORMJ1
FORMJ1_DEIPM
DNA

Deinococcus proteolyticus (strain

Deipr_0885




helicase
ATCC 35074/DSM 20540/JCM 6276/






NBRC 101906/NCIMB 13154/






VKM Ac-1939/CCM 2703/MRP)



H8GTP8
H8GTP8_DEIGI
DNA

Deinococcus gobiensis (strain DSM

uvrD2,




helicase
21396/JCM 16679/CGMCC 1.7299/
DGo_CA1449





I-0)



C1CVA3
C1CVA3_DEIDV
DNA

Deinococcus deserti (strain VCD115/

uvrD,




helicase
DSM 17065/LMG 22923)
Deide_12100


A0A016QL30
A0A016QL30_9DEIO
DNA

Deinococcus phoenicis

DEIPH_ctg079orf0093




helicase




Q1J014
Q1J014_DEIGD
DNA

Deinococcus geothermalis (strain

Dgeo_0868




helicase
DSM 11300)



D3PR99
D3PR99_MEIRD
DNA

Meiothermus ruber (strain ATCC

K649_05745




helicase
35948/DSM 1279/VKM B-1258/






21) (Thermus ruber)



A0A0D0N7B7
A0A0D0N7B7_MEIRU
DNA

Meiothermus ruber

SY28_04645




helicase




E8U932
E8U932_DEIML
DNA

Deinococcus maricopensis (strain

Deima_1926




helicase
DSM 21211/LMG 22137/NRRL B-






23946/LB-34)



D7BGJ6
D7BGJ6_MEISD
DNA

Meiothermus silvanus (strain ATCC

Mesil_1937




helicase
700542/DSM 9946/VI-R2)






(Thermus silvanus)



A0A0A7KLI4
A0A0A7KLI4_9DEIO
DNA

Deinococcus swuensis

QR90_10300




helicase




F2NK78
F2NK78_MARHT
DNA

Marinithermus hydrothermalis

Marky_1312




helicase
(strain DSM 14884/JCM 11576/T1)



A0A0F7JIM6
A0A0F7JIM6_9DEIO
DNA
Deinococcus soli’ Cha et al. 2014
SY84_01165




helicase




E4U8J8
E4U8J8_OCEP5
DNA

Oceanithermus profundus (strain

Ocepr_1221




helicase
DSM 14977/NBRC 100410/VKM B-






2274/506)



L0A7L7
L0A7L7_DEIPD
DNA

Deinococcus peraridilitoris (strain

Deipe_3622




helicase
DSM 19664/LMG 22246/CIP






109416/KR-200)
















TABLE 9





36 seed sequences of UvrD-like helicase group PF00580




















ADDA_BACSU
EX5B_MYCTU
O53348_MYCTU
PCRA_GEOSE
Q9ZJE1_HELPJ
UVRD_ECOLI


ADDA_LACLM
HMI1_YEAST
O66983_AQUAE
PCRA_MYCTU
REP_BUCAP
UVRD_HAEIN


EX5B_BORBU
O24736_THETH
O83140_TREPA
PCRA_STAA8
REP_ECOLI
UVRD_MYCGE


EX5B_CHLTR
O25569_HELPY
O83991_TREPA
Q46538_DICNO
REP_HAEIN
UVRD_MYCPN


EX5B_ECOLI
O26611_METTH
O84614_CHLTR
Q9Z7D4_CHLPN
SRS2_SCHPO
UVRD_RICPR


EX5B_HAEIN
O51319_BORBU
P73465_SYNY3
Q9ZCJ7_RICPR
SRS2_YEAST
Y340_MYCPN
















TABLE 10





Selected Low-Cysteine or No-Cysteine Wild-Type PcrA Helicases







PcrA with no cysteine from L. citreum MK20








/gene = ″pcrA″
MSVETLTNGMNNKQAEAVQTTEGPLLIMAGAGSGKTR


/locus_tag = ″LCK_00476″
VLTHRIAHLVQDLNVFPWRILAITFTNKAAREMRERIAA


/EC_number = ″3.6.1.-″
LLSEDVARDIWVSTFHALAVRILRRDGEAIGLAKNFTIED


/note = ″COG0210L;
TSAQRTLMKRVINDLNLDTNQYDPRTILGMISNAKNDM


TIGR01073″
LRPRDYAKAADNAFQETVAEVYTAYQAELKRSQSVDF


/codon_start = 1
DDLIMLTIDLFQSAPEVLARYQQQFEYLHVDEYQDIND


/transl_table = 11
AQYTIVNLLAQRSKNLAVVGDADQSIYGWRGANMNNI


/product = ″ATP-dependent
LNFEKDYPNAHTVMLEQNYRSTQNILDAANAVINHNNE


DNA helicase PcrA″
RVPKKLWTENGKGDQITYYRAQTEHDEANFILSNIQQLR


/protein_id = ″ACA82309.1″
ETKHMAYSDFAVLYRTNAQSRNIEESLVKANMPYSMV


/db_xref = ″GI:169803691″
GGHKFYERKEILDIMAYMSLITNPDDNAAFERVVNEPKR


(SEQ ID NO: 53)
GLGATSLTRLRELANRLNVSYMKAIESIELAPSITTKAAS



KFLTFAEMMTINLRQQSEFLNVTELTELVMTQSGYRQM



LAEKNDPDSQARLENLEEFLSVTKEFDDKYQPEDPESIDP



VTDFLGTTALMSDLDDFEEGDGAVTLMTLHAAKGLEFP



VVFLIGLEEGIFPLSRAMMDEDLLEEERRLAYVGITRAM



KKLFLTNAFSRLLYGRTQANEPSRFIAEISPELLETAYSGL



SRDKTQKKTLPFDRKMQRATATTYQATPVTKITNGVTG



GDQTSWSTGDKVSFIKKWGVGTVISVSGRADDQELKVA



FPSEGVKQLLAAFAPIQKVD










Selected Low Cysteine count thermophilic PcrA helicases








>tr|B5Y6N2|B5Y6N2_COPPD
MALPQENLIPPSPSHNHLTLSLRSHIGGFFIYNEDVDSVDL


DNA helicase
SKLNEAQKQAVTAPPKPLAIIAGPGSGKTRVLTYRALFA


OS = Coprothermobacter
VKEWHLPPERILAITFTNKAADELKERLGRLIPEGDRIFA



proteolyticus (strain ATCC 35245/

ATMHSFAARMLRYFAPYAGISQNFVIYDDDDSKGLIEDI


DSM 5265/BT) GN = pcrA
LKQMNMDTKRFRPNDVLNHISAAKARMFDCNTFPEFIR


PE = 4 SV = 1 (SEQ ID NO: 54)
QRYGSWGYYFDTVHQVFMTYERLKEQSQALDFDDLIM



VLAQRMEDRPELREMIAGLFDLVMVDEFQDTNFAQYQ



MLLYMTNPHYSGMNNVTIVGDPDQSIYGFRAAEYYNIK



RFIDDYNPEVVFLDLNYRSNRTIVDSASALINDSPSALFE



RKLESIKGAGNKLILRRPFDDADAAITAAFEVQRLFIKMG



IPYEEIAVLMRTRALTARVEREFATRNIQYHIIGGVPFFAR



REIKDILAYLRLSRNAMDRVSLKRILTMKKRGFGTASLE



KLFNFAEENKLTLLEAMKAAVESLLFKKLSMNDYLESL



YTLIQTIQE1AEPSQAIYLVMEQENLLDHFRSISKSEEEYIE



RTENVKQLISIAEESADMDDFLQRSALGTRENNGGVEGV



AISTVHGVKGLEFQAVILYYVTDGFFPHSLSVTTAEKEEE



RRLLYVAMTRAKEHLIFYVPYKQPWGNGFEQMARPSPF



LRSIPKELWDGKPNEIESLYAPYSPQQKWSE





>tr|E8MZN5|E8MZN5_ANATU
MDSLEHLNPQQRAAVTASAGPVLVLAGPGSGKTRVLTF


DNA helicase OS = Anaerolinea
RIGYLLSQLGVAPHHILAVTFTNKAAREMQSRVEKLLGH



thermophila (strain DSM 14523/

SLQGMWLGTFHAICARILRREQQYLPLDANFVIFDEDDQ


JCM 11388/NBRC 100420/
QALIKRALRDLNLDEKLYRPTSVHAAISNAKNNLILPED


UNI-1) GN = pcrA PE = 4 SV = 1
YPTATYRDEVVARVYKRYQELLVSSNAVDFDDLLLYA


(SEQ ID NO: 55)
WKLLNEFSTVREQYARRFEHILVDEFQDTNLAQYELVK



LLASYHRNLFVVGDEDQSIYRWRGADYRNVLRFEEDFP



DRQKILLEQNYRSTQRVLDAAQAVINRNRNRTPKRLKST



PEHGEGEKLVLYEAVDDYGEAAFVVDTIQQLVAGGKA



RPGDFAIMYRTNAQSRLLEEAFLRAGVPYRLVGAMRFY



GRREVKDMIAYLRLVQNPADEASLGRVINVPPRGIGDKS



QLALQMEAQRTGRSAGLILMELGREGKDSPHWQALGR



NASLLADFGSLLGEWHRLKDEISLPSLFQRILNDLAYREY



IDDNTEEGQSRWENVQELLRIAYEYEEKGLTAFLENLAL



VSDQDTLPENVEAPTLLTLHAAKGLEFPIVFITGLDDGLIP



HNRSLDDPEAMAEERRLFYVGLTRAKKRVYLVRAAQR



STYGSFQDSIPSRFLKDIPADLIQQDGRGRRMGRSWQSES



RRSWDDNYAGTWGSRPERAKPSHAPILQPRFKPGMRVK



HPSWGEGLVVDSRIQDEDETVDIFFDSVGFKRVIASIANL



EILS





>tr|E8PM35|E8PM35_THESS
MQGPQSSHPGDELLRSLNEAQRQAVLHFEGPALVVAGA


DNA helicase OS = Thermus
GSGKTRTVVHRVAYLIAKRGVFPSEILAVTFTNKAAEEM



scotoductus (strain ATCC 700910/

RERLKRMVKGGGELWVSTFHSAALRILRVYGERVGLKP


SA-01) GN = pcrA1 PE = 4 SV = 1
GFVVYDEDDQTALIKEVLKELGLAARPGPLKALLDRAK


(SEQ ID NO: 56)
NRGEAPESLLSELPDYYAGLSRGRLLDVLKRYEEALKA



QGALDFGDILLYALRLLEEDPEVLKRVRRRARFIHVDEY



QDTNPVQYRFTKLLAGEEANLMAVGDPDQGIYSFRAAD



IKNILEFTRDFPGAKVYRLEENYRSTEAILRFANALIVNN



ALRLEKTLRPVKPGGEPVRLYRARDARDEARFVAEEILR



LGPPFDRVAVLYRTNAQSRLLEQTLASRGVPARVVGGV



GFFERAEVKDLLAYARLSLNPLDGVSLKRVLNTPPRGIG



PATVEKVEALAREKGLPLFEALRVAAEVLPRPAPLRHFL



ALMEELQELAFGPAEGFFRHLLEATDYPAYLREAYPED



YEDRLENVEELLRAAKEAEGLMEFLDKVALTARAEEPG



EPAGKVALMTLHNAKGLEFPVVFVVGVEEGLLPHRSSL



STLEGLEEERRLFYVGVTRAQERLYLSYAEEREVYGRTE



ATRPSRFLEEVEGGLYEEYDPYRASAKVSPSPAPGEARA



SKPGAYRGGEKVIHPRFGQGTVVAAMGDEVTVHFEGV



GLKRLSLKYADLRPVG





>tr|E8PL08|E8PL08_THESS
MLNPEQEAVANHFTGPALVIAGPGSGKTRTVVHRIARLI


DNA helicase OS = Thermus
RKGVDPETVTAVTFTKKAAGEMRERLVHLVGEETATK



scotoductus (strain ATCC 700910/

VFTATFHSLAYHVLKDTGTVRVLPAEQARKLIGEILEDL


SA-01) GN = pcrA2 PE = 4 SV = 1
QAPKKLTAKVAQGAFSRVKNSGGGRRELIALYTDFSPYI


(SEQ ID NO: 57)
ERAWDAYEAYKEEKRLLDFDDLLHQAVHELSTDIDLQA



RWQHRARFLIVDEYQDTNLVQFNLLRLLLTPEENLMAV



GDPNQAIYAWRGADFRLILEFKKHFPNATVYKLHTNYR



SHNGIVTAAKKVITHNTQREDLDLKALRNGDLPTLVQA



QSREDEALAVAEVVKRHLDQGTPPEEIAILLRSLAYSRPI



EATLRRYRIPYTIVGGLSFWNRKEVQLYLHLLQAASGNP



ESTVEVLASLVPGMGPKKARKALETGKYPKEAEEALQL



LQDLRAYTGERGEHLASAVQNTLHRHRKTLWPYLLELA



DGIEEAAWDRWANLEEAVSTLFAFAHHTPEGDLDTYLA



DILLQEEDPEDSGDGVKIMTLHASKGLEFAVVLLPFLVE



GAFPSWRSAQNPATLEEERRLFYVGLTRAKEHAYLSYH



LVGERGATSPSRFARETPANLIHYNPTIGYQGKETDTLSK



LAELF









Example 10. Cysteine Reactive Crosslinkers and Alternative Crosslinkers

Bis-maleimide crosslinkers with contour length varying from 6 to 25 Angstrom were used as exemplary crosslinkers (Table 2): BMPEG2, BMOE, BMH, DTME, (1,2-Phenylene-bis-maleimide), and (Succinyl Bis[(phenylimino)-2,1-ethanediyl]bis(3-maleimidopropanamide)). Alternatively bis-maleimide crosslinkers such as BMPEG3, BMB, BMDB, (1,4-Phenylene-bis-maleimide), (Bis-maleimidomethyl), and (N,N-[Dithiobis[(carbonylphenylimido)-2,1-ethanediyl]]bis(3-maleimidopropanamide)) or homobifunctional vinylsulfone crosslinker such as HBVS can be used. An alternative crosslinker can be of any crosslinker of desired length that fits the criteria set forth in Example 8 with suitable functional end groups. For crosslinking two cysteines, suitable end groups can be any of the maleimide, haloacetyl, iodoacetyl, pyridyl disulfide, vinylsulfone and other suitable moieties. Table 11 shows examples of bis-maleimide linkers with corresponding lengths.









TABLE 11







Selected Bismaleimide Crosslinkers











Spacer Arm Composition


Crosslinker
Spacer Arm Length (Å)
(between maleimide groups)












BMOE
8.0
Alkane


BMDB
10.2
Cis-diol (periodate cleavable)


BMB
10.9
Alkane


BMH
13.0
Alkane


DTME
13.3
Disulfide (reducing agent




cleavable)


BM(PEG)2
14.7
Polyethylene glycol (PEG)


BM(PEG)3
17.8
Polyethylene glycol (PEG)









Example 11. Alternative Crosslinking Methods to Cysteine Crosslinking

As an alternative to cysteine crosslinking chemistry, one can introduce a pair of unnatural amino acids for crosslinking with linkers using different chemistries as defined herein. This may be advantageous over cysteine engineering, because it may eliminate the extra steps of site directed mutagenesis of potentially interfering native cysteines and potentially detrimental effects of such mutations in other related helicases. For example, it was shown herein that in the PcrA helicase, there are two native cysteines that are highly conserved across diverse species (FIGS. 4A and 4B). The mutating out of these two cysteines in PcrA from Bacillus stearothermophilus reduced the ATPase activity by more than 80%. However replacing all five native cysteines in Rep from E. coli had a very minimal effect.


Alternatively, a target residue pair can be introduced, one of which is an unnatural amino acid and the other is a cysteine. Alternatively, one can introduce two or more pairs of target residues, preferably each pair can be specifically targeted with specific crosslinkers that employ orthogonal chemistries so that unwanted inter-pair crosslinking is avoided (for example, one pair of cysteines and one pair of unnatural amino acid residues) for enhanced conformational stability and activity.


Example 12. Unnatural Amino Acids as an Alternative to Cysteine Crosslinking

There are nearly one hundred unnatural amino acids (Uaa) that have been genetically incorporated into recombinant or endogenous proteins. These Uaa provide a wide spectrum of side chains that can be covalently crosslinked using a homo or hetero bi-functional linker with suitable end groups. Additionally a multi-branched multi- or homo-functional crosslinkers can be used for secondary conjugation other chemicals, biomolecules such as a DNA polymerase enzyme, in addition to the main crosslinking reaction. Uaa can incorporate specific reactive groups to the specific sites on the proteins, such as aryl iodides, boronic acids, alkynes, azides, or others, or they can be post-transcriptionally or chemically modified to prepare for desired crosslinking chemistry. Examples of Uaa include, but are not limited to, homopropargylglycine, homoallylglycine, azido-phenylalanine, azidohomoalanine and others. Uaa modification and crosslinking reactions include, but are not limited to, azides and cyclooctynes in copper-free click chemistry, nitrones and cyclooctynes, oxime/hydrazone formation from aldehydes and ketones, tetrazine ligation, isonitrile based click reaction, quaricyclane ligations, copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition, copper acetylide to activate terminal alkynes toward reaction with azides, Staudinger ligation, cyclooctyne reactions, and Huisgen cycloaddition. Suitable end groups of these crosslinkers would include, but are not limited to, azide, alkyne, succinimide, phosphine, etc.


Example 13. Selected Super-Family 1B (SF1B) and Super-Family 2 (SF2) Helicases

Selected SF1B and SF2 helicases are described herein. In an embodiment, the helicase is RecD2. In an embodiment, the RecD2 helicase is from D. radiodurans. Selected target residue pairs for crosslinking, and the specific distances between the pairs, in RecD2 are shown in FIG. 12 and Table 12.









TABLE 12





Selected Crosslinking Pairs for 5′ to 3′ SF1B Superhelicase RecD2

















Backbone C—C


RecD2
distance in Å












ALA632
ILE170
18.0


ALA632
ASN171
17.0


PHE635
GLY200
18.0





1B domain amino acid
2B domain amino acid
Backbone C—C


(RecD2; D. radiodurans)
(RecD2; D. radiodurans)
distance in Å





ARG 410 (B-sheet)
ASN 596 (loop)
12.91


PRO 413 (B-sheet)
PHE 603 (loop)
13.04


GLN 414 (B-sheet)
ASN 596 (loop)
11.13


GLY 415 (loop)
GLU 601 (loop)
8.38


PHE 416 (loop)
ARG 417 (loop)
6.36


ARG 417 (loop)
ASN 599 (loop)
12.43


GLY 418
TYR 598 (loop)
11.00


LEU 411 (B-sheet)
PHE 603 (loop)
13.62


ARG 417 (loop)
ARG 417 (loop)
10.14









RecQ helicase has a winged helix domain (denoted by WH, shown in green in FIG. 13 and FIG. 14) that rotates 90 degrees and makes contact with the duplex in the unwinding conformation (Mathei et al., “Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases” Proc Natl Acad Sci USA. 2015 Apr. 7; 112(14):4292-7). In an embodiment, stabilization of the WH domain of RecQ leads to superhelicase activation. Stabilization of the closed form of the WH domain can be achieved by crosslinking it to the catalytic core using the residue pairs shown in Table 13.









TABLE 13







Selected Crosslinking Pairs for Superhelicase RecQ













Backbone C—C



Catalytic domain
WH domain
distance in Å














PHE221
VAL470
7.91



GLU219
ARG514
5.61



LYS212
GLU467
8.90



PHE221
GLU467
6.52









RecQ1 helicase also has a winged helix domain (denoted by WH, shown in green in FIG. 15) that rotates 90 degrees and makes contact with the duplex in the unwinding conformation. In an embodiment, stabilization of the WH domain of RecQ1 leads to superhelicase activation. Stabilization of the closed form of the WH domain can be achieved by crosslinking it to the catalytic core using the residue pairs shown in Table 14.









TABLE 14







Selected Crosslinking Pairs for Superhelicase RecQ1









Zinc finger alpha
WH beta hairpin
Backbone C—C


helix domain amino acid
domain amino acid
distance in Å












MET429
TYR564
12.17


VAL431
THR566
8.31


MET429
ALA565
8.77


MET429
THR566
7.10









5′-3′ SF1 superhelicase T4 Dda (FIG. 16) is known to unwind dsDNA as a monomer, and has sequence similarity to E. coli recD (exonuclease V). In an embodiment, stabilization of the tower/hook and pin domains leads to superhelicase activation. Stabilization of the closed form of the tower/hook and pin domains can be achieved by crosslinking them using the residue pairs shown in Table 15. Wild-type T4 Dda has 439 amino acids, a 5′-3′ unwinding polarity, and 5 cysteines. It is a DNA helicase that stimulates DNA replication and recombination reactions in vitro, and has been suggested to play a role in the initiation of T4 DNA replication in vivo. It acts by dissociating and associating with the DNA molecule being unwound, interacting with UvsX and binding tightly to the gene 32 protein. Selected crosslinking pairs that parallel SF1A helicases are located in the tower/hook and the pin domains based on the crystal structure (FIG. 16) and are listed in Table 15.









TABLE 15







Selected Crosslinking Pairs for Superhelicase T4 Dda









1B domain (pin)
2B domain (tower/hook)
Backbone C—C


amino acid
amino acid
distance in Å












THR 91 (B-sheet)
TRP 374 (Alpha helix)
9.77


TYR 92 (B-sheet)
TYR 363 (Alpha helix)
11.78


TYR 92 (B-sheet)
TYR 363 (Alpha helix)
11.73


TYR 92 (B-sheet)
LYS 364 (Alpha helix)
10.42


GLU 93 (loop)
LYS 364 (Alpha helix)
6.83


GLU 93 (loop)
ALA 372 (loop)
9.25


GLU 93 (loop)
PRO 373 (loop)
10.45


GLU 93 (loop)
SER 375 (Alpha helix)
10.38


GLU 94 (loop)
TRP 374 (Alpha helix)
8.25


GLU 94 (loop)
ALA 372 (Alpha helix)
8.25


GLU 94 (loop)
SER 375 (Alpha helix)
10.73


GLU 94 (loop)
TRP 378 (Alpha helix)
8.58


VAL 96 (B-sheet)
LYS 381 (Alpha helix)
12.55


VAL 96 (B-sheet)
TRP 374 (Alpha helix)
12.36


VAL 96 (B-sheet)
TRP 378 (Alpha helix)
10.56









Structural data have been obtained for the SF1B RNA helicase Upfl (5′-3′ SF1B RNA/DNA helicase) in complexes with phosphate, ADP and the non-hydrolysable ATP analogue, ADPNP (Cheng et al, 2006), although a structure with bound RNA remains lacking. These structures reveal a conformational change that accompanies binding of ATP and which is very similar to that which occurs during catalysis in SF1A helicases such as PcrA.


Example 14. Identifying Suitable Crosslinking Sites for Immobilizing 2B Domain at a Particular Rotational Conformation Between the Open and Closed Form

It has been shown herein that the closed and open forms captured in the crystal structures are the active and the inactive states of the Rep helicase, respectively, which can be interconverted by a 133 degree rotation of the 2B domain around an axis. Therefore, the active conformation can be defined through definition of the range of a rotational angle, θ (theta), relative to the closed form with θ=0 (FIG. 17). For example, in an embodiment, Rep-X becomes a superhelicase if θ<40 degrees. In addition, arresting the helicase in an intermediate conformation, such as, e.g. θ=40 degrees, may allow a new function. While immobilizing the 2B domain at an angle θ=40 degrees, it was found that residue pairs distances increase more than 10 Å when θ changes from 40 degrees to 0 degrees (to closed form), and increase more than 20 Å when θ changes from 40 degrees to 130 degrees (to open form). Positions of residues at the desired θ, can be interpolated from open and closed form crystal structures via rigid body rotation of the 2B domain around an axis. Having performed this calculation for θ=40 degrees of Rep helicase, it was found that 2B residues that satisfy this criteria are residues 515 and 518-525, and the residues on the rest of the protein structure satisfying the criteria are residues 543-547. For example, crosslinking residues 521 to residue 547 on with a crosslinker with a length of about 10 Å, restricts the 2B domain to a conformation of θ=40 degrees. Similar to restricting the 2B conformation to θ=0 degrees (closed form), corresponding residues to restrict in helicases with unknown structures can be determined via sequence alignment.


Rigid body rotation of the 2B domain around a chosen axis can convert the closed form to the open form or vice versa. In the case of E. coli Rep, the chosen axis intersects the alpha carbons of residue ILE371 and residue SER280 or residue ALA603. In an embodiment, the chosen axis intersects the alpha carbons of residue ILE371 and residue SER280. Theta is the angle of rotation around this chosen axis from the closed form toward the open form. According to this definition, theta is 0 degrees for the closed form. In the case of E. coli Rep, theta increases to 133 degrees when it is rotated around the chosen axis to obtain the open form. Theta for the open form may vary between different helicases.


Thus, in an embodiment of a modified helicase described herein, the first amino acid and second amino acid, together with an axis vector defined by an alpha carbon of ILE371, from which the vector originates, and an alpha carbon of SER280 or an alpha carbon of ALA603 of E. coli Rep helicase, define an angle, theta, wherein theta is about 355 degrees to about 25 degrees in an active conformation. In an embodiment, theta is about 355 degrees, about 0 degrees, about 5 degrees, about 10 degrees, about 15 degrees, about 20 degrees or about 25 degrees, or any increment or point between about 355 degrees to about 25 degrees. In another embodiment, theta is about 0 degrees in an active conformation. In an embodiment, theta is about 60 degrees to about 155 degrees in an inactive conformation. In an embodiment, theta is about 60 degrees, about 65 degrees, about 70 degrees, about 75 degrees, about 80 degrees, about 85 degrees, about 90 degrees, about 95 degrees, about 100 degrees, about 105 degrees, about 110 degrees, about 115 degrees, about 120 degrees, about 125 degrees, about 130 degrees, about 133 degrees, about 135 degrees, about 140 degrees, about 145 degrees, about 150 degrees, or about 155 degrees, or any increment or point between about 60 degrees to about 155 degrees. In another embodiment, theta is about 133 degrees in an inactive conformation. In an embodiment, the axis vector is defined by an alpha carbon of ILE371 and an alpha carbon of SER280 of E. coli Rep helicase. In another embodiment, the axis vector is defined by an alpha carbon of ILE 371 and an alpha carbon of SER280 of E. coli Rep helicase.


Example 15. Examples of Thermophilic Orthologs/Homologs of UvrD, Rep and PcrA

Based on the crosslinking target site selection criteria established in Example 8, and analogous to identification of suitable crosslinking sites in hologous helicases as described in Example 9, by sequence alignment and structural homology modeling, the corresponding crosslinking target residues are identified in helicases with unknown structures. Subsequently these helicases can be converted to superhelicase forms. Thus, in an embodiment, Rep-like thermophilic helicases featuring low or no cysteine content, and homologs or orthologs thereof, are also suitable candidates for cross-linking to form a thermophilic superhelicase. Selected examples of thermophilic orthologs or homologs of UvrD, Rep and PcrA are shown in Tables 16-18. In certain exemplary embodiments, a suitable UvrD, Rep or PcrA helicase is selected from the following species: Thermococcus sp. EXT9, Thermococcus sp. IRI48, Thermococcus sp. IRI33, Thermococcus sp. AMT7, Thermococcus nautili, Thermococcus onnurineus (strain NA1), Thermococcus kodakarensis (strain ATCC BAA-918/JCM 12380/KOD1) (Pyrococcus kodakaraensis (strain KOD1)), Thermococcus sibiricus (strain MM 739/DSM 12597), Thermococcus paralvinellae, Thermus aquaticus Y51MC23, Thermus aquaticus Y51MC23, Thermus aquaticus Y51MC23, Thermus sp. RL, Thermus sp. RL, Thermus sp. 2.9, Salinisphaera hydrothermalis C41B8, Thermus filiformis, Meiothermus ruber, Thermus sp. NMX2.A1, Thermus thermophilus JL-18, Thermus scotoductus (strain ATCC 700910/SA-01), Thermus scotoductus (strain ATCC 700910/SA-01), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Oceanithermus profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506), Thermus oshimai JL-2, Thermus oshimai JL-2, Thermus oshimai JL-2, Thermomonospora curvata (strain ATCC 19995/DSM 43183/JCM 3096/NCIMB 10081), Thermodesulfatator indicus (strain DSM 15286/JCM 11887/CIR29812), Geobacillus stearothermophilus (Bacillus stearothermophilus), Coprothermobacter proteolyticus (strain ATCC 35245/DSM 5265/BT), Meiothermus silvanus (strain ATCC 700542/DSM 9946/VI-R2) (Thermus silvanus), Anaerolinea thermophila (strain DSM 14523/JCM 11388/NBRC 100420/UNI-1), Thermoanaerobacterium thermosaccharolyticum M0795, Meiothermus ruber (strain ATCC 35948/DSM 1279/VKM B-1258/21) (Thermus ruber), Meiothermus ruber (strain ATCC 35948/DSM 1279/VKM B-1258/21) (Thermus ruber), Deinococcus radiodurans (strain ATCC 13939/DSM 20539/JCM 16871/LMG 4051/NBRC 15346/NCIMB 9279/R1/VKM B-1422), Thermodesulfobium narugense DSM 14796, Thermus thermophilus (strain HB8/ATCC 27634/DSM 579), Dictyoglomus thermophilum (strain ATCC 35947/DSM 3960/H-6-12), Thermus thermophilus (strain SG0.5JP17-16), Thermus thermophilus (strain SG0.5JP17-16), Thermus thermophilus (strain SG0.5JP17-16), Thermus sp. CCB_US3_UF1, Deinococcus geothermalis (strain DSM 11300), Thermus thermophilus (strain HB27/ATCC BAA-163/DSM 7039), Thermus thermophilus (strain HB27/ATCC BAA-163/DSM 7039), Marinithermus hydrothermalis (strain DSM 14884/JCM 11576/T1).














