The present disclosure is directed to the perioperative and intraoperative preparation and delivery of organogel matrix drug delivery depots for local delivery of active agents to a surgical site or traumatic wound. More particularly, embodiments of the present disclosure are directed to preparation and local delivery of antimicrobial or anesthetic drug depots to a surgical site including one or more implantable medical devices, such as implantable orthopedic medical devices. The present disclosure is further directed to the preparation of a local drug depot formed from an organogel matrix in a non-sterile environment, and the application thereof to a non-sterile open wound.
Foreign bodies, such as orthopedic implants, are a risk factor for postsurgical infection. References to antibiotic and antimicrobial eluting devices are plentiful in the literature, but commercially-available devices are rare. Bone cements, such as poly(methyl methacrylate) (PMMA) and calcium sulfate cements are used on and off label to deliver antibiotics to orthopedic surgical sites.
PMMA cement is non-resorbable and its use necessitates a removal operation. Additionally, the amount of PMMA needed for anti-infective therapy is especially disadvantageous in orthopedic applications due to limited soft tissue availability (i.e., limited volume for placement). Incomplete elution of antibiotics from PMMA cements results in uncertainty of dose. Furthermore, long-term low-dose delivery can lead to antibiotic resistance development. Additionally, the implanted PMMA material (e.g., beads) presents another foreign body for bacterial colonization and growth.
Calcium sulfate cement can be used as an antibiotic delivery reservoir in bone defects or in soft-tissue surrounding an orthopedic surgical site. In the US, studies have shown that calcium sulfate-based antibiotic therapies fail to provide controlled release of antibiotics for more than 3 days.
Another existing infection treatment option used is a surgeon directly delivering powdered antibiotic into the surgical site. Direct application of vancomycin powder in spine surgery was effective in case series, and a 1000 patient clinical trial has been conducted to measure the effect of local delivery of vancomycin on deep surgical site infections (SSIs) in high risk trauma surgery. Nevertheless, antibiotic powder application does not provide either sustained or controlled local tissue concentrations. Further, its use is limited to open surgical procedures, thus eliminating its treatment potential from percutaneous or minimally-invasive surgical procedures.
Hydrogels have also been considered as a delivery vehicle; however, their elution profiles are typically dominated by burst release with limited controlled, sustained release. Some examples include Novagenit's Defensive Antibacterial Coating (DAC) hydrogel, Dr. Reddy's laboratories' DFA-02, and Poloxamer 407 thermoreversible hydrogels. One study of Novagenit's DAC hyaluronan-poly-D,L-lactide hydrogel demonstrated that greater than 60% of vancomycin was released within the first 4 hours and that greater than 80% was released within 24 hours (Giavaresi G, Meani E, Sartori M, Ferrari, A, Bellini D, Sacchetta A C, Meraner J, Sambri A, Vocale C, Sambri V, Fini M, Romanó C L, International Orthopaedics (SCIOT) 2014; 38:1505-1512). A study of Dr. Reddy's DFA-02 gel reported results with a majority of antibiotic elution within 24 hours (Penn-Barwell J G, Murray K, and Wenke J C, J Orthop Trauma 2014; 28:370-375). A study of Poloxamer 407 thermoreversible hydrogel demonstrated extended vancomycin release in vitro; however, the local vancomycin concentration in a rat model at 24 and 48 hours was only 6% and 0.6% of the concentration at 4 hours demonstrating a significant decrease from initial release rates (Veyries M L, Couarraze G, Geiger S, Agnely F, Massias L, Kunzli B, Faurisson F, Rouveix B, International Journal of Pharmaceutics 1999; 192:183-193).
Sustained local release of antibiotics without removal of a device can be achieved with a bioresorbable antibacterial coating on a medical device; however, antibiotic coated devices in the orthopedic segment offer unique challenges. Many part numbers are required to fit patient anatomy, resulting in logistical challenges in coating, storing, and delivering sufficient stock of each size before expiration. Antibacterial implants would require a duplication of the inventory of the analogous non-antibacterial devices. Furthermore, the repeated sterilization of graphic cases is prohibitive to biodegradable antibacterial coatings, so alternate logistics are required.
