This invention relates to biocompatible bone graft materials for repairing bone defects and the application of the bone graft materials disclosed herein. The present invention incorporates the benefits of inorganic shaped bodies having macro-, meso-, and microporosity, collagen, and bioactive glasses. The biocompatible bone graft materials of the present invention are also highly porous and homogeneous with interconnected macro-, meso-, and microporosity.
There has been a continuing need for improved bone graft materials. Although autograft, the current “gold standard”, has the ideal properties and radiopacity, the use of autogenous bone exposes the patient to a second surgery, pain, and morbidity at the donor site. Allograft devices, which are processed from donor bone, also carry the risk of disease transmission. The devices are restricted in terms of variations on shape and size and have sub-optimal strength properties that decrease after implantation. The quality of the allograft devices varies because the devices are natural. Also, since companies that provide allograft implants obtain their supply from donor tissue banks, there tend to be limitations on supply. In recent years, synthetic materials have become a viable alternative to autograft and allograft devices. One such synthetic material is Vitoss® Scaffold Synthetic Cancellous Bone Void Filler (Orthovita, Inc., Malvern, Pa., assignee of the present application). Synthetic graft materials, like autograft and allograft, serve as osteoconductive scaffolds that promote the ingrowth of bone. As bone growth is promoted and increases, the graft material resorbs and is eventually replaced with new bone.
Many synthetic bone grafts include materials that closely mimic mammalian bone, such as compositions containing calcium phosphates. Exemplary calcium phosphate compositions contain type-B carbonated hydroxyapatite [Ca5(PO4)3x(CO3)x(OH)], which is the principal mineral phase found in the mammalian body. The ultimate composition, crystal size, morphology, and structure of the body portions formed from the hydroxyapatite are determined by variations in the protein and organic content. Calcium phosphate ceramics have been fabricated and implanted in mammals in various forms including, but not limited to, shaped bodies and cements. Different stoichiometric compositions such as hydroxyapatite (HAp), tricalcium phosphate (TCP), tetracalcium phosphate (TTCP), and other calcium phosphate salts and minerals, have all been employed to match the adaptability, biocompatibility, structure, and strength of natural bone. The role of pore size and porosity in promoting revascularization, healing, and remodeling of bone has been recognized as a critical property for bone grafting materials. The preparation of exemplary porous calcium phosphate materials that closely resemble bone have been disclosed, for instance, in U.S. Pat. Nos. 6,383,519 and 6,521,246, incorporated herein by reference in their entireties.
There has been a continued need for improved bone graft systems. Although calcium phosphate bone graft materials are widely accepted, many lack the strength, handling, and flexibility necessary to be used in a wide array of clinical applications. Heretofore, calcium phosphate bone graft substitutes have been used in predominantly non-load-bearing applications as simple bone void fillers and the like. For more clinically challenging applications that require the graft material to take on load, bone reconstruction systems that pair a bone graft material to traditional rigid fixation systems are used. For instance, MacroPore OS™ Reconstruction System is intended to reinforce and maintain the relative position of weak bony tissue such as bone graft substitutes or bone fragments from comminuted fractures. The system is a resorbable graft containment system composed of various sized porous sheets and sleeves, non-porous sheets and sleeves, and associated fixation screws and tacks made from polylactic acid (PLA). However, the sheets are limited in that they can only be shaped for the body when heated.
The Synthes SynMesh™ consists of flat, round, and oval shaped cylinders customized to fit the geometry of a patient's anatomical defect. The intended use is for reinforcement of weak bony tissue and is made of commercially pure titanium. Although this mesh may be load-bearing, it is not made entirely of resorbable materials that are flexible.
A number of different glasses, glass-ceramics, and crystalline phase materials have been used, either alone or in combination with acrylic polymerizable species, and other families of polymers, for restorative purposes. These include hydroxyapatite, fluorapatite, oxyapatite, Wollastonite, anorthite, calcium fluoride, agrellite, devitrite, canasite, phlogopite, monetite, brushite, octocalcium phosphate, Whitlockite, tetracalcium phosphate, cordierite, and Berlinite. Representative patents describing such uses include U.S. Pat. Nos. 3,981,736, 4,652,534, 4,643,982, 4,775,646, 5,236,458, 2,920,971, 5,336,642, and 2,920,971. Additional references include Japanese Patent No. 87-010939 and German Patent OS 2,208,236. Other references may be found in W. F. Brown, “Solubilities of Phosphate & Other Sparingly Soluble Compounds,” Environmental Phosphorous Handbook, Ch. 10 (1973). All of the foregoing are incorporated herein by reference to provide disclosure, inter alia, of prior restorative materials and methods and compositions which may be included in the compositions and methods of the invention, as well as methods which may be employed as part of or ancillary to the invention.
There is a need for synthetic, resorbable bone grafts with improved handling, which are flexible and not brittle, and are compression resistant. There is also a need for flexible, compression-resistant bone grafts that are osteostimulative, osteoconductive, and osteoinductive.
There is also a need for resorbable bone grafts that are bioactive or osteoactive by nature of their ability to expediently form bone bonding.
There is a further need for resorbable bone grafts that are highly porous and have interconnected macro-, meso-, and microporosity for promoting capillary action of fluids, allowing recruitment of cells for bone formation, and permitting angiogenesis. There is also a need for bone grafts with fluid wicking and retention properties capable of delivering cells and molecules to the body
There is a need for bioactive flowable or moldable, shapeable graft materials that can occupy voids of varying shapes for restoring defects in bone.
There is also a need for injectable, resorbable bone graft materials with improved handling properties.
The present invention relates to biocompatible bone graft materials comprising resorbable calcium phosphate, resorbable collagen, and bioactive glass. The invention also relates to biocompatible bone graft materials comprising calcium phosphate; biocompatible, resorbable collagen; and bioactive glass, wherein the graft has macro-, meso-, and microporosity. Also provided are composite biocompatible bone graft materials comprising a biocompatible, resorbable, substantially homogeneous blend of calcium phosphate having macro-, meso, and microporosity; biocompatible, resorbable collagen; and bioactive glass.
Also disclosed are methods for restoring or repairing bone in a mammal comprising accessing a bony space to be restored; and, placing into said bony space a bone graft material comprising calcium phosphate, biocompatible, resorbable collagen, and bioactive glass. There are also provided methods for restoring or repairing bone in a mammal comprising providing a bone graft material comprising calcium phosphate and biocompatible, resorbable collagen; wetting said bone graft material with a biologically compatible fluid; incorporating bioactive glass into said bone graft material; and, placing said bone graft into a bony space. Also provided are methods of modulating the rate of collagen resorption by adding a pH-altering material to a composition comprising collagen.
The present application also provides kits comprising a biocompatible bone graft comprising resorbable collagen and calcium phosphate; and, a quantity or container of bioactive glass.
It has been discovered that admixing three constitutents: (1) highly porous resorbable inorganic material; (2) resorbable collagen; and (3) resorbable bioactive glass/glass-ceramic provides an osteostimulative and osteoconductive implant with improved resorption and bone formation properties, yet still provides a bone graft substitute with flexible, pliable, or flowable handling properties that allow the material to be manipulated, for example, wrapped, cut, bended, and/or shaped, particularly when wetted. Implants of the present invention provide an easy-to-use dose of composite material and provide an advancement over current bone reconstruction systems for certain clinical applications.
In accordance with the present invention, graft materials are provided comprising the oxidation-reduction reaction product of at least one metal cation, at least one oxidizing agent, and at least one oxidizable precursor anion; biocompatible, resorbable collagen; and a bioactive glass. Preferably, the reaction product is (synthetic) calcium phosphate having macro-, meso-, and microporosity. More preferably, the reaction product is β-tricalcium phosphate having macro-, meso-, and microporosity. More preferably, the porosity of the calcium phosphate is interconnected. The preparation of preferred forms of calcium phosphate for use in the present invention is described in U.S. Pat. Nos. 6,383,519 and 6,521,246, assigned to the assignee of the present invention and incorporated herein by references in their entireties. An exemplary calcium phosphate product is Vitoss® Scaffold Synthetic Cancellous Bone Void Filler (Orthovita, Inc., Malvern, Pa.). Porous calcium phosphate morsels are preferably greater than about 0.25 mm in size. The morsels of calcium phosphate may be about 1-2 mm in size for some embodiments of the present invention. The calcium phosphate morsels may be about 0.25 mm to about 1 mm or to about 2 mm for some embodiments of the present invention. For flowable compositions of the present invention, it will be appreciated that the morsel size will be selected considering the desired delivery apparatus. For example, for delivery of a flowable composition using a standard syringe, it will be necessary to select a morsel size that fits through the syringe orifice. Selection of the appropriate morsel size is believed to be with the capability of the skilled artisan.
Suitable collagens are described, for example, in U.S. Pat. No. 7,189,263, which is herein incorporated by reference in its entirety. Some embodiments of the present invention contain collagen that comprises up to 100% Type I collagen. In other embodiments, the collagens used may be predominantly, or up to about 90%, of Type I collagen with up to about 5% of Type III collagen or up to about 5% of other types of collagen. Suitable Type I collagens include native fibrous insoluble human, bovine, porcine, or synthetic collagen, soluble collagen, reconstituted collagen, or combinations thereof.
Bone graft materials of the present invention may be flexible or moldable, or the materials may be flowable. The nature of the collagen affects the flexibility, moldability, or flowability of the graft material. A graft containing predominantly fibrous collagen will be flexible or moldable upon wetting, depending on the degree of cross-linking of the collagen. A graft containing primarily soluble collagen with limited or no cross-links will be flowable upon wetting. Collagens suitable for use in the present invention include, but are not limited to, Semed F or Semed S (manufactured by Kensey Nash Corporation of Exton, Pa.), or combinations thereof.
“Bioactive glass” as used herein may be any alkali-containing ceramic, glass, glass-ceramic, or crystalline material that reacts as it comes in contact with physiologic fluids including, but not limited to, blood and serum, which leads to bone formation. In preferred embodiments, bioactive glasses, when placed in physiologic fluids, form an apatite layer on their surface. Examples of preferred bioactive glasses suitable for use in the present invention are described in U.S. Pat. No. 5,914,356, incorporated herein by reference. Suitable bioactive materials also include 45S5 glass and glass-ceramic, 58S5 glass, S53P4 glass, apatite-wollastonite containing glass and glass-ceramic. Preferably, the bioactive glass is a glass-ceramic composition comprising heterogeneous particles having an irregular morphology and regions of combeite crystallites (“combeite glass-ceramic”). In some embodiments, the bioactive glass comprises about 5-50% by volume of regions of combeite crystallites. Preferred bioactive glasses suitable for use in the present invention are those compositions comprising calcium-phosphorous-sodium-silicate and calcium-phosphorous-silicate. Such bioactive glasses include NovaBone® and NovaBone®-AR, distributed by NovaBone Products, LLC, Alachua, Fla. Further bioactive glass compositions that may be suitable for use in the present invention are described in U.S. Pat. No. 6,709,744.
