1. Field of the Invention
This invention relates in general to the loading of a biological sample to be analyzed on the correct locations of a disc. More specifically, but without restriction to the particular embodiments hereinafter described in accordance with the best mode of practice, this invention relates to a bio-safe dispenser and a related optical analysis disc assembly.
2. Discussion of the Background Art
An optical bio-disc is commonly used to conduct analysis on biological samples. The optical bio-disc operates in conjunction with a computer system provided with an optical disc drive and a display monitor.
The principal structural elements of an optical bio-disc include a cap portion, an adhesive member or channel layer, and a substrate. The cap portion includes one or more inlet ports for the loading of samples on the disc in order to be analyzed. The main biological hazard in loading samples in liquid form onto or into a disc, comes from the potentially infectious residues that may be spilled onto the exterior of the disc from the area adjacent the inlet port.
Furthermore, another risk is the possible cross contamination of different samples and/or loading a particular sample into a wrong analysis chamber. The present invention provides methods and apparatus including a dispenser and optical analysis disc that effectively address these concerns to thereby provide a useful and safe sample dispenser and a related optical analysis disc assembly.
The present invention is directed to a bio-safe dispenser and optical analysis disc assembly. The present dispenser may be implemented in the tip of a pipette.
More particularly, the present invention is directed to a liquid sample dispenser having a body portion, a tip portion connected to the body portion, first and second retainer members moveably supported within the tip portion, and a sealant contained between the first and second retainer means.
According to one aspect of this invention, there is provided an optical analysis disc for use with the dispenser. In one embodiment of the dispenser, the tip portion includes an operational end adapted to interact with the optical analysis disc. In a more specific embodiment thereof, the operational end is open.
In accordance with one preferred implementation of this invention, the first retainer member is positioned proximal to the operational end of the tip portion and includes a sealing plug adapted to seat in an inlet port the optical analysis disc.
As provided by yet another aspect of this invention, the operational end may be advantageously provided with coded indicia which correspond to counterpart indicia associated with a respective inlet port in the optical analysis disc so that a sample in the tip portion may be loaded into the channel layer only through the respective inlet port having the counterpart indicia.
In other preferred embodiments of this invention, the inlet port is in fluid communication with the channel layer. In alternate embodiments, the inlet port in the disc may include an initial break-away seal to protect any pre-loaded chemistries provided in the channel layer during delivery and storage of the disc.
According to still yet another aspect of this invention, there is provided an optical analysis disc including a substrate, a channel layer associated with the substrate, a cover portion, and an inlet port formed in the cover portion adapted to receive a test sample and a sealing plug. The channel layer is preferably positioned between the substrate and the cover portion.
In accordance with still further aspects of the present invention, there is provided an analysis kit. This kit is advantageously provided with a dispenser having a body portion, a tip portion connected to the body portion, first and second retainer members moveably supported within the tip portion, and a sealant contained between the first and second retainer means. The kit further includes an optical analysis disc including a substrate, a channel layer associated with the substrate, a cover portion located so that the channel layer is positioned between the substrate and the cover portion, and an inlet port formed in the cover portion adapted to receive a test sample and one of the retainer members.
In one preferred embodiment of the analysis kit, the inlet port is in fluid communication with the channel layer. In alternate embodiments, the inlet port in the disc may include an initial break-away seal to protect any pre-loaded chemistries provided in the channel layer during delivery and storage of the analysis kit. The first retainer member may be located proximal to an open end of the tip portion and be implemented as a sealing plug adapted to seat in the inlet port.
The tip portion of the dispenser provided in the present analysis kit preferably includes an operational end adapted to interact with the optical analysis disc. In a more specific embodiment, the operational end is open.
In an alternate preferred embodiment of the present invention, the first retainer member of the dispenser provided in the analysis kit is positioned proximal to the operational end of the tip portion and implemented as a sealing plug adapted to seat in the inlet port of the optical analysis disc.