Some difficulties associated with coated medical devices includes the limited market size per regulatory clearance, the necessity of duplicating inventory, and the technical challenge of coating the extensive varieties of anatomic implant shapes. Coated medical devices do not permit the surgeon to select desired antibiotics or combination of antibiotics. Evaluation of patient-specific risk factors or the species and sensitivities of bacteria recovered from patient tissues are important criteria in selecting the desired antimicrobial agents and dosage.
Accordingly, it would be beneficial to provide a drug depot that can be perioperatively or intraoperatively prepared and intraoperatively delivered to a surgical site, for instance a surgical site including one or more implantable medical devices, such as an implantable orthopedic medical device, where the drug depot is resistant to irrigation, resistant to migration from the surgical site and can provide controlled release of an active agent, such as an antimicrobial, antibiotic, or local anesthetic agent, or a combination thereof. In other words, the drug depot can remain at the surgical site for the duration of time necessary for the desired release of the active agent.
In additional embodiments, it would be beneficial to provide a drug depot that can be contemporaneously prepared and delivered to a non-sterile open wound site in a non-surgical setting; (i.e., a non-sterile environment), where the drug depot is migration resistant and can provide controlled release of an active agent, such as an antimicrobial agent or a local anesthetic. Such a drug depot that can be contemporaneously prepared and delivered can have particular advantage for use in acute emergency treatment settings with non-sterile open wounds involving significant soft and hard tissue damage, such as for use by emergency medical technicians or combat personnel, where the drug depot is contemporaneously prepared and delivered to the non-sterile open wound site. Such benefits include the ability to immediately deliver necessary anti-infective and pain relief treatment to a specific wound site of patient, where the drug depot is configured to remain at the site of delivery.
The present disclosure, therefore, in certain aspects, describes a method of delivering an active agent to a surgical site including the steps of:
perioperatively compounding solid particles of an active agent within a biocompatible organogel matrix so as to form an organogel drug depot configured for controlled release; and intraoperatively delivering the organogel drug depot to the surgical site; where the organogel matrix includes an organogelator and biocompatible organic solvent, and, where the organogel drug depot is in a solid or semisolid state during the step of intraoperative delivery.
According to certain embodiments, the surgical site can include one or more implantable medical devices, such as, for example, an implantable orthopedic device.
According to additional aspects of the present disclosure, a method of preparing a local drug depot having an active agent for delivery to a surgical site includes:
perioperatively compounding solid particles of an active agent within a biocompatible organogel matrix to form an organogel drug depot configured for controlled release;
where the organogel matrix comprises an organogelator and a biocompatible organic solvent, and where the organogel drug depot is in a solid or semisolid state prior to a delivery of the organogel drug depot.
According to certain embodiments, the surgical site can include one or more implantable medical devices, such as, for example, an implantable orthopedic device.
According to certain embodiments, compounding can include heating the organogel matrix to melt the matrix and incorporating the solid particles into the melted matrix. The method can further include, after incorporating the solid particles, cooling the melted matrix to form the organogel drug depot, where the drug depot is in a solid or semisolid state. In some embodiments, cooling the melted matrix occurs within about 10 minutes or less, for example, 5 minutes or less. In alternative embodiments, compounding can include a physical mixing (e.g., mechanical mixing) between the organogel matrix in the solid or semisolid state and the active agent solid particles to form the organogel drug depot, where the drug depot can be in a solid or semisolid state. In still further embodiments, compounding can include a combination of heating and physical or mechanical mixing.
According to certain embodiments, the organogel matrix has a solubility in water of less than 1 g/L.