While not wishing to be bound by theory, it is believed that resorption of bioactive glass particles of about 150 μm or less occurs as silica as released within the apatite gel layer, while larger particles are eventually broken down by osteoclasts (Goasin, A. Bioactive Glass for Bone Replacement in Craniomaxillofacial Reconstruction, Plastic and Reconstructive Surgery (2004) Vol. 114, No. 2, pp. 590-593). It is presently believed that the bone graft materials of the present invention provide an appropriate scaffold for bone growth independent of the bioactive glass. Again, while not wishing to be bound by theory, the role of the bioactive glass in bone grafts described herein is believed to be stimulatory to osteoblasts, and as such, large particles of glass (>150 μm) which may also provide a scaffold for bone growth are not necessary for the object of the invention to be served, and thus the particles which are resorbed via dissolution are preferred. However, all sizes of resorbable glass particles are contemplated as suitable.
Particle size measurement is well known in the art. Unless otherwise specified, particle size as used herein refers to the sieve size used to partition the glass particles. The bioactive glass particles used in accordance with the present invention are preferably about 90 to about 150 μm. The bioactive glass may be in the form of particles on the order of 1-2 mm. The bioactive glass particles may be on the order of about 100 μm or less, on the order of about 150 μm or less, or the bioactive glass particles can be on the order of about 50 to about 200 μm, about 75 to about 175 μm, or about 80 to about 160 μm.
Another suitable method of measuring particle size is via light scattering (for example by a light scattering particle size analyzer). In some embodiments of the present invention, the median particle size is about 2 to about 200 μm, as measured by light scattering. In other embodiments, the median particle size is about 2 to about 20 μm as measured by light scattering. In other embodiments, the median particle size is about 10 to about 20 μm as measured by light scattering. In other embodiments, the median particle size is about 100 to 200 μm as measured by light scattering.
The collagen and bioactive glass may be combined with the calcium phosphate by blending to form a substantially homogenous mixture. As used in this context, substantially homogenous means that the ratio of components within the mixture is the same throughout. The calcium phosphate, collagen, and bioactive glass may also be combined to form a composite matrix in various shapes and sizes. In certain embodiments, the bioactive glass could be in the form of a coating on the collagen strands. In others, the bioactive glass could be in the form of a coating on a collagen and calcium phosphate homogenous mixture. Upon treatment using various preferred heating, freeze-drying, and crosslinking techniques, such mixtures of the present invention form graft materials that may be preferred. In one method, the three constituents (the inorganic component, collagen, and bioactive glass), are mixed while the pH of the homogenate is monitored. The bioactive component is sensitive to aqueous environments, so monitoring the pH of the homogenate ensures that the bioactive glass component in the mix is not altered via premature leaching of ions that are necessary for promoting osteoactivity. The homogenate is then dispersed into defined molds, freeze-dried, and for some embodiments, crosslinked.
In another method, the collagen and the inorganic component are combined as described, and the bioactive glass is provided as a distinct component, to be incorporated into the bone graft material during preparation for use in the surgical site. Contemplated herein is a kit comprising a bone graft of the present invention and bioactive glass. The bone graft provided in a kit may comprise collagen and calcium phosphate. In a kit, the bioactive glass may be provided in a unit dose to be combined with the unit dose of bone graft provided. The bioactive glass may be provided in a container.
The bone graft provided in a kit may be enclosed in a delivery apparatus, such as a syringe, or, the bone graft may be provided in addition to a syringe capable of holding and delivering the bone graft. Flowable bone graft materials (such as those described in U.S. patent application Ser. No. 10/874,994, filed on Jun. 23, 2004, incorporated herein by reference in its entirety) are contemplated as being particularly suitable for such a kit. The bioactive glass may be within the delivery or holding apparatus along with the graft, or the bioactive glass may be provided in a second apparatus, such as a syringe. The bioactive-glass-containing apparatus may be adapted to connect to the bone graft apparatus such that homogenous mixing back and forth is permitted. Thus, ultimately, a composite apparatus capable of mixing the components into a substantially homogenous bone graft containing calcium phosphate, collagen, and bioactive glass is provided.
The admixture of the collagen and bioactive glass with the highly porous reaction product results in a graft that is highly porous with a broad pore size distribution, increased handling properties, and beyond that which is achievable with some forms of calcium phosphate alone. Moreover, grafts of the present invention exhibit improved osteoconductive and osteostimulatory properties over previous bone grafts. The resorption profile of some of the embodiments of the present invention may vary depending upon the amount, nature, and source of the collagen used. One reason that may explain the superior resorption properties of the present invention is the high degree of porosity retained even upon admixing the collagen and bioactive glass to form the reaction product. Bone grafts of the present invention are highly porous, highly porous being defined as having a total porosity of between about 65-95%.
Bone graft materials of this invention that may be preferred are held together in surgically relevant shapes and sizes by combining the reaction product with the collagen and the bioactive glass. It is also contemplated that the bioactive glass may be added as a layer or a coating on the surface of the surgically relevant shapes and sizes. The resulting articles retain substantially all of the biological and chemical properties of the shaped bodies taught in the '519 and '246 patents, while forming a shapeable, flexible unit dose. The bone graft materials may be manufactured into strips and cylinders of prescribed dimensions and volumes. The graft material will resorb following delivery in the surgical site and exhibit the same beneficial biological responses (e.g., bone formation) as the aforementioned shaped bodies.
In some embodiments, the bone graft materials of the present invention will comprise about 10-80% by weight of calcium phosphate; about 5-20% by weight of collagen; and about 5-80% by weight of bioactive glass. In other embodiments, the bone graft materials of the present invention will comprise about 50-90% by weight of calcium phosphate; about 5-25% by weight of collagen, and about 5-40% by weight of bioactive glass. In certain embodiments, bone graft materials of the present invention comprise calcium phosphate, collagen, and bioactive glass in a weight ratio of about 70:10:20. In other embodiments, the weight ratio of calcium phosphate, collagen, and bioactive glass is about 80:10:10. In yet others, the weight ratio of calcium phosphate, collagen, and bioactive glass is about 80:15:5. In further embodiments, the weight ratio of calcium phosphate, collagen, and bioactive glass is about 50:10:40. In others, the weight ratio of calcium phosphate, collagen, and bioactive glass is about 10:10:80. The weight ratio of the calcium phosphate, collagen, and bioactive glass may also be about 60:20:20. In a preferred embodiment, the weight ratio of the calcium phosphate, collagen, and bioactive glass is about 75:10:15. The mass ratios may be altered without unreasonable testing using methods readily available in the art while still maintaining all the properties (e.g., porosity, pore size distribution) that attribute to an effective bone graft (e.g., simultaneous bone formation, strength and graft resorption). One unique feature of the bone graft materials of the present invention is that the mineral remains porous even when combined with the collagen and bioactive glass. Further, the resultant bone graft is itself highly porous with a broad pore size distribution.
Preferably, bone graft materials of the present invention may comprise up to about 80% by weight of calcium phosphate. In certain embodiments, bone graft materials of the present invention may comprise up to about 70% by weight of calcium phosphate. The bone graft materials of the present invention may also comprise up to about 60% by weight of calcium phosphate. In other embodiments, bone graft materials of the present invention may comprise up to about 50% by weight of calcium phosphate. In yet others, the bone graft materials may comprise up to about 10% by weight of calcium phosphate. In some embodiments, the calcium phosphate is β-tricalcium phosphate. In some embodiments, the calcium phosphate has micro-, meso-, and macroporosity.
In certain variants of the present invention, the bone graft materials may comprise up to about 5% by weight of collagen. In certain other variants of the present invention, the bone graft materials may comprise up to about 15% by weight of collagen. In other variants, the bone graft materials may comprise up to about 10% by weight of collagen. In yet others, the bone graft materials may comprise up to about 20% by weight of collagen.
Bone graft materials of the present invention may comprise up to about 40% by weight of bioactive glass. The bone graft materials of the present invention may comprise up to about 20% by weight of bioactive glass. In certain embodiments, bone graft materials of the present invention may comprise up to about 15% by weight of bioactive glass. In certain other embodiments, bone graft materials of the present invention may comprise up to about 10% by weight of bioactive glass. In other embodiments, bone graft materials of the present invention may comprise up to about 5% by weight of bioactive glass. It is envisioned that in some embodiments, the bone graft materials may comprise up to about 80% of bioactive glass. In some embodiments, the bone graft material is provided in a form containing bioactive glass while in alternate embodiments, a dose of bioactive glass is provided to be incorporated into the bone graft prior to or during implantation into the surgical site.
Bone graft materials of the present invention that may be preferred exhibit high degrees of porosity. It is also preferred that the porosity occur in a broad range of effective pore sizes. In this regard, persons skilled in the art will appreciate that preferred embodiments of the invention may have, at once, macroporosity, mesoporosity, and microporosity. Macroporosity is characterized by pore diameters greater than about 100 μm and, in some embodiments, up to about 1000 μm to 2000 μm. Mesoporosity is characterized by pore diameters between about 100 μm and 10 μm, while microporosity occurs when pores have diameters below about 10 μm. It is preferred that macro-, meso-, and microporosity occur simultaneously and are interconnected in products of the invention. It is not necessary to quantify each type of porosity to a high degree. Rather, persons skilled in the art can easily determine whether a material has each type of porosity through examination, such as through the preferred methods of mercury intrusion porosimetry and scanning electron microscopy. While it is certainly true that more than one or a few pores within the requisite size range are needed in order to characterize a sample as having a substantial degree of that particular form of porosity, no specific number or percentage is called for. Rather, a qualitative evaluation by persons skilled in the art shall be used to determine macro-, meso-, and microporosity.
It will be appreciated that in some embodiments of the overall porosity of materials prepared in accordance with this invention be high. This characteristic is measured by pore volume, expressed as a percentage. Zero percent pore volume refers to a fully dense material, which, perforce, has no pores at all. One hundred percent pore volume cannot meaningfully exist since the same would refer to “all pores” or air. Persons skilled in the art understand the concept of pore volume, however and can easily calculate and apply it. For example, pore volume may be determined in accordance with Kingery, W. D., Introduction to Ceramics, Wiley Series on the Science and Technology of Materials, 1st Ed., Hollowman, J. H., et al. (Eds.), Wiley & Sons, 1960, p. 409-417, who provides a formula for determination of porosity. Expressing porosity as a percentage yields pore volume. The formula is: Pore Volume=(1−fp) 100%, where fp is fraction of theoretical density achieved.
