Claims
- 1. A non-metal vaso-occlusive device for implantation into the vasculature of a patient to occlude abnormal blood flow comprising:
a material comprising a polymer or combination of polymers in a solid form, wherein the material is configured in a pre-implantation shape before implantation and assumes a vaso-occluding shape after implantation.
- 2. A vaso-occlusive device as in claim 1, wherein the polymer or polymers are selected from the group consisting of polyacrylamide (PAAM), poly(N-isopropylacrylamine) (PNIPAM), poly(vinylmethylether), poly(ethylene oxide), poly(vinylalcohol), poly(ethyl (hydroxyethyl) cellulose), poly(2-ethyl oxazoline), Polylactide (PLA), Polyglycolide (PGA), Poly(lactide-co-glycolide) PLGA, Poly(e-caprolactone), Polydiaoxanone, Polyanhydride, Trimethylene carbonate, Poly(β-hydroxybutyrate), Poly(g-ethyl glutamate), Poly(DTH-iminocarbonate), Poly(bisphenol A iminocarbonate), Poly(orthoester) (POE), Polycyanoacrylate (PCA), Polyphosphazene, Polyethyleneoxide (PEO), Polyethylglycol (PEG), Polyacrylacid (PAA), Polyacrylonitrile (PAN), Polyvinylacrylate (PVA), Polyvinylpyrrolidone (PVP), Polyglycolic Lactic Acid (PGLA) a copolymer, and a blend of two or more polymers.
- 3. A vaso-occlusive device as in claim 1, wherein the solid polymer is a natural polymer.
- 4. A vaso-occlusive device as in claim 3, wherein the natural polymer is selected from the group consisting of collagen, silk, fibrin, gelatin, hyaluron, cellulose, chitin, dextran, casein, albumin, ovalbumin, heparin sulfate, starch, agar, heparin, alginate, fibronectin, fibrin pectin, elastin, keratin, a copolymer, and a blend of polymers.
- 5. A vaso-occlusive device as in claim 1, wherein the pre-implantation shape comprises a shape selected from the group consisting of a strip, a rod, a sheet, a roll, a tube, a ribbon, a string, and a coil.
- 6. A vaso-occlusive device as in claim 1, wherein the vaso-occluding shape comprises a shape selected from the group consisting of a coil, a coiled coil, a circle, a half circle, a cone, a twisted sheet, a rod of random bends, and a helix.
- 7. A vaso-occlusive device as in claim 1, further comprising a bioactive agent integrated into or coating the solid material.
- 8. A vaso-occlusive device as in claim 7, wherein the bioactive agent comprises a bioactive agent selected from the group consisting of a protein factor, a growth factor, an inhibiting factor, an endothelization factor, an extracellular matrix-forming factor, a cell adhesion factor, a tissue adhesion factor, an immunological factor, a healing factor, a vascular endothelial growth factor, a scarring factor, a tumor suppressor, an antigen-binding factor, an anti-cancer factor, a monoclonal antibody, a monoclonal antibody against a growth factor, a drug, a drug producing cell, a cell regeneration factor, a progenitor cell of the same type as vascular tissue, and an a progenitor cell that is histiologically different from vascular tissue.
- 9. A vaso-occlusive device as in claim 8, wherein the bioactive agent comprises a tissue adhesion factor and the tissue adhesion factor is selected from the group consisting of fibrin, collagen, albumin, cyanoacrylate, fibrinogen, chitosan, and gelatin-genipin.
- 10. A vaso-occlusive device as in claim 1, further comprising a radio pacifier.
- 11. A vaso-occlusive device as in claim 10, wherein the radio pacifier comprises an agent that provides visibility of the device under X-ray or other imaging technology.
- 12. A vaso-occlusive device as in claim 10, wherein the radio pacifier can be identified by an imaging technique.
- 13. A vaso-occlusive device as in claim 1, wherein one or more of the polymers comprising the solid material comprises a biodegradable polymer.
- 14. A vaso-occlusive device for implantation into the vasculature of a patient to occlude abnormal blood flow comprising:
a liquid injectable polymer or combination of polymers for delivery to a site of abnormal blood flow upon which delivery the polymer polymerizes or precipitates to assume a vaso-occluding solid shape that occludes abnormal blood flow.