TABLE 16










Gene names




Protein


(primary)/Gene


Entry (3D)
Entry name
names
Organism
Length
encoded by




















L0B9N8
L0B9N8_9EURY
UvrD Rep

Thermococcus

591
Plasmid




helicase SFI
sp. EXT9

pEXT9a


L0B9J0
L0B9J0_9EURY
UvrD Rep

Thermococcus

547
Plasmid




helicase SFI
sp. IRI48

pIRI48


L0BAD9
L0BAD9_9EURY
UvrD Rep

Thermococcus

591
Plasmid




helicase SFI
sp. IRI33

pIRI33


L0BAT5
L0BAT5_9EURY
UvrD Rep

Thermococcus

591
Plasmid




helicase
sp. AMT7

pAMT7


W8NUG2
W8NUG2_9EURY
Superfamily I

Thermococcus

665





DNA and

nautili







RNA helicase







and helicase







subunits





B6YXQ7
B6YXQ7_THEON
UvrD/REP

Thermococcus

533





helicase

onnurineus








(strain NA1)




Q5JFK3
Q5JFK3_THEKO
DNA

Thermococcus

661





helicase,

kodakarensis







UvrD/REP
(strain ATCC BAA-






family
918/JCM 12380/







KOD1)







(Pyrococcus








kodakaraensis








(strain KOD1))




C6A075
C6A075_THESM
DNA

Thermococcus

716





helicase,

sibiricus (strain







UvrD/REP
MM 739/DSM






family
12597)




W0I5I1
W0I5I1_9EURY
DNA

Thermococcus

659





helicase,

paralvinellae







UvrD/REP







family







protein





B7AA42
B7AA42_THEAQ
DNA helicase

Thermus

701





(EC 3.6.4.12)

aquaticus








Y51MC23




B7A5I6
B7A5I6_THEAQ
DNA helicase

Thermus

868





(EC 3.6.4.12)

aquaticus








Y51MC23




B7A954
B7A954_THEAQ
DNA helicase

Thermus

542





(EC 3.6.4.12)

aquaticus








Y51MC23




H7GEQ7
H7GEQ7_9DEIN
DNA helicase

Thermus sp. RL

1030





(EC 3.6.4.12)





H7GH69
H7GH69_9DEIN
DNA helicase

Thermus sp. RL

693





(EC 3.6.4.12)





A0A0B0SAG4
A0A0B0SAG4_9DEIN
DNA helicase

Thermus sp. 2.9

692





(EC 3.6.4.12)





A0A084IL47
A0A084IL47_9GAMM
ATP-

Salinisphaera

670
rep




dependent

hydrothermalis







DNA helicase
C41B8






Rep (EC







3.6.4.12)





A0A0A2WMV1
A0A0A2WMV1_THEFI
DNA helicase

Thermus

665





(EC 3.6.4.12)

filiformis





A0A0D0N7B7
A0A0D0N7B7_MEIRU
DNA helicase

Meiothermus

706





(EC 3.6.4.12)

ruber





W2U4X3
W2U4X3_9DEIN
DNA helicase

Thermus sp.

710





(EC 3.6.4.12)
NMX2.A1




H9ZQB5
H9ZQB5_THETH
DNA helicase

Thermus

693





(EC 3.6.4.12)

thermophilus








JL-18




E8PM35
E8PM35_THESS
DNA helicase

Thermus

708
pcrA1




(EC 3.6.4.12)

scotoductus








(strain ATCC







700910/SA-01)




E8PL08
E8PL08_THESS
DNA helicase

Thermus

621
pcrA2




(EC 3.6.4.12)

scotoductus








(strain ATCC







700910/SA-01




E4U8J8
E4U8J8_OCEP5
DNA helicase

Oceanithermus

719





(EC 3.6.4.12)

profundus (strain








DSM 14977/







NBRC 100410/







VKM B-2274/







506)




E4U4N5
E4U4N5_OCEP5
DNA helicase

Oceanithermus

917





(EC 3.6.4.12)

profundus (strain








DSM 14977/







NBRC 100410/







VKM B-2274/







506)




E4UAI1
E4UAI1_OCEP5
DNA helicase

Oceanithermus

889
Plasmid




(EC 3.6.4.12)

profundus (strain


pOCEPR01





DSM 14977/







NBRC 100410/







VKM B-2274/







506)




E4UAI8
E4UAI8_OCEP5
DNA helicase

Oceanithermus

638
Plasmid




(EC 3.6.4.12)

profundus (strain


pOCEPR01





DSM 14977/







NBRC 100410/







VKM B-2274/







506)




E4UAI4
E4UAI4_OCEP5
AAA ATPase

Oceanithermus

606
Plasmid






profundus (strain


pOCEPR01





DSM 14977/







NBRC 100410/







VKM B-2274/







506)




K7QW32
K7QW32_THEOS
DNA helicase

Thermus oshimai

693





(EC 3.6.4.12)
JL-2




K7QWX5
K7QWX5_THEOS
DNA helicase

Thermus oshimai

694
Plasmid




(EC 3.6.4.12)
JL-2

pTHEOS01


K7QTS9
K7QTS9_THEOS
DNA helicase

Thermus oshimai

854





(EC 3.6.4.12)
JL-2




D1AF88
D1AF88_THECD
DNA helicase

Thermomonospora

799





(EC 3.6.4.12)

curvata (strain








ATCC 19995/







DSM 43183/







JCM 3096/







NCIMB 10081)




F8A884
F8A884_THEID
DNA helicase

Thermodesulfatator

503





(EC 3.6.4.12)

indicus (strain








DSM 15286/







JCM 11887/







CIR29812)




A0A087LEB0
A0A087LEB0_GEOSE
Uncharacterized

Geobacillus

807





protein

stearothermophilus








(Bacillus








stearothermophilus)





B5Y6N2
B5Y6N2_COPPD
DNA helicase

Coprothermobacter

696
pcrA




(EC 3.6.4.12)

proteolyticus








(strain ATCC







35245/DSM







5265/BT)




D7BJL0
D7BJL0_MEISD
DNA helicase

Meiothermus

646
Plasmid




(EC 3.6.4.12)

silvanus (strain


pMESIL02





ATCC 700542/







DSM 9946/VI-







R2) (Thermus








silvanus)





E8MZN5
E8MZN5_ANATU
DNA helicase

Anaerolinea

737
pcrA




(EC 3.6.4.12)

thermophila








(strain DSM







14523/JCM







11388/NBRC







100420/UNI-1)




L0INW7
L0INW7_THETR
ATP-

Thermoanaerobacterium

769
Plasmid




dependent

thermosaccharolyticum


pTHETHE01




exoDNAse
M0795






(Exonuclease







V), alpha







subunit/







helicase







superfamily I







member





D3PR99
D3PR99_MEIRD
DNA helicase

Meiothermus

706





(EC 3.6.4.12)

ruber (strain








ATCC 35948/







DSM 1279/VKM







B-1258/21)







(Thermus ruber)




D3PLL2
D3PLL2_MEIRD
DNA helicase

Meiothermus

920





(EC 3.6.4.12)

ruber (strain








ATCC 35948/







DSM 1279/VKM







B-1258/21)







(Thermus ruber)




Q9RTI9
Q9RTI9_DEIRA
DNA helicase

Deinococcus

745



(X-ray

(EC 3.6.4.12)

radiodurans





crystallog-


(strain ATCC




raphy (3))


13939/DSM







20539/JCM







16871/LMG







4051/NBRC







15346/NCIMB







9279/R1/VKM







B-1422)




M1E5C5
M1E5C5_9FIRM
DNA helicase

Thermodesulfobium

610





(EC 3.6.4.12)

narugense








DSM 14796




Q5SIE7
Q5SIE7_THET8
DNA helicase

Thermus

692





(EC 3.6.4.12)

thermophilus








(strain HB8/







ATCC 27634/







DSM 579)




B5YD55
B5YD55_DICT6
DNA helicase

Dictyoglomus

656





(EC 3.6.4.12)

thermophilum








(strain ATCC







35947/DSM







3960/H-6-12)




F6DJA4
F6DJA4_THETG
DNA helicase

Thermus

722
Plasmid




(EC 3.6.4.12)

thermophilus


pTHTHE1601





(strain







SG0.5JP17-16)




F6DIL2
F6DIL2_THETG
DNA helicase

Thermus

692





(EC 3.6.4.12)

thermophilus








(strain







SG0.5JP17-16)




F6DJ67
F6DJ67_THETG
DNA helicase

Thermus

1014
Plasmid




(EC 3.6.4.12)

thermophilus


pTHTHE1601





(strain







SG0.5JP17-16)




G8N9P8
G8N9P8_9DEIN
DNA helicase

Thermus sp.

704





(EC 3.6.4.12)
CCB_US3_UF1




Q1J014
Q1J014_DEIGD
DNA helicase

Deinococcus

741





(EC 3.6.4.12)

geothermalis








(strain DSM







11300)




Q745W4
Q745W4_THET2
DNA helicase

Thermus

551
Plasmid




(EC 3.6.4.12)

thermophilus


pTT27





(strain HB27/







ATCC BAA-163/







DSM 7039)




Q72IS0
Q72IS0_THET2
DNA helicase

Thermus

692
uvrD




(EC 3.6.4.12)

thermophilus








(strain HB27/







ATCC BAA-163/







DSM 7039)




F2NK78
F2NK78_MARHT
DNA helicase

Marinithermus

716





(EC 3.6.4.12)

hydrothermalis








(strain DSM







14884/JCM







11576/T1)


















TABLE 17







SEQ ID


Entry
Sequence
NO:

















L0B9N8
MSEALPVTSFEFSLPEESVIKIYGPPGIGKITTLVRIIEHLIGFHDHTEFLESYGLSLLFGQYGAEDV
58



IFMTFQTSALKEFEARTGIKVKDRQNKPGRYYSTVHGIAFRLLIDSGAIDGVITQNFGSLSPEDW




FRLFCRQNGLRFESSEMGYSNVFNDGNRLWNALTWAYNVYYPTKGPIKARHEALKRLAPKL




WKYPPLWEEYKTEKGILDYNDMLVKAYEGLKSGEIDPRNLPGHKYSPKVLIVDEFQDLSPLQFE




IFRLLANYMDLVIIAGDDDQTIFSYQGADPRLMNYVPGREIVLKRSYRLPIVVQAKAMTVISKTR




HRKEKTVAPRIDLGDFKYKLFWFPDFLNDLVREAQEGHSIFILVRTNRQVLKLGKELILAGVHF




RHLKVDYRSIWEAGSKEWGTFRDLVQALLKARRGEELEIADLVTILYYSELIDWHLGEKLPEKER




YKKIAEQMEKTIEAIEKGLMPFDILKVKDDPFSVLDLEKIESLSPRHGKVAVELIREIMKEKSQW




SVPRDAEIYLDTLHASKGREADWFLINDLPRKWSSILKTREELDAERRVWYVGLTRARKKVYLL




NGKHPFPVL






L0B9J0
MRVKIYGPPGIGKITTLQRTIDYTLGNSSEPPIPLPESFPIDLEPKNLAFVSFINTAIDVIGKRTGI
59



TTRSKEAPYMRTIHGLILSVLAEHFDPVAVDNLGKLADIQAEFSMRMGYYYSKDPFEFAEGN




MKFNVITRALELYLPKTGDVEEALKLIDNREDRKFALAWYRYKRQKKIMDFDDILVIGYEHLEDF




YVPVEVAFIDEGQDNGPLDYILLEKGFEGAKFVFLAGDPLQSIYGFKGADPRLFVRWKADKEIIL




PRSYRLPKKVWLLSQSWALSLGIKGAWRYAPSEKLGRVSRMKFIEALSYAVEQAKRGRSVLIL




ARTNSLVKFVGNILSIEFGVAYGHLKRASYWESHLLKFIEGLQMLKLWDGVTPIKVQDTKPITGL




IRKLKDKHAREVLRRWRDSRQWSLEVQAVLQRIKKNPSEYFYITDFDRQALKAYFSKARLDLTE




ELIIDTIHAAKGEEADWIFLDFIPTRSEERINPEELQEKLVAYVGFTRAREELIIVPIPAIKYHPMR




DFMGVRQILGWNFHKHLLIKELVGGL






L0BAD9
MSEALPVTSFEFSLPRERIIKLYGAPGIGKITTLVKIIEHLIGFQDHTEFLENYGINLPFGQYEPGE
60



VIFMTFQTSALKEFEARTGIKVKDRQNKPGRYYSTVHGIAFRLLIDSGAVDGLITQNFGSLSPED




WFRNFCRQNGLRFESSEMGYSNVFNEGNQLWNALTWAYNVYYPTKGPKARYEALKRLAPK




LWKFPPLWEEYKKGRGILDYNDMLVRAYEGLRSGEIDPRNLPGHKYSPKVLIVDEFQDLSPLQ




FEIFRLLANHMDLVIIAGDDDQTIFSYQGADPRLMNYVPGLEWLRKSHRLPIWQAKALTVISK




TRHRKEKTVAPRIDLGDFKYKLFWFPDFLNDLVREAQEGHSIFILVRTNRQVLKLGKELILAGV




HFEHLKVDYRSIWEAGSKEWGTFRDLVQALLKAKRGEELEVADLVTILYYSELIDWHLGEGISE




KERYKKIAEQMEKTIEAIEKGLMPFDVLRVKENPFSVLDLEKIESLSPRHGKVAVELIKELMKEKS




QWSIPKDARIYLDTLHASKGREADWFLINDLPRKWSSILKTREELDAERRVWYVGLTRARKK




VYLLNGKHPFPVL






L0BAT5
MSEALSITSFDFTLPRERIIKIYGPPGIGKITTLVRIIEHLIGFQDHTEFLENYGLSLPFGQYGAEDV
61



IFMTFQTSALKEFEARTGIKVKDRQNKPGRYYSTVHGIAFRLLIDSGAVDGLITQNFGSLSPED




WFRHFCRQNGLRFESSEMGYSNIFNEGNQLWNALTWAYNVYYPTKGPKARYEALKRLAPKL




WKFPPLWEEYKKEKGILDYNDMLIRAYEGLKSGEIDPRNLPGHKYSPKVLIVDEFQDLSPLQFEI




FRLLANHMDLVIIAGDDDQTIFSYQGADPRLMNYVPGREIVLSKSYRLPIWQAKALTVISKTRH




RKEKTVAPRIDLGDFKYKLFWFPDFLNDLVREAQEGHSIFILVRTNRQVLKLGKELILAGVHFEH




LKVDYRSIWEAGSKEWGTFRDLVQALLKAKKGEELEVADLVTILYYSELIDWHLGERISEKERYK




KIAEQMEKTIEAIEKGLMPFDILKVKENPFSVLDLEKIESLSPRHGKVAVELIKELMKEKSQWSIP




KDAKIYLDTLHASKGREADWFLINDLPRKWSNILKTREELDAERRVWYVGLTRARKKVYLLNG




KHPFPIL






W8NUG2
MNENEKLSKFIAKLKVLIEMERKAEIEAMRAEMRRLSGREREKVGRAVLGLNGKVIGEELGYFL
62



VRYGREREIKTEISVGDLWISKRDPLKSDLVGTVVEKGKRFITVALETVPEWALKSVRIDLYAND




ITFKRWLENLENLRESGRRALELYLGLREPEGGEEVEFTPFDKSLNASQRRAIAKALGSPDFFLIH




GPFGTGKTRTLVELIRQEVARGNRVLATAESNVAVDNLVERLVDSGLKVVRVGHPSRVSRGLH




ETTLAYLMTQHELYGELRELRVIGENLKEKRDTFTKPAPKYRRGLTDRQILRLAEKGIGTRGVPA




RLIREMAQWLKINEQVQKTFDDARKLEERIAREIIREADWLTTNSSAGLEWDYGSYDVAIIDE




ATQATIPSVLIPINRAGRFVLAGDHKQLPPTILSEKAKELSKTLFEGLIERYPGKSEMLTVQYRMN




ERLMEFPSREFYDGRIEADESIRRITLADLGVKSPEDGDAWAEVLKPENVLVFIDTARREDRFER




QRYGSESRENPLEARLVKEAVEGLLRLGVKAEWIGVITPYDDQRDLISSLLPEEIEVKTVDGYQG




REKEVIVLSFVRSNRKGELGFLKDLRRLNVSLTRAKRKLILIGDSSTLSSHPTYRRLVEFVRERETV




VDAKRLIGKVKIK






B6YXQ7
MTAPIPTFYSILGVAGAGKITQLIDLLNYLNFENSRNEKIWERHFEPVELNRIAFISFSNTAIQEIA
63



NRIGIEKARKKSAPGRYFRTVTGLAEVLLYENNLMTFEEVRSVSKLEGFRIKWAREHGMYYKP




RDNDISYSGNEFFAEYSRLVNTYYHVKSLSEIIEMHSKSHLLLDYIREKEKLGIVDYEDILMRAYDY




RNDIWDLEYMIIDEAQDNSLLDYATLLPIAKNNATELVLAGDDAQUYDFRGANYKLFHKLIER




SEIILNLTETRRFGSEIANLATAIIDDMNYIQKREVLSAATHSTKVAHIDLFQMMSILQNMATTD




LTVYILARTNAVLNYVAKVLDEYKIQYKKNERITDFDRFLLSLNRLMRNEYTNDDIYTIYNYLRNK




VAREEELKERLFQHKLHVVTEKDVLGILLLAYEQTTAKRILTTAKNTNFKIKLSTIHSAKGSEADW




FLINSVPHKTKMKILENYEGEKRVLYVAVTRARKFLFIVDQPVARRYEQLYYIRSYESRAQGSLV




NRVAVPVA






Q5JFK3
MNEKEVLLSKFIAHLKELVEMERRAEIEAMRLEMRRLSGREREKVGRAVLGLNGKVIGEELGYF
64



LVRYGRDREIKTEISVGDLWISKRDPLKSDLVGTVVEKGKRFLTVAIETVPEWALKGVRIDLYAN




DITFKRWMENLDNLRESGRKALELYLGLREPEESEPVEFQPFDKSLNASQRGAIAKALGSGDFF




LVHGPFGTGKTRTLVELIRQEVARGHKVLATAESNVAVDNIVERLADSGLKVVRIGHPSRVSKA




LHETTLAYLITQHDLYAELRELRVIGENLKEKRDTFTKPAPKYRRGLSDREILRLAEKGIGTRGVPA




RLIREMAEWIRINQQVQKTFDDARKLEERIAREIIQEADWLTTNASAGLEWDYGEYDVAVID




EATQATIPSVLIPINRAKRFVLAGDHKQLPPTILSEKAKELSKTLFEGLIERYPEKSEMLTVQYRM




NERLMEFPSREFYDGKIKAHESVKNITLADLGVSEPEFGNFWDEALKPENVLVFIDTSKREDRF




ERQRRGSDSRENPLEAKLVTETVEKLLEMGVKPDWIGVITPYDDQRDLISSMVGEDIEVKTVD




GYQGREKEIIVLSFVRSNRRGELGFLTDLRRLNVSLTRAKRKLIAVGDSSTLSNHPTYRRFIEFVRE




RGTFIEIDGKKH






C6A075
MTRVQIPAGAPKYGPVAQPGQSARLISGRSGVRSPAGPPKALLKERFRELFIHKNPVITMHVK
65



NYIAKLVDLVELEREAEIEAMREEMRRLKGYEREKVGRAILNLNGKIIGEEFGFKLVKYGRKEAF




KTEIGVGDLVVISKGNPLASDLVGTVVEKGSRFIVVALETVPSWAFRNVRIDLYANDITFRRQLE




NLKKLSESGIRALKLILGKETPLKSSPEEFTPFDRNLNQSQKEAVSYALGSEDFFLIHGPFGTGKTR




TLVELIVQEVKRGNKILATAESNVAVDNLVERLWGKVKLVRLGHPSRVSVHLKESTLAFQVESH




ERYRKVRELRNKAERLAVMRDQYKKPTPQMRRGLTNNQILKLAYRGRGSRGVPAKDIKQMA




QWITLNEQIQKLYKFAEKIESEIIQEIIEDVDVVLSTNSSAALEFIKDAEFDVAIIDEASQATIPSVLIP




IAKARRFVLAGDHKQLPPTILSEEARALSETLFEKLIELYPFKAKMLEIQYRMNQLLMEFPSREFY




NGKIKADGSVKDITLADLKVREPFFGEPWDSILKREEPLIFVDTSNRTDKWERQRKGSTSRENP




LEALLVREIVERLLRMGIKKEWIGIITPYDDQVDSIRSIIQDDEIEIHTVDGYQGREKEIIILSLVRSN




KKGELGFLMDLRRLNVSITRAKRKLVVIGDSETLVNHETYKRLIHFVKKYGRYIELGDTGIN






W0I5I1
MNLIRYINHLKELVELEREAEIEAMREEMRKLTGYEREKVGRAVLGLNGKIIGEEFGYKLVKYGR
66



KQEIKTEISVGDLVVISKGNPLASDLIGTVTEKGKRFLVVALETVPSWALRNVRIDLYANDITFKR




QIENLDKLSESGKRALRFILGLEKPKESIDIEFKPFDEQLNESQKKAVGLALGSEDFFLIHGPFGTG




KTRTVAEVILQEVKRGKKVLATAESNVAVDNLVERLWGKVKLVRLGHPSRVSKHLKESTLAYQ




VEIHEKYKRVREFRNKAERLAMLRDQYTKPTPQWRRGLTDRQILRLAEKGIGARGIPARVIKS




MAQWITFNEKVQRLYNEAKKIEEEIVKEIIRQADVVLSTNSSAALEFIKDIKFDVAVIDEASQATI




PSVLIPIAKANKFILAGDHKQLPPTILSEEAKELSETLFEKLIELYPSKAKMLEIQYRMNERLMEFPS




KEFYNGKIKAYDGVKNITLLDLGVRVFSFGEPWDSILNLKEPLVFVDTSKHPEKWERQRKGSLS




RENLLEAELVKEIVQKLLRMGIKPESIGVITPYDDQRDLISLLLENDEIEVKIVDGYQGREKEVIILS




FVRSNKKGELGFLTDLRRLNVSLTRAKRKLIAIGDSETLSAHPTYKRFVEFVKEKGIFVQLNQYVS




QTS






B7AA42
MGEAHPSEEALLSSLNEAQRQAVLHFEGPALVVAGAGSGKTRIVVHRVAYLIARRGVFPSEIL
67



AVTFTNKAAEEMKARLKAMVRGAGELWVSTFHAAALRILRVYGERVGLKPGFVVYDEDDQT




ALLKEVLKELGLAAKPGPIKSLLDRAKNQGVPPEHLLLELPEFYAGLSRGRLQDVLHRYQEALRA




QGALDFGDILLYALKLLEEDGEVLKRVRKRARFIHVDEYQDTNPVQYRFTRLLAGEEANLMAV




GDPDQGIYSFRAADIRNILDFTQDYPKARVYRLEDNYRSTEAILRFANAVIVKNALRLEKTLRPV




KKGGEPVRLFRAESARDEARFVAEEIARLGPPFDRVAVLYRTNAQSRLLEQALASRGIPARVVG




GVGFFERAEVKDLLAYARLSLNPLDAVSLKRVLNIPPRGIGPATVEKVQAIARERGLPLFEALKV




AALTLPRPEPLRAFLALMEELMDLAFGPAEAFFRHLLLATDYPAYLKEAYPEDAEDRLENVEELL




RAAKEAESLMDFLDKVALTARAEEPAEAEGRVALMTLHNAKGLEFPVVFLVGVEEGLLPHRSS




LSTQEGLEEERRLFYVGVTRAQERLYLSYAQEREIYGRLEPVRPSRFLEEVDEGLYEVYDPYRQSS




RKPIPPPHRALPGAFRGGEKVVHPRFGPGTVVAAAGDEVTVHFEGVGLKRLSLKYADLRPA






B7A5I6
MRVYLASAGTGKTHALVEELKGLIQSGVPLRRIAALTFTRKAAEELRGRAKRAVLALSAEDPRLK
68



EAEREVHGALFTTIHGFMAEALRHTAPLLSLDPDFALLDTFLAEALFLEEARSLLYRKGLDGGLA




RALLHLYRKRTLAETLHPLPGAEGVFALYLEALEGYRRRLPAFLSPSDLEALALRILENPEALRRVV




ERFPHILLDEYQDTGPLQGRFFQGLKEAGARLVVVGDPKQSIYLFRNARVEVFREALKQAEEVR




YLSTTYRHAQAVAEFLNRFTALFGEEGVRVRPHRQEVGRVEVHWVVGEGGLEEKRRAEAHLL




LDRLMALREEGYAFSQMAVLVRSRSSLPPLEAAFRARGVPYALGRGRSFFARPEVRDLYHALR




LSLLEGPPGPEERLALLAFLRGPWVGLDLSEVEEALKAQDPIPLLPEAVRAKLRALRALAGLPPLE




ALKRLSRDEAFLRRLSPRARVNLDALLLLAAMERFPDLEALLEWLRLRAEDPEAAELPEGEEGV




QVLTVHGAKGLEWPVVALFDLSRGENPKEEDLLVGLGGEVALRGTPAYKEVRKALRKAQAEE




ARRLLYVALSRARDVLIVTGSASGRPGPWVEALERLGLGPESQDPLVRRHPFKALPPLGDRPQ




TPPPPPLPAPYAHLAFPERPLPFVYSPSAFTKAKEPVPLAEALEKEALPEFYRALGTLVHYAIARH




LDPEDEGAMAGLLLQEVAFPFAEGEKRRLLEEVRDLLRRYRGMLGPSLPPLEAREEDHAELPLV




LPLGGTVWYGILDRLYRVGGRWYLEDYKTDREVRPEAYRFQLAIYRRALLEAWGVEAEARLVY




LRHGLVHPLDPEELERALKEGFPGMGPGEGGEKA






B7A954
MKGLTGSSRLRVYGPPGTGKTTWLKNEVERLLRSGVPGEEIAVCAFSRAAFREFASRLAGQVP
69



EENLGTIHSLAYRAIGRPPLALTKDALSDWNRRVPDTWRVTPRVDGRGADLLDVMDPYEDE




DSRPPGDKLYDRVAYLRNTLAPMAAWSEEERAFFQAWKSWMNAKGLVDFPGMLEAALAK




PGGLGARFLLVDEAQDLTPLQLLLVEKWAQGARLALVGDDDQAIYGFMGADGASFLGVPVE




DELVLGQSYRVPARVQRVAEAVIRRVQNRAPKRYAPRGDEGEVRLLWVPPEDPYHAVVDAL




ERVNRGESVLFLATAKYLLEELKRELLRVGEPYANPYAPHRHSFNLFPQGARSAWEKARSFLFP




NRIAADVKAVVTKHVSSKVFAVKGEEARRYIESFPDEEKVGDDHPIWNVFRPEHRPHAVGRD




VSWLLDHLLGNAPKTMRQSLMVALKSPEAVLQGRARVWIGTIHSVKGGEADWVYVWPGY




TRKAAREHPDQLHRLFYVAATRARKGLVLMDQGKAPHGYVWPRVDEFWGEVWV






H7GEQ7
MEANLYVAGAGTGKTYTLAERYLGFLEEGLSPLQVVAVTFTERAALELRHRVRQMVGERSLG
70



KERVLAELEAAPIGTLHALAARVCREFPEEAGVPADFQVMEDLEAALLLEAWLEEALLEALQ




DPRYAPLVEAVGYEGLLDTLREVAKDPLAARELLEKGLGEVAKALRLEAWRXLRRRMEELFHG




ERPEERYPGFPKGWRXEEPEVVPDLLAWAGEVKFNKKPWLEYKXDPALXRLLKLLGGVKEGFS




PGPADERLEEVWPLLRELAEGVLARLEERRFRARRLGYADLEVHALRALEXEEVRAYYRGRFRR




LLVDEFQDTNPVQVRLLQALFPDLRAWTVVGDPNQSIYSFRRADPKVMERFQXEAAKEGLRV




RRLEKSHRYHQGLADFHNRFFPPLLPGYGAVSAERKPEGEGPWVFHFQGDLEAQARFIAQEV




GRLLSEGFQVYDLGEKAYRPMSLRDVAVLGRTVVRDLARVAEALRRLEVPAVEAGGGNLLETR




AFKDAYLALRFLGDPXDEEALVGLLRSPFFALTDGEVRRLAEARGEGETLWEVLEREGDLSAEA




ERARETLRGLLRRKALEAPSRLLQRLDGATGYTGVAARLPQGRRRVKDWEGTLDLVRKLEVGS




EDPFLVARHLRLIIRSGLSVERPPLEAGEAVILLTVHGAKGLEWPWFVLNVGGWNRLGSWK




NNKTKPLFRPGLALVPPVLDEXGNPSALFHLAKRRVEEEEKQEENRLLYVAATRASERLYLLLSP




DLSPDKGDLDPQTLIGAGSLEKGLEATEPERPWSGEEGEVEVLEERIQGLPLEALPVSLLPLAAR




DPEAARRRLLGEPEXEGGEAWXPXXPQETEEEVPGGAGVGRMTHALLERFEAXEDLEREGRA




FLEESFPGAEGEEVEEALRLARTFLTAEVFAPYRGNAVAKEVPVALELLGVRLEGRADRVGED




VVVLDYKTDRGVDAXAYLLQVGVYALALGKPRALVADLREGKLYEGASQQVEEKAEEVLRRLM




GGEGQGRQPYPLAATDPGHGAPG






H7GH69
MSDALLAPLNEAQRQAVLHFEGPALWAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVTFT
71



NKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTALLKEV




LKELALSARPGPIKALLDRAKNRGVGLKALLGELPEYYAGLSRGRLGDVLVRYQEALKAQGALD




FGDILLYALRLLEEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEEANLMAVGDPDQG




IYSFRAADIKNILDFIRDYPEARVYRLEENYRSTEAILRXANAVIVKNALRLEKALRPVKRGGEPV




RLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLLEQALAGRGIPARWGGVGFFE




RAEVKDLLAYARLALNPLDAVSLKRVLNIPPRGIGPATVVARVQLLAQEKGLPPWEALKEAART




FXRAEPLRHFVALVEELQDLVFGPAEAFFRHLLEATDYPTYLREAYPEDAEDRLENVEELLRAAK




EAEDLQDFLDRVALTAKAEEPAEAEGKVALMTLHNAKGLEFPWFLVGVEEGLLPHRNSLSTLE




GLEEERRLFYVGITRAQERLYLSHAEEREVYGRREPARPSRFLEEVEEGLYEVYDPYRXPKPXPPP




HRPRPGAFRGGERWHPRFGPGTVVAAQGDEVTVHFEGXGLKRLSLKYAELXPA






A0A0B0SAG4
MDEALLSSLNEAQRQAVLHFQGPALWAGAGSGKTRTVVHRVAYLIAHRGVYPTEILAVTFTN
72



KAAEEMRERLKGMVRGAGEVWVSTFHAAALRILRVYGERVGLKPGFVVYDEDDQTALLKEV




LKELGLSAKPGPIKALLDRAKNRGEPPEALLAELPEYYAGLSRRRLLDVFFRYQEALKAQGALDF




GDILLYALRLLEEDQEVLARVRKRARFIHVDEYQDTNPVQYRFTKLLAGEEANLMAVGDPDQG




IYSFRAADIKNILQFTADFPGAKVYRLEENYRSTEAILRFANAVIVKNALRLEKTLRPVKRGGEPV




RLFRAKDAREEARFVAEEILRLGPPFDRIAVLYRTNAQSRLLEQALAGRGVGARWGGVGFFER




AEVKDLLAYARLALNPLDSVSLKRILNTPPRGIGPATVEKVARLAQEKGLPLFEALKRAELLPRPE




PVRHFVALMEELMDLAFGPAEAFFRHLLQATDYPAYLREAYPEDHEDRLENVEELLRAAKEAE




SLLDFLDKVALTARAEEPAGAEGKVFLMTLHNAKGLEFPVVFLVGVEEGLLPHRNSLNTLEALE




EERRLFYVGVTRAQERLYLSYAEEREVYGRLEATRPSRFLEEVEEGLYQEYDPYRSPRPVPPSHR




PKPGAFKGGEKVVHPRFGPGTVVAASGDEVTVHFEGVGLKRLSLKYADLRPA






A0A084IL47
MALPKLNPQQDAAMRYLDGPLLVLAGAGSGKTGVITRKIAHLIARGYDARRVVAVTFTNKM
73



REMKQRASKLISADDARGLTVSTFHSLGLQMIREEHAALGYKPRFSIFDSEDADKVLADLVGR




DGDHRKATKAAISNWKSALIDPETATAQATGSDIPLARAYGEYQRRLKAYNAVDFDDLLALPV




HLLSTDHEARERWQSRFRYLLVDEYQDTNAAQYEMMRLLAGARAAFTVVGDDDQSIYAWR




GARPGNIADLSRDFPHLKVIKLEQNYRSVGNVLSAANQLIGASNQRAYEKTLWSAMGPGDRV




RVIAAPDEAGEAERIASEISSHKLRLGTAYGDYAILYRGNFQSRAFEKALRERDIPYRVSGGRSFF




ERSEIRDLVTYLKLMVNPDDDAAFLRIVNLPRREIGPATLEALGRYAGSRHISLFDAARGIGLAG




GVGERSGRRLADFVDWLRNLTQDSEGMTPRELVSQLIVDIDYRNWLRDTSANTKAARKRIEN




LDDFIGWLDRLDNAEDGKPVTLEDVVRRLSLMDFANQSEKDVENQVHLLTLHAAKGLEFDH




VFLAGLEEGMLPHHACLEDDKIEEERRLLYVGITRARKTLALTYARKRRRGGEESDSVPSRFLEEL




PADELDWPSATGIRSKAANAEQGRDQVAALRAMLGASADS






A0A0A2WMV1
MPQVGFTDHFFKGLEALSREEQNRVREAVFAFMQDPKHPSFKLHRLEDIKTDRFWSARVSK
74



DLRLILYHHPEMGWIFAYVGHHDDAYRWAETHQAEVHPKLGLLQIFRVVEEVRVEPRKIKPLL




PDYPDDYLLDLGVPPSYLKPLRLVETEDQLLGLIEGLPQDVQERLLDLAAGRPVTLPPKLAPSEE




WFKHPLSRQHIHFIQNLDELRQALSYPWERWMVFLHPAQREAVERVFQGPARVTGPAGTG




KTVVALHRAAALARRYPEEPLLLTTFNRFLASRLRSGLQRLLGEVPPNLIVENLHSLARRLHEQH




VGPVKLVKEEDYGPWLLEAAQGLEYGKNFLLSEFAFADAWGLYTWEAYRGFPRTGRGVPLTA




RERLKLFGAFQKVWGRMENEGALTFNGLHRLRQRAEEGALPRFRAVVVDEAQDLGPAELLL




VRALAQEAPDSLFFALDPAQRIYKSPLSWQALGLEVRGRSIRLKVNYRTTREIAKRAEAVLPKEV




EGEMREVLSLLQGPEPEIRGFPTQEACQAELVRWLRWLLEQGVRPEEVAVLARVRKLAEGLA




EGLRRAGIPVVLLSDQEDPGEGVRLGTVHSAKGLEFRAVALFGANRGLFPLESLLREAPSEADR




EALLAQERNLLYVAMSRARERLWVGYWDEGSPFLTP






A0A0D0N7B7
MSDLLSSLNPSQREAVLHFEGPALVVAGAGSGKTRTVVHRIAYLLRERRVYPAEILAVTFTNKA
75



AGEMKERLEKMVGRSARDLWVTTFHAAAVRILRTYGEYVGLKPGFVIYDEDDQNTLLKEVLK




ELELEAKPGPFRSMIDRIKNRGAGLAEYMREAPDFIGGVPRDVAAEVYRRYQNSLRMQGALD




FNDLLLLTIELFEQHPEVLHKVQQRARFIHVDEYQDTNPVQYRLTRLLAGERPNLMVVGDPDQ




SIYGFRNADINNILDFTKDYPGARVIRLEENYRSSSSILRVANAVIEKNALRLEKVLRPTKPGGEPV




RLYRAPNAREEAAFVAREIVKLGGYQQVAVLYRTNAQSRLLEEHLRRANVPVRLVGAVGFFER




REIKDLLAYGRVAVNPDDSINLRRIVNTPPRGIGATTVARLVEHAQKTGITVFEAFRAAEQVISR




PQQVQAFVRLLDELMEAAFESGPTAFFQRVLEQTGFREALKQEPDGEDRLQNVEELLRAAQD




WEEEEGGSLADFLDSVALTAKAEEPQGDAPVEAVTLMTLHNAKGLEFPTVFLVGLEENLLPHR




NSLHRLEDLEEERRLFYVGITRAQERLYLSYAEERETYGKREYTRPSRFLQDIPQDLLKEVGAFGD




GETRVLSQARPEPKPRTQPAEFKGGEKVKHPKFGSGTVVAAMGGEVTVMFPGVGLKRLAVK




FAGLERLE






W2U4X3
MQGPQSSHPGDELLRSLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLIAKRGVFPS
76



EILAVTFTNKAALEMRERLKRMVKGAGELWVSTFHSAALRILRVYGERVGLKPGFVVYDEDD




QTALIKEVLKELGLAARPGPLKALLDRAKNRGEAPESLLSELPDYYAGLSRGRLLDVLKRYEEALK




AQGALDFGDILLYALRLLEEDPEVLKRVRRRARFIHVDEYQDTNPVQYRFTKLLAGEEANLMA




VGDPDQGIYSFRAADIKNILEFTRDFPGAKVYRLEENYRSTEAILRFANALIVNNALRLEKTLRPV




KPGGEPVRLYRARDARDEARFVAEEILRLGPPFDRVAVLYRTNAQSRLLEQALASRGVPARVV




GGVGFFERAEVKDLLAYARLSLNPLDGVSLKRVLNTPPRGIGPATVEKVEALAREKGLPLFEALR




VAAEVLPRPAPLRHFLALMEELQELAFGPAEGFFRHLLEATDYPAYLREAYPEDHEDRLENVEE




LLRAAKEAEGLMEFLDKVALTARAEEPGEPAGKVALMTLHNAKGLEFPVVFVVGVEEGLLPHR




SSLSTLEGLEEERRLFYVGVTRAQERLYLSYAEEREVYGRTEATRPSRFLEEVEGGLYEEYDPYRA




SAKVSPSPAPSEARASKPKPGAYRGGEKVIHPRFGQGTVVAAMGDEVTVHFEGVGLKRLSLK




YADLRPVG






H9ZQB5
MSDALLAPLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVTFT
77



NKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTALLKEV




LKELALSARPGPIKALLDRAKNRGVGLEALLGELPEYYAGLSRGRLADVLVRYQEALKAQGALD




FGDILLYALRLLKEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEEANLMAVGDPDQG




IYSFRAADIKNILDFIRDYPEARVYRLEENYRSTEAILRLANAVIVKNALRLEKALRPVKRGGEPV




RLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLLEQALAGRGIPARVVGGVGFFE




RAEVKDLLAYARLALNPLDAVSLKRVLNIPPRGIGPATWARVQLLAQEKGLPPWEALKEAART




SSRVEPLRHFVALVEELQDLVFGPAEAFFRHLLEATDYPTYLREAYPEDAEDRLENVEELLRAAK




EAEDLQDFLDKVALTAKAEEPAEAEGKVALMTLHNAKGLEFPVVFLVGVEEGLLPHRNSLSTLE




GLEEERRLFYVGITRAQERLYLSHAEEREVYGRREPARPSRFLEEVEEGLYEVYDPYRVPKPAPPP




HRPRPGAFRGGERVVHPRFGPGTVVAAQGDEVTVHFEGFGLKRLSLKYAELRPA






E8PM35
MQGPQSSHPGDELLRSLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLIAKRGVFPS
78