Porosity can be measured by methods known in the art such as helium pycnometry. This procedure determines the density and true volume of a sample by measuring the pressure change of helium in a calibrated volume. A sample of known weight and dimensions is placed in the pycnometer, which determines density and volume. From the sample's mass, the pycnometer determines true density and volume. From measured dimensions, apparent density and volume can be determined. Porosity of the sample is then calculated using (apparent volume measured volume)/apparent volume. Porosity and pore size distribution may also be measured by mercury intrusion porosimetry, another method known in the art.
Pore volumes in excess of about 30% may be achieved in accordance with this invention while materials having pore volumes in excess of 50% or 60% may also be routinely attainable. Some embodiments of the invention may have pore volumes of at least about 70%. Other embodiments have pore volumes in excess of about 75% or about 80%. Pore volumes greater than about 85% are possible, as are volumes of about 90%. In preferred cases, such high pore volumes are attained while also attaining the presence of macro- meso-, and microporosity as well as physical stability of the materials produced. It is believed to be a great advantage to prepare graft materials having macro-, meso-, and microporosity simultaneously with high pore volumes that also retain some compression resistance and flexibility, moldability, or flowability when wetted.
Due to the high porosity and broad pore size distribution (1 μm-1000 μm) of the present invention graft, the implant is not only able to wick/soak/imbibe materials very quickly, but is also capable of retaining them. A variety of fluids could be used with the present invention including blood, bone marrow aspirate, saline, antibiotics and proteins such as bone morphogenetic proteins (BMPs). Materials of the present invention can also be imbibed with cells (e.g., fibroblasts, mesenchymal, stromal, marrow and stem cells), platelet rich plasma, other biological fluids, and any combination of the above. Bone grafts of the present invention actually hold, maintain, and/or retain fluids once they are imbibed, allowing for contained, localized delivery of imbibed fluids. This capability has utility in cell-seeding, drug delivery, and delivery of biologic molecules as well as in the application of bone tissue engineering, orthopaedics, and carriers of pharmaceuticals.
Wettability determines the amount of fluid taken up by sample material and if the material absorbs an appropriate amount of fluid within a specified time. Pieces of the material are randomly selected, weighed, and placed in a container of fluid for 120 seconds. If the samples adequately take up fluid, they are then weighed again to determine the percentage of mass increase from fluid absorption.
Some embodiments exhibit a wettability wherein bone graft material becomes fully saturated within 120 seconds with at least a 100% mass increase. In some embodiments, the graft material experiences a 150% mass increase and yet, in others, an approximately 200%-300% mass increase. Fluids that may be used in the present invention may be bone marrow aspirate, blood, saline, antibiotics and proteins such as bone morphogenetic proteins (BMPs) and the like.
It is preferred that flexible grafts of the present invention will be able to wick and hold fluids, even under compression. It is preferred that moldable embodiments will be able to wick and hold fluids, even in a wet environment. For example, if a wetted, flexible graft is placed on mesh suspended above a weigh boat and is challenged with a 500 g weight, it is preferred that the graft maintain a mass of fluid at least about 95% of the mass of the graft or about equivalent to the mass of the graft. If a wetted, moldable graft of the invention is placed in fluid, it is preferred that the graft maintains as a continuous object and does not swell substantially larger in size than its original dimensions. In some instances, the graft does not swell in size greater than about 50% more than its original dimensions, by qualititative assessment. If a wetted, moldable graft of the invention is compressed, it is preferred that the graft maintain a mass of fluid at least about 85% of the mass of the graft or about equivalent to the mass of the graft.
In accordance with the present invention, some bone graft materials disclosed may partially comprise materials, or morsels, resulting from an oxidation-reduction reaction. These materials may be produced by methods comprising preparing an aqueous solution of a metal cation and at least one oxidizing agent. The solution is augmented with at least one soluble precursor anion oxidizable by said oxidizing agent to give rise to the precipitant oxoanion. The oxidation-reduction reaction thus contemplated is conveniently initiated by heating the solution under conditions of temperature and pressure effective to give rise to said reaction. In accordance with preferred embodiments of the invention, the oxidation-reduction reaction causes at least one gaseous product to evolve and the desired intermediate precursor mineral to precipitate from the solution. In accordance with certain preferred embodiments of the present invention, a reactive blend in accordance with the invention may be imbibed into a material that is capable of absorbing it to produce a porous mineral. It may be preferred that the material have significant porosity, be capable of absorbing significant amounts of the reactive blend via capillary action, and that the same be substantially inert to reaction with the blend prior to its autologous oxidation-reduction reaction.
The intermediate precursor mineral thus prepared can either be used “as is” or can be treated in a number of ways. Thus, it may be heat-treated greater than about 800° C. or, preferably, greater than about 1100° C. in accordance with one or more paradigms to give rise to a preselected crystal structure or other preselected morphological structures therein. In accordance with preferred embodiments, the oxidizing agent is nitrate ion and the gaseous product is a nitrogen oxide, generically depicted as NOx(g). It is preferred that the precursor mineral provided by the present methods be substantially homogenous. As used in this context, substantially homogenous means that the porosity and pore size distribution throughout the precursor mineral is the same throughout.
In accordance with other preferred embodiments, the intermediate precursor mineral provided by the present invention may be any calcium salt. Subsequent modest heat treatments convert the intermediate material to, e.g., novel monophasic calcium phosphate minerals or novel biphasic β-tricalcium phosphate (β-TCP)+type-B, carbonated apatite (c-HAp) [β-Ca3(PO4)2+Ca5(PO4)3-x(CO3)x(OH)] particulates. More preferably, the heat treatment converts the intermediate material to a predominantly β-TCP material.
It will be appreciated that the porosity is similar to that of inorganic shaped bodies disclosed in the '519 and '246 patents. The bone graft materials of the present invention are indeed improvements on the shaped bodies disclosed in the '519 and '246 patents. For some embodiments of the present invention, the shaped bodies of the '519 and '246 patents are modified using various natural and synthetic polymers, film forming materials, resins, slurries, aqueous mixtures, pre-polymers, organic materials, metals, and other adjuvants. Materials such as wax, glycerin, gelatin, polycaprolactone, pre-polymeric materials such as precursors to various nylons, acrylics, epoxies, polyalkylenes, and the like, were caused to permeate all or part of the shaped bodies formed in accordance with the '519 and '246 patents. The soak and hold properties of some graft materials disclosed herein exhibit at least a 100% mass increase of blood. Many of the bone graft materials of the present invention have structural integrity with improved clinical handling when compared to the bodies of the '519 and '246 patents.
The bone graft materials may also have improved handling that can provide a unit dose delivery. The addition of collagen in the present invention graft material greatly enhances the ability of the product to be shaped or cut without crumbling. The graft materials may be shaped or cut using various instruments such as a scalpel or scissors. This feature finds utility in a variety of surgical applications, particularly since the bone graft can be formed “in situ” in an operating room to suit the needs of the patient in cases where the bone void to be filled is an irregular shape. Some graft materials disclosed may also be delivered into the bony site directly, shaped, and allowed to wick bodily fluids by an operator while during an operation.
Materials of the present invention are also radiopaque, as shown in
Bone graft materials of the present invention have osteoconductive and osteostimulatory properties. In certain embodiments, the addition of bioactive glass in the present invention enhances the ability of the product to foster bone growth. The bone graft materials of the present invention may also have osteoinductive properties.
Many of the embodiments disclosed herein are to fill bony voids and defects. It will be appreciated that applications for the embodiments of the present invention include, but are not limited to, filling interbody fusion devices/cages (ring cages, cylindrical cages), placement adjacent to cages (i.e., in front cages), placement in the posterolateral gutters in posteriolateral fusion (PLF) procedures, backfilling the iliac crest, acetabular reconstruction and revision hips and knees, large tumor voids, use in high tibial osteotomy, burr hole filling, and use in other cranial defects. The bone graft material strips may be suited for use in PLF by placement in the posterolateral gutters, and in onlay fusion grafting. Additional uses may include craniofacial and trauma procedures that require covering or wrapping of the injured/void site. The bone graft material cylinders may be suited to fill spinal cages and large bone voids, and for placement along the posterolateral gutters in the spine.
Scanning electron micrographs (SEMs) of certain embodiments of the present invention demonstrate the high porosity of these graft materials (see, for example,
Due to the wide range of applications for the embodiments of the present invention, it should be understood that the present invention graft material could be made in a wide variety of shapes and sizes via standard molding techniques. For instance, blocks and cylinders of the present invention may find utility in bone void filling and filling of interbody fusion devices; wedge shaped devices of the present invention may find utility in high tibial osteotomies; and strips may find utility in cranial defect repairs. Of particular interest, may be the use of some of the graft materials as semi-spherical (
It will be appreciated that these shapes are not intended to limit the scope of the invention as modifications to these shapes may occur to fulfill the needs of one skilled in the art. The benefits of the graft containment materials that, for instance, may be used in acetabular reconstruction made from the present invention are several-fold. The graft materials may act as both a barrier to prevent migration of other implants or graft materials and serves as an osteoconductive resorbable bone graft capable of promoting bone formation. The graft containment device may be relatively non-load-bearing, or partially load-bearing, or may be reinforced to be fully load-bearing as described below. Depending on the form, the graft materials have barrier properties because it maintains its structural integrity.
In applications requiring graft materials with load-bearing capabilities, the graft materials of the present invention may have meshes or plates affixed. The meshes or plates may be of metal, such as titanium or stainless steel, or of a polymer or composite polymer such as polyetheretherketone (PEEK), or nitinol. As depicted in
One skilled in the art may place the mesh in any location necessary for a selected procedure in a selected bodily void. For instance, a composite of mesh and graft material could be used in a craniomaxillofacial skull defect with the more pliable graft surface being placed in closer proximity to the brain and the more resilient mesh surface mating with the resilient cortical bone of the skull. In this manner, the mesh or plate may be affixed to one side of the graft material. Alternatively, the mesh or plate may be affixed to both sides of the graft material in sandwich fashion. Likewise, graft material could be affixed to both sides of the mesh or plate. In some embodiments, the mesh may be immersed within the graft material. The meshes may be flat or may be shaped to outline the graft material such as in a semi-spherical, semi-tubular, or custom form. These embodiments may be unique due to their integral relation between the graft material and the mesh. This is contrary to other products in the field in which the graft material is placed adjacent to the structural implant or, in the case of a cage, within the implant.