According to certain embodiments, the organogel matrix has a melting point above 37° C. In certain embodiments, the organogelator includes one or more fatty acids or salts or esters of fatty acids, such as, for example, stearic acid, sodium stearate, or sorbitan monostearate, as well as mixtures thereof.
According to certain embodiments, the biocompatible organic solvent has a melting point below 20° C. According to further embodiments, the biocompatible organic solvent can include a biocompatible oil derived from a plant or animal, or synthetic derivatives thereof. In still further embodiments, the biocompatible oil includes one or more fatty acids. In still further embodiments, the one or more fatty acids can include unsaturated fatty acids, saturated fatty acids, or a combination or mixture thereof. In some embodiments, the one or more fatty acids can include free fatty acids, or can include fatty acids in the form of triglycerides, or a combination or mixture thereof. In one embodiment, the one or more fatty acids includes linoleic acid. Linoleic acid is a well-known component of a number of plant oils.
According to certain embodiments, the weight ratio of the organogelator and the biocompatible organic solvent of the organogel matrix is in the range of about 5:95 to about 60:40, such as, for example from about 25:75 to about 50:50.
According to certain embodiments, the active agent includes an antimicrobial agent, antibiotic agent, or a local anesthetic agent, or combination of the aforementioned active agents. According to certain embodiments, the active agent is soluble, freely soluble, or very soluble in water, as defined by the United States Pharmacopeia (USP) (i.e., a ratio of water to active agent of about 30:1 or less). In alternative embodiments, the active agent is sparingly soluble, slightly soluble, very slightly soluble, or insoluble in water, as defined by the USP (i.e., a ratio of water to active agent of about 30:1 or more).
According to certain embodiments, the solid particles of the active agent are disposed in within the organic solvent of the organogel matrix. In still further embodiments, the solid particles can have a median D(50) particle size (by volume distribution) in the range of about 1 μm to about 1 mm (1000 microns), such as, for example, in the range of about 1 μm to about 10 μm, or 10 μm to about 50 μm.
According to certain embodiments, the organogel matrix can further include one or more excipients. According to further embodiments, the one or more excipients includes biocompatible surfactants or biocompatible hydrophilic small molecules. In certain embodiments, the one or more excipients can include Poly(ethylene glycol) (PEG), Pluronic F127, Tween 80, or a mixture of any combination thereof.
According to certain embodiments, the organogel matrix is configured to adhere to a metal surface in an aqueous environment. This would include, for example, conditions simulating an in vivo aqueous environment.
According to certain embodiments, the surgical site is an implant site including one or more implantable medical devices, for instance, an implantable orthopedic device. In certain embodiments, an implantable medical device includes a metal surface, and the organogel matrix is configured to adhere to the metal surface in vivo. In certain embodiments, the organogel drug depot is intraoperatively delivered to the surgical site via percutaneous syringe injection, such as, for example, through incisions for screw placement in a percutaneous plating procedure. In additional embodiments, the surgical site (with or without an implantable medical device) is operatively opened and the drug depot is intraoperatively delivered to soft or hard tissue at the surgical site, and in procedures involving an implantable medical device at the surgical site, can be delivered adjacent to, or directly onto an outer surface of, an implantable medical device, such as, for example, a metal surface or an orthopedic implant. Typically, orthopedic implants include metal, polymer, or ceramic outer surfaces. In certain additional embodiments, the organogel drug depot is intraoperatively applied onto the implantable device outside the surgical site and then intraoperatively delivered to the surgical site with the implantable medical device.
According to the present disclosure, there is also described a system for preparing an organogel drug depot for local delivery to a surgical site. The system includes an organogel matrix including an organogelator and a biocompatible organic solvent, solid particles of an active agent, a container including at least one wall having an outer surface, where the container defines a volume capable of containing the organogel matrix and active agent solid particles, and a heating component configured to contact the outer surface and supply an amount of heat to the container.
According to certain embodiments, the surgical site is an implant site including one or more implantable medical devices, for instance, an implantable orthopedic device.