EILAVTFTNKAAEEMRERLKRMVKGGGELWVSTFHSAALRILRVYGERVGLKPGFVVYDEDD




QTALIKEVLKELGLAARPGPLKALLDRAKNRGEAPESLLSELPDYYAGLSRGRLLDVLKRYEEALK




AQGALDFGDILLYALRLLEEDPEVLKRVRRRARFIHVDEYQDTNPVQYRFTKLLAGEEANLMA




VGDPDQGIYSFRAADIKNILEFTRDFPGAKVYRLEENYRSTEAILRFANALIVNNALRLEKTLRPV




KPGGEPVRLYRARDARDEARFVAEEILRLGPPFDRVAVLYRTNAQSRLLEQTLASRGVPARVV




GGVGFFERAEVKDLLAYARLSLNPLDGVSLKRVLNTPPRGIGPATVEKVEALAREKGLPLFEALR




VAAEVLPRPAPLRHFLALMEELQELAFGPAEGFFRHLLEATDYPAYLREAYPEDYEDRLENVEE




LLRAAKEAEGLMEFLDKVALTARAEEPGEPAGKVALMTLHNAKGLEFPVVFVVGVEEGLLPHR




SSLSTLEGLEEERRLFYVGVTRAQERLYLSYAEEREVYGRTEATRPSRFLEEVEGGLYEEYDPYRA




SAKVSPSPAPGEARASKPGAYRGGEKVIHPRFGQGTVVAAMGDEVTVHFEGVGLKRLSLKYA




DLRPVG






E8PL08
MLNPEQEAVANHFTGPALVIAGPGSGKTRTVVHRIARLIRKGVDPETVTAVTFTKKAAGEMR
79



ERLVHLVGEETATKVFTATFHSLAYHVLKDIGTVRVLPAEQARKLIGEILEDLQAPKKLTAKVAQ




GAFSRVKNSGGGRRELIALYTDFSPYIERAWDAYEAYKEEKRLLDFDDLLHQAVHELSTDIDLQ




ARWQHRARFLIVDEYQDTNLVQFNLLRLLLTPEENLMAVGDPNQAIYAWRGADFRLILEFKK




HFPNATVYKLHTNYRSHNGIVTAAKKVITHNTQREDLDLKALRNGDLPTLVQAQSREDEALAV




AEVVKRHLDQGTPPEEIAILLRSLAYSRPIEATLRRYRIPYTIVGGLSFWNRKEVQLYLHLLQAAS




GNPESTVEVLASLVPGMGPKKARKALETGKYPKEAEEALQLLQDLRAYTGERGEHLASAVQN




TLHRHRKTLWPYLLELADGIEEAAWDRWANLEEAVSTLFAFAHHTPEGDLDTYLADILLQEED




PEDSGDGVKIMTLHASKGLEFAVVLLPFLVEGAFPSWRSAQNPATLEEERRLFYVGLTRAKEH




AYLSYHLVGERGATSPSRFARETPANLIHYNPTIGYQGKETDTLSKLAELF






E4U8J8
MSARDLLSSLNEQQQAAVQHFLGPALVIAGAGSGKTRTVVHRVAYLLAEREVYPAEVLAVTFT
80



NKAAGEMRERLSRMVGRAAGELWVSTFHSASLRILRRYGERIGLKPGFVVYDDDDQRVLLKE




VLGSLGLEARPTYVRAVLDRIKNRMWSVDEFLAHADDWVGGLTKQQMAEVYARYQQRLAE




NNAVDFNDLLLRTIELFERHPEALEAVRQRARFIHVDEYQDTNPAQYRLTKLLAGDEANLMVV




GDPDQSIYGFRNADIQNILGFERDYRGAVVYRLEANYRSTAAILRVANALIERNQQRLEKTLRP




VKPAGEPVRLYRAPDHREEAAFVAREVARLAGERALDDFAVLYRTNAQSRVLEEAFRRLNLPA




RIVGGVGFYERREVKDVLAYARLAVNPADDVALRRVINVPARGVGAASVGKLAAWAQAQG




VSLLEAAHRAGELLAARQAAAVAKFTDLLTTLREAAEGTGPEAFLRLVLAETGYSEMLRREGDS




EPRLENLEELLRAAAEWEEEHGGSVAEFLDEIALTARAEEPNAAPEKSVTLMTLHNAKGLEFPV




VFVVGVEEGLLPHRSSLGSDAEIEEERRLLYVGITRAQERLYLTLSEERETWGQRERVRPSRFLEE




IPEDFLKPVGPFGDAHEPAPAPLSSAPVNRAAKGSASGFRGGEKVRHPRYGEGTVVATSGEG




ARQEVTVHFAEAGLKRLLVKYAGLERIE






E4U4N5
MKVRIASAGTGKTYALTSRFTAALAEHPPYRLAAVTFTRSAAAELKARLRERLLAIAAGRFQPSG
81



AEDVPPEAVVRRAGALATEVLGATVTTIHGFFAELLRQNALALGLEPDFLRIDASESQQ1FAEEA




RAYVYLNEEDDALAEVLGRLFAKRSLAAELRPQGEAAEALWAHFRAVLERYARRLGGEALGPA




DIELHAWRLLERAGREEALAARIRSRLARVFVDEYQDTSPLQGRVFAALEALGVEVEVVGDPK




QSIYAFRNADVEVFREAMRRGEPLPPLVTSWRHDRALVRFLNRYVDWVAEERPEAFARAEA




PPVEARPDAGPGRVRLQLVQGEARQDALRPYEADQLARWLQERHAEHAWRDMAVLVRSH




SSVPLLVRALAAHGLPHVVVGGRGFYDLIEVRDLVHAARVALDPRGRFSLAAFLRGPFAGLDL




GRVERVLAAEDPLAELERAAPEVAERVDRLVRWVQTLRPLDFFERMVRTPFLEGASYLERLEP




PARANVDQLLFKLASRRYGRLEFLLRDLEDLRGSDEAGVPEGGFDAVRIYTMHGSKGLEWPV




VAVFDLNRGQPDGAEPFYVRPGSGEFAAEGDPDYPRFAAEWKERERQEAYRLLYVALSRPRS




RLLLSLSVQLKPDGEGLRPKFWRRTLGRTLIEEMNLAAWDALEVERLDAARLPAPKAAAAAPR




RAADVDERLRAPVEPLARPPVYSPSALKAERPAPPELDDEGDVAVELEEPGVDPGLVARTVGIL




VHYAIGQDWGPERLQDLWNQEAVQRLTEPERTRVKTEVAQRLETYWRLLGTELPALDERDE




DYAEFPLLLPTRTARLDTVWEGVIDRLYRVGDVWVLEDYKTDRELHPERYHFQLALYRRAVAA




AWGIEPEARLVYLRFGEVVPLEAQLLEEAFERGTREAEEV






E4UAI1
MKVIVASAGTGKTTRLTQRYLEHLEQHPPQRVAAVTFTNKAAAELRERIFEALGRGSFYDFTPS
82



PALAERLADYQVRVLEAPIGTIHSFFGYLLRLTAPMLGLDPHFEVIDPATARAWFLEEVRNLAIIE




GAEVDETVTTALVELFKRRSISEAFEGTGDASRSLVAGFKKVYARWLTRLGGRYLDPSEIERRAL




ALIRHPEALERVRSRLGVVLVDEYQDTAPIQARVFEALEEAGVPIEVVGDPKQSIYAFRDADVE




GFREAHRRARENGNVETLTVSYRHPPALADFLNAFTSAEAALGKAFTAEEAPEVKPGREGDAR




VELITVTPGDGKATLDALRNGEARLLARELRRLHDEEGYDYGQMLVLFRRRHQLPPLLRALRG




AGLPFAVVGLRGLYEEPEVRELYHALRLATGEAPRDSLAVFLSGPFGGLTLGQVREVLAQDAPE




SYLTLHHPEAAERLLRLRADAEKMRPAEALTRLIEAPTAKGPPFLDLLELEMADTVLYVLGRIEH




TRTYPEAVATLESFRSGGEEEASLARLGGDAVRVMSAHAAKGLQAPVVVIFDADRTFNGNSD




ELVIEPRTGRVALNGEDAYESIAQALKARKEGEDHRLIYVALSRSSERLIVSAAVKEPRKGSWLH




HLTEVLNLGSKFEHRNVTLAEIALEEPIEQEAATLPVDPELATPLPPAPPAVSSPTALKAERELEV




PDPEEAWPADPEARLLGRIVGILVHEGIQRDWDPDDPEVLLALEGEQVLEEVPADRRPAVIEE




VATLLRVYRTLLGSAIPSLEEREVDLAELPLVYPLGATAWEGVIDRLYRVGDVWYLEDYKTDREV




HPERYHSQLALYREAVRKHWGIEPEVRLVYLRTGQVVPLDAAALKEGLASYTGG






E4UAI8
MNEHERVIAHEVGPAAVVAGAGSGKTRAATLRAARLARTGERVGLVTFTASAAEEMRQRVL
83



AEDVPAKHVWAGTFHSLAFQILRQFPEAGGYEGFPEVLTPNDELRLFRRLWAELLDQDLDAEL




RRKLVKALGFFRKARAEEALEGWAARAGESLELDAEMLEALMISFQLRKREAGLASFDDLIEG




ASRALGDKDVRKWADRRFPFLIVDEYQDTSRAQETFLAALMPGEAPNLMVIGDPNQAIYGW




RGAGSRTFERFQARYPQAVLYPLRKNYRSTRAVLRLAERAIARLYRSGQEAYYRLEGVKEEGEP




PVLLTPPNAAAEATDVAREVARAVASGVPPEEIAVLARSSMQLAGVEDRLARLGVATRLLGGI




RLSERREVKILVQLLKAAWSLHERALVDFIEEAVPGLGERTLTRVEHAARPYNLVDRIMNDGA




FVRGFSTRVQQGLFMTRTLLQLARATFEGVTGEAFAERFREFAQDLYGELLPGYLARIGKQGP




NEEARRRHLERFVATVEAFAREEAEGGLDDLLARLAFLEQQDGPAVTLGTVHAVKGLEFEWF




WGMVEGAFPILADDSDPEEERRLFYVAATRAKRRLYLSAPTYGPRGKILQPSRYLEEALDEGLV




RLQKVRPAA






E4UAI4
MVSEGRWKIERVVYLKDGFAWAVRNEAGERHTAVGEMPTPVEGTWVRMETEHTVHPRY
84



GPRLRWRFLGLAPPPSKELAKIEGYLKLGFSEEAASWLAARFGSRPERAFDKPQELLVPGVPRE




VLRRVFPRLERLLGGLIDLLGEGHTAAPLFLLAERSGLGKEEIQELAREARKQRLIVEEQGRYGLV




QPYRTERSIADGLLFRLKPGRGLRLIPPAGHGLSDEQARIFKLVRENRVVVLTGGPGSGKTTTIA




ILLAAPELHRMRFGIAAPTGKAARRIAEVARLPAETIHRLLGLGEARRPLYHARNPLPYDLLVID




ETSMLDAEIAAFLVDALAPSTSVIFVGDPDQLPPVGPGQFLRDLMTRVATLRLTQIFRQAQDS




PIVNGAYALREGRMPLADGERLRLLPFEEEAAQTTLRILLDELQRLEQIVGERPQVLVPGNRGP




LGVRRLSPFLQQQLNPGGKPLGPIGWGMEAREGDPAVWIHNDYELGIMNGEVGVLRGGGS




LGLTFETPTDRFAIPGNKRSRLVLAYAMTVHRSQGSEWPAVITILPKAHMALLSRELVYTALTRS




KQYHTLLFHPEALYRARAVQASRRYTVVLDVLLRG






K7QW32
MTAPGHPDALLAPLNPAQQEAVLHFQGPALWAGAGSGKTRTVVHRVAYLMAHRGVYPGE
85



ILAVTFTNKAAEEMKGRLKALVPGAGELWVATFHSAALRILRVYGEAIGLKPGFVVYDEADQE




ALLKEVLKELGLSAKPGPLKALLDRAKNRGEAWEALEIPDYYAGLPKGKVLDVLRRYQEALRAQ




GALDFGDILVYALRLLEENPEVLAKVRKRARFIHVDEYQDTSPVQYRFARLLAGEEANLMAVG




DPDQGIYSFRAADIRNILDFIRDFPGARVYRLEENYRSTEAILRFANAVIQKNRLRLEKTLRPVKP




GGEPVRVYAAPEAREEARFVAEEIFRLGPPYERFAVLYRTNAQSRLLEQALAAKGLPYRWGGV




GFFERAEVKDLLAYARLSLNPEDGVSLKRVLNTPPRGIGPATLARLEALAQAEGVPLLGAIRLGA




ERFPKPEPLRAFLALLDELADLAFGPPEAFFRHLLSATDYLQYLKEHHPEDAEDRLENVEELLRA




AKEAQDLQEFLDRVALTARADQDGGRGVALMTLHNAKGLEFPWFLVGVEEGLLPHQSSLST




LEGLEEERRLFYVGVTRAQDRLYLSYAREREVYGRREPRRMSRFLEEVPEGLYLPHDPYRQGA




QPKPAPRAQGAFRGGEKWHPRFGPGTVVAASGDEVTVHFEGVGLKRLSLKYADLRPA






K7QWX5
MASSLSKAELVPIPEQEKALHLYRSRQDFKLVAVAGSGKITTLRLMAESFPRRHIAYLAFNRA
86



MKEEARRKFPPNTRVFTLHALAYRRTVPGTPYEAKFRLGNGQVRPVHVRERLQVDPLLAYVV




RSGLERFIRSGDPEPLPRHLPRDWRKTVEARGPSGFAEVERAVKGVALLWKAMRDPKDPFPL




SHDGYVRIWREEGAGGDPPAGVILVDEAQDLDPNFLTVLSGWRGKAQQVFVGDPRQQIYG




WRGAVNAMGEIDLPESPLTWSFRFGEPLASFVQAVTARQTQGLVPLVGRAGWATEVHVNL




FPIPPFTILTRSNLGLVTALLEGAQLFSLQKEEAHWGGVEELWVLLTDLQAIKEGGERPRPHPE




LLGISKWEEVESLAEYSIVLNRLLRLAKEYDLEALAHKIAQLHGPEEGAKLVLSTAHKAKGREWD




RVLLWEDFYWVAAYRWFFPNTAPPPSEPSPEFLEEENIFYVAMTRARLGLHISLPEALAEEEAK




RILDRLSQGVPSGEDRGEDERGETLPAPFTGPTPVSPKEATFPLPSLYDRLLSEALNGGRDPLLH




LLRDDLARLSALSPTPLPPEVAQALWERARPEEALGAIREGLGAMWREDPYELLRAINALALLG




GRNPRKLAKILGDRFPGGEEAEDLLFVARARKRELMGRSLAEFWRGLGASVRHPLLKAYARAR




S






K7QTS9
MRLYVASAGTGKTETLMGELKALLEGGVPLRRVAAVSFTRKSAEELRLRVRRLLEAHREAFWA
87



REALREVHGALFTTLHGFMAEALRHTAPFLGLDPDFRVMDGFLAQALFLEEARSLLFLEGHPE




APELLELLEALYEKRSLAEAFTPLPGAEGLLALYERVLARYRARTQEVLGPGDLEAKALLLLRHPE




ALGRVAERFSHLLVDEFQDVNPLQGRFLRALEEAGVRWAVGDPKQSIYLFRNARVEVFLRAR




AAAEEVRALSRTHRHAKQWELLNRFTTRFFRAEEGNRVEGVREAEGRVEVHWVLGKLEEAR




RAEARLLAQRLLALRAEGIPFGEMAVLVRARTSLPPLEKALRAAGVPFVRGRGQSFFARPEVR




DLYHALRLALAERPYALEDRLSLLAFLRSPFLGLDLSELEEALRAEDPWPLLPKGVQEALEGLRAL




ALLPPLEALRRLARDEGFLRRISRRARANLDTLLLLAAGARFPTLEDLLLWLALRAKDPESVELPE




GGGGVILLTVHGAKGLEWPWALYDVSRGPSERPPPLLVDEEGRVALKGTEAYRALLKEAERA




EREEALRLLYVALSRARDLLLITGSTSQRPGPWAEALQALGLGPDAQDPWVETHPLEAIPPLPPI




PQAPQDPRPAPYTPWRGEPRARPPVYSPSAHLKAEAEPLEVLGEGEALPEWARAVETLVHY




AIARHLDPEDEGAMGGLLRQEVALAFGEGEREALLEEVRALLRAYRSLLSGALPPLEARAEDHA




ELPLLLPHKGTVWYGVLDRLYRVGDRWYLDDYKTDQKVRPEAYRFQLALYRKAVLEAWGVE




AEARLVYLRHRQWPLSPAELEAALEGL






D1AF88
MSSSQVTGRPTFVKDAEIAVEQRRVDQAHARLEEMRAEAQAMIEEGYRQALAGTKGSLVDR
88



DAMVYQAALRVQALNVADDGLVFGRLDLADGQTRYIGRIGVRTRDHEPMVIDWRAPAAEA




FYRATPEDPQGWRRRVLHTRGRTVVDLEDDLLDPSAADSLTIVGDGAFIASLARTREGTMRD




IVATIQREQDEVIRAPADGTVLVRGAPGTGKTAVALHRVAYLLFRHRRRFGSRGVLWGPNRR




FTAYIERVLPSLGEGSATLRSLGDLVEGVSATVHDPPELAALKGSAAMAPVLRRAVTDHPPGA




PDKLRVVHGGVVVELGRPQLDKLRTSLHRRSTGSVNASRRRVAEALLDALWERYVHTGGTEP




EPDEPVQGELALWEGILAEGGLAPLDEQDRPSSPADRTSREAFVKNVREQRAFTDFLTAWW




PIRRPLDVLRSLGDAARLRRAAGRDLDRAQVELLAASWRRALAGDPPTLSYQDIALLDEIDALL




GPPPQPSRATAREEDPYVVDGIDILTGEVVADEDWEPGLQELTTTIERLERARRVDDEVADVR




PEYAHIVVDEAQDLSPMQWRMLGRRGRQATINTIVEDPAQSAWEDLEEARKAMEAALDGP




AARRGRSRRPRRRPRHEYELTTNYRNTTEIAAVSARVLRLALPEARPARAVRSSGHRPVIDLVP




EEELQAAARRAVRTLLEQVEGTIGVIVPLPGDAWGESDRRALSAGFPERVQVLDVLEAKGLEF




DAAVICAPETIAAQSPRGLRVLYVAVSRATQRLTVLTADPVWRRRLAGGESAR






F8A884
MTSISLDQYQEQAVKAKGNTLVVAGPGAGKTRVLLAKAIHLLEQGIDPEKVLILTFTIKTTQELK
89



ERLASIGIKGVKVDTFHALAYDLLKAKGIKPRLATEEELKALARDLSKRKGLSLKDFRKALDKGEN




HYRSLWEEALKLHGLYDFSLLLKEATGHYLQQEKVYLLIDEFQDLNPELTSFLKTFTKAEFFLVGD




PAQAIYGFRGACPQVIKEFVDYLAPQIYFLKKSYRVPEKVLNFAETLRETQGFPLEPLEAVQKGG




NRLGLSFNKPFNEAKGVAKLVSELLGGLQMEASQRGLAPPEIAILSRVRILLNPIKEAFIKFGIPF




QVPSENLKEEISAIESLSDIAKSIKSLKELEAYLAEGPSSVKEAWLESQSLEGFLFRLEMLKTFASISI




RKDGVPLLTIHEAKGLEFKVVILVGAEDGLLPFTLLEDYDLAEEKRVAYVAVTRAQESFYFTQVK




TGRFLYGHKLSGKVSPFFETLPIKEKSSKTKPKARQKKLFG






A0A087LEB0
MTISVIDELLEKNKQNMNKTAKDAVEAQLIAYAKKEVKKLQEIRPHPYFGRLDFEDEFGRETIYI
90



GKKGLEKDGELIVVDWRTDLGRLYNAYQGVQKTFQIGKENRPVTIHGKRGIVIKNGKVIKVTDI




GKSEIIENDNGEKVKYMDDYLKEILTNTEEAHRLRDIIASIQAEQDEIIRLPLKDTIIVQGAAGSGK




STIALHRISYLLYQYHEQVKPKDILILAPNEIFLSYIKDIVPEIEIEGIEQRTFYDWASTYFTDVHDIPD




LHEQYVHIYGSTEKEDLIKIAKYKGSLRFKKLLDDFVEYIGNIMIPHGDVVIESGVILSKEEIHQFY




HAKEHLPLNVRMKEVKEFIINWRNEQINIRKQQIEDEFEEAYRKWVVTLPEGEERKAVYEALEK




AKQLRMKIFQEKMQHEISLIVKKMENIPALLMYKSVFQKKVFEKFHPDIDEELLSLLLKNGRQIK




QERFMYEDIAPLIYLDAKINGKKLQYEHIVIDEAQDYSPFQLAIMKDYAKSMTILGDIAQGIFSFY




GLDRWEEIESYVFKEKEFKRLHLQTSYRSTKQIMDLANRVLLNSNYDFPLVIPVNRPGDVPTIKK




VESIGELYDEIVNSIRIFEEKGYKKIAILTASKQGAIDTYDQLMRRQITQMEVITEGHQALKEKIVII




PSYLVKGLEFDAVIIEDVSDETFKDETQHAKMLYMSITRAHHDLHLFYRGNISPLLEERDPSAPP




KPRKSFADWLITDINDPYVEPQVEAVKRVKKEDMIRLFDDEEEEFVEEAFEDDRERYYDFHAW




LKVWRRWAEMRKQLDEKS






B5Y6N2
MALPQENLIPPSPSHNHLTLSLRSHIGGFFIYNEDVDSVDLSKLNEAQKQAVTAPPKPLAIIAGP
91



GSGKTRVLTYRALFAVKEWHLPPERILAITFTNKAADELKERLGRLIPEGDRIFAATMHSFAAR




MLRYFAPYAGISQNFVIYDDDDSKGLIEDILKQMNMDTKRFRPNDVLNHISAAKARMFDCNT




FPEFIRQRYGSWGYYFDTVHQVFMTYERLKEQSQALDFDDLIMVLAQRMEDRPELREMIAGL




FDLVMVDEFQDTNFAQYQMLLYMTNPHYSGMNNVTIVGDPDQSIYGFRAAEYYNIKRFIDD




YNPEWFLDLNYRSNRTIVDSASALINDSPSALFERKLESIKGAGNKLILRRPFDDADAAITAAFE




VQRLHKMGIPYEEIAVLMRTRALTARVEREFATRNIQYHIIGGVPFFARREIKDILAYLRLSRNA




MDRVSLKRILTMKKRGFGTASLEKLFNFAEENKLTLLEAMKAAVESLLFKKLSMNDYLESLYTLI




QTIQEIAEPSQAIYLVMEQENLLDHFRSISKSEEEYIERTENVKQLISIAEESADMDDFLQRSALG




TRENNGGVEGVAISTVHGVKGLEFQAVILYYVTDGFFPHSLSVTTAEKEEERRLLYVAMTRAKE




HLIFYVPYKQPWGNGFEQMARPSPFLRSIPKELWDGKPNEIESLYAPYSPQQKWSE






D7BJL0
MNDPIRHKEGPALVFAGAGAGKTRTLTQRVKWLVEEGEDPYSITLVTFTNKAAGEMKERIAR
92



LVEAPLAEAVWVGTFHRFCLQSLQVYGREIGLEKVAVLDSAAQRKLAERIIAGLFPAKPPRGFT




PMAALGAVSRAANSGWDDIQLATMYADLTEKIVNFRWAYEEAKKGLGALDYDDLLLRGVRL




LKLSEGAARMVRRRAAYLMVDEFQDTNGVQLELVRAIAPGTSPNLMWGDPDRSIYGWRG




ANYRTILEFRQHYPGAAVYGLYTNYRSQAGWEVANRIIAQNATRKPEMQEAHLPQSEEPFL




VAKNRWEEAHFVAQAVEFYRGQGIALEEMAVLMRANFLSRDLEQALRLRGIPYQFTGGRSFF




ERREIQLGMAVLKVLANPKDSLAVAALVEEMVEGAGPLGIQKVLEAAKAANLSPLEAFRNPA




MVKGLRGKEVQAEAMRLAEVLQDQVARLAAEAPEYHALLKETLDRLGFEAWLDRLGEESEQ




VYSRKANLDRLLQGMQEWQEVNPGAPLQDLVGILLLEAGDTPAEEGQGVHLMTVHASKG




MEFRWFVIGLNEGLFPLSKASSSFEGLEEERRLMYVAVTRAKEVLHLSYAADGWSRFAQEAR




VPVEEYDPRLGWSGRQNQQALKALLEIA






E8MZN5
MDSLEHLNPQQRAAVTASAGPVLVLAGPGSGKTRVLTFRIGYLLSQLGVAPHHILAVTFTNKA
93



AREMQSRVEKLLGHSLQGMWLGTFHAICARILRREQQYLPLDANFVIFDEDDQQALIKRALR




DLNLDEKLYRPTSVHAAISNAKNNLILPEDYPTATYRDEWARVYKRYQELLVSSNAVDFDDLLL




YAWKLLNEFSTVREQYARRFEHILVDEFQDTNLAQYELVKLLASYHRNLFVVGDEDQSIYRWR




GADYRNVLRFEEDFPDRQKILLEQNYRSTQRVLDAAQAVINRNRNRTPKRLKSTPEHGEGEKL




VLYEAVDDYGEAAFVVDTIQQLVAGGKARPGDFAIMYRTNAQSRLLEEAFLRAGVPYRLVGA




MRFYGRREVKDMIAYLRLVQNPADEASLGRVINVPPRGIGDKSQLALQMEAQRTGRSAGLIL




MELGREGKDSPHWQALGRNASLLADFGSLLGEWHRLKDEISLPSLFQRILNDLAYREYIDDNT




EEGQSRWENVQELLRIAYEYEEKGLTAFLENLALVSDQDTLPENVEAPTLLTLHAAKGLEFPIVF1




TGLDDGLIPHNRSLDDPEAMAEERRLFYVGLTRAKKRVYLVRAAQRSTYGSFQDSIPSRFLKDI




PADLIQQDGRGRRMGRSWQSESRRSWDDNYAGTVVGSRPERAKPSHAPILQPRFKPGMRV




KHPSWGEGLVVDSRIQDEDETVDIFFDSVGFKRVIASIANLEILS






L0INW7
MDINGQIIKLNRNKTQGTLKLTNGQKIKFKINSDSVKPIFLYEYYKFKGNMIEDTLIIDDIYGIAND
94



ININDFTELFPSVAHDKINNICNRFNVLHVGNLIDLINDENFITVVNDTIGEEKATIFLSNLQKIKD




RQEYIDVWDIIKKTNPTFDINVPIKIVNALKYRASMNNITVSQLIKESPWIIEQLDIFDSITERKKIA




ENIATHYGLSNDSNKAVISYAIAMTNNYIQQGHSYIPYYTLVSRVSNSLKLDFNKVNDTLKFLPN




DNKSGYLIRDNKYKDEIENEYNSDKKIGYSVYLPKIFHMEKYIADIISSILKKKSTINKIELQKNLKLY




RSENKLIFSKEQEEAIFSISDNKITVITGGAGIGKITVIKAIIDLVNKMGYTPVVLAPTGIASQRVA




PNVGSTIHKYARIFDTYDPVFDEIEENKENNSGKVIIVDEMSMITVPVFAKLLSVTLDADSFIFVG




DPNQLPPIGAGGVFEALIELGNKNINNINTVVLNQSFRSKNSIVKNAQNILEDKPIYEDDNLNIIE




AKSWNKIADEVVNLIRKLLDNGVQYSDIMVLSSKRGEGKNGVSLLNERIRKEIFNNKGKYAVG




DIVITTRNDYDNKSSYFRSKELKKYINSIRHEERPTIFNGTVGVIKDISDNEVIIEYNTPMPVEAKY




NMEELDWYIEYGFAITVHKAQGGQAKYIIFASDEPRNISREMLYTAITRCKNGKVFLIGGENED




WKIKKEHSFVLSKLKYRILDNIHQQEKESKINSKIVLINQ






D3PR99
MSDLLSSLNPSQQEAVLHFEGPALVVAGAGSGKTRTVVHRIAYLLRERRVYPAEILAVTFTNKA
95



AGEMKERLEKMVGRPARDLWVSTFHAAAVRILRTYGEYVGLRPGFVIYDEDDQNTLLKEVLK




ELELEAKPGPFRAMIDRIKNRGAGLAEYMREAPDFIGGVPKDAAAEVYRKYQSGLRMQGALD




FNDLLLLTIELFEQHPEVLHKVQQRARFIHVDEYQDTNPVQYKLTRLLAGERPNLMVVGDPDQ




SIYGFRSADINNILDFTKDYPGARVIRLEENYRSSSSILRVANAVIEKNALRLEKVLRPTRPGGEPV




RLYRAPNAREEAAFVAREIVKLGNFQQIAVLYRTNAQSRLLEEHLRRANVPVRLVGAVGFFER




REIKDLLAYGRVAVNPADSINLRRIVNIPPRGIGATTVSRLVEHAQKTGTFVFEAFRVAEQVISR




PQQVQAFVRLLDELIEAAFESGPTAFFQRVLEQTGFREALKQEPDGEDRLQNVEELLRAAQD




WEEEEGGSLSDFLDSVALTAKAEEPQGDAPAEAVTLMTLHNAKGLEFPTVFLVGLEENLLPHR




NSLHRLEDLEEERRLFYVGITRAQERLYLSYAEERETYGKREYTRPSRFLEDIPQDLLKEVGAFGD




SEVRVLPQARPEPKPRTQLAEFKGGEKVRHPKFGSGTVVAAMGGEVTVMFPGVGLKRLAVK




FAGLERLE






D3PLL2
MKVRVASAGTGKTASLVLRYLELIAKGTPLRRIAGVTFTRKAADELRVRVAAAIEEVLQTGRHLS
96



FVASGGSRAAFQEAAREIAGATLSTIHGFMAQCLRLAAPLLHLDPDFSMLGDWEAQAIFEEE




WQTLRYLAQDAHHPLFGLVSDELTEPLLHLFSRRSQAEVFEPAAGEANQHLLQVYQTVYAAY




EARLGANLLSPSELERKALELARNDRAMKRVLERVRVLLVDEYQDVNPVQGAFFAALEQARLP




IEIVGDPKQSIYAFRNADVSVFRKALREGKSEPPLTHSYRHSRVLVRFLNGLIGYLAKEGLGFGLE




EAPPVEGVRPEQGRLEVHWVVGELPLEELRKQEARVLAGRLAALRGPIEYSQMAVLVRSYGS




VRFLEEALAEAQIPYVLLQGRGYYERQEVRDLYHALRAALDPRGLSLAVFLRSPFGQHTEAGPL




KPLELPQIEGVLRADDPLGRLAQHWPSVYERLRQIQAQVRLMAPLEVLKFLIRAPLMDGRPYH




DFLEPRARENVDALLFYFAPRPPQNLEGLLERLELLSRQADAGDVPQSGEGVQILTVHQAKGL




EWPLVAVFDLGRMNVHRPQPLYLGQGPNGGDGGRLRRWVALPETPQFEAFRQQVKLQEE




EESYRLLYVAASRARDILLLTASASHGQPEGWGKVLEAMNLGPASKPYHRPDFHLQTWPYQ




PAPPVRVLSQPAPLQPSPWVDARFEPEPFPPLFSPSALKRLEAEPLPLPDPEEGEAVPGRARAI




GTLVHYAIGQNWRPDNPQHLANLEAQEVMFPFGPDERRGIMAEVQALLEHYQELLGRALP




WPRDEDYPEFAVALPLGSTVWQGVIDRLYRVGQQWYLEDYKTDQEMRPERYLVQLGIYLAA




IRQAWQIEPEVRLVYLRFGWVERLDKAILEAALGEIMPKGEGLRR






Q9RTI9
MTSSAGPDLLQALNPTQAQAADHFTGPALVIAGAGSGKTRTLIYRIAHLIGHYGVHPGEILAVT
97



FINKAAAEMRERAGHLVPGAGDLWMSTFHSAGVRILRTYGEHIGLRRGFVIYDDDDQLDIIK




EVMGSIPGIGAETQPRVIRGIIDRAKSNLWTPDDLDRSREPFISGLPRDAAAEAYRRYEVRKKG




QNAIDFGDLITETVRLFKEVPGVLDKVQNKAKFIHVDEYQDTNRAQYELTRLLASRDRNLLVVG




DPDQSIYKFRGADIQNILDFQKDYPDAKVYMLEHNYRSSARVLEAANKLIENNTERLDKTLKPV




KEAGQPVTFHRATDHRAEGDYVADWLTRLHGEGRAWSEMAILYRTNAQSRVIEESLRRVQI




PARIVGGVGFYDRREIRDILAYARLALNPADDVALRRIIGRPRRGIGDTALQKLMEWARTHHTS




VLTACANAAEQNILDRGAHKATEFAGLMEAMSEAADNYEPAAFLRFVMETSGYLDLLRQEG




QEGQVRLENLEELVSAAEEWSQDEANVGGSIADFLDDAALLSSVDDMRTKAENKGAPEDAV




TLMTLHNAKGLEFPVVFIVGVEQGLLPSKGAIAEGPSGIEEERRLFYVGITRAMERLLMTAAQN




RMQFGKTNAAEDSAFLEDIEGLFDTVDPYGQPIEYRAKTWKQYRPTVPAATTAVKNTSPLTAE




LAYRGGEQVKHPKFGEGQVLAVAGVGERQEVIVHFASAGTKKLMVKFANLTKL






M1E5C5
MDLNLNEDQKRAVYSDSRALLIVAGAGTGKTRVLTTRAARLIKENPDARYLLLTFTKKAAREM
98



TTRVRELIEEDTKNRLYSGTFHSFCSNIIRRRSERVGLINDFVIIDESDSLDLMKKVFSRIYSKEKID




SLIFKPKDILSLYSYARNNNQDFIEIVQRKYKYVNFEDIKKIISLYELNKKERNYLDFDDLLMYGLLA




IKTLEKSPFDEVLVDEFQDTNQIQAEMLYYFYDLGSRISAVGDDAQSIYSFRGAYYENMFNFIKR




LDAEKIILSSNYRSTQQILDIANSIIQSSYSSIKKELVANVRLKENVKPKLVIVSDDWEEARYVARE




MQKFGEKGLKVAALYRAAYIGRNLESQLNSMGIKYSFYGGQKLTESAHAKDFMSFLRVFVNP




KDEIALIRILKMFPGIGEKKAEKIKDAVISGDNLKKALSKEKNLEELNIFFDKLFKITDWHDLLELVF




DFYKDIMNRLYPENYEEREEDLIKFMDMSSNYDNLVEYLEAFTLDPVEKSEFDNNNVILSTIHS




AKGLEFDVVFLLSVIESVYPHFRAQSTDEIEEERRLFYVAITRAKQRLIFTFPRHSKKSRGYFAKNTI




SPFLREKDNYLEVFIAR






Q5SIE7
MSDALLAPLNEAQRQAVLHFEGPALWAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVTFT
99



NKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTALLKEV




LKELALSARPGPIKALLDRAKNRGVGLKALLGELPEYYAGLSRGRLGDVLVRYQEALKAQGALD




FGDILLYALRLLEEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEEANLMAVGDPDQG




IYSFRAADIKNILDFIRDYPEARVYRLEENYRSTEAILRFANAVIVKNALRLEKALRPVKRGGEPV




RLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLLEQALAGRGIPARWGGVGFFE




RAEVKDLLAYARLALNPLDAVSLKRVLNIPPRGIGPATVVARVQLLAQEKGLPPWEALKEAART




FSRPEPLRHFVALVEELQDLVFGPAEAFFRHLLEATDYPAYLREAYPEDAEDRLENVEELLRAAK




EAEDLQDFLDRVALTAKAEEPAEAEGRVALMTLHNAKGLEFPWFLVGVEEGLLPHRNSVSTL




EGLEEERRLFYVGITRAQERLYLSHAEEREVYGRREPARPSRFLEEVEEGLYEVYDPYRRPPSPPP




HRPRPGAFRGGERWHPRFGPGTVVAAQGDEVTVHFEGFGLKRLSLKYAELKPA






B5YD55
MNNQFDSEKKIFIIPSRKKKEFLERIEKDLNEEQRKVVLEADGPSLVIAGPGSGKTRTIVYRVGYL
100



VALGYSPKNIMLLTFTNQAARHMINRTQALIRESIEEIWGGTFHHVGNRILRVYGKIIGINEQY




NILDREDSLDLIDECLEELFPEENLGKGILGELFSYKVNTGKNWDEVLKIKAPQIIDKIEIVQKVFER




YEKRKRELNVLDYDDLLFFWYRLLLESEKTRKILNDRFLYILVDEYQDTNWLQGEIIRLTREENKN




ILWGDDAQSIYSFRGATIENILSFPEIFPGTRIFYLVFNYRSTPEIINLANEIIKRNTRQYFKEIKPVL




KSGSKPKLVWVRDDEEEAQFVVEVIKELHKEGVKYKDIGVLFRSNYHSMAVQMELTLQGIPYE




VRGGLRFFEQAHIKDMISLLKILFNPQDEISAQRFFKLFPGIGRAYAKKLSQVLKESKDFDKIFQ




MQFSGRTLEGLRILKNIWDKIKVIPVQNFSEILRVFFNEYYKDYLERNYPDFKDREKDVDQLILLS




ERYDDLEKFLSELTLYTYAGEKLLEEEEEEKDFVVLSTIHQAKGLEWHAVFILRLVQGDFPSYKS






F6DJA4
MDNIEEERRLFYVAVTRAKRELYVITYLTRKVKDMNVFTKPSIFLEELPYKELFEEWIVQREI
101



MLSPFGGEEETKAIPLEEEILLAWRVFSAALPPNFLAPVSASLHTLVREAEGKEGAELEAYAWER




LEELARTSWKDAIQSFLEVAAEKPEVLRAGLLWFRTWNRLSPEEREALYRKAERFKPTAELASK




ASFLQGPPPPPKPLSPSVQAARSSPPRFTPTPEQEEAVRAFLSREDMKLVAVAGSGKTTTLRL




MAQSAPKERLLYVAFNRSVRDEAERTFPGNVEVLTLHGLAHRHWRGSGAYQRKLAARNGR




VTPGDVLEALELPRERYALAYVIRSTLEAFLRSASEVPTPAHIPPEYREVLQRRDKDPFSERYVLK




AVRLIWKLMQDPDDSFPLSFDGFVKIWAQAGAKIRGYDAVLVDEAQDLSPVFLQVLEAHRGE




LRRVYVGDPRQQIYGWRGAVNAMDKLDAPERKLTWSFRFGEDLARGVRRFLAHVGSPIELH




GKAPWDTEVSLARPEPPYTALCRTNAGAVEAVTSFLLEEGREGARVFVVGGVDEIAWLLRDA




HLLKVGGEREKPHPELALVENWEELEELAKEVNHPQARMLVRLARRYDLLELARLLKHAQADE




EGKADLWSTLHKAKGREWDRWLWGDFIPVWDEKVREFYRKQGALDELKEEENVVYVALT




RARRFLGLDQLPDLHERFFQGEGLVKPPSVSPLSVGGAGVSADLLRELEVRVLAKLEDRLKEVA




EVLAALLVEEASKAVAEAMREMGLLGEEG






F6DIL2
MSDALLAPLNEAQRQAVLHFEGPALWAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVTFT
102



NKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTALLKEV




LKELALSARPGPIKALLDRAKNRGVGLKALLGELPEYYAGLSRGRLGDVLVRYQEALKAQGALD




FGDILLYALRLLEEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEEANLMAVGDPDQG




IYSFRAADIKNILDFIRDYPEARVYRLEENYRSTEAILRFANAVIVKNALRLEKALRPVKRGGEPV




RLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLLEQALAGRGIPARWGGVGFFE




RAEVKDLLAYARLALNPLDAVSLKRVLNIPPRGIGPATVVARVQLLAQEKGLPPWEALKEAART




FPRAEPLRHFVALVEELQDLVFGPAEAFFRHLLEATDYPTYLREAYPEDAEDRLENVEELLRAAK




EAEDLQDFLDRVALTAKAEEPAEAEGKVALMTLHNAKGLEFPWFLVGVEEGLLPHRNSLSTLE




GLEEERRLFYVGITRAQERLYLSHAEEREVYGRREPARPSRFLEEVEEGLYEVYDPYRRPPSPPPH




RPRPGAFRGGERWHPRFGPGTVVAAQGDEVTVHFEGVGLKRLSLKYAELKPA






F6DJ67
MEANLYVAGAGTGKTYTLAERYLGFLEEGLSPLQWAVTFTERAALELRHRVRQMVGERSLG
103



HKERVLAELEAAPIGTLHALAARVCREFPEEAGVPADFQVMEDLEAALLLEAWLEEALLEALQ




DPRYAPLVEAVGYEGLLDTLREVAKDPLAARELLEKGLGEVAKALRLEAWRALRRRMEELFHG




ERPEERYPGFPKGWRTEEPEWPDLLAWAGEVKFNKKPWLEYKGDPALERLLKLLGGVKEGF




SPGPADERLEEVWPLLRELAEGVLARLEERRFRARRLGYADLEVHALRALEREEVRAYYRGRFR




RLLVDEFQDTNPVQVRLLQALFPDLRAWTVVGDPNQSIYSFRRADPKVMERFQAEAAKEGL




RVRRLEKSHRYHQGLADFHNRFFPPLLPGYGAVSAERKPEGEGPWVFHFQGDLEAQARFIAQ




EVGRLLSEGFQVYDLGEKAYRPMSLRDVAVLGRTWRDLARVAEALRRLEVPAVEAGGGNLLE




TRAFKDAYLALRFLGDPKDEEALVGLLRSPFFALTDGEVRRLAEARGEGETLWEVLEREGDLSA




EAERARETLRGURRKALEAPSRLLQRLDGATGYTGVAARLPQGRRRVKDWEGILDLVRKLEV




GSEDPFLVARHLRLIIRSGLSVERPPLEAGEAVTLLTVHGAKGLEWPWFVLNVGGWNRLGS




WKNNKTKPLFRPGLALVPPVLDEEGNPSALFHLAKRRVEEEEKQEENRLLYVAATRASERLYLL




LSPDLSPDKGDLDPQTLIGAGSLEKGLEATEPERPWSGEEGEVEVLEERIQGLPLEALPVSLLPLA




ARDPEAARRRLLGEPEPEGGEAWEPDGPQETEEEVPGGAGVGRMTHALLERFEAPEDLERE




GRAFLEESFPGAEGEEVEEALRLARTFLTAEVFAPYRGNAVAKEVPVALELLGVRLEGRADRVG




EDWVLDYKTDRGVDAKAYLLQVGVYALALGKPRALVADLREGKLYEGASQQVEEKAEEVLRR




LMGGDRPEA






G8N9P8
MDAFPSGKPLDEAWLSSLNEAQRQAVLHFEGPALWAGAGSGKTRTVVHRVAYLMARRGV
104



YPSEILAVTFTNKAAEEMRERLKAMVKGAGELWVSTFHAAALRILRFYGERVGLKPGFVVYDE




DDQTALLKEVLKELGVSAKPGPIKALLDRAKNRGEPPERLLADLPEYYAGLSRGRLLDVLHRYQ




QALWAQGALDFGDILLLALKLLEEDPEVRKRVRKRARFIHVDEYQDTSPVQYRLTKLLAGEEAN




LMAVGDPDQGIYSFRAADIKNILQFTEDFPGAKVYRLEENYRSTERILRFANAVIVKNALRLEKT




LRPVKSGGEPVRLFRARDAREEARFVAEEVLRLGPPYDRVAVLYRTNAQSRLLEQALASRGIGA




RVVGGVGFFERAEVKDLLAYARLALNPLDAVSLKRVLNTPPRGIGPATVEKVQAIAQEKGLPLY




EALKVAAQVLPRPEPLRHFLALMEELMDLAFGPAEAFFRHLLEATDYPAYLKEAYPEDLEDRLE




NVEELLRAAREAEGLMDFLDKVALTARAEEPGEAGGKVALMTLHNAKGLEFPVVFLVGVEEG




LLPHRSSVSTLEGLEEERRLFYVGVTRAQERLYLSYAEEREVYGRPEASRPSRFLEEVEEGLYEEY




DPYRLPPPKPVPPPHRAKPGAFRGGEKVVHPRFGLGTVVAASGDEVTVHFDGVGLKRLSLKY




ADLRPA






Q1J014
MPDLPASSLLAQLNPNQAQAANHYTGPALVIAGAGSGKTRTLVYRIAHLIGHYGVDPGEILAV
105



TFINKAAAEMRERARHLVEGADRLWMSTFHSAGVRILRAYGEHIGLKRGFVIYDDDDQLDIL




KEIMGSIPGIGAETHPRVLRGILDRAKSNLLTPADLARHPEPFISGLPREVAAEAYRRYEARKKG




QNAIDFGDLITETVRLFQEVPAVLERVQDRARFIHVDEYQDTNKAQYELTRLLASRDRNLLVVG




DPDQSIYRFRGADIQNILDFQKDYLDAKVYMLEQNYRSSARVLTIANKLIENNAERLEKTLRPVK




EDGHPVLFHRATDQRAEGDFVAEWLTRLHAEGMRFSDMAVLYRTNAQSRVIEESLRRVQIP




AKIVGGVGFYDRREIKDVLAYARLAINPDDDVALRRIIGRPKRGIGDTALERLMEWARVNGTSI




LTACAHAQELNILERGAQKAVEFAGLMHAMSEAADNDEPGPFLRYVIETSGYLDLLRQEGQE




GQVRLENLEELVSAAEEWSRENEGTIGDFLDDAALLSSVDDMRTKQENKDVPEDAVTLMTL




HNAKGLEFPVVFIVGTEEGLLPSKNALLEPGGIEEERRLFYVGITRAMERLFLTAAQNRMQYGK




TLATEDSRFLEEIKGGFDTVDAYGQVIDDRPKSWKEYRPTESARPGAVKNTSPLTEGMAYRGG




EKVRHPKFGEGQVLAVAGLGDRQEVTVHFPSAGTKKLLVKFANLIRA






Q745W4
MALRPTEEQLKAVEAYRSGQDLKVVAVAGSGKTTTLRLMAEATPGKRGLYLAFNRSVQQEA
106



ARKFPRNVRPYTLHALAFRMAVARDEGYRAKFQAGKGHLPAQAVAEALGLRNPLLLHAVLGT




LEAFLRSEAASPDPGMIPLAYRTLRAGTKTWPEEEAFVLRGVEALWRRMTDPKDPFPLPHGA




YVKLWALSEPDLSFAEALLVDEAQDLDPIFLKVLEAHRGRVQRVYVGDPRQQIYGWRGAINA




MDRLEAPEARLTWSFRFAETLARFVRNLTALQDRPVEVRGKAPWATRVDAALPRPPFTVLCR




TNAGVVGAVVVTHEVHRGRVHVVGGVEELVHLLRDAALLKKGEKRTDPHPDLAMVETVVEE




LEALAEAGYAPAYGVLRLAQEHPDLEALAAYLERAVVTPVEVAAGVVVSTAHKAKGREWDRV




VLWDDFYPWWEEGAAARVNWGSDPAHLEEENLLYVAATRARKHLSLAQIRDLLEAVDRMG




VYRVAEEATRAYLLLSAEVLRGVATDPRVPAEHRVRALKALGYLERGEEALDSPGKPGGQG






Q72IS0
MSDALLAPLNEAQRQAVLHFEGPALWAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVTFT
107



NKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTALLKEV




LKELALSARPGPIKALLDRAKNRGVGLKALLGELPEYYAGLSRGRLGDVLVRYQEALKAQGALD




FGDILLYALRLLEEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEEANLMAVGDPDQG




IYSFRAADIKNILDFIRDYPEARVYRLEENYRSTEAILRFANAVIVKNALRLEKALRPVKRGGEPV




RLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLLEQALAGRGIPARWGGVGFFE




RAEVKDLLAYARLALNPLDAVSLKRVLNIPPRGIGPATVVARVQLLAQEKGLPPWEALKEAART




FPRPEPLRHFVALVEELQDLVFGPAEAFFRHLLEATDYPAYLREAYPEDAEDRLENVEELLRAAK




EAEDLQDFLDRVALTAKAEEPAEAEGRVALMTLHNAKGLEFPWFLVGVEEGLLPHRNSVSTL




EGLEEERRLFYVGITRAQERLYLSHAEEREVYGRREPARPSRFLEEVEEGLYEVYDPYRRPPSPPP




HRPRPGAFRGGERWHPRFGPGTVVAAQGDEVTVHFEGFGLKRLSLKYAELKPA






F2NK78
MDLLRDLNPAQREAVQHYTGPALWAGAGSGKTRTVVHRIAYLIRHRGVYPTEILAVTFTNKA
108



AGEMKERLARMVGPAARELWVSTFHSAALRILRVYGEYIGLKPGFVVYDEDDQLALLKEVLG




GLGLETRPQYARGVIDRIKNRMWSVDAFLREAEDWVGGLPKEQMAAVYQAYEARMRALG




AVDFNDLLLKVIGLFEAHPEVLHRVQQRARFIHVDEYQDTNPAQYRLTRLLAGAERNLMWG




DPDQSIYGFRNADIHNILNFEKDYPDARVYRLEENYRSTEAILRVANAVIEKNALRLEKTLRPVRS




GGDPVFLYRAPDHREEAAFVAREVQRLKGRGRRLDEIAVLYRTNAQSRVLEEAFRRQNLGVRI




VGGVGFYERREVKDVLAYARAAVNPADDLAVKRVLNVPARGIGQTSLAKLSQLAETARVSFFE




ALRRAGEVLARPQAQAVQRFVALIEGLANAAYDTGPDAFLRLVLAETGYADMLRREPDGEAR




LENLEELLRAAREWEEQHAGTIADFLDEVALTARAEEPEGEVPAEAVTLMTLHNAKGLEFPW




FIVGVEEGLLPHRSSTARVEDLEEERRLFYVGITRAQERLYLTLSEERETYGRREAVRASRFLEDIP




EAFLQPLSPFGEPLGAGREPVAVRPTRRSSAAGGFRGGEKVRHPRFGQGLWAASGEGDRQE




VTVHFAGVGLKKLLVKYAGLERIE
















TABLE 18







>tr|L0B9N8|L0B9N8_9EURY UvrD Rep helicase SFI OS = Thermococcus


sp. EXT9 GN = e9a-1 PE = 4 SV = 1 (SEQ ID NO: 58)


MSEALPVTSFEFSLPEESVIKIYGPPGTGKTTTLVRIIEHLIGFHDHTEFLESYGLSLLF


GQYGAEDVIFMTFQTSALKEFEARTGIKVKDRQNKPGRYYSTVHGIAFRLLIDSGAIDGV


ITQNFGSLSPEDWFRLFCRQNGLRFESSEMGYSNVFNDGNRLWNALTWAYNVYYPTKGPK


ARHEALKRLAPKLWKYPPLWEEYKTEKGILDYNDMLVKAYEGLKSGEIDPRNLPGHKYSP


KVLIVDEFQDLSPLQFEIFRLLANYMDLVIIAGDDDQTIFSYQGADPRLMNYVPGREIVL


KRSYRLPIVVQAKAMTVISKTRHRKEKTVAPRTDLGDFKYKLFWFPDFLNDLVREAQEGH


SIFILVRTNRQVLKLGKELILAGVHFRHLKVDYRSIWEAGSKEWGTFRDLVQALLKARRG


EELEIADLVTILYYSELIDWHLGEKLPEKERYKKIAEQMEKTIEAIEKGLMPFDILKVKD


DPFSVLDLEKIESLSPRHGKVAVELIREIMKEKSQVVSVPRDAEIYLDTLHASKGREADV


VFLINDLPRKWSSILKTREELDAERRVWYVGLTRARKKVYLLNGKHPFPVL





>tr|L0B9J0|L0B9J0_9EURY UvrD Rep helicase SFI OS = Thermococcus


sp. IRI48 GN = i48-1 PE = 4 SV = 1 (SEQ ID NO: 59)


MRVKIYGPPGTGKTTTLQRTIDYTLGNSSEPPIPLPESFPTDLEPKNLAFVSFTNTAIDV


IGKRTGITTRSKEAPYMRTIHGLILSVLAEHFDPVAVDNLGKLADIQAEFSMRMGYYYSK


DPFEFAEGNMKFNVITRALELYLPKTGDVEEALKLIDNREDRKFALAWYRYKRQKKIMDF


DDILVIGYEHLEDFYVPVEVAFIDEGQDNGPLDYILLEKGFEGAKFVFLAGDPLQSIYGF


KGADPRLFVRWKADKEIILPRSYRLPKKVWLLSQSWALSLGIKGAVVRYAPSEKLGRVSR


MKFIEALSYAVEQAKRGRSVLILARTNSLVKFVGNILSIEFGVAYGHLKRASYWESHLLK


FIEGLQMLKLWDGVTPIKVQDTKPITGLIRKLKDKHAREVLRRWRDSRQWSLEVQAVLQR


IKKNPSEYFYITDFDRQALKAYFSKARLDLTEELIIDTIHAAKGEEADVVIFLDFIPTRS


EERINPEELQEKLVAYVGFTRAREELIIVPTPAIKYHPMRDFMGVRQILGVVNFHKHLLI


KELVGGL





>tr|L0BAD9|L0BAD9_9EURY UvrD Rep helicase SFI OS = Thermococcus


sp. IRI33 GN = i33-1 PE = 4 SV = 1 (SEQ ID NO: 60)


MSEALPVTSFEFSLPRERIIKLYGAPGTGKTTTLVKIIEHLIGFQDHTEFLENYGINLPF


GQYEPGEVIFMTFQTSALKEFEARTGIKVKDRQNKPGRYYSTVHGIAFRLLIDSGAVDGL


ITQNFGSLSPEDWFRNFCRQNGLRFESSEMGYSNVFNEGNQLWNALTWAYNVYYPTKGPK


ARYEALKRLAPKLWKFPPLWEEYKKGRGILDYNDMLVRAYEGLRSGEIDPRNLPGHKYSP


KVLIVDEFQDLSPLQFEIFRLLANHMDLVIIAGDDDQTIFSYQGADPRLMNYVPGLEVVL


RKSHRLPIVVQAKALTVISKTRHRKEKTVAPRTDLGDFKYKLFWFPDFLNDLVREAQEGH


SIFILVRTNRQVLKLGKELILAGVHFEHLKVDYRSIWEAGSKEWGTFRDLVQALLKAKRG


EELEVADLVTILYYSELIDWHLGEGISEKERYKKIAEQMEKTIEAIEKGLMPFDVLRVKE


NPFSVLDLEKIESLSPRHGKVAVELIKELMKEKSQVVSIPKDARIYLDTLHASKGREADV


VFLINDLPRKWSSILKTREELDAERRVWYVGLTRARKKVYLLNGKHPFPVL





>tr|L0BAT5|L0BAT5_9EURY UvrD Rep helicase OS = Thermococcus sp.


AMT7 GN = a7-1 PE = 4 SV = 1 (SEQ ID NO: 61)


MSEALSITSFDFTLPRERIIKIYGPPGTGKTTTLVRIIEHLIGFQDHTEFLENYGLSLPF


GQYGAEDVIFMTFQTSALKEFEARTGIKVKDRQNKPGRYYSTVHGIAFRLLIDSGAVDGL


ITQNFGSLSPEDWFRHFCRQNGLRFESSEMGYSNIFNEGNQLWNALTWAYNVYYPTKGPK


ARYEALKRLAPKLWKFPPLWEEYKKEKGILDYNDMLIRAYEGLKSGEIDPRNLPGHKYSP


KVLIVDEFQDLSPLQFEIFRLLANHMDLVIIAGDDDQTIFSYQGADPRLMNYVPGREIVL


SKSYRLPIVVQAKALTVISKTRHRKEKTVAPRTDLGDFKYKLFWFPDFLNDLVREAQEGH


SIFILVRTNRQVLKLGKELILAGVHFEHLKVDYRSIWEAGSKEWGTFRDLVQALLKAKKG


EELEVADLVTILYYSELIDWHLGERISEKERYKKIAEQMEKTIEAIEKGLMPFDILKVKE


NPFSVLDLEKIESLSPRHGKVAVELIKELMKEKSQVVSIPKDAKIYLDTLHASKGREADV


VFLINDLPRKWSNILKTREELDAERRVWYVGLTRARKKVYLLNGKHPFPIL





>tr|W8NUG2|W8NUG2_9EURY Superfamily I DNA and RNA helicase and


helicase subunits OS = Thermococcusnautili GN = BD01_1302 PE = 4


SV = 1 (SEQ ID NO: 62)


MNENEKLSKFIAKLKVLIEMERKAEIEAMRAEMRRLSGREREKVGRAVLGLNGKVIGEEL


GYFLVRYGREREIKTEISVGDLVVISKRDPLKSDLVGTVVEKGKRFITVALETVPEWALK


SVRIDLYANDITFKRWLENLENLRESGRRALELYLGLREPEGGEEVEFTPFDKSLNASQR


RAIAKALGSPDFFLIHGPFGTGKTRTLVELIRQEVARGNRVLATAESNVAVDNLVERLVD


SGLKVVRVGHPSRVSRGLHETTLAYLMTQHELYGELRELRVIGENLKEKRDTFTKPAPKY


RRGLTDRQILRLAEKGIGTRGVPARLIREMAQWLKINEQVQKTFDDARKLEERIAREIIR


EADVVLTTNSSAGLEVVDYGSYDVAIIDEATQATIPSVLIPINRAGRFVLAGDHKQLPPT


ILSEKAKELSKTLFEGLIERYPGKSEMLTVQYRMNERLMEFPSREFYDGRIEADESIRRI


TLADLGVKSPEDGDAWAEVLKPENVLVFIDTARREDRFERQRYGSESRENPLEARLVKEA


VEGLLRLGVKAEWIGVITPYDDQRDLISSLLPEEIEVKTVDGYQGREKEVIVLSFVRSNR


KGELGFLKDLRRLNVSLTRAKRKLILIGDSSTLSSHPTYRRLVEFVRERETVVDAKRLIG


KVKIK





>tr|B6YXQ7|B6YXQ7_THEON UvrD/REP helicase OS = Thermococcus



onnurineus (strain NA1) GN = TON_1380 PE = 4 SV = 1 (SEQ ID NO: 63)



MTAPIPTTYSILGVAGAGKTTQLIDLLNYLNFENSRNEKIWERHFEPVELNRIAFISFSN


TAIQEIANRTGIEIKARKKSAPGRYFRTVTGLAEVLLYENNLMTFEEVRSVSKLEGFRIK


WAREHGMYYKPRDNDISYSGNEFFAEYSRLVNTYYHVKSLSEIIEMHSKSHLLLDYIREK


EKLGIVDYEDILMRAYDYRNDIVVDLEYMIIDEAQDNSLLDYATLLPIAKNNATELVLAG


DDAQLIYDFRGANYKLFHKLIERSEIILNLTETRRFGSEIANLATAIIDDMNYIQKREVL


SAATHSTKVAHIDLFQMMSILQNMATTDLTVYILARTNAVLNYVAKVLDEYKIQYKKNER


ITDFDRFLLSLNRLMRNEYTNDDIYTIYNYLRNKVAREEELKERLFQHKLHWTEKDVLGI


LLLAYEQTTAKRILTTAKNTNFKIKLSTIHSAKGSEADVVFLINSVPHKTKMKILENYEG


EKRVLYVAVTRARKFLFIVDQPVARRYEQLYYIRSYESRAQGSLVNRVAVPVA





>tr|Q5JFK3|Q5JFK3_THEKO DNA helicase, UvrD/REP family


OS = Thermococcuskodakarensis (strain ATCC BAA-918/JCM 12380/


KOD1) GN = TK0178 PE = 4 SV = 1 (SEQ ID NO: 64)


MNEKEVLLSKFIAHLKELVEMERRAEIEAMRLEMRRLSGREREKVGRAVLGLNGKVIGEE


LGYFLVRYGRDREIKTEISVGDLVVISKRDPLKSDLVGTVVEKGKRFLTVAIETVPEWAL


KGVRIDLYANDITFKRWMENLDNLRESGRKALELYLGLREPEESEPVEFQPFDKSLNASQ


RGAIAKALGSGDFFLVHGPFGTGKTRTLVELIRQEVARGHKVLATAESNVAVDNIVERLA


DSGLKVVRIGHPSRVSKALHETTLAYLITQHDLYAELRELRVIGENLKEKRDTFTKPAPK


YRRGLSDREILRLAEKGIGTRGVPARLIREMAEWIRINQQVQKTFDDARKLEERIAREII


QEADVVLTTNASAGLEVVDYGEYDVAVIDEATQATIPSVLIPINRAKRFVLAGDHKQLPP


TILSEKAKELSKTLFEGLIERYPEKSEMLTVQYRMNERLMEFPSREFYDGKIKAHESVKN


ITLADLGVSEPEFGNFWDEALKPENVLVFIDTSKREDRFERQRRGSDSRENPLEAKLVTE


TVEKLLEMGVKPDWIGVITPYDDQRDLISSMVGEDIEVKTVDGYQGREKEIIVLSFVRSN


RRGELGFLTDLRRLNVSLTRAKRKLIAVGDSSTLSNHPTYRRFIEFVRERGTFIEIDGKK


H





>tr|C6A075|C6A075_THESM DNA helicase, UvrD/REP family


OS = Thermococcussibiricus (strain MM 739/DSM 12597)


GN = TSIB_2009 PE = 4 SV = 1 (SEQ ID NO: 65)


MTRVQIPAGAPKYGPVAQPGQSARLISGRSGVRSPAGPPKALLKERFRELFIHKNPVITM


HVKNYIAKLVDLVELEREAEIEAMREEMRRLKGYEREKVGRAILNLNGKIIGEEFGFKLV


KYGRKEAFKTEIGVGDLVVISKGNPLASDLVGTVVEKGSRFIVVALETVPSWAFRNVRID


LYANDITFRRQLENLKKLSESGIRALKLILGKETPLKSSPEEFTPFDRNLNQSQKEAVSY


ALGSEDFFLIHGPFGTGKTRTLVELIVQEVKRGNKILATAESNVAVDNLVERLWGKVKLV


RLGHPSRVSVHLKESTLAFQVESHERYRKVRELRNKAERLAVMRDQYKKPTPQMRRGLIN


NQILKLAYRGRGSRGVPAKDIKQMAQWITLNEQIQKLYKFAEKIESEIIQEIIEDVDVVL


STNSSAALEFIKDAEFDVAIIDEASQATIPSVLIPIAKARRFVLAGDHKQLPPTILSEEA


RALSETLFEKLIELYPFKAKMLEIQYRMNQLLMEFPSREFYNGKIKADGSVKDITLADLK


VREPFFGEPWDSILKREEPLIFVDTSNRTDKWERQRKGSTSRENPLEALLVREIVERLLR


MGIKKEWIGIITPYDDQVDSIRSIIQDDEIEIHTVDGYQGREKEIIILSLVRSNKKGELG


FLMDLRRLNVSITRAKRKLVVIGDSETLVNHETYKRLIHFVKKYGRYIELGDTGIN





>tr|WOI5I1|W0I5I1_9EURY DNA helicase, UvrD/REP family protein


OS = Thermococcusparalvinellae GN = TES1_2001 PE = 4 SV = 1 (SEQ ID


NO: 66)


MNLIRYINHLKELVELEREAEIEAMREEMRKLTGYEREKVGRAVLGLNGKIIGEEFGYKL


VKYGRKQEIKTEISVGDLVVISKGNPLASDLIGTVTEKGKRFLVVALETVPSWALRNVRI


DLYANDITFKRQIENLDKLSESGKRALRFILGLEKPKESIDIEFKPFDEQLNESQKKAVG


LALGSEDFFLIHGPFGTGKTRTVAEVILQEVKRGKKVLATAESNVAVDNLVERLWGKVKL


VRLGHPSRVSKHLKESTLAYQVEIHEKYKRVREFRNKAERLAMLRDQYTKPTPQWRRGLT


DRQILRLAEKGIGARGIPARVIKSMAQWITFNEKVQRLYNEAKKIEEEIVKEIIRQADVV


LSTNSSAALEFIKDIKFDVAVIDEASQATIPSVLIPIAKANKFILAGDHKQLPPTILSEE


AKELSETLFEKLIELYPSKAKMLEIQYRMNERLMEFPSKEFYNGKIKAYDGVKNITLLDL


GVRVFSFGEPWDSILNLKEPLVFVDTSKHPEKWERQRKGSLSRENLLEAELVKEIVQKLL


RMGIKPESIGVITPYDDQRDLISLLLENDEIEVKTVDGYQGREKEVIILSFVRSNKKGEL


GFLTDLRRLNVSLTRAKRKLIAIGDSETLSAHPTYKRFVEFVKEKGIFVQLNQYVSQTS





>tr|B7AA42|B7AA42_THEAQ DNA helicase OS = Thermusaquaticus


Y51MC23 GN = TaqDRAFT_3809 PE = 4 SV = 1 (SEQ ID NO: 67)


MGEAHPSEEALLSSLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLIARRGVFPS


EILAVTFTNKAAEEMKARLKAMVRGAGELWVSTFHAAALRILRVYGERVGLKPGFVVYDE


DDQTALLKEVLKELGLAAKPGPIKSLLDRAKNQGVPPEHLLLELPEFYAGLSRGRLQDVL


HRYQEALRAQGALDFGDILLYALKLLEEDGEVLKRVRKRARFIHVDEYQDTNPVQYRFTR


LLAGEEANLMAVGDPDQGIYSFRAADIRNILDFTQDYPKARVYRLEDNYRSTEAILRFAN


AVIVKNALRLEKTLRPVKKGGEPVRLFRAESARDEARFVAEEIARLGPPFDRVAVLYRTN


AQSRLLEQALASRGIPARVVGGVGFFERAEVKDLLAYARLSLNPLDAVSLKRVLNTPPRG


IGPATVEKVQAIARERGLPLFEALKVAALTLPRPEPLRAFLALMEELMDLAFGPAEAFFR


HLLLATDYPAYLKEAYPEDAEDRLENVEELLRAAKEAESLMDFLDKVALTARAEEPAEAE


GRVALMTLHNAKGLEFPVVFLVGVEEGLLPHRSSLSTQEGLEEERRLFYVGVTRAQERLY


LSYAQEREIYGRLEPVRPSRFLEEVDEGLYEVYDPYRQSSRKPTPPPHRALPGAFRGGEK


VVHPRFGPGTVVAAAGDEVTVHFEGVGLKRLSLKYADLRPA





>tr|B7A5I6|B7A5I6_THEAQ DNA helicase OS = Thermusaquaticus


Y51MC23 GN = TaqDRAFT_5093 PE = 4 SV = 1 (SEQ ID NO: 68)


MRVYLASAGTGKTHALVEELKGLIQSGVPLRRIAALTFTRKAAEELRGRAKRAVLALSAE


DPRLKEAEREVHGALFTTIHGFMAEALRHTAPLLSLDPDFALLDTFLAEALFLEEARSLL


YRKGLDGGLARALLHLYRKRTLAETLHPLPGAEGVFALYLEALEGYRRRLPAFLSPSDLE


ALALRILENPEALRRVVERFPHILLDEYQDTGPLQGRFFQGLKEAGARLVVVGDPKQSIY


LFRNARVEVFREALKQAEEVRYLSTTYRHAQAVAEFLNRFTALFGEEGVRVRPHRQEVGR


VEVHWVVGEGGLEEKRRAEAHLLLDRLMALREEGYAFSQMAVLVRSRSSLPPLEAAFRAR


GVPYALGRGRSFFARPEVRDLYHALRLSLLEGPPGPEERLALLAFLRGPWVGLDLSEVEE


ALKAQDPIPLLPEAVRAKLRALRALAGLPPLEALKRLSRDEAFLRRLSPRARVNLDALLL


LAAMERFPDLEALLEWLRLRAEDPEAAELPEGEEGVQVLTVHGAKGLEWPVVALFDLSRG


ENPKEEDLLVGLGGEVALRGTPAYKEVRKALRKAQAEEARRLLYVALSRARDVLIVTGSA


SGRPGPWVEALERLGLGPESQDPLVRRHPFKALPPLGDRPQTPPPPPLPAPYAHLAFPER


PLPFVYSPSAFTKAKEPVPLAEALEKEALPEFYRALGTLVHYAIARHLDPEDEGAMAGLL


LQEVAFPFAEGEKRRLLEEVRDLLRRYRGMLGPSLPPLEAREEDHAELPLVLPLGGTVWY


GILDRLYRVGGRWYLEDYKTDREVRPEAYRFQLAIYRRALLEAWGVEAEARLVYLRHGLV


HPLDPEELERALKEGFPGMGPGEGGEKA





>tr|B7A954|B7A954_THEAQ DNA helicase OS = Thermusaquaticus


Y51MC23 GN = TaqDRAFT_4764 PE = 4 SV = 1 (SEQ ID NO: 69)


MKGLTGSSRLRVYGPPGTGKTTWLKNEVERLLRSGVPGEEIAVCAFSRAAFREFASRLAG


QVPEENLGTIHSLAYRAIGRPPLALTKDALSDWNRRVPDTWRVTPRVDGRGADLLDVMDP


YEDEDSRPPGDKLYDRVAYLRNTLAPMAAWSEEERAFFQAWKSWMNAKGLVDFPGMLEAA


LAKPGGLGARFLLVDEAQDLTPLQLLLVEKWAQGARLALVGDDDQAIYGFMGADGASFLG


VPVEDELVLGQSYRVPARVQRVAEAVIRRVQNRAPKRYAPRGDEGEVRLLWVPPEDPYHA


VVDALERVNRGESVLFLATAKYLLEELKRELLRVGEPYANPYAPHRHSFNLFPQGARSAW


EKARSFLFPNRIAADVKAWTKHVSSKVFAVKGEEARRYIESFPDEEKVGDDHPIWNVFRP


EHRPHAVGRDVSWLLDHLLGNAPKTMRQSLMVALKSPEAVLQGRARVWIGTIHSVKGGEA


DWVYVWPGYTRKAAREHPDQLHRLFYVAATRARKGLVLMDQGKAPHGYVWPRVDEFWGEV


WV





>tr|H7GEQ7|H7GEQ7_9DEIN DNA helicase OS = Thermus sp. RL


GN = RLTM_02916 PE = 4 SV = 1 (SEQ ID NO: 70)


MEANLYVAGAGTGKTYTLAERYLGFLEEGLSPLQVVAVTFTERAALELRHRVRQMVGERS


LGHKERVLAELEAAPIGTLHALAARVCREFPEEAGVPADFQVMEDLEAALLLEAWLEEAL


LEALQDPRYAPLVEAVGYEGLLDTLREVAKDPLAARELLEKGLGEVAKALRLEAWRXLRR


RMEELFHGERPEERYPGFPKGWRXEEPEVVPDLLAWAGEVKFNKKPWLEYKXDPALXRLL


KLLGGVKEGFSPGPADERLEEVWPLLRELAEGVLARLEERRFRARRLGYADLEVHALRAL


EXEEVRAYYRGRFRRLLVDEFQDTNPVQVRLLQALFPDLRAWTVVGDPNQSIYSFRRADP


KVMERFQXEAAKEGLRVRRLEKSHRYHQGLADFHNRFFPPLLPGYGAVSAERKPEGEGPW


VFHFQGDLEAQARFIAQEVGRLLSEGFQVYDLGEKAYRPMSLRDVAVLGRTWRDLARVAE


ALRRLEVPAVEAGGGNLLETRAFKDAYLALRFLGDPXDEEALVGLLRSPFFALTDGEVRR


LAEARGEGETLWEVLEREGDLSAEAERARETLRGLLRRKALEAPSRLLQRLDGATGYTGV


AARLPQGRRRVKDWEGTLDLVRKLEVGSEDPFLVARHLRLLLRSGLSVERPPLEAGEAVT


LLTVHGAKGLEWPVVFVLNVGGWNRLGSWKNNKTKPLFRPGLALVPPVLDEXGNPSALFH


LAKRRVEEEEKQEENRLLYVAATRASERLYLLLSPDLSPDKGDLDPQTLIGAGSLEKGLE


ATEPERPWSGEEGEVEVLEERIQGLPLEALPVSLLPLAARDPEAARRRLLGEPEXEGGEA


WXPXXPQETEEEVPGGAGVGRMTHALLERFEAXEDLEREGRAFLEESFPGAEGEEVEEAL


RLARTFLTAEVFAPYRGNAVAKEVPVALELLGVRLEGRADRVGEDWVLDYKTDRGVDAXA


YLLQVGVYALALGKPRALVADLREGKLYEGASQQVEEKAEEVLRRLMGGEGQGRQPYPLA


ATDPGHGAPG





>tr|H7GH69|H7GH69_9DEIN DNA helicase OS = Thermus sp. RL


GN = RLTM_07977 PE = 4 SV = 1 (SEQ ID NO: 71)


MSDALLAPLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVT


FTNKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTAL


LKEVLKELALSARPGPIKALLDRAKNRGVGLKALLGELPEYYAGLSRGRLGDVLVRYQEA


LKAQGALDFGDILLYALRLLEEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEE


ANLMAVGDPDQGIYSFRAADIKNILDFTRDYPEARVYRLEENYRSTEAILRXANAVIVKN


ALRLEKALRPVKRGGEPVRLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLL


EQALAGRGIPARVVGGVGFFERAEVKDLLAYARLALNPLDAVSLKRVLNTPPRGIGPATW


ARVQLLAQEKGLPPWEALKEAARTFXRAEPLRHFVALVEELQDLVFGPAEAFFRHLLEAT


DYPTYLREAYPEDAEDRLENVEELLRAAKEAEDLQDFLDRVALTAKAEEPAEAEGKVALM


TLHNAKGLEFPVVFLVGVEEGLLPHRNSLSTLEGLEEERRLFYVGITRAQERLYLSHAEE


REVYGRREPARPSRFLEEVEEGLYEVYDPYRXPKPXPPPHRPRPGAFRGGERVVHPRFGP


GTVVAAQGDEVTVHFEGXGLKRLSLKYAELXPA





>tr|A0A0B0SAG4|A0A0B0SAG4_9DEIN DNA helicase OS = Thermus sp.