In accordance with the present invention, another embodiment provides a bone graft for long bone reinforcement comprising a biocompatible, resorbable semi-tubular shape, or sleeve, of β-tricalcium phosphate, collagen, and a bioactive glass, the entire graft having interconnected macro-, meso-, and microporosity. A mesh may be affixed to the surface of the sleeve or may be immersed in the sleeve. The mesh may be made of titanium, stainless steel, nitinol, a composite polymer, or polyetheretherketone. The cross-section of the sleeve may be in the shape of a crescent shape moon (
In other embodiments, there is a graft for the restoration of bone in the form of a shaped body, the shaped body comprising β-tricalcium phosphate, collagen, and a bioactive glass, the material of the graft having interconnected macro-, meso-, and microporosity; the body shape being selected to conform generally to a mammalian, anatomical bone structure. The shapes will vary depending on the area of the body being repaired. Some basic shapes may be a disk, semi-sphere, semi-tubular, or torus. In some embodiments, the shape will conform generally to the acetabulum.
Other graft materials of the present invention having load-bearing capabilities may be open framed, such that the bone graft material is embedded in the central opening of the frame. The frame may be made of a metal such as titanium or of a load-bearing resorbable composite such as PEEK or a composite of some form of poly-lactic acid (PLA). In the case of the latter, the acid from the PLA co-acts, or interacts with the calcium phosphate of the embedded bone graft material to provide an implant with superior resorption features.
The graft materials can also be imbibed with any bioabsorbable polymer or film-forming agent such as polycaprolactones (PCL), polyglycolic acid (PGA), poly-L-Lactic acid (PL-LA), polysulfones, polyolefins, polyvinyl alcohol (PVA), polyalkenoics, polyacrylic acids (PAA), polyesters and the like. The resultant graft material is strong, carveable, and compressible. The grafts of the present invention coated with agents such as the aforementioned may still absorb blood.
In another embodiment of the present invention, the graft materials may be used as an attachment or coating to any orthopaedic implant such as a metal hip stem, acetabular component, humeral or metatarsal implant, vertebral body replacement device, pedicle screw, general fixation screw, plate or the like. The coating may be formed by dipping or suspending the implant for a period of time in a substantially homogenous slurry of calcium phosphate, collagen, and bioactive glass and then processing via freeze-drying/lypholization and crosslinking techniques. As used in this context, substantially homogenous means that the ratio of elements within the slurry is the same throughout. Alternatively, a female mold may be made of the implant and the slurry may be poured into the mold and processed, as described above, to form the coating.
In yet another embodiment of the present invention, the graft material may be shredded or cut into small pieces. These smaller shredded pieces could then be used as filler or could be placed in a syringe body. In this fashion, fluids could be directly aspirated into or injected into the syringe body thereby forming a cohesive, shapeable bone graft mass “in situ” depending upon the application requirements. The shredded pieces find particular use as filler for irregular bone void defects. Further, unlike traditional bone graft substitutes they are highly compressible and therefore can be packed/impacted to insure maximum contact with adjacent bone for beneficial healing.
Dry test samples measuring 25×100×4 mm were weighed and then dipped (“soaked”) in a saline solution for 30 seconds. The weight of the soaked sample was measured. The results of these tests are depicted in Table 1.
Bioactivity analysis was conducted on scaffold formulations comprising calcium phosphate, collagen, and bioactive glass in weight ratios of 80:10:10 and 80:15:5. In vitro apatite formation was assessed using SBF, comprising the salts of Na2SO4, K2HPO4.3H2O, NaHCO3, CaCl2, MgCl2.6H2O, NaCl, and KCl. These reagents were dissolved in deionized water and buffered to a pH of approximately 7.3 using Tris(hydroxyl-methyl-amino-methane) and hydrochloric acid. The ionic concentration of the resultant solution closely resembles that of human blood plasma.
A 1×1 cm specimen of each scaffold formulation was immersed in 20 ml of SBF and incubated at 37° C. At specified time points of 1, 2, and 4 weeks the samples were removed from solution, rinsed with distilled water and acetone, and dried in a dessicator. Bioactivity assessment was carried out using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to identify changes in surface morphology and composition, respectively.
A sample of calcium phosphate, collagen, and bioactive glass (80:15:5) was immersed in SBF as per the methodology described in Example 2 for 4 weeks. After 4 weeks, SEM and EDAX spectra were taken. As seen in
A sample of calcium phosphate, collagen, and bioactive glass (80:10:10) was immersed in SBF as per the methodology described in Example 2 for 4 weeks. After 4 weeks, SEM and EDAX spectra were taken. As seen in
Bone graft materials containing calcium phosphate, collagen, and combeite glass-ceramic particles were immersed in SBF for 7 days. SEM images were used to assess the formation of calcium phosphate on the glass surface. As seen in
Samples of bone graft comprised of calcium phosphate, collagen and bioactive glass were prepared and tested for bioactivity. The calcium phosphate in each of the samples was porous β-tricalcium phosphate which is sold under the commercial name Vitoss® (Orthovita, Inc., Malvern, Pa.), and the bioactive glass used in each sample was combeite glass-ceramic. The formulations shown in Table 2 were tested:
Table 3 shows the composition of the test articles in Table 2 by volume %. The assumptions for the volume % calculations were as follows: Bulk density of Vitoss® b-TCP (fully dense) is 3 g/cc, bulk density of combeite glass-ceramic is 2.84 g/cc, bulk density of collagen is 1.1 g/cc, and uniform mixing/distribution.
For the study, 6×4×10 mm samples were suspended by nylon fishing line from the lid of a sealed plastic cup and were immersed in 150 mL of SBF and kept on a rotating plate in a 37 C incubator. The SBF was not exchanged in any of the samples that were removed on or before Day 14. On Day 15, solution exchange occurred for the remaining 28 day samples. At days 1, 3, 7, 14, and 28, n=1 of each formulation was removed. Each sample was rinsed 3 times with water and once with acetone. Samples were stored in small glass vials in a dessicator. After drying in a dessicator for at least a day, each sample was cut in half with a razor blade and was mounted on a sample stub such that an exterior surface was exposed for analysis. Samples were sputter coated with Au-Pd using 60-80 mTorr and a 15-20 mA pulse.
All samples were imaged in backscatter mode. The SEM images were used to morphologically identify new calcium phosphate growth. No calcium phosphate growth was observed at any time point on the samples which did not contain bioactive glass (0% combeite glass-ceramic samples). These results confirm the suitability of the test method, as solution does not spontaneously precipitate growth onto the surface of these non-bioactive samples. Representative figures of unreacted formulations can be seen in
By Day 3 (data not shown), in all glass-containing formulations, a layer of calcium phosphate has formed and appears to be spreading, with the 20 and 40% formulations having growth that is developed and widespread. The 80% formulation showed extensive calcium phosphate growth over the surface of the scaffold. Compositional analyses (EDS spectra, data not shown) confirmed that the layers were composed of calcium phosphate.
At Day 7 (
In general, greater bioactive glass content results in faster and more widespread calcium phosphate formation.
It is also noted that a test article containing about 23% by volume of collagen was pyrolized to burn off the collagen. The volume percent of the residual inorganic component was about 77%, consistent with the volume percentages of calcium phosphate and combeite glass-ceramic present in that formulation.
Test articles containing collagen, calcium phosphate, and 80%, 40%, 20%, 10% or 0% combeite glass-ceramic were imbibed with blood and were manually surveyed for flexibility, structural integrity, and handling properties. All test formulations demonstrated the ability to wick blood, and all were flexible upon wetting (see examples in
Bone graft samples containing collagen, calcium phosphate, and 10%, 20%, or 40% combeite glass ceramic having a particle size of <53 μm were created and analyzed via SEM at various magnifications. All formulations were found to contain good distribution of all three components throughout the graft. Representative images are shown in
Bone graft samples containing collagen, calcium phosphate, and 10%, 20%, or 40% 45S5 bioactive glass having a particle size of 38-250 μm were created and analyzed via SEM at various magnifications. All formulations were found to contain good distribution of all three components throughout the graft. Representative images are shown in
Bone graft samples containing collagen, calcium phosphate, and 15% combeite glass-ceramic having a particle size of 90-150 μm were created and analyzed via SEM at various magnifications. This formulation was found to result in acceptable distribution of all three components. Representative images are shown in
Samples containing 75% calcium phosphate, 15% combeite glass ceramic with 90-150 μm particle size, and 10% collagen were prepared as strips with dimensions of 25×100×8 mm or 25×50×4 mm. Samples were cut into small rectangular bars with surface area of about 240 mm and were suspended by nylon line in about 150 mL of SBF for 3 or 7 days. Samples were analyzed via SEM and EDAX for growth of new calcium phosphate, which is indicative of bioactivity.
Via SEM and EDAX, it appeared that calcium phosphate growth had already begun by Day 3 (data not shown). Representative data from Day 7 are shown in
The porous character of bone grafts containing collagen; calcium phosphate having macro-, meso-, and microporosity; and 10, 20, 40, or 80% bioactive glass (combeite glass-ceramic, <53 particle size) was examined using mercury intrusion porosimetry. Shown in Table 4 is the porosity profile for each formulation. The normalized pore volume (%) is shown for each pore size range.
As shown in Table 4, all formulations had similar porosity profiles and all showed high porosity. The total porosity for the formulations ranged from about 81 to about 83%.
Samples of bioactive bone graft material containing 75% calcium phosphate (morsel size of 1-2 mm), 15% combeite glass-ceramic (90-150 μm particle size), and 10% collagen were examined with regard to desireable handling attributes.
Upon wetting with blood, the wettability ranged from about 136% to about 174% with a mean wettability of about 156%. The wettability by volume ranged from about 71% to about 90%.
The bone graft was immersed in fluid for about two minutes, was weighed, and was placed on a mesh suspended above a weigh boat, and a 500 g mass was placed on the flexible graft for about 10 seconds. The graft was then weighed again to assess retention under compressive load. The fluid retention under compressive load ranged from about 95% to about 99%, with a mean fluid retention of about 97%. The samples also handled appropriately for clinical applications and could be cut with scissors without crumbling.
Either 10% or 40% by weight of bioactive glass (combeite glass-ceramic with particle size of either <53 μm or 90-150 μm) was added to bone grafts (commercially available as Vitoss® Foam Pack, Orthovita, Inc., Malvern, Pa.) comprising about 80% by weight of porous calcium phosphate and about 20% by weight of collagen to form moldable composite bioactive grafts. To prepare the material, about 1.2 mL of the calcium phosphate/collagen bone graft was imbibed with about 1.3 mL of saline and was kneaded for approximately 2 minutes. The combeite glass-ceramic was then added and the composite material was kneaded for approximately 2 additional minutes before a portion was removed from roughly the center of the sample, dehydrated, and prepped for SEM analysis.
The 10% and 40%, 90-150 μm combeite glass ceramic formulations resulted in a very smooth textured sample. The 10%, <53 μm formulation was indistinguishable from graft material without glass in handling and macroscopic appearance. The 40%, <53 μm formulation was non-cohesive.