In certain embodiments of the system, the container is a syringe. In alternative embodiments, the container is a vial.
In still further embodiments, the system can include multiple containers, such that the container is a first container, and an additional container is a second container. In some embodiments, the first container has a first opening and the second container has a second opening, and the first opening is adapted to connect to the second opening.
In additional embodiments, the heating component defines an inner wall. Additionally, the inner wall can include, in some embodiments, at least one heating element, and further that the inner wall is configured to contact the outer surface of the container such that the at least one heating element supplies heat to the organogel matrix.
In certain embodiments, the inner wall defines a substantially cylindrical shape along its length. In still further embodiments, the inner wall defines a first cross-sectional diameter at a first region and a second cross-sectional diameter at a second region, and the first cross-sectional diameter can be greater than the second cross-sectional diameter.
In certain embodiments, the heating element is configured to provide one or more heating profiles along the inner wall, such that the heating component includes at least a first heating profile and a second heating profile.
According to still further embodiments of the present disclosure, methods of delivering an active agent to a non-sterile open wound site are described, including the steps of:
compounding solid particles of an active agent within a biocompatible organogel matrix to form an organogel drug depot; and,
delivering the organogel drug depot to a non-sterile open wound site, where at the time of delivery the open wound site includes soft tissue, hard tissue, or both, that are exposed to a non-sterile environment;
wherein the step of compounding and delivering are performed contemporaneously; and,
wherein the organogel is in a solid or semisolid state during the step of delivering.
According to additional aspects of the present disclosure, there is a method of preparing a local drug depot in a non-sterile environment for delivery of an active agent to a non-sterile open wound site including:
compounding solid particles of an active agent within a biocompatible organogel matrix to form an organogel drug depot;
wherein the step of compounding is performed contemporaneous to a delivery; and,
wherein the organogel is in a solid or semisolid state during compounding.
According to certain embodiments, contemporaneous compounding and delivery are within two hours or less of each other, for example within 1.5 hours, with 1.0 hours, or within 0.5 hours.
According to certain embodiments, the compounding comprises heating the organogel matrix to melt the matrix and incorporating the solid particles into the melted matrix. In further embodiments, the method further comprises, after incorporating the solid particles, cooling the melted matrix to form the organogel drug depot. In certain additional embodiments, cooling the melted matrix is about 10 minutes or less.
According to certain embodiments, compounding comprises a physical mixing between the organogel matrix in solid or semisolid state and the solid particles.
According to certain embodiments, the organogel matrix has a solubility in water of less than 1 g/L.
In certain embodiments, the organogel matrix is configured to adhere to the soft tissue, hard tissue, or both, in a substantially aqueous environment
According to certain embodiments, the active agent is an antimicrobial agent, antibiotic agent, or an anesthetic agent, or a combination thereof. In preferred embodiments, the active agent is selected from Cephalosporins, Aminoglycosides, Glycopeptides, Fluoroquinolones, Lipopeptides, Carbapenems, Rifamycins, as well as Antifungals, and combinations thereof. Suitable exemplary active agents can include cefazolin, cefuroxime, amikacin, gentamicin, tobramycin, vancomycin, ciprofloxacin, moxifloxacin, daptomycin, meropenem, ertapenem, rifampin, amphotericin-B, and fluconazole.
In additional embodiments, the active agent is soluble, freely soluble, or very soluble in water. According to alternative embodiments, the active agent is sparingly soluble, slightly soluble, very slightly soluble, or insoluble in water. In still further embodiments, the active agent solid particles have a D(50) median particle size distribution in the range of 1 μm to about 1 mm.
According to certain embodiments, the organogel matrix further comprises one or more excipients. In certain embodiments, the one or more excipients includes biocompatible surfactants or biocompatible hydrophilic small molecules, or a combination thereof. In still further embodiments, the one or more excipients includes Poly(ethylene glycol) (PEG), Pluronic F127, Tween 80, or a mixture of any combination thereof.