And according to still yet an additional aspect of the analysis kit of this invention, the operational end of the dispenser may include coded indicia which correspond to counterpart indicia associated with a respective inlet port in the optical analysis disc so that a sample in the tip portion may be loaded into the channel layer only through the respective inlet port having the counterpart indicia.
In any of the above discussed embodiments of the dispenser according to this invention, the tip portion thereof may advantageously include a disinfectant and/or include pre-loaded antigens, agents, reagents, or other assay solutions. These pre-loaded assay solutions are preferably provided in a separate tip unit with the pre-loaded sealant. The separate tip unit is then attached to the pipette or dispenser by a threaded connection or other suitable quick release or adapter mechanisms.
The present invention is also directed to a method for loading a biological sample on a analysis disc through a dispenser having a tip portion including retainer means and a sealant. This method includes the steps of activating the dispenser for retrieving an pre-measured amount of the sample in the tip portion; directing the tip portion to a disc having an inlet port in communication with a channel layer; placing the tip portion within the inlet port; activating the dispenser for moving the sample into the channel layer; and sealing the inlet port.
This invention or different aspects thereof may be readily implemented in, adapted to, or employed in combination with the discs, assays, and systems disclosed in the following commonly assigned and co-pending patent applications: U.S. patent application Ser. No. 09/378,878 entitled “Methods and Apparatus for Analyzing Operational and Non-operational Data Acquired from Optical Discs” filed Aug. 23, 1999; U.S. Provisional Patent Application Ser. No. 60/150,288 entitled “Methods and Apparatus for Optical Disc Data Acquisition Using Physical Synchronization Markers” filed Aug. 23, 1999; U.S. patent application Ser. No. 09/421,870 entitled “Trackable Optical Discs with Concurrently Readable Analyte Material” filed Oct. 26, 1999; U.S. patent application Ser. No. 09/643,106 entitled “Methods and Apparatus for Optical Disc Data Acquisition Using Physical Synchronization Markers” filed Aug. 21, 2000; U.S. patent application Ser. No. 09/999,274 entitled “Optical Biodiscs with Reflective Layers” filed Nov. 15, 2001; U.S. patent application Ser. No. 09/988,728 entitled “Methods and Apparatus for Detecting and Quantifying Lymphocytes with Optical Biodiscs” filed Nov. 20, 2001; U.S. patent application Ser. No. 09/988,850 entitled “Methods and Apparatus for Blood Typing with Optical Bio-discs” filed Nov. 19, 2001; U.S. patent application Ser. No. 09/989,684 entitled “Apparatus and Methods for Separating Agglutinants and Disperse Particles” filed Nov. 20, 2001; U.S. patent application Ser. No. 09/997,741 entitled “Dual Bead Assays Including Optical Biodiscs and Methods Relating Thereto” filed Nov. 27, 2001; U.S. patent application Ser. No. 09/997,895 entitled “Apparatus and Methods for Separating Components of Particulate Suspension” filed Nov. 30, 2001; U.S. patent application Ser. No. 10/005,313 entitled “Optical Discs for Measuring Analytes” filed Dec. 7, 2001; U.S. patent application Ser. No. 10/006,371 entitled “Methods for Detecting Analytes Using Optical Discs and Optical Disc Readers” filed Dec. 10, 2001; U.S. patent application Ser. No. 10/006,620 entitled “Multiple Data Layer Optical Discs for Detecting Analytes” filed Dec. 10, 2001; U.S. patent application Ser. No. 10/006,619 entitled “Optical Disc Assemblies for Performing Assays” filed Dec. 10, 2001; U.S. patent application Ser. No. 10/020,140 entitled “Detection System For Disk-Based Laboratory and Improved Optical Bio-Disc Including Same” filed Dec. 14, 2001; U.S. patent application Ser. No. 10/035,836 entitled “Surface Assembly for Immobilizing DNA Capture Probes and Bead-Based Assay Including Optical Bio-Discs and Methods Relating Thereto” filed Dec. 21, 2001; U.S. patent application Ser. No. 10/038,297 entitled “Dual Bead Assays Including Covalent Linkages for Improved Specificity and Related Optical Analysis Discs” filed Jan. 4, 2002; U.S. patent