SEM analysis showed good distribution of glass throughout the graft for the formulations containing 10% of either particle size (representative SEM images shown in FIGS. 30) and 40% of 90-150 pm glass (
A bilateral canine humeral defect implant study is undertaken to evaluate bone graft material in direct contact with bone tissue. Bone remodeling, new bone formation, and implant resorption is evaluated at periodic time intervals.
The bone graft material is supplied in a form that results in a flexible graft upon wetting. (Other grafts of the present invention may be examined in the same manner.) Graft material that does not contain bioactive glass will serve as control.
The test or control material will be implanted into bilateral drill defects surgically created in the cancellous bone of the proximal humerus of 18 canines. Test article will be implanted into the drill defect of one humerus, and the control article will be implanted into the drill defect in the opposite humerus of each animal in accordance with a randomization schedule generated prior to study start. The drill defects will be approximately 10 mm in diameter and approximately 25 mm in depth. A lateral and dorso-palmar view will be obtained immediately post-operatively and all animals will be subsequently radiographed at each sacrifice time point. After the predetermined exposure period (3, 6, 12, 24, or 52 weeks), the animals will be sacrificed and the implantation sites exposed. The implant sites will be grossly observed, harvested, wrapped in a saline soaked gauze sponge and frozen at approximately −20° C. for further analysis.
Analysis of the harvested implant sites will include mechanical testing to assess the bony ingrowth and remodeling of the defect site. The tissue implant sites will also be examined using standard histology techniques well-known in the art. The extent of healing and nature of tissue contained within the defect will be characterized by the histopathological and histomorphometry evaluation.
In one embodiment, defects treated with bioactive bone graft material (material containing bioactive glass), will show improved healing. In a preferred embodiment, the rate or extent of healing in defects treated with graft material+bioactive-glass will be equal to or better than that observed in defects treated with control graft material.
The porous character of bone grafts containing 10% collagen; 75% calcium phosphate having macro-, meso-, and microporosity (75%); and 15% bioactive glass (combeite glass-ceramic) was examined using mercury intrusion porosimetry. Shown in Table 5 is the porosity profile for two configurations of graft containing 15% combeite glass ceramic, one of dimension 25×100×4 mm (15% Thin) and one of dimension 25×50×8 mm (15% Thick). Also shown is the porosity profile for a graft without bioactive glass (0%). The normalized pore volume (%) is shown for each pore size range.
As shown in Table 5, both sizes of bone graft containing 15% combeite glass-ceramic had similar porosity profiles, and show macro-, meso-, and microporosity. The porosity profiles were similar to those of graft material without bioactive glass. The grafts also showed high total porosity of greater than 75%.
About 5 cc of bone graft material comprised of porous calcium phosphate and collagen (commercially available as Vitoss® Foam Pack, Orthovita, Inc., Malvern, Pa.) was hydrated with about 4.5 cc of saline, and was kneaded to a moldable consistency. About 0.54 g of combeite glass-ceramic having particle size of 90-150 μm (about 20% based on 2.15 g dry mass of graft) was kneaded into the hydrated material.
To test for wash-away resistance, composite material prepared as described was rolled into a ball and was placed in a weigh boat filled with colored saline solution for about 2 minutes (see
Masses of composite material prepared as described were measured and the material was placed in a 10 cc syringe. The syringe was placed on a scale and the scale was tarred. The syringe was placed in the extrusion test jig of an Instron 4467 instrument and was subject to compression at 30 lbf. Measurement of the syringe mass after compression was used to determine the fluid retention percentage. The average fluid retention (5 samples) was about 92%, indicating that the composite material has high fluid retention properties.
Samples containing calcium phosphate, collagen, and combeite glass-ceramic were cut to “thin” 10×6×4 mm samples (surface area of 248 mm2) and “thick” 5×6×8 mm samples (surface area of 236 mm2) and were suspended by nylon line in 150 ml of SBF. During a 28 day study, the 7 day thick sample fell off of its line and broke apart. Upon inspection by SEM it appeared that most of the collagen had degraded, however, some calcium phosphate coated collagen was observed. Both the thick and thin 14 day samples fell off of their lines and broke apart. The pH readings of the solution taken at day 3 were 7.6 for the thick sample and 7.53 for the thin. At day 7, the pH was 7.58 for thick and 7.54 for thin.
Further testing of “thin” 25×25×4 (surface area of 1650 mm2) and “thick” 25×13×8 (surface area of 1250 mm2) bone graft samples comprising collagen, calcium phosphate, and having the combeite glass-ceramic parameters shown in Table 6 was undertaken in PBS to examine pH alterations on a more acute time scale.
The <53 μm combeite glass-ceramic caused a greater “burst” or initial pH alteration, which may be attributed to the greater surface area of the smaller particle size. However, by day 4, the formulation with the highest total glass content (40%) caused the greatest alteration in pH.
In another experiment, “thin” samples (25×25×4 mm) and “thick” samples (25×25×8 mm) of collagen and calcium phosphate graft materials containing bioactive glass of amount and type as shown in Table 7 were immersed in phosphate buffered saline (PBS) and in SBF on a shaker (1 Hz) for 12 days at 37° C.
The 15% “thick” samples in both SBF and PBS were reduced to powder as were the two 40% formulations in PBS.
In general, the bone graft materials seemed more susceptible to collagen degradation in PBS, which may be more vulnerable to pH changes. Materials with 8 mm width (“thick”) appear to create higher pH and appear to be more susceptible to the degradation. While not wishing to be bound by theory, observation and testing suggests that the addition of glass alters the pH within the graft and denatures the local collagen, causing it to break down. The effect is believed to be local to the glass, and is perhaps density-dependent.
Accordingly, the rate of collagen resorption or degradation in physiologic fluids may be affected by the amount or density of bioactive glass in the graft. In general, more glass sites will cause faster breakdown and resorption of collagen.
Also provided are methods of modulating the rate of collagen resorption by adding a pH-altering material. The pH-altering material may comprise bioactive glass. Disclosed herein are methods of modulating the resorption rate of biocompatible, resorbable collagen in an implant material comprising providing implant material comprising biocompatible, resorbable collagen, adding bioactive glass to the material, and, placing the material on or in an animal. Also provided are methods of modulating the resorbability of a composition comprising collagen, comprising providing a material that has been preselected for one or more characteristics that are sufficient to alter the pH proximal to said collagen in order to alter the resorbability of the composition, and, contacting the collagen with said material. The methods may also comprise providing a material capable of altering the pH proximal to the collagen in order to alter the resorbability of the composition comprising collagen, and, contacting the collagen with said material. Also disclosed are methods of increasing the resorbability of a composition comprising collagen, comprising providing a material that has been preselected for one or more characteristics that are sufficient to raise the pH proximal to said collagen in order to effect said increased resorbability, and, contacting the collagen with the material. The change in pH proximal to the collagen may occur locally, i.e., spatially proximal to one or more portions of the collagen.
In view of the preceding description, it can be appreciated that characteristics of the bioactive glass, including, for example, the quantity and surface area of the bioactive glass can affect the rate of collagen degradation, and that these parameters can be manipulated in accordance with a desired use for the collagen-containing bone graft material. It will also be appreciated that the rate to be altered may depend on the nature of the collagen, and that the characteristics of the bioactive glass can be optimized for various forms of collagen.
It is contemplated that these methods may be applied to bone grafts as well as other collagen-containing technologies, including but not limited to wound or burn dressings, hemostatic agents, dermal implants, periodontal membranes, corneal shields, sutures, graft containment devices, cartilage replacement materials, and dura replacement materials.
With respect to a particular collagen-containing technology, the practitioner may select an optimized resorption rate. The optimal resorption rates for respective collagen-containing technologies may vary in accordance with such parameters as the rate of physiological healing, remodeling local to the site of material implantation, and other factors, and the practitioner may consider such parameters in inducing an optimized resorption rate for a particular collagen-containing technology.
Because the effect of the bioactive glass on the collagen is believed to result from pH alteration, other materials capable of producing pH changes within a collagen implant material are also suitable for achieving the result. For example, pH-altering microspheres could be used in place of the bioactive glass. It is preferred that the pH alteration occurs when the material contacts physiologic fluids. Thus, another aspect of the present invention is a method of altering the resorption rate of implant material comprising providing implant material comprising biocompatible, resorbable collagen, placing a pH altering material in admixture with the implant material, and placing the composite implant on or in the body of an animal.
There have been described presently preferred bone graft substitutes, kits containing such materials, and methods for their use. While the present invention has been particularly shown and described with reference to the presently preferred embodiments thereof, it is understood that the invention is not limited to the embodiments or examples specifically disclosed herein. It will be appreciated that methods of treating bony defects are foreseen by the embodiments of the present invention. Contemplated herein is a method for restoring or repairing bone in an animal comprising accessing a site to be restored; and implanting into a bony space a bone graft material comprising biocompatible, resorbable collagen, the oxidation-reduction reaction product of at least one metal cation, at least one oxidizing agent, and at least one oxidizable precursor anion; and bioactive glass.
The graft material used in this method may be chosen by one skilled in the art from among those disclosed in the present application. Numerous changes and modifications may be made to the preferred embodiments of the invention, and such changes and modifications may be made without departing from the spirit of the invention. It is therefore intended that the appended claims cover all such equivalent variations as they fall within the true spirit and scope of the invention.