- 15. A vaso-occlusive device as in claim 14, wherein the polymer or polymers are selected from the group consisting of polyacrylamide (PAAM), poly(N-isopropylacrylamine) (PNIPAM), poly(vinylmethylether), poly(ethylene oxide), poly(vinylalcohol), poly(ethyl (hydroxyethyl) cellulose), poly(2-ethyl oxazoline), Polylactide (PLA), Polyglycolide (PGA), Poly(lactide-co-glycolide) PLGA, Poly(e-caprolactone), Polydiaoxanone, Polyanhydride, Trimethylene carbonate, Poly(β-hydroxybutyrate), Poly(g-ethyl glutamate), Poly(DTH-iminocarbonate), Poly(bisphenol A iminocarbonate), Poly(orthoester) (POE), Polycyanoacrylate (PCA), Polyphosphazene, Polyethyleneoxide (PEO), Polyethylglycol (PEG), Polyacrylacid (PAA), Polyacrylonitrile (PAN), Polyvinylacrylate (PVA), Polyvinylpyrrolidone (PVP), Polyglycolic Lactic Acid (PGLA) a copolymer, and a blend of two or more polymers.
- 16. A vaso-occlusive device as in claim 14, wherein the injectable polymer is a natural polymer.
- 17. A vaso-occlusive device as in claim 16, wherein the natural polymer is selected from the group consisting of collagen, silk, fibrin, gelatin, hyaluron, cellulose, chitin, dextran, casein, albumin, ovalbumin, heparin sulfate, starch, agar, heparin, alginate, fibronectin, fibrin, pectin, elastin, keratin, a copolymer, and a blend of polymers.
- 18. A vaso-occlusive device as in claim 14, further comprising a bioactive agent integrated into the injectable polymer.
- 19. A vaso-occlusive device as in claim 18, wherein the bioactive agent comprises a bioactive agent selected from the group consisting of a protein factor, a growth factor, an inhibiting factor, an endothelization factor, an extracellular matrix-forming factor, a cell adhesion factor, a tissue adhesion factor, an immunological factor, a healing factor, a vascular endothelial growth factor, a scarring factor, a tumor suppressor, an antigen-binding factor, an anti-cancer factor, a monoclonal antibody, a monoclonal antibody against a growth factor, a drug, a drug producing cell, a cell regeneration factor, a progenitor cell of the same type as vascular tissue, and an a progenitor cell that is histiologically different from vascular tissue.
- 20. A vaso-occlusive device as in claim 19, wherein the bioactive agent comprises a tissue adhesion factor and the tissue adhesion factor is selected from the group consisting of fibrin, collagen, albumin, cyanoacrylate, fibrinogen, chitosan, and gelatin-genipin.
- 21. A vaso-occluding device as in claim 14, further comprising that one or more polymers comprising the resulting solid polymer are biodegradable.
- 22. A method of treating a patient having abnormal blood flow comprising:
implanting into the vasculature of the patient at the site of abnormal blood flow a material comprising a polymer or combination of polymers, wherein the material is either a liquid injectable that polymerizes to a solid or precipitates as a solid upon placement in the patient or is a solid material configured in a pre-implantation shape before implantation and changes to a vaso-occluding shape after implantation.
- 23. A method as in claim 22, wherein the material comprises a polymer or combination of polymers selected from the group consisting of polyacrylamide (PAAM), poly(N-isopropylacrylamine) (PNIPAM), poly(vinylmethylether), poly(ethylene oxide), poly(vinylalcohol), poly(ethyl (hydroxyethyl) cellulose), poly(2-ethyl oxazoline), Polylactide (PLA), Polyglycolide (PGA), Poly(lactide-co-glycolide) PLGA, Poly(e-caprolactone), Polydiaoxanone, Polyanhydride, Trimethylene carbonate, Poly(β-hydroxybutyrate), Poly(g-ethyl glutamate), Poly(DTH-iminocarbonate), Poly(bisphenol A iminocarbonate), Poly(orthoester) (POE), Polycyanoacrylate (PCA), Polyphosphazene, Polyethyleneoxide (PEO), Polyethylglycol (PEG), Polyacrylacid (PAA)), Polyacrylonitrile (PAN), Polyvinylacrylate (PVA), Polyvinylpyrrolidone (PVP), Polyglycolic Lactic Acid (PGLA), a copolymer, and a blend of two or more polymers.
