Bioactive Peptide Coatings for Synthetic Bone Grafts in Dental Applications

Information

  • Research Project
  • 7674736
  • ApplicationId
    7674736
  • Core Project Number
    R44DE018071
  • Full Project Number
    5R44DE018071-03
  • Serial Number
    18071
  • FOA Number
    PA-07-280
  • Sub Project Id
  • Project Start Date
    5/15/2007 - 17 years ago
  • Project End Date
    7/31/2010 - 14 years ago
  • Program Officer Name
    DRUMMOND, JAMES
  • Budget Start Date
    8/1/2009 - 15 years ago
  • Budget End Date
    7/31/2010 - 14 years ago
  • Fiscal Year
    2009
  • Support Year
    3
  • Suffix
  • Award Notice Date
    7/16/2009 - 15 years ago
Organizations

Bioactive Peptide Coatings for Synthetic Bone Grafts in Dental Applications

DESCRIPTION (provided by applicant): According to the National Institute of Dental and Craniofacial Research, 86% of adults over 70 years of age have at least moderate periodontitis with over a quarter having lost their teeth, resulting in serious health and quality of life repercussions. Bone grafting is routinely necessary prior to the placement of Dental implants due to bone loss caused by periodontitis. Autograft bone is considered the gold standard because of its osteogenic cells, osteoinductive factors, and osteoconductive properties. Nevertheless, because of procurement morbidity and constraints on the quantity of autograft, surgeons also use allografts, xenografts, and synthetic materials. Many synthetic alternatives have been developed, but they are generally not as effective as natural materials due to the absence of osteoinductive and osteogenic properties. If synthetics were made more osteoinductive, they could provide an unlimited source of graft material that would eliminate many of the drawbacks of autograft, allograft, and xenograft. The goal of our Phase I application was to develop bi-functional peptide coatings that promote the attachment and retention of osteogenic growth factors and cells to tricalcium phosphate bone grafts. First, we identified tricalcium phosphate (TCP)-binding peptides using phage display techniques. Next, we synthesized combinations of the Affinergy novel Bone Morphogenetic Protein 2 (BMP-2), Platelet Derived Growth Factor-BB (PDGF-BB) and cell-binding sequences coupled to the newly identified TCP-binding peptides. These candidate bifunctional linker peptides were tested for their ability to bind BMP-2, PDGF-BB, and osteoblasts on TCP matrix, while retaining BMP-2 and PDGF-BB bioactivity and the osteoblastic phenotype. Here, we propose the extension of these studies by first optimizing our linker peptide sequences to generate the highest possible affinity binding peptides for TCP, BMP, PDGF and osteoblasts. We will also examine the commercializability of the peptide coating through an exhaustive battery of biocompatibility, sterilization and storage tests. A rabbit ulnar defect model will then be conducted to optimize dosage conditions and test the efficacy of new peptides. These data will provide key evidence for the in vivo efficacy and general commercializability of this bone graft coating system. Additional Phase III studies funded by Affinergy and/or new potential partnerships would likely involve a large animal model, and/or the identification and optimization of new peptide sequences in preparation for IDE submission. Public Health Significance: Bone grafting is routinely necessary prior to the placement of Dental implants. Natural materials like autograft (bone harvested from the patient) and allograft (cadaveric bone) have traditionally been used in these grafting procedures. Each strategy has unique limitations including complications associated with autograft harvest;and with allograft concerns regarding immunogenicity, risk of disease transmission, limited availability, and high procurement costs. Many synthetic alternatives have been developed, but they are generally not as effective as the natural materials. In this project, we are attempting to improve synthetic bone substitutes with the Affinergy linker peptides. We expect that peptide coatings will improve the ability of synthetic materials to stimulate bone healing by encouraging the attachment of bone promoting growth factors and cells on the surface of these synthetic alternatives.

IC Name
NATIONAL INSTITUTE OF DENTAL &CRANIOFACIAL RESEARCH
  • Activity
    R44
  • Administering IC
    DE
  • Application Type
    5
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    747258
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    121
  • Ed Inst. Type
  • Funding ICs
    NIDCR:747258\
  • Funding Mechanism
    SBIR-STTR
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    AFFINERGY ,INC
  • Organization Department
  • Organization DUNS
  • Organization City
    RESEARCH TRIANGLE PARK
  • Organization State
    NC
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    27709
  • Organization District
    UNITED STATES