The present application is a continuation of U.S. patent application Ser. No. 11/771,857, filed Jun. 29,2007, now U.S. Pat. No. 8,303,967, which claims the benefit of filing date of U.S. Provisional Patent Application No. 60/817,617, filed Jun. 29, 2006, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2920971 | Stookey | Jan 1960 | A |
3090094 | Schwartzwalder et al. | May 1963 | A |
3443261 | Battista et al. | May 1969 | A |
3679360 | Rubin et al. | Jul 1972 | A |
3833386 | Wood et al. | Sep 1974 | A |
3877973 | Ravault | Apr 1975 | A |
3907579 | Ravault | Sep 1975 | A |
3981736 | Broemer et al. | Sep 1976 | A |
4004933 | Ravault | Jan 1977 | A |
4007020 | Church et al. | Feb 1977 | A |
4045238 | Battista et al. | Aug 1977 | A |
4149893 | Aoki et al. | Apr 1979 | A |
4149983 | Grier et al. | Apr 1979 | A |
4273131 | Olsen | Jun 1981 | A |
4328034 | Ferguson | May 1982 | A |
4457028 | Draenert | Jul 1984 | A |
4491453 | Koblitz et al. | Jan 1985 | A |
4491517 | Janovac | Jan 1985 | A |
4563350 | Nathan et al. | Jan 1986 | A |
4604097 | Graves, Jr. et al. | Aug 1986 | A |
4609923 | Boan et al. | Sep 1986 | A |
4612053 | Brown et al. | Sep 1986 | A |
4613627 | Sherman et al. | Sep 1986 | A |
4619655 | Hanker et al. | Oct 1986 | A |
4643982 | Kasuga et al. | Feb 1987 | A |
4648124 | Mantovani et al. | Mar 1987 | A |
4652459 | Engelhardt | Mar 1987 | A |
4652534 | Kasuga | Mar 1987 | A |
4673355 | Farris et al. | Jun 1987 | A |
4693721 | Ducheyne | Sep 1987 | A |
4711769 | Inoue et al. | Dec 1987 | A |
4714721 | Franek et al. | Dec 1987 | A |
4722970 | Nakagoshi et al. | Feb 1988 | A |
4725234 | Ethridge | Feb 1988 | A |
4737411 | Graves, Jr. et al. | Apr 1988 | A |
4775646 | Hench et al. | Oct 1988 | A |
4776890 | Chu | Oct 1988 | A |
4780450 | Sauk et al. | Oct 1988 | A |
4781721 | Grundei | Nov 1988 | A |
4791939 | Maillard | Dec 1988 | A |
4803075 | Wallace et al. | Feb 1989 | A |
4812854 | Boan et al. | Mar 1989 | A |
4849193 | Palmer et al. | Jul 1989 | A |
4851046 | Low et al. | Jul 1989 | A |
4859383 | Dillon | Aug 1989 | A |
4861733 | White | Aug 1989 | A |
4868580 | Wade | Sep 1989 | A |
4880610 | Constantz | Nov 1989 | A |
4888366 | Chu et al. | Dec 1989 | A |
4891164 | Gaffney et al. | Jan 1990 | A |
4897250 | Sumita | Jan 1990 | A |
4927866 | Purrmann et al. | May 1990 | A |
4983573 | Bolt et al. | Jan 1991 | A |
4988362 | Toriyama et al. | Jan 1991 | A |
5034352 | Vit et al. | Jul 1991 | A |
5047031 | Constantz | Sep 1991 | A |
5053212 | Constantz et al. | Oct 1991 | A |
5108436 | Chu et al. | Apr 1992 | A |
5112354 | Sires | May 1992 | A |
5129905 | Constantz | Jul 1992 | A |
5134009 | Ichitsuka et al. | Jul 1992 | A |
5204106 | Schepers et al. | Apr 1993 | A |
5204382 | Wallace et al. | Apr 1993 | A |
5207710 | Chu et al. | May 1993 | A |
5211661 | Shinjou et al. | May 1993 | A |
5211664 | Tepic et al. | May 1993 | A |
5219829 | Bauer et al. | Jun 1993 | A |
5221558 | Sonuparlak et al. | Jun 1993 | A |
5236458 | Ducheyne et al. | Aug 1993 | A |
5236786 | Newkirk et al. | Aug 1993 | A |
5238491 | Sugihara et al. | Aug 1993 | A |
5256292 | Cagle | Oct 1993 | A |
5264215 | Nakabayashi et al. | Nov 1993 | A |
5276068 | Waknine | Jan 1994 | A |
5290289 | Sanders et al. | Mar 1994 | A |
5292678 | Dhong et al. | Mar 1994 | A |
5296261 | Bouet et al. | Mar 1994 | A |
5298205 | Hayes et al. | Mar 1994 | A |
5302362 | Bedard | Apr 1994 | A |
5306307 | Senter et al. | Apr 1994 | A |
5320844 | Liu | Jun 1994 | A |
5322675 | Hakamatsuka et al. | Jun 1994 | A |
5324519 | Dunn et al. | Jun 1994 | A |
5336642 | Wolcott | Aug 1994 | A |
5338334 | Zhen et al. | Aug 1994 | A |
5338356 | Hirano et al. | Aug 1994 | A |
5346492 | Morgan | Sep 1994 | A |
5352715 | Wallace et al. | Oct 1994 | A |
5409982 | Imura et al. | Apr 1995 | A |
5427754 | Nagata et al. | Jun 1995 | A |
5435844 | Sasaya | Jul 1995 | A |
5464440 | Johansson | Nov 1995 | A |
5496399 | Ison et al. | Mar 1996 | A |
5503164 | Friedman | Apr 1996 | A |
5522893 | Chow et al. | Jun 1996 | A |
5525148 | Chow et al. | Jun 1996 | A |
5531794 | Takagi et al. | Jul 1996 | A |
5545254 | Chow et al. | Aug 1996 | A |
5573537 | Rogozinski | Nov 1996 | A |
5573771 | Geistlich et al. | Nov 1996 | A |
5591453 | Ducheyne et al. | Jan 1997 | A |
5626861 | Laurencin et al. | May 1997 | A |
5645934 | Marcolongo et al. | Jul 1997 | A |
5660778 | Ketcham et al. | Aug 1997 | A |
5681872 | Erbe | Oct 1997 | A |
5702449 | McKay | Dec 1997 | A |
5707962 | Chen et al. | Jan 1998 | A |
5728753 | Bonfield et al. | Mar 1998 | A |
5755792 | Brekke | May 1998 | A |
5776193 | Kwan et al. | Jul 1998 | A |
5824084 | Muschler | Oct 1998 | A |
5834008 | Greenspan et al. | Nov 1998 | A |
5914356 | Erbe | Jun 1999 | A |
5928243 | Guyer | Jul 1999 | A |
5939039 | Sapieszko et al. | Aug 1999 | A |
5964809 | Lin et al. | Oct 1999 | A |
5977204 | Boyan et al. | Nov 1999 | A |
5984968 | Park | Nov 1999 | A |
5984969 | Matthews et al. | Nov 1999 | A |
6017346 | Grotz | Jan 2000 | A |
6019765 | Thornhill et al. | Feb 2000 | A |
6027742 | Lee et al. | Feb 2000 | A |
6049026 | Muschler | Apr 2000 | A |
6051247 | Hench et al. | Apr 2000 | A |
6077989 | Kandel et al. | Jun 2000 | A |
6180605 | Chen et al. | Jan 2001 | B1 |
6180606 | Chen et al. | Jan 2001 | B1 |
6187047 | Kwan et al. | Feb 2001 | B1 |
6190643 | Stoor et al. | Feb 2001 | B1 |
6214368 | Lee et al. | Apr 2001 | B1 |
6244871 | Litkowski et al. | Jun 2001 | B1 |
6287341 | Lee et al. | Sep 2001 | B1 |
6288043 | Spiro et al. | Sep 2001 | B1 |
6294187 | Boyce et al. | Sep 2001 | B1 |
6316091 | Richart et al. | Nov 2001 | B1 |
6325987 | Sapieszko et al. | Dec 2001 | B1 |
6328765 | Hardwick et al. | Dec 2001 | B1 |
6344496 | Niederauer et al. | Feb 2002 | B1 |
6383159 | Saul et al. | May 2002 | B1 |
6383519 | Sapieszko et al. | May 2002 | B1 |
6428800 | Greenspan et al. | Aug 2002 | B2 |
6458162 | Koblish et al. | Oct 2002 | B1 |
6482427 | Yang | Nov 2002 | B2 |
6521246 | Sapieszko et al. | Feb 2003 | B2 |
D473648 | Muraca | Apr 2003 | S |
6582438 | DeMayo | Jun 2003 | B2 |
6607557 | Brosnahan et al. | Aug 2003 | B1 |
6641587 | Scribner et al. | Nov 2003 | B2 |
6652887 | Richelsoph et al. | Nov 2003 | B1 |
6696073 | Boyce et al. | Feb 2004 | B2 |
6709744 | Day et al. | Mar 2004 | B1 |
6723131 | Muschler | Apr 2004 | B2 |
6863899 | Koblish et al. | Mar 2005 | B2 |
6881766 | Hain | Apr 2005 | B2 |
6949251 | Dalal et al. | Sep 2005 | B2 |
6969501 | Sapieszko et al. | Nov 2005 | B2 |
6987136 | Erbe et al. | Jan 2006 | B2 |
6991803 | Sapieszko et al. | Jan 2006 | B2 |
7045125 | Erbe et al. | May 2006 | B2 |
7156880 | Evans et al. | Jan 2007 | B2 |
7166133 | Evans et al. | Jan 2007 | B2 |
7189263 | Erbe et al. | Mar 2007 | B2 |
7235107 | Evans et al. | Jun 2007 | B2 |
7241459 | Fechner et al. | Jul 2007 | B2 |
7531004 | Bagga et al. | May 2009 | B2 |
7534451 | Erbe et al. | May 2009 | B2 |
7931687 | Masuda et al. | Apr 2011 | B2 |
20020039552 | Sapieszko et al. | Apr 2002 | A1 |
20020062154 | Ayers | May 2002 | A1 |
20020127720 | Erbe et al. | Sep 2002 | A1 |
20030055512 | Genin et al. | Mar 2003 | A1 |
20030138473 | Koblish et al. | Jul 2003 | A1 |
20030193104 | Melican et al. | Oct 2003 | A1 |
20040127987 | Evans et al. | Jul 2004 | A1 |
20040138758 | Evans et al. | Jul 2004 | A1 |
20040254538 | Murphy et al. | Dec 2004 | A1 |
20050042288 | Koblish et al. | Feb 2005 | A1 |
20050169956 | Erbe et al. | Aug 2005 | A1 |
20050214340 | Erbe et al. | Sep 2005 | A1 |
20050288795 | Bagga et al. | Dec 2005 | A1 |
20060039951 | Sapieszko et al. | Feb 2006 | A1 |
20070066987 | Scanlan et al. | Mar 2007 | A1 |
20070122447 | Koblish et al. | May 2007 | A1 |
20070218098 | Reif et al. | Sep 2007 | A1 |
20080187571 | Clineff et al. | Aug 2008 | A1 |
20080221701 | Zhong et al. | Sep 2008 | A1 |
20080281431 | Missos | Nov 2008 | A1 |
20090068285 | LeGeros et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
2278176 | Jul 1998 | CA |
2398517 | Aug 2001 | CA |
2208236 | Sep 1972 | DE |
0263489 | Apr 1988 | EP |
0417493 | Mar 1991 | EP |
1410811 | Apr 2004 | EP |
2664501 | Jan 1992 | FR |
2260538 | Apr 1993 | GB |
61201612 | Sep 1986 | JP |
62010939 | Jan 1987 | JP |
62067451 | Mar 1987 | JP |
62206445 | Sep 1987 | JP |
01167209 | Jun 1989 | JP |
01249059 | Oct 1989 | JP |
02149408 | Jun 1990 | JP |
04208164 | Jul 1992 | JP |
09048702 | Feb 1997 | JP |
09132406 | May 1997 | JP |
10243996 | Sep 1998 | JP |
11106524 | Apr 1999 | JP |
2001206787 | Jul 2001 | JP |
2004136096 | May 2004 | JP |
8706843 | Nov 1987 | WO |
9720521 | Jun 1997 | WO |
9831630 | Jul 1998 | WO |
9932163 | Jul 1999 | WO |
0042991 | Jul 2000 | WO |
0045871 | Aug 2000 | WO |
0112106 | Feb 2001 | WO |
02058755 | Aug 2002 | WO |
03053290 | Jul 2003 | WO |
2004030655 | Apr 2004 | WO |