- 24. A method as in claim 22, wherein the material is a natural polymer.
- 25. A method as in claim 24, wherein the natural polymer is selected from the group consisting of collagen, silk, fibrin, gelatin, hyaluron, cellulose, chitin, dextran, casein, albumin, ovalbumin, heparin sulfate, starch, agar, heparin, alginate, fibronectin, fibrin, pectin, elastin, keratin, a copolymer, and a blend of polymers.
- 26. A method as in claim 22, wherein the material implanted in the patient comprises a bioactive agent.
- 27. A method as in claim 26, wherein the bioactive agent comprises a bioactive agent selected from the group consisting of a protein factor, a growth factor, an inhibiting factor, an endothelization factor, an extracellular matrix-forming factor, a cell adhesion factor, a tissue adhesion factor, an immunological factor, a healing factor, a vascular endothelial growth factor, a scarring factor, a tumor suppressor, an antigen-binding factor, and an anti-cancer factor. protein factor, a growth factor, an inhibiting factor, an endothelization factor, an extracellular matrix-forming factor, a cell adhesion factor, a tissue adhesion factor, an immunological factor, a healing factor, a vascular endothelial growth factor, a scarring factor, a tumor suppressor, an antigen-binding factor, an anti-cancer factor, a monoclonal antibody, a monoclonal antibody against a growth factor, a drug, a drug producing cell, a cell regeneration factor, a progenitor cell of the same type as vascular tissue, and an a progenitor cell that is histiologically different from vascular tissue.
- 28. A method as in claim 27, wherein the bioactive agent comprises a tissue adhesion factor and the tissue adhesion factor is selected from the group consisting of fibrin, collagen, albumin, cyanoacrylate, fibrinogen, chitosan, and gelatin-genipin.
- 29. A method of making a vaso-occlusive device for occluding abnormal blood flow comprised of a non-metal solid material comprising:
configuring the non-metal material into a pre-implantation shape, wherein upon implantation into a patient at a site of abnormal blood flow the material assumes a vaso-occluding shape.
- 30. A method as in claim 29, wherein the non-metal material is selected from the group consisting of polyacrylamide (PAAM), poly(N-isopropylacrylamine) (PNIPAM), poly(vinylmethylether), poly(ethylene oxide), poly(vinylalcohol), poly(ethyl (hydroxyethyl) cellulose), poly(2-ethyl oxazoline), Polylactide (PLA), Polyglycolide (PGA), Poly(lactide-co-glycolide) PLGA, Poly(e-caprolactone), Polydiaoxanone, Polyanhydride, Trimethylene carbonate, Poly(β-hydroxybutyrate), Poly(g-ethyl glutamate), Poly(DTH-iminocarbonate), Poly(bisphenol A iminocarbonate), Poly(orthoester) (POE), Polycyanoacrylate (PCA), Polyphosphazene, Polyethyleneoxide (PEO), Polyethylglycol (PEG), Polyacrylacid (PAA), Polyacrylonitrile (PAN), Polyvinylacrylate (PVA), Polyvinylpyrrolidone (PVP), Polyglycolic Lactic Acid (PGLA), a copolymer, and a blend of two or more polymers.
- 31. A method as in claim 29, wherein the non-metal material is a natural polymer.
- 32. A method as in claim 31, wherein the natural polymer is selected from the group consisting of collagen, silk, fibrin, gelatin, hyaluron, cellulose, chitin, dextran, casein, albumin, ovalbumin, heparin sulfate, starch, agar, heparin, alginate, fibronectin, fibrin, pectin, elastin, keratin, a copolymer, and a blend of polymers.
- 33. A method as in claim 29, further comprising integrating into or coating the nonmetal material with a bioactive agent.
- 34. A method as in claim 33, wherein coating or integrating comprises a process selected from the group consisting of ion implantation, vapor deposition, plasma deposition, coating, jacketing, weaving, braiding, spraying, dipping, and spinning.