2.9 GN = QT17_08170 PE = 4 SV = 1 (SEQ ID NO: 72)


MDEALLSSLNEAQRQAVLHFQGPALVVAGAGSGKTRTVVHRVAYLIAHRGVYPTEILAVT


FTNKAAEEMRERLKGMVRGAGEVWVSTFHAAALRILRVYGERVGLKPGFVVYDEDDQTAL


LKEVLKELGLSAKPGPIKALLDRAKNRGEPPEALLAELPEYYAGLSRRRLLDVFFRYQEA


LKAQGALDFGDILLYALRLLEEDQEVLARVRKRARFIHVDEYQDTNPVQYRFTKLLAGEE


ANLMAVGDPDQGIYSFRAADIKNILQFTADFPGAKVYRLEENYRSTEAILRFANAVIVKN


ALRLEKTLRPVKRGGEPVRLFRAKDAREEARFVAEEILRLGPPFDRIAVLYRTNAQSRLL


EQALAGRGVGARVVGGVGFFERAEVKDLLAYARLALNPLDSVSLKRILNTPPRGIGPATV


EKVARLAQEKGLPLFEALKRAELLPRPEPVRHFVALMEELMDLAFGPAEAFFRHLLQATD


YPAYLREAYPEDHEDRLENVEELLRAAKEAESLLDFLDKVALTARAEEPAGAEGKVFLMT


LHNAKGLEFPVVFLVGVEEGLLPHRNSLNTLEALEEERRLFYVGVTRAQERLYLSYAEER


EVYGRLEATRPSRFLEEVEEGLYQEYDPYRSPRPVPPSHRPKPGAFKGGEKVVHPRFGPG


TVVAASGDEVTVHFEGVGLKRLSLKYADLRPA





>tr|A0A084IL47|A0A084IL47_9GAMM ATP-dependent DNA helicase Rep


OS = Salinisphaerahydrothermalis C41B8 GN = rep PE = 3 SV = 1


(SEQ ID NO: 73)


MALPKLNPQQDAAMRYLDGPLLVLAGAGSGKTGVITRKIAHLIARGYDARRVVAVTFTNK


AAREMKQRASKLISADDARGLTVSTFHSLGLQMIREEHAALGYKPRFSIFDSEDADKVLA


DLVGRDGDHRKATKAAISNWKSALIDPETATAQATGSDIPLARAYGEYQRRLKAYNAVDF


DDLLALPVHLLSTDHEARERWQSRFRYLLVDEYQDTNAAQYEMMRLLAGARAAFTVVGDD


DQSIYAWRGARPGNIADLSRDFPHLKVIKLEQNYRSVGNVLSAANQLIGASNQRAYEKTL


WSAMGPGDRVRVIAAPDEAGEAERIASEISSHKLRLGTAYGDYAILYRGNFQSRAFEKAL


RERDIPYRVSGGRSFFERSEIRDLVTYLKLMVNPDDDAAFLRIVNLPRREIGPATLEALG


RYAGSRHISLFDAARGIGLAGGVGERSGRRLADFVDWLRNLTQDSEGMTPRELVSQLIVD


IDYRNWLRDTSANTKAARKRIENLDDFIGWLDRLDNAEDGKPVTLEDVVRRLSLMDFANQ


SEKDVENQVHLLTLHAAKGLEFDHVFLAGLEEGMLPHHACLEDDKIEEERRLLYVGITRA


RKTLALTYARKRRRGGEESDSVPSRFLEELPADELDWPSATGTRSKAANAEQGRDQVAAL


RAMLGASADS





>tr|A0A0A2WMV1|A0A0A2WMV1_THEFI DNA helicase OS = Thermus



filiformis GN = THFILI_00990 PE = 4 SV = 1 (SEQ ID NO: 74)



MPQVGFTDHFFKGLEALSREEQNRVREAVFAFMQDPKHPSFKLHRLEDIKTDRFWSARVS


KDLRLILYHHPEMGWIFAYVGHHDDAYRWAETHQAEVHPKLGLLQIFRVVEEVRVEPRKI


KPLLPDYPDDYLLDLGVPPSYLKPLRLVETEDQLLGLIEGLPQDVQERLLDLAAGRPVTL


PPKLAPSEEWFKHPLSRQHIHFIQNLDELRQALSYPWERWMVFLHPAQREAVERVFQGPA


RVTGPAGTGKTVVALHRAAALARRYPEEPLLLTTFNRFLASRLRSGLQRLLGEVPPNLTV


ENLHSLARRLHEQHVGPVKLVKEEDYGPWLLEAAQGLEYGKNFLLSEFAFADAWGLYTWE


AYRGFPRTGRGVPLTARERLKLFGAFQKVWGRMENEGALTFNGLLHRLRQRAEEGALPRF


RAVVVDEAQDLGPAELLLVRALAQEAPDSLFFALDPAQRIYKSPLSWQALGLEVRGRSIR


LKVNYRTTREIAKRAEAVLPKEVEGEMREVLSLLQGPEPEIRGFPTQEACQAELVRWLRW


LLEQGVRPEEVAVLARVRKLAEGLAEGLRRAGIPVVLLSDQEDPGEGVRLGTVHSAKGLE


FRAVALFGANRGLFPLESLLREAPSEADREALLAQERNLLYVAMSRARERLWVGYWDEGS


PFLTP





>tr|A0A0D0N7B7|A0A0D0N7B7_MEIRU DNA helicase OS = Meiothermus



ruber GN = SY28_04645 PE = 4 SV = 1 (SEQ ID NO: 75)



MSDLLSSLNPSQREAVLHFEGPALVVAGAGSGKTRTVVHRIAYLLRERRVYPAEILAVTF


TNKAAGEMKERLEKMVGRSARDLWVTTFHAAAVRILRTYGEYVGLKPGFVIYDEDDQNTL


LKEVLKELELEAKPGPFRSMIDRIKNRGAGLAEYMREAPDFIGGVPRDVAAEVYRRYQNS


LRMQGALDFNDLLLLTIELFEQHPEVLHKVQQRARFIHVDEYQDTNPVQYRLTRLLAGER


PNLMVVGDPDQSIYGFRNADINNILDFTKDYPGARVIRLEENYRSSSSILRVANAVIEKN


ALRLEKVLRPTKPGGEPVRLYRAPNAREEAAFVAREIVKLGGYQQVAVLYRTNAQSRLLE


EHLRRANVPVRLVGAVGFFERREIKDLLAYGRVAVNPDDSINLRRIVNTPPRGIGATTVA


RLVEHAQKTGITVFEAFRAAEQVISRPQQVQAFVRLLDELMEAAFESGPTAFFQRVLEQT


GFREALKQEPDGEDRLQNVEELLRAAQDWEEEEGGSLADFLDSVALTAKAEEPQGDAPVE


AVTLMTLHNAKGLEFPTVFLVGLEENLLPHRNSLHRLEDLEEERRLFYVGITRAQERLYL


SYAEERETYGKREYTRPSRFLQDIPQDLLKEVGAFGDGETRVLSQARPEPKPRTQPAEFK


GGEKVKHPKFGSGTVVAAMGGEVTVMFPGVGLKRLAVKFAGLERLE





>tr|W2U4X3|W2U4X3_9DEIN DNA helicase OS = Thermus sp. NMX2.A1


GN = TNMX_07060 PE = 4 SV = 1 (SEQ ID NO: 76)


MQGPQSSHPGDELLRSLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLIAKRGVF


PSEILAVTFTNKAALEMRERLKRMVKGAGELWVSTFHSAALRILRVYGERVGLKPGFVVY


DEDDQTALIKEVLKELGLAARPGPLKALLDRAKNRGEAPESLLSELPDYYAGLSRGRLLD


VLKRYEEALKAQGALDFGDILLYALRLLEEDPEVLKRVRRRARFIHVDEYQDTNPVQYRF


TKLLAGEEANLMAVGDPDQGIYSFRAADIKNILEFTRDFPGAKVYRLEENYRSTEAILRF


ANALIVNNALRLEKTLRPVKPGGEPVRLYRARDARDEARFVAEEILRLGPPFDRVAVLYR


TNAQSRLLEQALASRGVPARVVGGVGFFERAEVKDLLAYARLSLNPLDGVSLKRVLNTPP


RGIGPATVEKVEALAREKGLPLFEALRVAAEVLPRPAPLRHFLALMEELQELAFGPAEGF


FRHLLEATDYPAYLREAYPEDHEDRLENVEELLRAAKEAEGLMEFLDKVALTARAEEPGE


PAGKVALMTLHNAKGLEFPVVFVVGVEEGLLPHRSSLSTLEGLEEERRLFYVGVTRAQER


LYLSYAEEREVYGRTEATRPSRFLEEVEGGLYEEYDPYRASAKVSPSPAPSEARASKPKP


GAYRGGEKVIHPRFGQGTVVAAMGDEVTVHFEGVGLKRLSLKYADLRPVG





>tr|H9ZQB5|H9ZQB5_THETH DNA helicase OS = Thermusthermophilus


JL-18 GN = TtJL18_0620 PE = 4 SV = 1 (SEQ ID NO: 77)


MSDALLAPLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVT


FTNKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTAL


LKEVLKELALSARPGPIKALLDRAKNRGVGLEALLGELPEYYAGLSRGRLADVLVRYQEA


LKAQGALDFGDILLYALRLLKEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEE


ANLMAVGDPDQGIYSFRAADIKNILDFTRDYPEARVYRLEENYRSTEAILRLANAVIVKN


ALRLEKALRPVKRGGEPVRLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLL


EQALAGRGIPARVVGGVGFFERAEVKDLLAYARLALNPLDAVSLKRVLNTPPRGIGPATW


ARVQLLAQEKGLPPWEALKEAARTSSRVEPLRHFVALVEELQDLVFGPAEAFFRHLLEAT


DYPTYLREAYPEDAEDRLENVEELLRAAKEAEDLQDFLDKVALTAKAEEPAEAEGKVALM


TLHNAKGLEFPVVFLVGVEEGLLPHRNSLSTLEGLEEERRLFYVGITRAQERLYLSHAEE


REVYGRREPARPSRFLEEVEEGLYEVYDPYRVPKPAPPPHRPRPGAFRGGERVVHPRFGP


GTVVAAQGDEVTVHFEGFGLKRLSLKYAELRPA





>tr|E8PM35|E8PM35_THESS DNA helicase OS = Thermusscotoductus


(strain ATCC 700910/SA-01) GN = pcrA1 PE = 4 SV = 1 (SEQ ID NO:


78)


MQGPQSSHPGDELLRSLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLIAKRGVF


PSEILAVTFTNKAAEEMRERLKRMVKGGGELWVSTFHSAALRILRVYGERVGLKPGFVVY


DEDDQTALIKEVLKELGLAARPGPLKALLDRAKNRGEAPESLLSELPDYYAGLSRGRLLD


VLKRYEEALKAQGALDFGDILLYALRLLEEDPEVLKRVRRRARFIHVDEYQDTNPVQYRF


TKLLAGEEANLMAVGDPDQGIYSFRAADIKNILEFTRDFPGAKVYRLEENYRSTEAILRF


ANALIVNNALRLEKTLRPVKPGGEPVRLYRARDARDEARFVAEEILRLGPPFDRVAVLYR


TNAQSRLLEQTLASRGVPARVVGGVGFFERAEVKDLLAYARLSLNPLDGVSLKRVLNTPP


RGIGPATVEKVEALAREKGLPLFEALRVAAEVLPRPAPLRHFLALMEELQELAFGPAEGF


FRHLLEATDYPAYLREAYPEDYEDRLENVEELLRAAKEAEGLMEFLDKVALTARAEEPGE


PAGKVALMTLHNAKGLEFPVVFVVGVEEGLLPHRSSLSTLEGLEEERRLFYVGVTRAQER


LYLSYAEEREVYGRTEATRPSRFLEEVEGGLYEEYDPYRASAKVSPSPAPGEARASKPGA


YRGGEKVIHPRFGQGTVVAAMGDEVTVHFEGVGLKRLSLKYADLRPVG





>tr|E8PL08|E8PLO8_THESS DNA helicase OS = Thermusscotoductus


(strain ATCC 700910/SA-01) GN = pcrA2 PE = 4 SV = 1 (SEQ ID NO:


79)


MLNPEQEAVANHFTGPALVIAGPGSGKTRTVVHRIARLIRKGVDPETVTAVTFTKKAAGE


MRERLVHLVGEETATKVFTATFHSLAYHVLKDTGTVRVLPAEQARKLIGEILEDLQAPKK


LTAKVAQGAFSRVKNSGGGRRELIALYTDFSPYIERAWDAYEAYKEEKRLLDFDDLLHQA


VHELSTDIDLQARWQHRARFLIVDEYQDTNLVQFNLLRLLLTPEENLMAVGDPNQAIYAW


RGADFRLILEFKKHFPNATVYKLHTNYRSHNGIVTAAKKVITHNTQREDLDLKALRNGDL


PTLVQAQSREDEALAVAEVVKRHLDQGTPPEEIAILLRSLAYSRPIEATLRRYRIPYTIV


GGLSFWNRKEVQLYLHLLQAASGNPESTVEVLASLVPGMGPKKARKALETGKYPKEAEEA


LQLLQDLRAYTGERGEHLASAVQNTLHRHRKTLWPYLLELADGIEEAAWDRWANLEEAVS


TLFAFAHHTPEGDLDTYLADILLQEEDPEDSGDGVKIMTLHASKGLEFAVVLLPFLVEGA


FPSWRSAQNPATLEEERRLFYVGLTRAKEHAYLSYHLVGERGATSPSRFARETPANLIHY


NPTIGYQGKETDTLSKLAELF





>tr|E4U8J8|E4U8J8_OCEP5 DNA helicase OS = Oceanithermus



profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506)



GN = Ocepr_1221 PE = 4 SV = 1 (SEQ ID NO: 80)


MSARDLLSSLNEQQQAAVQHFLGPALVIAGAGSGKTRTVVHRVAYLLAEREVYPAEVLAV


TFTNKAAGEMRERLSRMVGRAAGELWVSTFHSASLRILRRYGERIGLKPGFVVYDDDDQR


VLLKEVLGSLGLEARPTYVRAVLDRIKNRMWSVDEFLAHADDWVGGLTKQQMAEVYARYQ


QRLAENNAVDFNDLLLRTIELFERHPEALEAVRQRARFIHVDEYQDTNPAQYRLTKLLAG


DEANLMVVGDPDQSIYGFRNADIQNILGFERDYRGAVVYRLEANYRSTAAILRVANALIE


RNQQRLEKTLRPVKPAGEPVRLYRAPDHREEAAFVAREVARLAGERALDDFAVLYRTNAQ


SRVLEEAFRRLNLPARIVGGVGFYERREVKDVLAYARLAVNPADDVALRRVINVPARGVG


AASVGKLAAWAQAQGVSLLEAAHRAGELLAARQAAAVAKFTDLLTTLREAAEGTGPEAFL


RLVLAETGYSEMLRREGDSEPRLENLEELLRAAAEWEEEHGGSVAEFLDEIALTARAEEP


NAAPEKSVILMTLHNAKGLEFPVVFVVGVEEGLLPHRSSLGSDAEIEEERRLLYVGITRA


QERLYLTLSEERETWGQRERVRPSRFLEEIPEDFLKPVGPFGDAHEPAPAPLSSAPVNRA


AKGSASGFRGGEKVRHPRYGEGTVVATSGEGARQEVTVHFAEAGLKRLLVKYAGLERIE





>tr|E4U4N5|E4U4N5_OCEP5 DNA helicase OS = Oceanithermus



profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506)



GN = Ocepr_1575 PE = 4 SV = 1 (SEQ ID NO: 81)


MKVRIASAGTGKTYALTSRFTAALAEHPPYRLAAVTFTRSAAAELKARLRERLLAIAAGR


FQPSGAEDVPPEAVVRRAGALATEVLGATVTTIHGFFAELLRQNALALGLEPDFLRIDAS


ESQQIFAEEARAYVYLNEEDDALAEVLGRLFAKRSLAAELRPQGEAAEALWAHFRAVLER


YARRLGGEALGPADIELHAWRLLERAGREEALAARIRSRLARVFVDEYQDTSPLQGRVFA


ALEALGVEVEVVGDPKQSIYAFRNADVEVFREAMRRGEPLPPLVTSWRHDRALVRFLNRY


VDWVAEERPEAFARAEAPPVEARPDAGPGRVRLQLVQGEARQDALRPYEADQLARWLQER


HAEHAWRDMAVLVRSHSSVPLLVRALAAHGLPHVVVGGRGFYDLIEVRDLVHAARVALDP


RGRFSLAAFLRGPFAGLDLGRVERVLAAEDPLAELERAAPEVAERVDRLVRWVQTLRPLD


FFERMVRTPFLEGASYLERLEPPARANVDQLLFKLASRRYGRLEFLLRDLEDLRGSDEAG


VPEGGFDAVRIYTMHGSKGLEWPVVAVFDLNRGQPDGAEPFYVRPGSGEFAAEGDPDYPR


FAAEWKERERQEAYRLLYVALSRPRSRLLLSLSVQLKPDGEGLRPKFWRRTLGRTLIEEM


NLAAWDALEVERLDAARLPAPKAAAAAPRRAADVDERLRAPVEPLARPPVYSPSALKAER


PAPPELDDEGDVAVELEEPGVDPGLVARTVGILVHYAIGQDWGPERLQDLWNQEAVQRLT


EPERTRVKTEVAQRLETYWRLLGTELPALDERDEDYAEFPLLLPTRTARLDTVWEGVIDR


LYRVGDVWVLEDYKTDRELHPERYHFQLALYRRAVAAAWGIEPEARLVYLRFGEVVPLEA


QLLEEAFERGTREAEEV





>tr|E4UAI1|E4UAI1_OCEP5 DNA helicase OS = Oceanithermus



profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506)



GN = Ocepr_2312 PE = 4 SV = 1 (SEQ ID NO: 82)


MKVIVASAGTGKTTRLTQRYLEHLEQHPPQRVAAVTFTNKAAAELRERIFEALGRGSFYD


FTPSPALAERLADYQVRVLEAPIGTIHSFFGYLLRLTAPMLGLDPHFEVIDPATARAWFL


EEVRNLAIIEGAEVDETVTTALVELFKRRSISEAFEGTGDASRSLVAGFKKVYARWLTRL


GGRYLDPSEIERRALALIRHPEALERVRSRLGVVLVDEYQDTAPIQARVFEALEEAGVPI


EVVGDPKQSIYAFRDADVEGFREAHRRARENGNVETLTVSYRHPPALADFLNAFTSAEAA


LGKAFTAEEAPEVKPGREGDARVELITVTPGDGKATLDALRNGEARLLARELRRLHDEEG


YDYGQMLVLFRRRHQLPPLLRALRGAGLPFAVVGLRGLYEEPEVRELYHALRLATGEAPR


DSLAVFLSGPFGGLTLGQVREVLAQDAPESYLTLHHPEAAERLLRLRADAEKMRPAEALT


RLIEAPTAKGPPFLDLLELEMADTVLYVLGRIEHTRTYPEAVATLESFRSGGEEEASLAR


LGGDAVRVMSAHAAKGLQAPVVVIFDADRTFNGNSDELVIEPRTGRVALNGEDAYESIAQ


ALKARKEGEDHRLIYVALSRSSERLIVSAAVKEPRKGSWLHHLTEVLNLGSKFEHRNVTL


AEIALEEPIEQEAATLPVDPELATPLPPAPPAVSSPTALKAERELEVPDPEEAWPADPEA


RLLGRIVGILVHEGIQRDWDPDDPEVLLALEGEQVLEEVPADRRPAVIEEVATLLRVYRT


LLGSAIPSLEEREVDLAELPLVYPLGATAWEGVIDRLYRVGDVWYLEDYKTDREVHPERY


HSQLALYREAVRKHWGIEPEVRLVYLRTGQVVPLDAAALKEGLASYTGG





>tr|E4UAI8|E4UAI8_OCEP5 DNA helicase OS = Oceanithermus



profundus (strain DSM 14977/NBRC 100410/VKM B-2274/506)



GN = Ocepr_2319 PE = 4 SV = 1 (SEQ ID NO: 83)


MNEHERVIAHEVGPAAVVAGAGSGKTRAATLRAARLARTGERVGLVTFTASAAEEMRQRV


LAEDVPAKHVWAGTFHSLAFQILRQFPEAGGYEGFPEVLTPNDELRLFRRLWAELLDQDL


DAELRRKLVKALGFFRKARAEEALEGWAARAGESLELDAEMLEALMISFQLRKREAGLAS


FDDLIEGASRALGDKDVRKWADRRFPFLIVDEYQDTSRAQETFLAALMPGEAPNLMVIGD


PNQAIYGWRGAGSRTFERFQARYPQAVLYPLRKNYRSTRAVLRLAERAIARLYRSGQEAY


YRLEGVKEEGEPPVLLTPPNAAAEATDVAREVARAVASGVPPEEIAVLARSSMQLAGVED


RLARLGVATRLLGGIRLSERREVKTLVQLLKAAWSLHERALVDFIEEAVPGLGERTLTRV


EHAARPYNLVDRIMNDGAFVRGFSTRVQQGLFMTRILLQLARATFEGVTGEAFAERFREF


AQDLYGELLPGYLARIGKQGPNEEARRRHLERFVATVEAFAREEAEGGLDDLLARLAFLE


QQDGPAVTLGTVHAVKGLEFEVVFVVGMVEGAFPILADDSDPEEERRLFYVAATRAKRRL


YLSAPTYGPRGKILQPSRYLEEALDEGLVRLQKVRPAA





>tr|E4UAI4|E4UAI4_OCEP5 AAA ATPase OS = Oceanithermusprofundus


(strain DSM 14977/NBRC 100410/VKM B-2274/506)


GN = Ocepr_2315 PE = 4 SV = 1 (SEQ ID NO: 84)


MVSEGRWKIERVVYLKDGFAVVAVRNEAGERHTAVGEMPTPVEGTWVRMETEHTVHPRYG


PRLRVVRFLGLAPPPSKELAKIEGYLKLGFSEEAASWLAARFGSRPERAFDKPQELLVPG


VPREVLRRVFPRLERLLGGLIDLLGEGHTAAPLFLLAERSGLGKEEIQELAREARKQRLI


VEEQGRYGLVQPYRTERSIADGLLFRLKPGRGLRLTPPAGHGLSDEQARIFKLVRENRVV


VLTGGPGSGKTTTIATLLAAPELHRMRFGIAAPTGKAARRIAEVARLPAETIHRLLGLGE


ARRPLYHARNPLPYDLLVIDETSMLDAEIAAFLVDALAPSTSVIFVGDPDQLPPVGPGQF


LRDLMTRVATLRLTQIFRQAQDSPIVNGAYALREGRMPLADGERLRLLPFEEEAAQTTLR


TLLDELQRLEQIVGERPQVLVPGNRGPLGVRRLSPFLQQQLNPGGKPLGPIGWGMEAREG


DPAVWIHNDYELGIMNGEVGVLRGGGSLGLTFETPTDRFAIPGNKRSRLVLAYAMTVHRS


QGSEWPAVITILPKAHMALLSRELVYTALTRSKQYHTLLFHPEALYRARAVQASRRYTWL


DVLLRG





>tr|K7QW32|K7QW32_THEOS DNA helicase OS = Thermusoshimai JL-2


GN = Theos_1787 PE = 4 SV = 1 (SEQ ID NO: 85)


MTAPGHPDALLAPLNPAQQEAVLHFQGPALVVAGAGSGKTRTVVHRVAYLMAHRGVYPGE


ILAVTFTNKAAEEMKGRLKALVPGAGELWVATFHSAALRILRVYGEAIGLKPGFVVYDEA


DQEALLKEVLKELGLSAKPGPLKALLDRAKNRGEAWEALEIPDYYAGLPKGKVLDVLRRY


QEALRAQGALDFGDILVYALRLLEENPEVLAKVRKRARFIHVDEYQDTSPVQYRFARLLA


GEEANLMAVGDPDQGIYSFRAADIRNILDFTRDFPGARVYRLEENYRSTEAILRFANAVI


QKNRLRLEKTLRPVKPGGEPVRVYAAPEAREEARFVAEEIFRLGPPYERFAVLYRTNAQS


RLLEQALAAKGLPYRVVGGVGFFERAEVKDLLAYARLSLNPEDGVSLKRVLNTPPRGIGP


ATLARLEALAQAEGVPLLGAIRLGAERFPKPEPLRAFLALLDELADLAFGPPEAFFRHLL


SATDYLQYLKEHHPEDAEDRLENVEELLRAAKEAQDLQEFLDRVALTARADQDGGRGVAL


MTLHNAKGLEFPVVFLVGVEEGLLPHQSSLSTLEGLEEERRLFYVGVTRAQDRLYLSYAR


EREVYGRREPRRMSRFLEEVPEGLYLPHDPYRQGAQPKPAPRAQGAFRGGEKVVHPRFGP


GTVVAASGDEVTVHFEGVGLKRLSLKYADLRPA





>tr|K7QWX5|K7QWX5_THEOS DNA helicase OS = Thermusoshimai JL-2


GN = Theos_2419 PE = 4 SV = 1 (SEQ ID NO: 86)


MASSLSKAELVPTPEQEKALHLYRSRQDFKLVAVAGSGKTTTLRLMAESFPRRHIAYLAF


NRAMKEEARRKFPPNTRVFTLHALAYRRTVPGTPYEAKFRLGNGQVRPVHVRERLQVDPL


LAYVVRSGLERFIRSGDPEPLPRHLPRDWRKTVEARGPSGFAEVERAVKGVALLWKAMRD


PKDPFPLSHDGYVRIWREEGAGGDPPAGVILVDEAQDLDPNFLTVLSGWRGKAQQVFVGD


PRQQIYGWRGAVNAMGEIDLPESPLTWSFRFGEPLASFVQAVTARQTQGLVPLVGRAGWA


TEVHVNLFPTPPFTILTRSNLGLVTALLEGAQLFSLQKEEAHVVGGVEELVWLLTDLQAI


KEGGERPRPHPELLGISKWEEVESLAEYSIVLNRLLRLAKEYDLEALAHKIAQLHGPEEG


AKLVLSTAHKAKGREWDRVLLWEDFYWVAAYRWFFPNTAPPPSEPSPEFLEEENIFYVAM


TRARLGLHISLPEALAEEEAKRILDRLSQGVPSGEDRGEDERGETLPAPFTGPTPVSPKE


ATFPLPSLYDRLLSEALNGGRDPLLHLLRDDLARLSALSPTPLPPEVAQALWERARPEEA


LGAIREGLGAMWREDPYELLRAINALALLGGRNPRKLAKILGDRFPGGEEAEDLLFVARA


RKRELMGRSLAEFWRGLGASVRHPLLKAYARARS





>tr|K7QTS9|K7QTS9_THEOS DNA helicase OS = Thermusoshimai JL-2


GN = Theos_0356 PE = 4 SV = 1 (SEQ ID NO: 87)


MRLYVASAGTGKTETLMGELKALLEGGVPLRRVAAVSFTRKSAEELRLRVRRLLEAHREA


FWAREALREVHGALFTTLHGFMAEALRHTAPFLGLDPDFRVMDGFLAQALFLEEARSLLF


LEGHPEAPELLELLEALYEKRSLAEAFTPLPGAEGLLALYERVLARYRARTQEVLGPGDL


EAKALLLLRHPEALGRVAERFSHLLVDEFQDVNPLQGRFLRALEEAGVRVVAVGDPKQSI


YLFRNARVEVFLRARAAAEEVRALSRTHRHAKQVVELLNRFTTRFFRAEEGNRVEGVREA


EGRVEVHWVLGKLEEARRAEARLLAQRLLALRAEGIPFGEMAVLVRARTSLPPLEKALRA


AGVPFVRGRGQSFFARPEVRDLYHALRLALAERPYALEDRLSLLAFLRSPFLGLDLSELE


EALRAEDPWPLLPKGVQEALEGLRALALLPPLEALRRLARDEGFLRRISRRARANLDTLL


LLAAGARFPTLEDLLLWLALRAKDPESVELPEGGGGVTLLTVHGAKGLEWPVVALYDVSR


GPSERPPPLLVDEEGRVALKGTEAYRALLKEAERAEREEALRLLYVALSRARDLLLITGS


TSQRPGPWAEALQALGLGPDAQDPWVETHPLEAIPPLPPIPQAPQDPRPAPYTPWRGEPR


ARPPVYSPSAHLKAEAEPLEVLGEGEALPEWARAVGTLVHYAIARHLDPEDEGAMGGLLR


QEVALAFGEGEREALLEEVRALLRAYRSLLSGALPPLEARAEDHAELPLLLPHKGTVWYG


VLDRLYRVGDRWYLDDYKTDQKVRPEAYRFQLALYRKAVLEAWGVEAEARLVYLRHRQVV


PLSPAELEAALEGL





>tr|D1AF88|D1AF88_THECD DNA helicase OS = Thermomonospora



curvata (strain ATCC 19995/DSM 43183/JCM 3096/NCIMB



10081) GN = Tcur_4104 PE = 4 SV = 1 (SEQ ID NO: 88)


MSSSQVTGRPTTVKDAEIAVEQRRVDQAHARLEEMRAEAQAMIEEGYRQALAGTKGSLVD


RDAMVYQAALRVQALNVADDGLVFGRLDLADGQTRYIGRIGVRTRDHEPMVIDWRAPAAE


AFYRATPEDPQGVVRRRVLHTRGRTVVDLEDDLLDPSAADSLTIVGDGAFIASLARTREG


TMRDIVATIQREQDEVIRAPADGTVLVRGAPGTGKTAVALHRVAYLLFRHRRRFGSRGVL


VVGPNRRFTAYIERVLPSLGEGSATLRSLGDLVEGVSATVHDPPELAALKGSAAMAPVLR


RAVTDHPPGAPDKLRVVHGGVVVELGRPQLDKLRTSLHRRSTGSVNASRRRVAEALLDAL


WERYVHTGGTEPEPDEPVQGELALWEGILAEGGLAPLDEQDRPSSPADRTSREAFVKNVR


EQRAFTDFLTAWWPIRRPLDVLRSLGDAARLRRAAGRDLDRAQVELLAASWRRALAGDPP


TLSYQDIALLDEIDALLGPPPQPSRATAREEDPYVVDGIDILTGEVVADEDWEPGLQELT


TTIERLERARRVDDEVADVRPEYAHIVVDEAQDLSPMQWRMLGRRGRQATWTIVEDPAQS


AWEDLEEARKAMEAALDGPAARRGRSRRPRRRPRHEYELTTNYRNTTEIAAVSARVLRLA


LPEARPARAVRSSGHRPVIDLVPEEELQAAARRAVRTLLEQVEGTIGVIVPLPGDAWGES


DRRALSAGFPERVQVLDVLEAKGLEFDAAVICAPETIAAQSPRGLRVLYVAVSRATQRLT


VLTADPVWRRRLAGGESAR





>tr|F8A884|F8A884_THEID DNA helicase OS = Thermodesulfatator



indicus (strain DSM 15286/JCM 11887/CIR29812)



GN = Thein_0607 PE = 4 SV = 1 (SEQ ID NO: 89)


MTSISLDQYQEQAVKAKGNTLVVAGPGAGKTRVLLAKAIHLLEQGIDPEKVLILTFTIKT


TQELKERLASIGIKGVKVDTFHALAYDLLKAKGIKPRLATEEELKALARDLSKRKGLSLK


DFRKALDKGENHYRSLWEEALKLHGLYDFSLLLKEATGHYLQQEKVYLLIDEFQDLNPEL


TSFLKTFTKAEFFLVGDPAQAIYGFRGACPQVIKEFVDYLAPQIYFLKKSYRVPEKVLNF


AETLRETQGFPLEPLEAVQKGGNRLGLSFNKPFNEAKGVAKLVSELLGGLQMEASQRGLA


PPEIAILSRVRTLLNPIKEAFIKFGIPFQVPSENLKEEISAIESLSDIAKSIKSLKELEA


YLAEGPSSVKEAWLESQSLEGFLFRLEMLKTFASISIRKDGVPLLTIHEAKGLEFKVVIL


VGAEDGLLPFTLLEDYDLAEEKRVAYVAVTRAQESFYFTQVKTGRFLYGHKLSGKVSPFF


ETLPIKEKSSKTKPKARQKKLFG





>tr|A0A087LEB0|A0A087LEB0_GEOSE Uncharacterized protein


OS = Geobacillusstearothermophilus GN = GT94_17890 PE = 4 SV = 1


(SEQ ID NO: 90)


MTISVIDELLEKNKQNMNKTAKDAVEAQLIAYAKKEVKKLQEIRPHPYFGRLDFEDEFGR


ETIYIGKKGLEKDGELIVVDWRTDLGRLYNAYQGVQKTFQIGKENRPVTIHGKRGIVIKN


GKVIKVTDIGKSEIIENDNGEKVKYMDDYLKEILTNTEEAHRLRDIIASIQAEQDEIIRL


PLKDTIIVQGAAGSGKSTIALHRISYLLYQYHEQVKPKDILILAPNEIFLSYIKDIVPEI


EIEGIEQRTFYDWASTYFTDVHDIPDLHEQYVHIYGSTEKEDLIKIAKYKGSLRFKKLLD


DFVEYIGNTMIPHGDVVIESGVILSKEEIHQFYHAKEHLPLNVRMKEVKEFIINWRNEQI


NIRKQQIEDEFEEAYRKWVVTLPEGEERKAVYEALEKAKQLRMKIFQEKMQHEISLIVKK


MENIPALLMYKSVFQKKVFEKFHPDIDEELLSLLLKNGRQIKQERFMYEDIAPLIYLDAK


INGKKLQYEHIVIDEAQDYSPFQLAIMKDYAKSMTILGDIAQGIFSFYGLDRWEEIESYV


FKEKEFKRLHLQTSYRSTKQIMDLANRVLLNSNYDFPLVIPVNRPGDVPTIKKVESIGEL


YDEIVNSIRIFEEKGYKKIAILTASKQGAIDTYDQLMRRQITQMEVITEGHQALKEKIVI


IPSYLVKGLEFDAVIIEDVSDETFKDETQHAKMLYMSITRAHHDLHLFYRGNISPLLEER


DPSAPPKPRKSFADWLITDINDPYVEPQVEAVKRVKKEDMIRLFDDEEEEFVEEAFEDDR


ERYYDFHAWLKVWRRWAEMRKQLDEKS





>tr|B5Y6N2|B5Y6N2_COPPD DNA helicase OS = Coprothermobacter



proteolyticus (strain ATCC 35245/DSM 5265/BT) GN = pcrA PE = 4



SV = 1 (SEQ ID NO: 91)