2004112855 | Dec 2004 | WO |
2005009496 | Feb 2005 | WO |
2005074614 | Aug 2005 | WO |
2006031196 | Mar 2006 | WO |
2007144662 | Dec 2007 | WO |
2008002682 | Jan 2008 | WO |
2010146312 | Dec 2010 | WO |
Entry |
---|
Australian Search Report for Application No. 2007265379 dated Dec. 24, 2012. |
Australian Search Report for Application No. 2007265379 dated Jan. 7, 2013. |
“NovaBone—C/M Synthetic Bone Graft Particulate,” POREX Surgical Products Group, 2004, http://www.porexsurgical.com/english/surgical/sprodnova.asp, downloaded from internet on Aug. 22, 2007. |
Abbona et al., “Crystallization of Calcium and Magnesium Phosphates from Solutions of Medium and Low Concentrations,” Cryst. Res. Technol., 1992, 27, pp. 41-48. |
Allan I, Newman H, Wilson M. Antibacterial activity of particulate Bioglass against supra- and subgingival bacteria. Biomaterials 2001; 22:1683-1687. |
Allan I, Newman H, Wilson M. Particulate Bioglass reduces the viability of bacterial biofilms formed on its surface in an in vitro model. Clin OralImpl Res 2002; 13:53-58. |
Ammann, “Strontium Ranelate: A Physiological Approach for an Improved Bone Quality,” Bone, Sep. 2006, 38, pp. S15-S18. |
Aras et al., “Trace Elements in Human Bone Determined by Neutron Activation Analysis”, J. of Radioanalytical and Nuclear Chemistry, 1999, 239(1 ), 79-86. |
Audran, “Drug Combination Strategies for Osteoporosis”, Joint Bone Spine, May 6, 2006, 374-378. |
Bachand, “Synthetic Osseous Grafting Materials: A Literature Review,” http://das.cs.amedd.army.mil/journal/J9712.HTM, downloaded from internet on Mar. 4, 2005. |
Barbara et al., “Normal Matrix Mineralization Induced by Strontium Ranelate in MC3T3-E1 Osteogenic Cells”, Metabolism, Apr. 2004, 53(4), 532-537. |
Bigi et al., “Isomorphous Substitutions in b-Tricalcium Phosphate: The Different Effects of Zinc and Strontium”, J. of InorQanic Biochemistry, Jun. 1997, 66, 259-265. |
Bigi et al., “Strontium-Substituted Hydroxyapatite Nanocrystals”, Inorganic Chimica Acta, Feb. 2007, 360(3), 1009-1016. |
Brown et al., “Variations in Solution Chemistry During the Low-Temperature Formation of Hydroxyapaptite,” J. Am. Ceram. Soc., 1991, 74(8), pp. 1845-1854. |
Brown, “Solubilities of Phosphate and Other Sparingly Soluble Compounds,” Environmental Phosphorous Handbook, Chapter 10, 1973, pp. 203-289. |
Canalis et al., “The Divalent Strontium Salt S12911 Enhances Bone Cell Replication and Bone Formation in Vitro”, Bone, Jun. 1996, 18(6), 517-523. |
Carroll et al., “The Trouble With Tocars; Barely Conscious,” Smart Money, 2001. |
Chaair et al., “Precipitation of stoichiometric apatitic tricalcium phosphate prepared by a continuous process,” J. Mater. Chem., 1995, 5(6), pp. 895-899. |
Cheung et al., “Vertebroplasty by use of a Strontium-Containing Bioactive Bone Cement”, Spine, Sep. 1, 2005, 30(175), 584-591. |
Clineff et al., “Analytical Technique for Quantification of Selected Resorbable Calcium Phosphate Bone Void Fillers with the Use of Polarized-light Microscopy”, J Biomed Mater Res B Appl Biomater, Jan. 15, 2005, 72(1 ), 125-130. |
Cornell et al., “Multicenter Trial of Collagraft as Bone Graft Substitute,” J. of Orthopaedic Trauma, 1991, 5(1), pp. 1-8. |
Dahl et al., “Incorporation and Distribution of Strontium in Bone”, Bone, Apr. 2001, 28(4), 446-453. |
Database EPODOC, European Patent Office, The Hague, NL; XP002676998, Jul. 31, 2001. |
Database WPI Week 200172, Thomson Scientific, London, GB; AN 2001-620274, XP002676997, Jul. 31, 2001. |
Driessens et al., “Effective forumulations for the preparation of calcium phosphate bone cements,” J. Mat. Sci. Mat. Med., 1994, 5, pp. 164-170. |
Driessens, F.C.M. et al., “Effective formulations for the preparation of calcium phosphate bone cements,” J. Mat. Sci.: Mat. Med., 1994, 5, 164-170. |
Elgayar, “The Influence of Alkali Metal Content and Network Connectivity on Bioactive Glasses”, Thesis Submitted to University of London, May 2004, 152 pages. |
Erbe et al., “Potential of an ultraporous B-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft”, Eur. Spine J., Jun. 13, 2001, 10:S141-S146. |
European Search Report and European Opinion for Application No. EP12151422 dated Jun. 11, 2012. |
Famery et al., “Preparation of a- and b-Tricalcium Phosphate Ceramics, with and Without Magnesium Addition,” Ceram. Int., 1994, 20, pp. 327-336. |
Fowler, “Infrared Studies of Apatites. I. Vibrational Assigments for Calcium, Strontium, and Barium Hydroxyapatites Utilizing Isoptic Substition”, Inorganic Chemistry, 1974, 13(1), 194-207. |
Fowler, “Infrared Studies of Apatites. II. Preparation of Normal and Isotopically Substituted Calcium, Strontium, and Barium Hydroxyapatites and Spectra-Structure-Composition Correlations”, Inorganic Chemistry, 1974, 13(1 ), 207-214. |
Fukase et al., “Setting Reactions and Compressive Strengths of Calcium Phosphate Cements,” J. Dent. Res., 1990, 69(12), pp. 1852-1856. |
G.H. Nancollas In vitro studies of calcium phosphate crystallization Biomineralization—Chemical and Biochemical Perspectives 157-187 1989. |
G.H. Nancollas The involvement of calcium phosphates in biological mineralization and dimeralization processes Pure Appl. Chem. 1992 64(11):1673. |
Gentleman et al., “The Effects of Strontium-Substituted Bioactive Glasses on Osteoblasts and Osteoclasest in Vitro”, Biomaterials, Feb. 2010, 31, 3949-3956. |
Gorustovich et al., “Microchemical Characterization of Bone Around Strontium-Doped Bioactive Glass Particles”, Abstracts, Bone, Oct. 2007, 41, S3. |
Gorustovich et al., “Osteoconductivity of Strontium-Doped Bioactive Glass Particles”, Abstracts, Bone, Dec. 2007, 41 (6), S4. |
Gosain, “Bioactive Glass for Bone Replacement in Craniomaxillofacial Reconstruction,” Bioactive Glass, 2004, 114 (2), pp. 590-593. |
Greenwood et al., “Oxoacides of phosphorus and their salts,” in Chemistry of the Elements, Pergamon Press, 1984, pp. 586-595. |
Guo et al., “Development of a Strontium-Containing Hydroxyapatite Bone Cement”, Biomaterials, Jun. 2005, 26(19), 4073-4083. |
H. Chaair et al. Precipitation of stoichiometric apatitic tricalcium phosphate prepared by a continuous process J. Mater. Chem. 1995 5(6):895. |
H. Monma et al. Properties of hydroxyapatite prepared by the hydrolysis of triacalcium phosphate J. Chem. Tech. Biotechnol. 1981 31:15. |
Hanifi et al., “Effect of Strontium Ions Substitution on Gene Delivery Related Properties of Calcium Phosphate Nanoparticles”, J. Mater. Sci. Mater. Med., Jul. 10, 2010, 21, 2601-2609. |
Hench et al., “Biological Applications of Bioactive Glasses,” Life Chemistry Reports, 1996, 13, pp. 187-241. |
Holtorf, H. et al., Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: Effect of initial cell photype, Biomaterials 26 (2005) pp. 6208-6216. |
International Patent Application No. PCT/US201 0/061239: International Search Report dated May 2, 2011, 2 pages. |
International Search Report dated Dec. 18, 2003 in PCT/US03/31370. |
International Search Report, PCT/US2007/015424, dated Feb. 16, 2009. |
Ishikawa et al., “Properties and mechanisms of fast-setting calcium phosphate cements,” J. Mat. Sci. Mat. Med., 1995, 6, pp. 528-533. |
Johal et al., “In Vivo Response of Strontium and Zinc-Based Ionomeric Cement Implants in Bone”, J. of Materials Science: Materials in Medicine, Apr. 2002, 13(4), 375-379. |
Jones, “Teeth and Bones: Applications of Surface Science to Dental Materials and Related Biomaterials”, Surface Science Reoprts, May 2001, 42(3-5), 75-205. |
Kim et al., “Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method,” Journal of Material Science: Materials in Medicine, Dec. 7, 2004, 15, pp. 1129-1134. |
Kingery, Introduction to Chemistry, Wiley Series on the Science and Technology of Materials, 1st ed., Hollowman, J.H. et al. (eds.), Wiley & Sons, 1960, p. 416. |
Kokubo and Takadama, How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials (2006) 27: 2907-2915. |
Koutsoukos et al., “Crystallization of Calcium Phosphates. A Constant Composition Study,” J. Am. Chem. Soc., 1980, 102, 1553-1557. |
Lacout, “Calcium Phosphate As Bioceramics,” in Biomaterials—Hard Tissue Repair and Replacement, Elsevier Science Publishers, 1992, pp. 81-95. |
Lam et al., “Solvothermal Synthesis of Strontium Phosphate Chloride Nanowire,” J. of Crystal Growth, May 1, 2007, 306, pp. 129-134. |
Landi et al., “Sr-Substituted Hydroxyapatites for Osteoporotic Bone Replacement”, Acta Biomaterials, Jun. 2007, 3, 961-969. |
Lee et al., “Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices,” G. Biomed. Mat. Res., 2001, 54(2), pp. 216-223. |
Lee, Y-M., et al., “Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices”, G. Biomed. Mat. Research, 2001, 54(2), 216-223. |
LeGeros, “Biodegradation and Bioresorption of Calcium Phosphate Ceramics,” Clin. Mat., 1993, 14(1), pp. 65-88. |