application Ser. No. 10/043,688 entitled “Optical Disc Analysis System Including Related Methods for Biological and Medical Imaging” filed Jan. 10, 2002; U.S. Provisional Application Ser. No. 60/348,767 entitled “Optical Disc Analysis System Including Related Signal Processing Methods and Software” filed Jan. 14, 2002 U.S. patent application Ser. No. 10/086,941 entitled “Methods for DNA Conjugation Onto Solid Phase Including Related Optical Biodiscs and Disc Drive Systems” filed Feb. 26, 2002; U.S. patent application Ser. No. 10/087,549 entitled “Methods for Decreasing Non-Specific Binding of Beads in Dual Bead Assays Including Related Optical Biodiscs and Disc Drive Systems” filed Feb. 28, 2002; U.S. patent application Ser. No. 10/099,256 entitled “Dual Bead Assays Using Cleavable Spacers and/or Ligation to Improve Specificity and Sensitivity Including Related Methods and Apparatus” filed Mar. 14, 2002; U.S. patent application Ser. No. 10/099,266 entitled “Use of Restriction Enzymes and Other Chemical Methods to Decrease Non-Specific Binding in Dual Bead Assays and Related Bio-Discs, Methods, and System Apparatus for Detecting Medical Targets” also filed Mar. 14, 2002; U.S. patent application Ser. No. 10/121,281 entitled “Multi-Parameter Assays Including Analysis Discs and Methods Relating Thereto” filed Apr. 11, 2002; U.S. patent application Ser. No. 10/150,575 entitled “Variable Sampling Control for Rendering Pixelization of Analysis Results in a Bio-Disc Assembly and Apparatus Relating Thereto” filed May 16, 2002; U.S. patent application Ser. No. 10/150,702 entitled “Surface Assembly For Immobilizing DNA Capture Probes in Genetic Assays Using Enzymatic Reactions to Generate Signals in Optical Bio-Discs and Methods Relating Thereto” filed May 17, 2002; U.S. patent application Ser. No. 10/194,418 entitled “Optical Disc System and Related Detecting and Decoding Methods for Analysis of Microscopic Structures” filed Jul. 12, 2002; U.S. patent application Ser. No. 10/194,396 entitled “Multi-Purpose Optical Analysis Disc for Conducting Assays and Various Reporting Agents for Use Therewith” also filed Jul. 12, 2002; U.S. patent application Ser. No. 10/199,973 entitled “Transmissive Optical Disc Assemblies for Performing Physical Measurements and Methods Relating Thereto” filed Jul. 19, 2002; U.S. patent application Ser. No. 10/201,591 entitled “Optical Analysis Disc and Related Drive Assembly for Performing Interactive Centrifugation” filed Jul. 22, 2002; U.S. patent application Ser. No. 10/205,011 entitled “Method and Apparatus for Bonded Fluidic Circuit for Optical Bio-Disc” filed Jul. 24, 2002; U.S. patent application Ser. No. 10/205,005 entitled “Magnetic Assisted Detection of Magnetic Beads Using Optical Disc Drives” also filed Jul. 24, 2002; U.S. patent application Ser. No. 10/230,959 entitled “Methods for Qualitative and Quantitative Analysis of Cells and Related Optical Bio-Disc Systems” filed Aug. 29, 2002; U.S. patent application Ser. No. 10/233,322 entitled “Capture Layer Assemblies for Cellular Assays Including Related Optical Analysis Discs and Methods” filed Aug. 30, 2002; U.S. patent application Ser. No. 10/236,857 entitled “Nuclear Morphology Based Identification and Quantification of White Blood Cell Types Using Optical Bio-Disc Systems” filed Sep. 6, 2002; U.S. patent application Ser. No. 10/241,512 entitled “Methods for Differential Cell Counts Including Related Apparatus and Software for Performing Same” filed Sep. 11, 2002; U.S. patent application Ser. No. 10/279,677 entitled “Segmented Area Detector for Biodrive and Methods Relating Thereto” filed Oct. 24, 2002; U.S. patent application Ser. No. 10/293,214 entitled “Optical Bio-Discs and Fluidic Circuits for Analysis of Cells and Methods Relating Thereto” filed on Nov. 13, 2002; U.S. patent application Ser. No. 10/298,263 entitled “Methods and Apparatus for Blood Typing with Optical Bio-Discs” filed on Nov. 15, 2002; and U.S. patent application Ser. No. 10/307,263 entitled “Magneto-Optical Bio-Discs and Systems Including Related Methods” filed Nov. 27, 2002. All of these applications are herein incorporated by reference in their entireties. They thus provide background and related disclosure as support hereof as if fully repeated herein.