According to certain embodiments, the contemporaneous compounding and delivering are within 1.5 hours or less of each other. In still further embodiments, the contemporaneous compounding and delivering are within 1.0 hours or less, and can be within 0.5 hours or less.
The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present disclosure. The foregoing summary, as well as the following detailed description of preferred embodiments of the application, will be better understood when read in conjunction with the appended drawings:
In this document, the terms “a” or “an” are used to include one or more than one and the term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. In addition, it is to be understood that the phraseology or terminology employed herein, and not otherwise defined, is for the purpose of description only and not of limitation. When a range of values is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. All ranges are inclusive and combinable. Further, reference to values stated in ranges includes each and every value within that range. It is also to be appreciated that certain features of the invention, which, for clarity, are described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination.
Descriptive terms related to the solubility of a given solute in a given solvent are made with reference to the use of those terms as understood and used by the United States Pharmacopeia (USP) as follows:
“Very Soluble” as used herein means less than one part of solvent is required for one part of solute. “Freely Soluble” as used herein means that from about 1 to about 10 parts of solvent is required for one part of solute. “Soluble” as used herein means that from about 10 to about 30 parts of solvent is required for one part of solute. “Sparingly Soluble” as used herein means that from about 30 to about 100 parts of solvent is required for one part of solute. “Slightly Soluble” as used herein means that from about 100 to about 1,000 parts of solvent is required for one part of solute. “Very Slightly Soluble” as used herein means that from about 1,000 to about 10,000 parts of solvent is required for one part of solute. “Practically Insoluble” or “Insoluble” as used herein means that greater than or equal to about 10,000 parts of solvent is required for one part of solute.
As used herein “semisolid” when used in describing properties of the organogel, means that the organogel matrix, or the organogel drug depot, does not flow without extrinsic application of force, yet the material will flow upon application of force, such as, for example, upon dispensing from a syringe or manual spreading across tissue within a surgical site. This definition includes, but is not limited to, Bingham plastics.
As used herein “melt” is the state change of the solid or semisolid organogel matrix or organogel drug depot to a liquid state.
As used herein, “organogelator” is a solid or semisolid organic compound defined by its monomeric subunit, which, when placed in contact with a biocompatible organic solvent, such as an oil, forms networks that act to stabilize the organic solvent, forming an organogel. In certain embodiments, the network is a three-dimensional fibrillar network.
As used herein, “organogel matrix” is a gel composed of at least an organogelator and a biocompatible organic solvent, such as an oil. The organogelator according to the present disclosure can further include one or more excipients. While it is commonly understood that an organogel matrix will typically constitute a majority percentage by weight of the biocompatible organic solvent, for the purpose of this disclosure, the organogel matrix described herein can, in some embodiments, include equal amounts of each component, and in further embodiments, the organogelator can be a majority constituent by weight.
As used herein, “intraoperative” means the time period during a surgical procedure.
As used herein, “perioperative” means the time frame during the course of a surgical procedure (i.e., intraoperative), as well as, a reasonable time period prior to the surgical procedure. For the purposes of this disclosure, a reasonable time period can be considered within six to eight hours of the surgical procedure.
As used herein “contemporaneous” means within 2 hours or less, such that the delivery of the organogel drug depot to the soft or hard tissue or both, will be within any time period within 2 hours or less from the start of the preparation of the organogel drug depot, for example, 1.5 hours, 1.0 hour, 45 minutes, 30 minutes, 20 minutes, or 10 minutes, or any range or combination of ranges within 2 hours or less.
As used herein “non-sterile” means an environment, location, or surface that is not free from viruses, bacteria, foreign bodies, or any other potentially infection causing components.
As used herein “open wound” means a traumatic injury where the skin is torn, cut, or punctured such that the dermis is damaged, and the underlying fascia, muscle, bone, or other internal organs are exposed to the external environment. Such open wounds can be the result of lacerations, abrasions, avulsions, punctures, or penetrations to the skin and can have a likelihood of contamination.