- 35. A method as in claim 33, wherein the bioactive agent comprises a bioactive agent selected from the group consisting of a protein factor, a growth factor, an inhibiting factor, an endothelization factor, an extracellular matrix-forming factor, a cell adhesion factor, a tissue adhesion factor, an immunological factor, a healing factor, a vascular endothelial growth factor, a scarring factor, a tumor suppressor, an antigen-binding factor, an anti-cancer factor, a monoclonal antibody, a monoclonal antibody against a growth factor, a drug, a drug producing cell, a cell regeneration factor, a progenitor cell of the same type as vascular tissue, and an a progenitor cell that is histiologically different from vascular tissue.
- 36. A method as in claim 35, wherein the bioactive agent comprises a tissue adhesion factor selected from the group consisting of fibrin, collagen, albumin, cyanoacrylate, fibrinogen, chitosan, and gelatin-genipin.
- 37. A method as in claim 29, wherein one or more of the polymers are biodegradable.
- 38. A method as in claim 29, further comprising a radio pacifier mixed into or coating the vaso-occlusive device.
- 39. A method of making a vaso-occlusive device for occluding abnormal blood flow in a patient comprising:
providing a liquid injectable polymer material that polymerizes to a solid or precipitates to a solid upon placement in the patient.
- 40. A method as in claim 39, wherein the liquid injectable polymer material is selected from the group consisting of polyacrylamide (PAAM), poly(N-isopropylacrylamine) (PNIPAM), poly(vinylmethylether), poly(ethylene oxide), poly(vinylalcohol), poly(ethyl (hydroxyethyl) cellulose), poly(2-ethyl oxazoline), Polylactide (PLA), Polyglycolide (PGA), Poly(lactide-co-glycolide) PLGA, Poly(e-caprolactone), Polydiaoxanone, Polyanhydride, Trimethylene carbonate, Poly(β-hydroxybutyrate), Poly(g-ethyl glutamate), Poly(DTH-iminocarbonate), Poly(bisphenol A iminocarbonate), Poly(orthoester) (POE), Polycyanoacrylate (PCA), Polyphosphazene, Polyethyleneoxide (PEO), Polyethylglycol (PEG), Polyacrylacid (PAA), Polyacrylonitrile (PAN), Polyvinylacrylate (PVA), Polyvinylpyrrolidone (PVP), Polyglycolic Lactic Acid (PGLA), a copolymer, and a blend of two or more polymers.
- 41. A method as in claim 39, wherein the material is a natural polymer.
- 42. A method as in claim 41, wherein the natural polymer is selected from the group consisting of collagen, silk, fibrin, gelatin, hyaluron, cellulose, chitin, dextran, casein, albumin, ovalbumin, heparin sulfate, starch, agar, heparin, alginate, fibronectin, fibrin, pectin, elastin, keratin, a copolymer, and a blend of polymers.
- 43. A method as in claim 39, further comprising integrating into the liquid injectable material a bioactive agent
- 44. A method as in claim 43, wherein the bioactive agent comprises a bioactive agent selected from the group consisting of a protein factor, a growth factor, an inhibiting factor, an endothelization factor, an extracellular matrix-forming factor, a cell adhesion factor, a tissue adhesion factor, an immunological factor, a healing factor, a vascular endothelial growth factor, a scarring factor, a tumor suppressor, an antigen-binding factor, an anti-cancer factor, a monoclonal antibody, a monoclonal antibody against a growth factor, a drug, a drug producing cell, a cell regeneration factor, a progenitor cell of the same type as vascular tissue, and an a progenitor cell that is histiologically different from vascular tissue.
- 45. A method as in claim 44, wherein the bioactive agent comprises a tissue adhesion factor and the tissue adhesion factor is selected from the group consisting of fibrin, collagen, albumin, cyanoacrylate, fibrinogen, chitosan, and gelatin-genipin.
- 46. A method as in claim 39, wherein one or more polymers are biodegradable.
- 47. A method as in claim 39, farther comprising a radio pacifier mixed into or coating the vaso-occlusive device.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims benefit under 37 CFR §1.78 of provisional application No. 60/288,459, filed May 4, 2001. The full disclosure of the application is incorporated herein by reference.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60288459 |
May 2001 |
US |