The above described methods and apparatus according to the present invention as disclosed herein can have one or more advantages which include, but are not limited to, simple and quick on-disc processing without the necessity of an experienced technician to run the test, small sample volumes, use of inexpensive materials, and use of known optical disc formats and drive manufacturing. These and other features and advantages will be better understood by reference to the following detailed description when taken in conjunction with the accompanying drawing figures.
With reference now to
Also shown in
With reference next to
Referring now to
Disinfecting capabilities are another bio-safe aspect relating to the dispenser 10 of the present invention. The main biological hazard of transferring sample liquids 32 from the dispenser 10 to the disc 18 comes from the potentially infectious residues that may be spilled onto the exterior of the disc 18 from the area adjacent the inlet port 26. The high reactivity of cyanoacrylates is expected to have a sterilizing effect upon the liquid sample 32 that it comes in contact with. However, additives in the cyanoacrylate adhesive would enhance the adhesive's microbicidal qualities. These would have to be slightly acidic agents in order as to not interfere with the normal anionic polymerization reaction the cyanoacrylates undergo upon exposure to moisture and weak bases. Disinfectants that fall under this category may be aromatic in nature and include triclosan, phenol, and trichlorophenol. In one preferred embodiment, the bio-safe dispenser 10 is implemented in a positive displacement type pipette system. This is analogous to a system using a syringe plunger. Positive displacement systems are preferred, rather than standard negative displacement pipettes (e.g. Rainin or Eppendorf pipettes), such systems being able to generate additional vacuum to “pull in” the system of plugs 14 and 15 as well as the sealant or adhesive 16. To reduce the degree of vacuum needed to move the plugs 14 and 15, and adhesive 16 system within the tip 12, the cyanoacrylate adhesive is preferably formulated with lower boiling point solvents so that bubbles would not form when pulling on the syringe plunger.
Another method of reducing the fluid drag effects resulting form zero velocity between the sealant 16 and the inner wall of the tip 12 is to pre-load the sealant or adhesive 16 in a capsule 40 as illustrated in
According to such embodiment, the capsule may be formed of any suitable material which provides low friction and is easily dissolved or broken when released from the tip 12 during the sealing operation.
Additional aspects of the present invention will now be discussed in connection with
With reference now to
In
While this invention has been described in detail with reference to certain preferred embodiments, it should be appreciated that the present invention is not limited to those precise embodiments. Rather, in view of the present disclosure, which describes the current best mode for practicing the invention, many modifications and variations would present themselves to those of skill in the art without departing from the scope and spirit of this invention. The scope of the invention is, therefore, indicated by the following claims rather than by the foregoing description. All changes, modifications, and variations coming within the meaning and range of equivalency of the claims are to be considered within their scope.
Furthermore, those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are also intended to be encompassed by the following claims.
This application claims the benefit of priority from U.S. Provisional Application Ser. No. 60/354,012 filed Jan. 31, 2002 which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60354012 | Jan 2002 | US |