LeGeros, “Calcium Phosphates in Oral Biology and Medicine,” Monographs in Oral Science, Meyers, H.M. (ed.), Karger Press, 1991, 15, pp. 108-129. |
LeGeros, “Preparation and Octacalcium Phosphate (OCP): A Direction Fast Method,” Calcif. Tiss. Int., 1985, 37, 194-197. |
LeGeros, “Properties of Osteoconductive Biomaterials: Calcium Phosphate”, Clinical Orthopaedics and Related Research, Feb. 2002, 395, 81-98. |
LeGeros, R.Z., “Biodegradation and bioresorption of calcium phospate ceramics,” Clin. Mat., 1993, 14(1), 65-88. |
Li et al., “A Novel Injectable Bioactive Bone Cement for Spinal Surgery: A Developmental and Preclinical Study”, J. Biomed Mater Res., Mar. 2000, 52, 164-170. |
Li et al., “Characteristics and Mechanical Properties of Acrylolpamidronate Treated Strontium Containing Bioactive Bone Cement”, Journal of Biomechanics, Poster Sessions, Jul. 4, 2007, 40(S2), S487. |
Li et al., “Chemical Composition, Crystal Size and Lattice Structural Changes After Incorporation of Strontium into Biomimetic Apatite”, Biomaterials, Mar. 2007, 28(7), 1452-1460. |
Lickorish, David, et al. Collagen-hydroxyapatite composite prepared by biomimetic process, Journal of Biomedical Materials Research Part A. vol. 68A (Nov. 14, 2003), pp. 19-27. |
Ling et al., “Expression of TGF-Beta in Region of Bone Defect Repaired by Collagent/Nano-Beta-Tricalcium Phosphate Composite Artificial Bone,” Dabase Medline [online] US National Library of Medicine (NLM), Bethesda, MD, 2003, XP002537216, Database Accession No. NLM14526442, Abstract. |
Llinas et al., “Structural Studies in Human Alkaline Phosphate in Complex with Strontium: Implication for It's Secondary Effect in Bones”, Protein Science, Apr. 2006, 15, 1691-700. |
Marie et al., “Mechanisms of Action and Therapeutic Potential of Strontium in Bone”, Calcified Tissue International, Aug. 2001, 9, 121-129. |
Marie, “Strontium Ranelate: New Insights into It's Dual Mode of Action”, Bone, May 2007, 40(5/Supplement), S5-S8. |
Matsumura et al., “Radiopacity and Physical Properties of Titanium-polymethacrylate Composite,” J. of Dental Res., 1992, 71(1), pp. 2-6. |
Mirtchi et al., “Calcium phosphate cements: Effect of fluorides on the setting and hardening of b-tricalcium phosphate-dicalcium phosphate-calcite cements,” Biomat., 1991, 12, pp. 505-510. |
Mirtchi et al., “Calcium phosphate cements: Effect of fluorides on the setting and hardening of beta-tricalcium phosphate-dicalcium phosphate-calcite cements,” Biomat., 1991, 12, pp. 505-510. |
Monma et al., “Properties of Hydroxyapatite Prepared by the Hydrolysis of Tricalcium Phosphate,” J. Chem. Tech. Biotechnol., 1981, 31, pp. 15-24. |
Nancollas et al., “Formation and Dissolution Mechanisms of Calcium Phosphates in Aqueous Systems,” in Hydroxyapatite and Related Materials, CRC Press, Inc., 1994, pp. 73-81. |
Nancollas, “In vitro studies of calcium phosphate crystallization,” in Biomineralization Chemical and Biochemical Perspectives, 1989, pp. 157-187. |
Nancollas, “The involvement of calcium phosphates in biological minerlization and demineralization processes,” Pure Appl. Chem., 1992, 64(11), pp. 1673-1678. |
Ni et al., “Interfacial Behaviour of Strontium-Containing Hydroxyapatite Cement with Cancellous and Cortical Bone”, Biomaterials, Jun. 2006, 27, 5127-5133. |
Ni et al., “Nano-Mechanics of Bone and Bioactive Bone Cement Interfaces in a Load-Bearing Model,” Biomaterials, Mar. 2006, 27(9), pp. 1963-1970. |
Ni et al., “Strontium-Containing Hydroxyapatite Bioactive Bone Cement in Revision Hip Arthroplasty”, Biomaterials, May 2006, 27, 4348-4355. |
Nielsen, “The Biological Role of Strontium”, Bone, Jul. 2004, 35, 583-588. |
Okayama et al., “The Mechanical Properties and Solubility of Strontium-Substituted Hydroxyapatite”, Bio-Medical Materials and Engineering, 1991, 1 (1 ), 11-17. |
Oliveira et al., “Strontium-Substituted Apatite Coating Grown on Ti6A14V Substrate Through Biomimetic Synthesis”, J. Biomedical Materials Research Part B: Applied Biomaterials, Apr. 2007, 83B, 258-265. |
Oonishi et al., “Particulate Bioglass Compared With Hydroxyapatite as a Bone Graft Substitute,” Clinical Orthopaedics and Related Research, No. 334, pp. 316-325, Jan. 1997. |
Ortolani and Vai, “Strontium Ranelate: An Increased Bone Quality Leading to Vertebral Antifracture Efficacy at All Stages,” Bone, Feb. 2006, 38(2 Suppl 1), pp. S19-S22. |
P.W. Brown et al. Variations in solution chemistry during the low temperature formation of hydroxyapatite J. Am. Ceram. Soc. 1991 74(8):1848. |
PCT International Search Report dated Apr. 10, 1998, 1 page. |
Pi and Quarles, “A Novel Cation-Sensing Mechanism in Osteoblasts is a Molecular Target”, Journal of Bone and Mineral Research, Jan. 12, 2004, 19(5), 862-869. |
Piotrowski et al., Mechanical studies of the bone bioglass interfacial bond. J. Biomed. Mater. Res. (1975) 9:47-61. |
Powell et al., “The Structure of Ceramic Foams Prepared from Polyurethane-Ceramic Suspension,” Materials & Manuf. Processes, 1995, 10(4), pp. 757-771. |
Qiu et al, “Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds,” Biomaterials 27 (2006) pp. 1277-1286. |
Robson, Wound Infection: a failure of wound healing caused by an imbalance of bacteria. (1997) Surg Clin North Am. pp. 637-650. |
Satyanarayana et al., “One Dimensional Nanostructured Materials”, Progress in Materials Science, Jul. 2007, 52(5), 699-913. |
Stanley et al., Residual alveolar ridge maintenance with a new endosseous plant material. Journal of Prostetic Dentistry, vol. 58, pp. 607-613 (1987). |
Stoor P, Soderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand 1998; 56(3):161-165. |
Suh et al., “Delivery of Recombinant Human Bone Morphogenetic Protein-2 Using a Compression-Resistant Matrix in Posterolateral Spine Fusion in the Rabbit and in the Non-Human Primate,” Database Medline [Online] US National Library of Medicine (NLM), Bethesda, MD, XP002537215, Database Accession No. NLM11840099, Abstract, Feb. 15, 2002. |
Tampieri et al., Posority-graded hydroxyapatite ceramics to replace natural bone, Biomaterial, 2001, vol. 22, pp. 1365-1370. |
The Independent Research Group, Jan. 28, 2003, pp. 1-41. |
Tomisaka, “510(k) Summary; Origen™ DMB with bioactive glass,” Nanotherapeutics, 2007, pp. 5-1 through 5-3; letter 3 pages. |
U.S. Appl. No. 08/784,439, filed Jan. 16, 1997 Sapieszko et al. |
U.S. Appl. No. 09/253,556, Sapieszko et al., filed Feb. 19, 1999. |
Vaccaro, “The Role of Osteocondutive Scaffold in Synthetic Bone Graft”, Orthopedics, May 2002, 25(5/Supplement), 1-8. |
Verberckmoes et al., “Effects of Strontium on the Physicochemical Characteristics of Hydroxyapatite”, Calcified Tissue International, Jul. 2004, 75, 405-415. |
Vereecke et al., “Calculation of the Solubility Diagrams in the System Ca(OH)2—H3PO4—KOH—HNO3—CO2—H2O,” J. Cryst. Growth, 1990, 104, pp. 820-832. |
Vicente et al., “Ultrastructural Study of the Osteointegration of Bioceramics (Whitlockite and Composite Beta-TCP + Collagen) in Rabbit Bone,” Database Medline [Online] US National Library of Medicine (NLM), Bethesda, MD, XP002537217, Database Accession No. NLM8882364, Abstract, Mar. 1996. |
Webster's II New College Dictionary; 1995; p. 819. |
White et al., “Replamineform Porous Biomaterials for Hard Tissue Implant Applications”, J. Biomed. Mater. Res. Symposium, 1975, No. 6, 23-27. |
Wilson J, Pigott GH, Schoen FJ, Hench L 1. Toxicology and biocompatibility ofbioglasses. J Biomed Mater Res 1981; 15:805-817. |
Wong et al., “In vivo Cancellous Bone Remodeling on a Strontium-Containing Hydroxyapatite (Sr-HA) Bioactive Cement”, J. Biomed Mater Res., May 2004, 68A, 513-521. |
Wong et al., “Prediction of Preciptation and Transformation Behavior of Calcium Phosphate in Aqueous Media,” in Hydroxyapatite and Related Mateirals, Brown, P.W., et al. (eds.), CRC Press, Inc., 1994, pp. 189-196. |
Wong et al., “Ultrastructural Study of Mineralization of a Strontium-Containing Hydroxyapatite (Sr-HA) Cement in vivo”, J. Biomed. Mater. Res., Apr. 2004, 70A, 428-435. |
Wu et al., “The Effect of Strontium Incorporation into CaSio3 Ceramics on their Physical and Biological Properties,” Biomaterials, Apr. 2007, 28, 3171-3181. |
Xue et al., “Osteoprecursor Cell Response to Strontium-Containing Hydroxyapatite Ceramics”, J. Biomed. Mater. Res., Feb. 2006, 79A, 804-814. |
Zhao et al., “Surface Treatment of Injectable Strontium-Coating Bioactive Bone Cement for Vertebroplasty”, J. Biomed. Mater. Res. Part B, Appl. Biomater, Apr. 2004, 69B(1), 79-86. |
Number | Date | Country | |
---|---|---|---|
20130059011 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
60817617 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11771857 | Jun 2007 | US |
Child | 13627439 | US |