MALPQENLIPPSPSHNHLTLSLRSHIGGFFIYNEDVDSVDLSKLNEAQKQAVTAPPKPLA


IIAGPGSGKTRVLTYRALFAVKEWHLPPERILAITFTNKAADELKERLGRLIPEGDRIFA


ATMHSFAARMLRYFAPYAGISQNFVIYDDDDSKGLIEDILKQMNMDTKRFRPNDVLNHIS


AAKARMFDCNTFPEFIRQRYGSWGYYFDTVHQVFMTYERLKEQSQALDFDDLIMVLAQRM


EDRPELREMIAGLFDLVMVDEFQDTNFAQYQMLLYMTNPHYSGMNNVTIVGDPDQSIYGF


RAAEYYNIKRFIDDYNPEVVFLDLNYRSNRTIVDSASALINDSPSALFERKLESIKGAGN


KLILRRPFDDADAAITAAFEVQRLHKMGIPYEEIAVLMRTRALTARVEREFATRNIQYHI


IGGVPFFARREIKDILAYLRLSRNAMDRVSLKRILTMKKRGFGTASLEKLFNFAEENKLT


LLEAMKAAVESLLFKKLSMNDYLESLYTLIQTIQEIAEPSQAIYLVMEQENLLDHFRSIS


KSEEEYIERTENVKQLISIAEESADMDDFLQRSALGTRENNGGVEGVAISTVHGVKGLEF


QAVILYYVTDGFFPHSLSVTTAEKEEERRLLYVAMTRAKEHLIFYVPYKQPWGNGFEQMA


RPSPFLRSIPKELWDGKPNEIESLYAPYSPQQKWSE





>tr|D7BJL0|D7BJL0_MEISD DNA helicase OS = Meiothermussilvanus


(strain ATCC 700542/DSM 9946/VI-R2) GN = Mesil_3574 PE = 4


SV = 1 (SEQ ID NO: 92)


MNDPIRHKEGPALVFAGAGAGKTRTLTQRVKWLVEEGEDPYSITLVTFTNKAAGEMKERI


ARLVEAPLAEAVWVGTFHRFCLQSLQVYGREIGLEKVAVLDSAAQRKLAERIIAGLFPAK


PPRGFTPMAALGAVSRAANSGWDDIQLATMYADLTEKIVNFRWAYEEAKKGLGALDYDDL


LLRGVRLLKLSEGAARMVRRRAAYLMVDEFQDTNGVQLELVRAIAPGTSPNLMVVGDPDR


SIYGWRGANYRTILEFRQHYPGAAVYGLYTNYRSQAGVVEVANRIIAQNATRKPEMQEAH


LPQSEEPFLLVAKNRWEEAHFVAQAVEFYRGQGIALEEMAVLMRANFLSRDLEQALRLRG


IPYQFTGGRSFFERREIQLGMAVLKVLANPKDSLAVAALVEEMVEGAGPLGIQKVLEAAK


AANLSPLEAFRNPAMVKGLRGKEVQAEAMRLAEVLQDQVARLAAEAPEYHALLKETLDRL


GFEAWLDRLGEESEQVYSRKANLDRLLQGMQEWQEVNPGAPLQDLVGILLLEAGDTPAEE


GQGVHLMTVHASKGMEFRVVFVIGLNEGLFPLSKASSSFEGLEEERRLMYVAVTRAKEVL


HLSYAADGVVSRFAQEARVPVEEYDPRLGWSGRQNQQALKALLEIA





>tr|E8MZN5|E8MZN5_ANATU DNA helicase OS = Anaerolinea



thermophila (strain DSM 14523/JCM 11388/NBRC 100420/UNI-1)



GN = pcrA PE = 4 SV = 1 (SEQ ID NO: 93)


MDSLEHLNPQQRAAVTASAGPVLVLAGPGSGKTRVLTFRIGYLLSQLGVAPHHILAVTFT


NKAAREMQSRVEKLLGHSLQGMWLGTFHAICARILRREQQYLPLDANFVIFDEDDQQALI


KRALRDLNLDEKLYRPTSVHAAISNAKNNLILPEDYPTATYRDEVVARVYKRYQELLVSS


NAVDFDDLLLYAWKLLNEFSTVREQYARRFEHILVDEFQDTNLAQYELVKLLASYHRNLF


VVGDEDQSIYRWRGADYRNVLRFEEDFPDRQKILLEQNYRSTQRVLDAAQAVINRNRNRT


PKRLKSTPEHGEGEKLVLYEAVDDYGEAAFVVDTIQQLVAGGKARPGDFAIMYRTNAQSR


LLEEAFLRAGVPYRLVGAMRFYGRREVKDMIAYLRLVQNPADEASLGRVINVPPRGIGDK


SQLALQMEAQRTGRSAGLILMELGREGKDSPHWQALGRNASLLADFGSLLGEWHRLKDEI


SLPSLFQRILNDLAYREYIDDNTEEGQSRWENVQELLRIAYEYEEKGLTAFLENLALVSD


QDTLPENVEAPILLTLHAAKGLEFPIVFITGLDDGLIPHNRSLDDPEAMAEERRLFYVGL


TRAKKRVYLVRAAQRSTYGSFQDSIPSRFLKDIPADLIQQDGRGRRMGRSWQSESRRSWD


DNYAGTWGSRPERAKPSHAPILQPRFKPGMRVKHPSWGEGLVVDSRIQDEDETVDIFFDS


VGFKRVIASIANLEILS





>tr|L0INW7|L0INW7_THEIR ATP-dependent exoDNAse (Exonuclease


V), alpha subunit/helicase superfamily I member


OS = Thermoanaerobacteriumthermosaccharolyticum M0795


GN = Thethe_02902 PE = 4 SV = 1 (SEQ ID NO: 94)


MDINGQIIKLNRNKTQGILKLINGQKIKFKINSDSVKPIFLYEYYKFKGNMIEDTLIIDD


IYGIANDININDFTELFPSVAHDKINNICNRFNVLHVGNLIDLINDENFITVVNDTIGEE


KATIFLSNLQKIKDRQEYIDVWDIIKKINPTFDINVPIKIVNALKYRASMNNITVSQLIK


ESPWIIEQLDIFDSITERKKIAENIATHYGLSNDSNKAVISYAIAMTNNYIQQGHSYIPY


YILVSRVSNSLKLDFNKVNDILKFLPNDNKSGYLIRDNKYKDEIENEYNSDKKIGYSVYL


PKIFHMEKYIADIISSILKKKSTINKIELQKNLKLYRSENKLIFSKEQEEAIFSISDNKI


TVITGGAGIGKTIVIKAIIDLVNKMGYTPVVLAPTGIASQRVAPNVGSTIHKYARIFDTY


DPVFDEIEENKENNSGKVIIVDEMSMITVPVFAKLLSVILDADSFIFVGDPNQLPPIGAG


GVFEALIELGNKNINNINTVVLNQSFRSKNSIVKNAQNILEDKPIYEDDNLNIIEAKSWN


KIADEVVNLIRKLLDNGVQYSDIMVLSSKRGEGKNGVSLLNERIRKEIFNNKGKYAVGDI


VITTRNDYDNKSSYFRSKELKKYINSIRHEERPTIFNGTVGVIKDISDNEVIIEYNTPMP


VEAKYNMEELDWYIEYGFAITVHKAQGGQAKYIIFASDEPRNISREMLYTAITRCKNGKV


FLIGGENEDWKIKKEHSFVLSKLKYRILDNIHQQEKESKINSKIVLINQ





>tr|D3PR99|D3PR99_MEIRD DNA helicase OS = Meiothermusruber


(strain ATCC 35948/DSM 1279/VKM B-1258/21) GN = K649_05745


PE = 4 SV = 1 (SEQ ID NO: 95)


MSDLLSSLNPSQQEAVLHFEGPALVVAGAGSGKTRIVVHRIAYLLRERRVYPAEILAVIF


INKAAGEMKERLEKMVGRPARDLWVSTFHAAAVRILRTYGEYVGLRPGFVIYDEDDQNTL


LKEVLKELELEAKPGPFRAMIDRIKNRGAGLAEYMREAPDFIGGVPKDAAAEVYRKYQSG


LRMQGALDFNDLLLLTIELFEQHPEVLHKVQQRARFIHVDEYQDINPVQYKLIRLLAGER


PNLMVVGDPDQSIYGFRSADINNILDFIKDYPGARVIRLEENYRSSSSILRVANAVIEKN


ALRLEKVLRPTRPGGEPVRLYRAPNAREEAAFVAREIVKLGNFQQIAVLYRTNAQSRLLE


EHLRRANVPVRLVGAVGFFERREIKDLLAYGRVAVNPADSINLRRIVNIPPRGIGATIVS


RLVEHAQKTGITVFEAFRVAEQVISRPQQVQAFVRLLDELIEAAFESGPTAFFQRVLEQT


GFREALKQEPDGEDRLQNVEELLRAAQDWEEEEGGSLSDFLDSVALTAKAEEPQGDAPAE


AVILMILHNAKGLEFPTVFLVGLEENLLPHRNSLHRLEDLEEERRLFYVGITRAQERLYL


SYAEERETYGKREYTRPSRFLEDIPQDLLKEVGAFGDSEVRVLPQARPEPKPRTQLAEFK


GGEKVRHPKFGSGTVVAAMGGEVIVMFPGVGLKRLAVKFAGLERLE





>tr|D3PLL2|D3PLL2_MEIRD DNA helicase OS = Meiothermusruber


(strain ATCC 35948/DSM 1279/VKM B-1258/21) GN = K649_10770


PE = 4 SV = 1 (SEQ ID NO: 96)


MKVRVASAGIGKTASLVLRYLELIAKGTPLRRIAGVIFTRKAADELRVRVAAAIEEVLQT


GRHLSFVASGGSRAAFQEAAREIAGAILSTIHGFMAQCLRLAAPLLHLDPDFSMLGDWEA


QAIFEEEWQTLRYLAQDAHHPLFGLVSDELTEPLLHLFSRRSQAEVFEPAAGEANQHLLQ


VYQTVYAAYEARLGANLLSPSELERKALELARNDRAMKRVLERVRVLLVDEYQDVNPVQG


AFFAALEQARLPIEIVGDPKQSIYAFRNADVSVFRKALREGKSEPPLTHSYRHSRVLVRF


LNGLTGYLAKEGLGFGLEEAPPVEGVRPEQGRLEVHWVVGELPLEELRKQEARVLAGRLA


ALRGPIEYSQMAVLVRSYGSVRFLEEALAEAQIPYVLLQGRGYYERQEVRDLYHALRAAL


DPRGLSLAVFLRSPFGQHTEAGPLKPLELPQIEGVLRADDPLGRLAQHWPSVYERLRQIQ


AQVRLMAPLEVLKFLIRAPLMDGRPYHDFLEPRARENVDALLFYFAPRPPQNLEGLLERL


ELLSRQADAGDVPQSGEGVQILTVHQAKGLEWPLVAVFDLGRMNVHRPQPLYLGQGPNGG


DGGRLRRWVALPETPQFEAFRQQVKLQEEEESYRLLYVAASRARDTLLLTASASHGQPEG


WGKVLEAMNLGPASKPYHRPDFHLQTWPYQPAPPVRVLSQPAPLQPSPWVDARFEPEPFP


PLFSPSALKRLEAEPLPLPDPEEGEAVPGRARAIGTLVHYAIGQNWRPDNPQHLANLEAQ


EVMFPFGPDERRGIMAEVQALLEHYQELLGRALPWPRDEDYPEFAVALPLGSTVWQGVID


RLYRVGQQWYLEDYKTDQEMRPERYLVQLGIYLAAIRQAWQIEPEVRLVYLRFGWVERLD


KAILEAALGEIMPKGEGLRR





>tr|Q9RTI9|Q9RTI9_DEIRA DNA helicase OS = Deinococcus



radiodurans (strain ATCC 13939/DSM 20539/JCM 1687/ LMG



4051/NBRC 15346/NCIMB 9279/R1/VKM B-1422) GN = DR_1775


PE = 1 SV = 1 (SEQ ID NO: 97)


MTSSAGPDLLQALNPTQAQAADHFTGPALVIAGAGSGKTRTLIYRIAHLIGHYGVHPGEI


LAVTFTNKAAAEMRERAGHLVPGAGDLWMSTFHSAGVRILRTYGEHIGLRRGFVIYDDDD


QLDIIKEVMGSIPGIGAETQPRVIRGIIDRAKSNLWTPDDLDRSREPFISGLPRDAAAEA


YRRYEVRKKGQNAIDFGDLITETVRLFKEVPGVLDKVQNKAKFIHVDEYQDTNRAQYELT


RLLASRDRNLLVVGDPDQSIYKFRGADIQNILDFQKDYPDAKVYMLEHNYRSSARVLEAA


NKLIENNTERLDKTLKPVKEAGQPVTFHRATDHRAEGDYVADWLTRLHGEGRAWSEMAIL


YRTNAQSRVIEESLRRVQIPARIVGGVGFYDRREIRDILAYARLALNPADDVALRRIIGR


PRRGIGDTALQKLMEWARTHHTSVLTACANAAEQNILDRGAHKATEFAGLMEAMSEAADN


YEPAAFLRFVMETSGYLDLLRQEGQEGQVRLENLEELVSAAEEWSQDEANVGGSIADFLD


DAALLSSVDDMRTKAENKGAPEDAVTLMTLHNAKGLEFPVVFIVGVEQGLLPSKGAIAEG


PSGIEEERRLFYVGITRAMERLLMTAAQNRMQFGKTNAAEDSAFLEDIEGLFDTVDPYGQ


PIEYRAKTWKQYRPTVPAATTAVKNTSPLTAELAYRGGEQVKHPKFGEGQVLAVAGVGER


QEVTVHFASAGTKKLMVKFANLTKL





>tr|M1E5C5|M1E5C5_9FIRM DNA helicase OS = Thermodesulfobium



narugense DSM 14796 GN = Thena_1375 PE = 4 SV = 1 (SEQ ID NO: 98)



MDLNLNEDQKRAVYSDSRALLIVAGAGTGKTRVLTTRAARLIKENPDARYLLLTFTKKAA


REMTTRVRELIEEDTKNRLYSGTFHSFCSNIIRRRSERVGLTNDFVIIDESDSLDLMKKV


FSRIYSKEKIDSLIFKPKDILSLYSYARNNNQDFIEIVQRKYKYVNFEDIKKIISLYELN


KKERNYLDFDDLLMYGLLAIKTLEKSPFDEVLVDEFQDTNQIQAEMLYYFYDLGSRISAV


GDDAQSIYSFRGAYYENMFNFIKRLDAEKIILSSNYRSTQQILDIANSIIQSSYSSIKKE


LVANVRLKENVKPKLVIVSDDWEEARYVAREMQKFGEKGLKVAALYRAAYIGRNLESQLN


SMGIKYSFYGGQKLTESAHAKDFMSFLRVFVNPKDEIALIRILKMFPGIGEKKAEKIKDA


VISGDNLKKALSKEKNLEELNIFFDKLFKITDWHDLLELVFDFYKDIMNRLYPENYEERE


EDLIKFMDMSSNYDNLVEYLEAFTLDPVEKSEFDNNNVILSTIHSAKGLEFDVVFLLSVI


ESVYPHFRAQSTDEIEEERRLFYVAITRAKQRLIFTFPRHSKKSRGYFAKNTISPFLREK


DNYLEVFIAR





>tr|Q5SIE7|Q5SIE7_THET8 DNA helicase OS = Thermusthermophilus


(strain HB8/ATCC 27634/DSM 579) GN = TTHA1427 PE = 4 SV = 1 (SEQ


ID NO: 99)


MSDALLAPLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVT


FTNKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTAL


LKEVLKELALSARPGPIKALLDRAKNRGVGLKALLGELPEYYAGLSRGRLGDVLVRYQEA


LKAQGALDFGDILLYALRLLEEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEE


ANLMAVGDPDQGIYSFRAADIKNILDFTRDYPEARVYRLEENYRSTEAILRFANAVIVKN


ALRLEKALRPVKRGGEPVRLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLL


EQALAGRGIPARVVGGVGFFERAEVKDLLAYARLALNPLDAVSLKRVLNTPPRGIGPATW


ARVQLLAQEKGLPPWEALKEAARTFSRPEPLRHFVALVEELQDLVFGPAEAFFRHLLEAT


DYPAYLREAYPEDAEDRLENVEELLRAAKEAEDLQDFLDRVALTAKAEEPAEAEGRVALM


TLHNAKGLEFPVVFLVGVEEGLLPHRNSVSTLEGLEEERRLFYVGITRAQERLYLSHAEE


REVYGRREPARPSRFLEEVEEGLYEVYDPYRRPPSPPPHRPRPGAFRGGERVVHPRFGPG


TVVAAQGDEVTVHFEGFGLKRLSLKYAELKPA





>tr|B5YD55|B5YD55_DICT6 DNA helicase OS = Dictyoglomus



thermophilum (strain ATCC 35947DSM 3960/H-6-12)



GN = DICTH_0581 PE = 4 SV = 1 (SEQ ID NO: 100)


MNNQFDSEKKIFIIPSRKKKEFLERIEKDLNEEQRKVVLEADGPSLVIAGPGSGKTRTIV


YRVGYLVALGYSPKNIMLLTFTNQAARHMINRTQALIRESIEEIWGGTFHHVGNRILRVY


GKIIGINEQYNILDREDSLDLIDECLEELFPEENLGKGILGELFSYKVNTGKNWDEVLKI


KAPQIIDKIEIVQKVFERYEKRKRELNVLDYDDLLFFWYRLLLESEKTRKILNDRFLYIL


VDEYQDTNWLQGEIIRLTREENKNILVVGDDAQSIYSFRGATIENILSFPEIFPGTRIFY


LVFNYRSTPEIINLANEIIKRNTRQYFKEIKPVLKSGSKPKLVWVRDDEEEAQFVVEVIK


ELHKEGVKYKDIGVLFRSNYHSMAVQMELTLQGIPYEVRGGLRFFEQAHIKDMISLLKIL


FNPQDEISAQRFFKLFPGIGRAYAKKLSQVLKESKDFDKIFQMQFSGRTLEGLRILKNIW


DKIKVIPVQNFSEILRVFFNEYYKDYLERNYPDFKDREKDVDQLILLSERYDDLEKFLSE


LTLYTYAGEKLLEEEEEEKDFVVLSTIHQAKGLEWHAVFILRLVQGDFPSYKSMDNIEEE


RRLFYVAVTRAKRELYVITYLTRKVKDMNVFTKPSIFLEELPYKELFEEWIVQREI





>tr|F6DJA4|F6DJA4_THETG DNA helicase OS = Thermusthermophilus


(strain SG0.5JP17-16) GN = Ththe16_2124 PE = 4 SV = 1 (SEQ ID NO:


101)


MLSPFGGEEETKAIPLEEEILLAWRVFSAALPPNFLAPVSASLHTLVREAEGKEGAELEA


YAWERLEELARTSVVKDAIQSFLEVAAEKPEVLRAGLLWFRTWNRLSPEEREALYRKAER


FKPTAELASKASFLQGPPPPPKPLSPSVQAARSSPPRFTPTPEQEEAVRAFLSREDMKLV


AVAGSGKTTTLRLMAQSAPKERLLYVAFNRSVRDEAERTFPGNVEVLTLHGLAHRHVVRG


SGAYQRKLAARNGRVTPGDVLEALELPRERYALAYVIRSTLEAFLRSASEVPTPAHIPPE


YREVLQRRDKDPFSERYVLKAVRLIWKLMQDPDDSFPLSFDGFVKIWAQAGAKIRGYDAV


LVDEAQDLSPVFLQVLEAHRGELRRVYVGDPRQQIYGWRGAVNAMDKLDAPERKLTWSFR


FGEDLARGVRRFLAHVGSPIELHGKAPWDTEVSLARPEPPYTALCRTNAGAVEAVTSFLL


EEGREGARVFVVGGVDEIAWLLRDAHLLKVGGEREKPHPELALVENWEELEELAKEVNHP


QARMLVRLARRYDLLELARLLKHAQADEEGKADLVVSTLHKAKGREWDRVVLWGDFIPVW


DEKVREFYRKQGALDELKEEENVVYVALTRARRFLGLDQLPDLHERFFQGEGLVKPPSVS


PLSVGGAGVSADLLRELEVRVLAKLEDRLKEVAEVLAALLVEEASKAVAEAMREMGLLGE


EG





>tr|F6DIL2|F6DIL2_THETG DNA helicase OS = Thermusthermophilus


(strain SG0.5JP17-16) GN = Ththe16_1438 PE = 4 SV = 1 (SEQ ID NO:


102)


MSDALLAPLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVT


FTNKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTAL


LKEVLKELALSARPGPIKALLDRAKNRGVGLKALLGELPEYYAGLSRGRLGDVLVRYQEA


LKAQGALDFGDILLYALRLLEEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEE


ANLMAVGDPDQGIYSFRAADIKNILDFTRDYPEARVYRLEENYRSTEAILRFANAVIVKN


ALRLEKALRPVKRGGEPVRLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLL


EQALAGRGIPARVVGGVGFFERAEVKDLLAYARLALNPLDAVSLKRVLNTPPRGIGPATW


ARVQLLAQEKGLPPWEALKEAARTFPRAEPLRHFVALVEELQDLVFGPAEAFFRHLLEAT


DYPTYLREAYPEDAEDRLENVEELLRAAKEAEDLQDFLDRVALTAKAEEPAEAEGKVALM


TLHNAKGLEFPVVFLVGVEEGLLPHRNSLSTLEGLEEERRLFYVGITRAQERLYLSHAEE


REVYGRREPARPSRFLEEVEEGLYEVYDPYRRPPSPPPHRPRPGAFRGGERVVHPRFGPG


TVVAAQGDEVTVHFEGVGLKRLSLKYAELKPA





>tr|F6DJ67|F6DJ67_THETG DNA helicase OS = Thermusthermophilus


(strain SG0.5JP17-16) GN = Ththe16_2078 PE = 4 SV = 1 (SEQ ID NO:


103)


MEANLYVAGAGTGKTYTLAERYLGFLEEGLSPLQVVAVTFTERAALELRHRVRQMVGERS


LGHKERVLAELEAAPIGTLHALAARVCREFPEEAGVPADFQVMEDLEAALLLEAWLEEAL


LEALQDPRYAPLVEAVGYEGLLDTLREVAKDPLAARELLEKGLGEVAKALRLEAWRALRR


RMEELFHGERPEERYPGFPKGWRTEEPEVVPDLLAWAGEVKFNKKPWLEYKGDPALERLL


KLLGGVKEGFSPGPADERLEEVWPLLRELAEGVLARLEERRFRARRLGYADLEVHALRAL


EREEVRAYYRGRFRRLLVDEFQDTNPVQVRLLQALFPDLRAWTVVGDPNQSIYSFRRADP


KVMERFQAEAAKEGLRVRRLEKSHRYHQGLADFHNRFFPPLLPGYGAVSAERKPEGEGPW


VFHFQGDLEAQARFIAQEVGRLLSEGFQVYDLGEKAYRPMSLRDVAVLGRTWRDLARVAE


ALRRLEVPAVEAGGGNLLETRAFKDAYLALRFLGDPKDEEALVGLLRSPFFALTDGEVRR


LAEARGEGETLWEVLEREGDLSAEAERARETLRGLLRRKALEAPSRLLQRLDGATGYTGV


AARLPQGRRRVKDWEGTLDLVRKLEVGSEDPFLVARHLRLLLRSGLSVERPPLEAGEAVT


LLTVHGAKGLEWPVVFVLNVGGWNRLGSWKNNKTKPLFRPGLALVPPVLDEEGNPSALFH


LAKRRVEEEEKQEENRLLYVAATRASERLYLLLSPDLSPDKGDLDPQTLIGAGSLEKGLE


ATEPERPWSGEEGEVEVLEERIQGLPLEALPVSLLPLAARDPEAARRRLLGEPEPEGGEA


WEPDGPQETEEEVPGGAGVGRMTHALLERFEAPEDLEREGRAFLEESFPGAEGEEVEEAL


RLARTFLTAEVFAPYRGNAVAKEVPVALELLGVRLEGRADRVGEDWVLDYKTDRGVDAKA


YLLQVGVYALALGKPRALVADLREGKLYEGASQQVEEKAEEVLRRLMGGDRPEA





>tr|G8N9P8|G8N9P8_9DEIN DNA helicase OS = Thermus sp.


CCB_US3_UF1 GN = TCCBUS3UF1_17030 PE = 4 SV = 1 (SEQ ID NO: 104)


MDAFPSGKPLDEAWLSSLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLMARRGV


YPSEILAVTFTNKAAEEMRERLKAMVKGAGELWVSTFHAAALRILRFYGERVGLKPGFVV


YDEDDQTALLKEVLKELGVSAKPGPIKALLDRAKNRGEPPERLLADLPEYYAGLSRGRLL


DVLHRYQQALWAQGALDFGDILLLALKLLEEDPEVRKRVRKRARFIHVDEYQDTSPVQYR


LTKLLAGEEANLMAVGDPDQGIYSFRAADIKNILQFTEDFPGAKVYRLEENYRSTERILR


FANAVIVKNALRLEKTLRPVKSGGEPVRLFRARDAREEARFVAEEVLRLGPPYDRVAVLY


RTNAQSRLLEQALASRGIGARVVGGVGFFERAEVKDLLAYARLALNPLDAVSLKRVLNTP


PRGIGPATVEKVQAIAQEKGLPLYEALKVAAQVLPRPEPLRHFLALMEELMDLAFGPAEA


FFRHLLEATDYPAYLKEAYPEDLEDRLENVEELLRAAREAEGLMDFLDKVALTARAEEPG


EAGGKVALMTLHNAKGLEFPVVFLVGVEEGLLPHRSSVSTLEGLEEERRLFYVGVTRAQE


RLYLSYAEEREVYGRPEASRPSRFLEEVEEGLYEEYDPYRLPPPKPVPPPHRAKPGAFRG


GEKVVHPRFGLGTVVAASGDEVTVHFDGVGLKRLSLKYADLRPA





>tr|Q1J014|Q1J014_DEIGD DNA helicase OS = Deinococcus



geothermalis (strain DSM 11300) GN = Dgeo_0868 PE = 4 SV = 1 (SEQ ID



NO: 105)


MPDLPASSLLAQLNPNQAQAANHYTGPALVIAGAGSGKTRTLVYRIAHLIGHYGVDPGEI


LAVTFTNKAAAEMRERARHLVEGADRLWMSTFHSAGVRILRAYGEHIGLKRGFVIYDDDD


QLDILKEIMGSIPGIGAETHPRVLRGILDRAKSNLLTPADLARHPEPFISGLPREVAAEA


YRRYEARKKGQNAIDFGDLITETVRLFQEVPAVLERVQDRARFIHVDEYQDTNKAQYELT


RLLASRDRNLLVVGDPDQSIYRFRGADIQNILDFQKDYLDAKVYMLEQNYRSSARVLTIA


NKLIENNAERLEKTLRPVKEDGHPVLFHRATDQRAEGDFVAEWLTRLHAEGMRFSDMAVL


YRTNAQSRVIEESLRRVQIPAKIVGGVGFYDRREIKDVLAYARLAINPDDDVALRRIIGR


PKRGIGDTALERLMEWARVNGTSILTACAHAQELNILERGAQKAVEFAGLMHAMSEAADN


DEPGPFLRYVIETSGYLDLLRQEGQEGQVRLENLEELVSAAEEWSRENEGTIGDFLDDAA


LLSSVDDMRTKQENKDVPEDAVTLMTLHNAKGLEFPVVFIVGTEEGLLPSKNALLEPGGI


EEERRLFYVGITRAMERLFLTAAQNRMQYGKTLATEDSRFLEEIKGGFDTVDAYGQVIDD


RPKSWKEYRPTESARPGAVKNTSPLTEGMAYRGGEKVRHPKFGEGQVLAVAGLGDRQEVT


VHFPSAGTKKLLVKFANLTRA





>tr|Q745W4|Q745W4_THET2 DNA helicase OS = Thermusthermophilus


(strain HB27/ATCC BAA-163/DSM 7039) GN = TT_P0191 PE = 4 SV = 1


(SEQ ID NO: 106)


MALRPTEEQLKAVEAYRSGQDLKVVAVAGSGKTTTLRLMAEATPGKRGLYLAFNRSVQQE


AARKFPRNVRPYTLHALAFRMAVARDEGYRAKFQAGKGHLPAQAVAEALGLRNPLLLHAV


LGTLEAFLRSEAASPDPGMIPLAYRTLRAGTKTWPEEEAFVLRGVEALWRRMTDPKDPFP


LPHGAYVKLWALSEPDLSFAEALLVDEAQDLDPIFLKVLEAHRGRVQRVYVGDPRQQIYG


WRGAINAMDRLEAPEARLTWSFRFAETLARFVRNLTALQDRPVEVRGKAPWATRVDAALP


RPPFTVLCRTNAGVVGAVVVTHEVHRGRVHVVGGVEELVHLLRDAALLKKGEKRTDPHPD


LAMVETWEELEALAEAGYAPAYGVLRLAQEHPDLEALAAYLERAWTPVEVAAGVVVSTAH


KAKGREWDRVVLWDDFYPWWEEGAAARVNWGSDPAHLEEENLLYVAATRARKHLSLAQIR


DLLEAVDRMGVYRVAEEATRAYLLLSAEVLRGVATDPRVPAEHRVRALKALGYLERGEEA


LDSPGKPGGQG





>tr|Q72IS0|Q72IS0_THET2 DNA helicase OS = Thermusthermophilus


(strain HB27/ATCC BAA-163/DSM 7039) GN = uvrD PE = 4 SV = 1 (SEQ


ID NO: 107)


MSDALLAPLNEAQRQAVLHFEGPALVVAGAGSGKTRTVVHRVAYLVARRGVFPSEILAVT


FTNKAAEEMRERLRGLVPGAGEVWVSTFHAAALRILRVYGERVGLRPGFVVYDEDDQTAL


LKEVLKELALSARPGPIKALLDRAKNRGVGLKALLGELPEYYAGLSRGRLGDVLVRYQEA


LKAQGALDFGDILLYALRLLEEDEEVLRLVRKRARFIHVDEYQDTSPVQYRFTRLLAGEE


ANLMAVGDPDQGIYSFRAADIKNILDFTRDYPEARVYRLEENYRSTEAILRFANAVIVKN


ALRLEKALRPVKRGGEPVRLYRAEDAREEARFVAEEIARLGPPWDRYAVLYRTNAQSRLL


EQALAGRGIPARVVGGVGFFERAEVKDLLAYARLALNPLDAVSLKRVLNTPPRGIGPATW


ARVQLLAQEKGLPPWEALKEAARTFPRPEPLRHFVALVEELQDLVFGPAEAFFRHLLEAT


DYPAYLREAYPEDAEDRLENVEELLRAAKEAEDLQDFLDRVALTAKAEEPAEAEGRVALM


TLHNAKGLEFPVVFLVGVEEGLLPHRNSVSTLEGLEEERRLFYVGITRAQERLYLSHAEE


REVYGRREPARPSRFLEEVEEGLYEVYDPYRRPPSPPPHRPRPGAFRGGERVVHPRFGPG


TVVAAQGDEVTVHFEGFGLKRLSLKYAELKPA





>tr|F2NK78|F2NK78_MARHT DNA helicase OS = Marinithermus



hydrothermalis (strain DSM 14884/JCM 11576/T1)



GN = Marky_1312 PE = 4 SV = 1 (SEQ ID NO: 108)


MDLLRDLNPAQREAVQHYTGPALVVAGAGSGKTRTVVHRIAYLIRHRGVYPTEILAVTFT


NKAAGEMKERLARMVGPAARELWVSTFHSAALRILRVYGEYIGLKPGFVVYDEDDQLALL


KEVLGGLGLETRPQYARGVIDRIKNRMWSVDAFLREAEDWVGGLPKEQMAAVYQAYEARM


RALGAVDFNDLLLKVIGLFEAHPEVLHRVQQRARFIHVDEYQDTNPAQYRLTRLLAGAER


NLMVVGDPDQSIYGFRNADIHNILNFEKDYPDARVYRLEENYRSTEAILRVANAVIEKNA


LRLEKTLRPVRSGGDPVFLYRAPDHREEAAFVAREVQRLKGRGRRLDEIAVLYRTNAQSR


VLEEAFRRQNLGVRIVGGVGFYERREVKDVLAYARAAVNPADDLAVKRVLNVPARGIGQT


SLAKLSQLAETARVSFFEALRRAGEVLARPQAQAVQRFVALIEGLANAAYDTGPDAFLRL


VLAETGYADMLRREPDGEARLENLEELLRAAREWEEQHAGTIADFLDEVALTARAEEPEG


EVPAEAVTLMTLHNAKGLEFPVVFIVGVEEGLLPHRSSTARVEDLEEERRLFYVGITRAQ


ERLYLTLSEERETYGRREAVRASRFLEDIPEAFLQPLSPFGEPLGAGREPVAVRPTRRSS


AAGGFRGGEKVRHPRFGQGLVVAASGEGDRQEVTVHFAGVGLKKLLVKYAGLERIE









REFERENCES



  • 1. B. Choi, G. Zocchi, Y. Wu, S. Chan, L. Jeanne Perry, Allosteric control through mechanical tension. Phys Rev Lett 95, 078102 (2005).

  • 2. M. Volgraf et al., Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2, 47-52 (2006).

  • 3. M. Tomishige, R. D. Vale, Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change. J Cell Biol 151, 1081-1092 (2000).

  • 4. B. Schierling et al., Controlling the enzymatic activity of a restriction enzyme by light. Proceedings of the National Academy of Sciences of the United States of America 107, 1361-1366 (2010).

  • 5. D. M. Veine, K. Ohnishi, C. H. Williams, Jr., Thioredoxin reductase from Escherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines. Protein science: a publication of the Protein Society 7, 369-375 (1998).

  • 6. T. M. Lohman, E. J. Tomko, C. G. Wu, Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9, 391-401 (2008).

  • 7. A. Niedziela-Majka, M. A. Chesnik, E. J. Tomko, T. M. Lohman, Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. The Journal of biological chemistry 282, 27076-27085 (2007).

  • 8. T. Ha et al., Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638-641 (2002).

  • 9. B. Sun et al., Impediment of E. coli UvrD by DNA-destabilizing force reveals a strained-inchworm mechanism of DNA unwinding. The EMBO journal, (2008).

  • 10. W. Cheng, J. Hsieh, K. M. Brendza, T. M. Lohman, E. coli Rep oligomers are required to initiate DNA unwinding in vitro. Journal of molecular biology 310, 327-350 (2001).

  • 11. N. K. Maluf, C. J. Fischer, T. M. Lohman, A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro. Journal of molecular biology 325, 913-935 (2003).

  • 12. M. S. Dillingham, Superfamily I helicases as modular components of DNA-processing machines. Biochemical Society transactions 39, 413-423 (2011).

  • 13. M. Yamaguchi, V. Dao, P. Modrich, MutS and MutL activate DNA helicase II in a mismatch-dependent manner. The Journal of biological chemistry 273, 9197-9201 (1998).

  • 14. L. E. Mechanic, B. A. Frankel, S. W. Matson, Escherichia coli MutL loads DNA helicase II onto DNA. The Journal of biological chemistry 275, 38337-38346 (2000).

  • 15. P. Soultanas et al., Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic acids research 27, 1421-1428 (1999).

  • 16. A. F. Slatter, C. D. Thomas, M. R. Webb, PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD. Biochemistry 48, 6326-6334 (2009).

  • 17. P. Soultanas, M. S. Dillingham, D. B. Wigley, Escherichia coli ribosomal protein L3 stimulates the helicase activity of the Bacillus stearothermophilus PcrA helicase. Nucleic acids research 26, 2374-2379 (1998).

  • 18. J. E. Yancey, S. W. Matson, The DNA unwinding reaction catalyzed by Rep protein is facilitated by an RHSP-DNA interaction. Nucleic acids research 19, 3943-3951 (1991).

  • 19. S. Barranco-Medina, R. Galletto, DNA binding induces dimerization of Saccharomyces cerevisiae Pif1. Biochemistry 49, 8445-8454 (2010).

  • 20. H. S. Subramanya, L. E. Bird, J. A. Brannigan, D. B. Wigley, Crystal structure of a DExx box DNA helicase. Nature 384, 379-383 (1996).

  • 21. S. Korolev, J. Hsieh, G. H. Gauss, T. M. Lohman, G. Waksman, Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635-647 (1997).

  • 22. J. Y. Lee, W. Yang, UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127, 1349-1360 (2006).

  • 23. H. Jia et al., Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. Journal of molecular biology 411, 633-648 (2011).

  • 24. K. M. Brendza et al., Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proceedings of the National Academy of Sciences of the United States of America 102, 10076-10081 (2005).

  • 25. W. Cheng et al., The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity. Proceedings of the National Academy of Sciences of the United States of America 99, 16006-16011 (2002).

  • 26. S. Myong, I. Rasnik, C. Joo, T. M. Lohman, T. Ha, Repetitive shuttling of a motor protein on DNA. Nature 437, 1321-1325 (2005).

  • 27. G. Lee, M. A. Bratkowski, F. Ding, A. Ke, T. Ha, Elastic Coupling Between RNA Degradation and Unwinding by an Exoribonuclease. Science (New York, N.Y336, 1726-1729 (2012).

  • 28. M. C. Murphy, I. Rasnik, W. Cheng, T. M. Lohman, T. Ha, Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophysical journal 86, 2530-2537 (2004).

  • 29. J. A. Ali, T. M. Lohman, Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science (New York, N.Y275, 377-380 (1997).

  • 30. J. R. Moffitt et al., Intersubunit coordination in a homomeric ring ATPase. Nature 457, 446-450 (2009).

  • 31. L. R. Brewer, P. R. Bianco, Laminar flow cells for single-molecule studies of DNA-protein interactions. Nature methods 5, 517-525 (2008).

  • 32. T. T. Perkins, H. W. Li, R. V. Dalal, J. Gelles, S. M. Block, Forward and reverse motion of single RecBCD molecules on DNA. Biophysical journal 86, 1640-1648 (2004).

  • 33. J. G. Yodh, M. Schlierf, T. Ha, Insight into helicase mechanism and function revealed through single-molecule approaches. Quarterly reviews of biophysics 43, 185-217 (2010).

  • 34. W. Zhang et al., Directional loading and stimulation of PcrA helicase by the replication initiator protein RepD. Journal of molecular biology 371, 336-348 (2007).

  • 35. C. Machon et al., RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD. Nucleic acids research 38, 1874-1888 (2010).

  • 36. J. Park et al., PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142, 544-555 (2010).

  • 37. M. J. Comstock, H. Jia, T. M. Lohman, T. Ha, Y. R. Chemla. (2014).

  • 38. M. N. Dessinges, T. Lionnet, X. G. Xi, D. Bensimon, V. Croquette, Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proceedings of the National Academy of Sciences of the United States of America 101, 6439-6444 (2004).

  • 39. J. G. Yodh, B. C. Stevens, R. Kanagaraj, P. Janscak, T. Ha, BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. The EMBO journal 28, 405-416 (2009).

  • 40. B. X. Huang, H. Y. Kim, Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry. Mol Cell Proteomics 5, 1045-1053 (2006).

  • 41. D. Branton et al., The potential and challenges of nanopore sequencing. Nature biotechnology 26, 1146-1153 (2008).

  • 42. A. H. Laszlo et al., Decoding long nanopore sequencing reads of natural DNA. Nature biotechnology, (2014).

  • 43. M. Vincent, Y. Xu, H. Kong, Helicase-dependent isothermal DNA amplification. EMBO reports 5, 795-800 (2004).

  • 44. I. L. Urbatsch et al., Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein. The Journal of biological chemistry 276, 26980-26987 (2001).

  • 45. I. Rasnik, S. Myong, W. Cheng, T. M. Lohman, T. Ha, DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. Journal of molecular biology 336, 395-408 (2004).

  • 46. R. Roy, S. Hohng, T. Ha, A practical guide to single-molecule FRET. Nat Methods 5, 507-516 (2008).

  • 47. C. Joo, T. Ha, in Cold Spring Harb Protoc. (2012), vol. 2012.

  • 48. Y. Harada, K. Sakurada, T. Aoki, D. D. Thomas, T. Yanagida, Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. Journal of molecular biology 216, 49-68 (1990).

  • 49. T. Yanagida, M. Nakase, K. Nishiyama, F. Oosawa, Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58-60 (1984).

  • 50. I. Rasnik, S. A. McKinney, T. Ha, Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3, 891-893 (2006).

  • 51. C. J. CLOPPER, E. S. PEARSON, THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL. Biometrika 26, 404-413 (1934).

  • 52. J. Gal, R. Schnell, S. Szekeres, M. Kalman, Directional cloning of native PCR products with preformed sticky ends (autosticky PCR). Molecular & general genetics: MGG 260, 569-573 (1999).

  • 53. Z. Qi, R. A. Pugh, M. Spies, Y. R. Chemla, Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. Elife (Cambridge) 2, e00334 (2013).

  • 54. M. P. Landry, P. M. McCall, Z. Qi, Y. R. Chemla, Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophysical journal 97, 2128-2136 (2009).

  • 55. C. Bustamante, Y. R. Chemla, J. R. Moffitt, High-resolution dual-trap optical tweezers with differential detection. Single-molecule techniques: a laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2008).

  • 56. K. Berg-Sorensen, H. Flyvbjerg, Power spectrum analysis for optical tweezers. Review of Scientific Instruments 75, 594-612 (2004).



All patents, patent applications, patent application publications and other publications that are cited herein are hereby incorporated by reference as if set forth in their entirety.


It should be understood that the methods, procedures, operations, composition, and systems illustrated in figures may be modified without departing from the spirit of the present disclosure. For example, these methods, procedures, operations, devices and systems may comprise more or fewer steps or components than appear herein, and these steps or components may be combined with one another, in part or in whole.


Furthermore, the present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various embodiments. Many modifications and variations can be made without departing from its scope and spirit. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art based on the foregoing descriptions.

Claims
  • 1. A method of catalyzing an unwinding reaction of a double-stranded DNA, comprising contacting the double-stranded DNA with a conformationally-constrained helicase wherein the conformationally-constrained helicase is selected from the group consisting of a Rep helicase from E. coli, a UvrD helicase from E. coli, a PcrA helicase from B. stearothermophilus, or a homolog thereof;wherein the conformationally-constrained helicase comprises a first subdomain comprising a 1A or a 1B subdomain having a first amino acid and a second subdomain comprising a 2B subdomain having a second amino acid,wherein the first amino acid corresponds to any one of positions 84-116 or 178-196 of the helicase amino acid sequence, relative to SEQ ID NO:32;wherein the second amino acid corresponds to any one of positions 388-411, 422-444, and 518-540 of the helicase amino acid sequence, relative to SEQ ID NO:32;wherein a side chain of the first amino acid is covalently crosslinked to a side chain of the second amino acid with a linker to form an active, conformationally-constrained helicase;wherein said first amino acid is less than about 20 Å from said second amino acid when the helicase is in an active conformation, andwherein the conformationally-constrained helicase comprises at least one degree of freedom less than a helicase that is not constrained as such.
  • 2. The method of claim 1, wherein the conformationally-constrained helicase is chemically crosslinked.
  • 3. The method of claim 1, wherein the conformationally-constrained helicase comprises SEQ ID NO:4 or SEQ ID NO:12.
  • 4. The method of claim 1, wherein the linker comprises an alkyl having a length in the range from C7 to C23.
  • 5. The method of claim 1, wherein the first amino acid is covalently crosslinked to the second amino acid by a disulfide bond or a chemical crosslinker.
  • 6. The method of claim 5, wherein the chemical crosslinker is a bis-maleimide crosslinker.
  • 7. The method of claim 5, wherein the chemical crosslinker has a length of from about 6 Å to about 25 Å.
  • 8. The method of claim 1, wherein the chemical crosslinker is selected from the group consisting of
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/526,905, filed May 15, 2017, which is a 35 U.S.C. § 371 of International Patent Application No. PCT/US2015/060693, filed Nov. 13, 2015, which claims the benefit of U.S. Provisional Application No. 62/079,183, filed Nov. 13, 2014, the disclosures of which are incorporated herein by reference in their entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under GM065367 awarded by the National Institutes of Health. The United States Government has certain rights in the invention.

US Referenced Citations (25)
Number Name Date Kind
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
5168038 Tecott et al. Dec 1992 A
5210015 Gelfand et al. May 1993 A
5612199 Western et al. Mar 1997 A
5925517 Tyagi et al. Jul 1999 A
6124090 Rose et al. Sep 2000 A
6174670 Wittwer et al. Jan 2001 B1
6261797 Sorge et al. Jul 2001 B1
6294323 Ullman et al. Sep 2001 B1
6365375 Dietmaier et al. Apr 2002 B1
6391544 Salituro et al. May 2002 B1
6432360 Church et al. Aug 2002 B1
6485944 Church et al. Nov 2002 B1
6511803 Church et al. Jan 2003 B1
6569627 Wittwer et al. May 2003 B2
7282328 Kong et al. Oct 2007 B2
7425431 Church et al. Sep 2008 B2
7662594 Kong et al. Feb 2010 B2
20080269068 Church et al. Oct 2008 A1
20090018024 Church et al. Jan 2009 A1
20100075384 Kong et al. Mar 2010 A1
20100273164 Church et al. Oct 2010 A1
20130210019 Korfhage et al. Aug 2013 A1
20150191709 Heron Jul 2015 A1
Foreign Referenced Citations (4)
Number Date Country
WO 2005082098 Sep 2005 WO
WO 2006073504 Jul 2006 WO
WO-2014013260 Jan 2014 WO
WO 2014158665 Oct 2014 WO
Non-Patent Literature Citations (99)
Entry
Fransceus. J Ind Microbiol Biotechnol. May 2017;44(4-5):687-695.
Sanavia. Computational and Structural Biotechnology Journal, vol. 18, 2020, pp. 1968-1979.
Studer. Residue mutations and their impact on protein structure and function: detecting beneficial and pathogenic changes. Biochem. J. (2013) 449, 581-594.
Ali et al. (1997) “Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase,” Science. 275:377-380.
Arslan et al. (Apr. 17, 2015) “Engineering of a superhelicase through conformational control,” Science. 348(6232):344-347.
Arslan et al., (Aug. 2011) “Tuning helicase activity of E.coli Rep by 2B domain”, Poster. In; FASEB Helicase, Aug. 2, 2011. Steamboat, Colorado.
Arslan et al. (Aug. 2011) “Tuning helicase activity of E. coli Rep by 2B domain,” Presentation Slides. In; FASEB Helicase Conference, Aug. 2, 2011. Steamboat, Colorado.
Baldari et al. (1987) “A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae,” EMBO J. 6:229-234.
Barranco-Medina et al. (2010) “DNA Binding Induces Dimerization of Saccharomyces cerevisiae Pif1,” Biochemistry. 49:8445-8454.
Becker-Andre et al. (1989) “Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY),” Nucleic Acids Research. 17:9437-9446.
Berg-Sorensen et al. (2004) “Power spectrum analysis for optical tweezers,” Review of Scientific Instruments. 75:594-612.
Bernard et al. (1999) “Color Multiplexing Hybridization Probes Using the Apolipoprotein E Locus as a Model System for Genotyping,” Anal. Biochem. 273:221-228.
Branton et al. (2008) “The potential and challenges of nanopore sequencing,” Nature Biotechnology. 26:1146-1153.
Brendza et al. (2005) “Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain,” Proc. Natl. Acad. Sci. USA. 10:10076-10081.
Brewer et al. (2008) “Laminar flow cells for single-molecule studies of DNA-protein interactions,” Nature Methods. 5:517-525.
Bustamante et al. (2009) “High-resolution dual-trap optical tweezers with differential detection: an introduction,” Cold Spring Harb. Protoc. 2009(10):pdb.top60.
Bustamante et al. (2009) “High-resolution dual-trap optical tweezers with differential detection: instrument design,” Cold Spring Harb. Protoc. 2009(10):pdb.ip73.
Cheng et al. (2001) “E. coli Rep oligomers are required to initiate DNA unwinding in vitro,” J. Mol. Biol. 310:327-350.
Cheng et al. (2002) “The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity,” Proc. Natl. Acad. Sci. USA. 99:16006-16011.
Choi et al. (2005) “Allosteric control through mechanical tension,” Phys. Rev. Lett. 95:078102.
Cleary et al. (2004) “Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis,” Nature Methods. 1:241-248.
Clopper et al. (1934) “The use of confidence or fiducial limits illustrated in the case of the binomial,” Biometrika. 26:404-413.
Comstock et al. (Apr. 16, 2015) “Direct observation of structure-function relationship in a nucleic acid processing enzyme,” Science. 348: 352-354.
Dayhoff (1978) “Matrices for detecting distant relationships,” In; Atlas of Protein Sequence and Structure. 5(Suppl 3):353-358.
Dayhoff (1978) “Survey of new data and computer methods of analysis,” In; Atlas of Protein Sequence and Structure. 5(Suppl 3):1-8.
Dessinges et al. (2004) “Single-molecule assay reveals strand switching and enhanced processivity of UvrD,” Proc. Natl. Acad. Sci. USA. 101(17):6439-6444.
Dillingham (2011) “Superfamily I helicases as modular components of DNA-processing machines,” Biochemical Society Transactions. 39(2):413-423.
Diviacco et al. (1992) “A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates,” Gene. 122(2):313-320.
Freeman et al. (1999) “Quantitative RT-PCR: pitfalls and potential,” Biotechniques. 26(1):112-122, 124-125.
Gal et al. (1999) “Directional cloning of native PCR products with preformed sticky ends (autosticky PCR),” Mol. Gen. Genet. 260:569-573.
Gribskov (1986) “Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins,” Nucl. Acids Res. 14(16):6745-6763.
Guatelli et al. (1990) “Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication,” Proc. Natl. Acad. Sci. USA. 87(5):1874-1878.
Ha et al. (2002) “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature. 419:638-641.
Harada et al. (1990) “Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay,” J. Mol. Biol. 216:49-68.
Huang et al. (2006) “Interdomain conformational changes in Akt activation revealed by chemical cross-linking and tandem mass spectrometry,” Mol. Cell Proteomics. 5:1045-1053.
International Search Report with Written Opinion corresponding International Patent Application No. PCT/US02015/060693, mailed Mar. 4, 2016.
Jaffe et al. (2000) “An artificial gene for human porphobilinogen synthase allows comparison of an allelic variation implicated in susceptibility to lead poisoning,” J. Biol. Chem. 275(4):2619-2626.
Jia et al. (2011) “Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA Binding,” J. Mol. Biol. 411:633-648.
Joo et al. (Oct. 2012) “Preparing sample chambers for single-molecule FRET,” Cold Spring Harb Protoc. 2012, (10):1104-1108.
Kaufman et al. (1987) “Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells,” EMBO J. 6(1):187-193.
Khafizov (Sep. 18, 2012) “Single molecule force spectroscopy of single stranded DNA binding protein and rep helicase,” Ph.D. Dissertation. University of Illinois at Urbana-Champaign. pp. 1-96.
Korolev et al. (1997) “Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP,” Cell. 90(4):635-647.
Kurjan et al. (1982) “Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains our tandem copies of mature alpha-factor,” Cell. 30:933-943.
Kwoh et al. (1989) “Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format”, Proc. Natl. Acad. Sci. USA. 86(4): 1173-1177.
Kwok (2000) “High-throughput genotyping assay approaches,” Pharmocogenomics 1:95-100.
Landegren et al. (1988) “A ligase-mediated gene detection technique,” Science. 241:1077-1080.
Landegren et al. (1998) “Reading bits of genetic information: methods for single-nucleotide polymorphism analysis,” Genome Res. 8:769-776.
Landry et al. (2009) “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophysical Journal. 97:2128-2136.
Laszlo et al. (Jun. 25, 2014) “Decoding long nanopore sequencing reads of natural DNA,” Nat. Biotechnol. 32(8):829-833.
Lee et al. (2006) “UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke,” Cell. 127(7):1349-1360.
Lee et al. (Jun. 2012) “Elastic coupling Between RNA Degradation and Unwinding by an Exoribonuclease,” Science. 336(6089):1726-1729.
Lizardi et al. (1988) “Exponential Amplification of Recombinant-RNA Hybridization Probes,” BioTechnology 3:1197-1202.
Lohman et al. (2008) “Non-hexameric DNA helicases and translocases: mechanisms and regulation”, Nat. Rev. Mol. Cell Biol., 9: 391-401.
Lucklow et al. (1989) “High level expression of nonfused foreign genes with Autographa califomica nuclear polyhedrosis virus expression vectors,” Virology. 170:31-39.
Machon et al. (2010) “RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD,” Nucleic Acids Research. 38(6):1874-1888.
Mackay et al. (2002) “Real-time PCR in virology,” Nucleic Acids Research. 30:1292-1305.
Maluf et al. (2003) “A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro,” Journal of Molecular Biology. 325:913-935.
Manthei et al. (Mar. 23, 2015) “Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases,” Proc. Natl. Acad. Sci. USA. 112(14):4292-4297.
Mechanic et al. (2000) “Escherichia coli MutL loads DNA helicase II onto DNA,” J. Biol. Chem. 275:38337-38346.
Moffitt et al. (2009) “Intersubunit coordination in a homomeric ring ATPase,” Nature. 457(7228):446-450.
Mullis et al. (1986) “Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction,” Cold Spring Harb. Symp. Quant. Biol. 51(Pt 1):263-273.
Murphy et al. (2004) “Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy,” Biophysical Journal 86:2530-2537.
Myong et al. (2005) “Repetitive shuttling of a motor protein on DNA,” Nature. 437:1321-1325.
Nakazawa et al. (1994) “UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement,” Proc. Natl. Acad. Sci. USA. 91:360-364.
Niedziela-Majka et al. (2007) “Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro,” Journal of Biological Chemistry. 282(37):27076-27085.
Park et al. (2010) “PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps,” Cell. 142:544-555.
Perkins et al. (2004) “Forward and reverse motion of single RecBCD molecules on DNA,” Biophysical Journal. 36:1640-1648.
Porreca et al.(2007) “Multiplex amplification of large sets of human exons,” Nat. Methods 4:931-936.
Qi et al. (May 28, 2013) “Sequence-dependent base pair stepping dynamics in XPD helicase unwinding,” Elife. 2: 300334.
Raney et al. (2013) “Structure and Mechanisms of SF1 DNA Helicases,” Adv. Exp. Med. Biol. 767:17-46.
Rasnik et al. (2004) “DNA-binding orientation and domain conformation of the E. coli rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes,” Journal of Molecular Biology. 336:395-408.
Rasnik et al. (2006) “Nonblinking and long-lasting single-molecule fluorescence imaging,” Nat. Methods. 3:891-893.
Roy et al. (2008) “A practical guide to single-molecule FRET,” Nat. Methods. 5:507-516.
Schierling et al. (2010) “Controlling the enzymatic activity of a restriction enzyme by light,” Proc. Natl. Acad. Sci. USA. 107:1361-1366.
Schultz et al. (1987) “Expression and secretion in yeast of a 400-kDa envelope glycoprotein derived from Epstein-Barr virus,” Gene 54:113-123.
Seed (1987) “An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2,” Nature. 329(6142):840-842.
Shi (2001) “Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies,” Clin. Chem. 47:164-172.
Slatter et al. (2009) “PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD,” Biochemistry. 48:6326-6334.
Smith et al. (1981) “Comparison of biosequences,” Advances in Applied Mathematics. 2:482-489.
Smith et al. (1983) “Production of human beta interferon in insect cells infected with a baculovirus expression vector,” Mol. Cell. Biol. 3:2156-2165.
Smith et al. (1988) “Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase,” Gene. 67:31-40.
Soultanas et al. (1998) “Escherichia coli ribosomal protein L3 stimulates the helicase activity of the Bacillus stearothermophilus PcrA helicase,” Nucleic Acids Research. 26:2374-2379.
Soultanas et al. (1999) “Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase,” Nucleic Acids Res. 27:1421-1428.
Subramanya et al. (1996) “Crystal structure of a DExx box DNA helicase,” Nature. 384:379-383.
Sun et al. (2008) “Impediment of E. con UvrD by DNA-destabilizing force reveals a strained-inchworm mechanism of DNA unwinding,” EMBO J. 27:3279-3287.
Tomishige et al. (2000) “Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change,” J. Cell Biol. 151:1081-1092.
Urbatsch et al. (2001) “Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the WO nucleotide-binding sites in human P-glycoprotein,” J. Biol. Chem. 276:26980-26987.
Veine et al. (1998) “Thioredoxin reductase from Escherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines,” Protein Science. 7:369-375.
Velankar et al. (1999) “Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism,” Cell. 97(1):75-84.
Vincent et al. (2004) “Helicase-dependent isothermal DNA amplification,” EMBO Reports. 5:795-800.
Volgraf et al. (2006) “Allosteric control of an ionotropic glutamate receptor with an optical switch,” Nature Chemical Biology. 2(1):47-52.
Williams et al. (2002) “In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein,” J. Biol. Chem. 277:7790-7798.
Yamaguchi et al. (1998) “MutS and MutL activate DNA helicase II in a mismatch-dependent manner,” J. Biol. Chem. 273:9197-9201.
Yanagida et al. (1984) “Direct observation of motion of single F-actin filaments in the presence of myosin,” Nature. 307:58-60.
Yancey et al. (1991) “The DNA unwinding reaction catalyzed by Rep protein is facilitated by an RHSP-DNA interaction,” Nucleic Acids Research. 19:3943-3951.
Yodh et al. “BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation”, The EMBO Journal, 28: 405-416.
Yodh et al. (2010) “Insight into helicase mechanism and function revealed through single-molecule approaches,” Duarterly Reviews of Biophysics. 43(2):185-217.
Zhang et al., “Directional loading and stimulation of PcrA helicase by the replication initiator protein RepD”, Journal of Molecular Biology, 2007, 371(2): 336-348.
Zimmerman et al., “Technical aspects of quantitative competitive PCR”, Biotechniques, 1996, 21: 268-279.
Related Publications (1)
Number Date Country
20220259576 A1 Aug 2022 US
Provisional Applications (1)
Number Date Country
62079183 Nov 2014 US
Continuations (1)
Number Date Country
Parent 15526905 US
Child 17537419 US