The present disclosure describes an organogel matrix containing solid particles of an active agent for use as a local drug depot at a surgical site. The disclosed organogel drug depot provides the advantage of a controlled release matrix that is biocompatible, hydrophobic, tissue-adherent, implant adherent, and migration resistant, can be injectable, or applied manually, and does not inhibit healing at the surgical site. The disclosed delivery process of the present disclosure has the further advantage of permitting the medical professional to select an active agent and release rate based upon an individual patient's specific needs and risk factors in contrast to pre-coated, or other types of pre-loaded, or fixed dose medical implants.
An additional advantage of the disclosed organogel drug depot and delivery process is that it permits the contemporaneous preparation and delivery to a non-sterile open wound site, such as an acute traumatic injury site (e.g., combat injury or machine accident) with desired adherence to the tissue at the wound site to achieve the necessary therapeutic effect, such as for example infection prevention or pain relief.
The organogel matrix has the advantages of low-temperature melting, tunable-release, and a variety of strategies for room temperature or melt reconstitution of active agent particles (e.g., Active Pharmaceutical Ingredient (API) powders) that enables the medical professionals to formulate an antibacterial, anesthetic, or other drug delivery depot perioperatively, and particularly intraoperatively. Moreover, the organogel matrices allow for application and retention to both hard and soft tissue surfaces, as well as metal surfaces in aqueous environments such as in vivo conditions. This permits implantable medical devices, such as implantable orthopedic devices to be coated with the organogel drug depot after completion of internal fixation and prior or subsequent to final irrigation before closure; or, alternatively to be coated with the organogel drug depot prior to implantation of the medical device, such that the delivery of the organogel drug depot and the implantable medical device to the surgical site occurs simultaneously.
For example, in certain embodiments, the organogel drug depot may be prepared within 15 minutes and is stable enough to allow for preparation up to at least 6-8 hours ahead of delivery to the surgical site. This allows for intraoperative or perioperative preparation of the organogel drug depot such that all available patient data can be included in the selection of the drug molecule and delivery duration at or near the time of delivery. It should be appreciated that, in certain other embodiments, the organogel matrix could be prepared in a time period prior to a perioperative time period, such as for example, a manufacturer of a organogel matrix could prepare the composition at an offsite location and ship the composition to the surgical location, which at that point the perioperative compounding of the organogel matrix with the solid particles of an active agent can then occur.
The organogel drug depot of the present disclosure can additionally provide sufficient duration of active agent delivery clinically-relevant to local prevention of bacterial colonization or pain relief; typically within the range of about 1-14 days, and have sufficient dose strength to protect both the tissue surrounding the surgical site, and where applicable any implantable medical devices at the surgical site, such as in the case where antimicrobials, antibiotics, or local anesthetics are the desired active agents of interest. For example, in certain embodiments, the organogel drug depot can be configured for acute dosing, such as for example, less than 6 hours, or less than 12 hours, or less than 1 day to about 1-3 days. In certain other embodiments, the organogel drug depot can be configured for an intermediate dosing period, such as for example, in the range of 4-7 days. In additional embodiments, the organogel drug depot can be configured for a longer-term dosing period, such as for example, 7-14 days. In still further additional embodiments, the organogel drug depot can be configured for an extended release dosing period of up to 3-4 weeks. It should be appreciated that in embodiments where multiple active agents are utilized in the organogel drug depot, the organogel drug depot can be configured to have multiple dosing profiles (e.g., acute and long term) based upon the release profile of the selected active agents compounded within the organogel drug depot. Additionally, the organogel drug depot of the present disclosure has a sufficiently low bulk mass to allow for standard surgical soft tissue closure techniques at the surgical site as compared to use of antibiotic loaded cements as previously described. Furthermore, the organogel matrix can permit controlled release of multiple active agents having different properties such as molecular weight, log P values, etc., that would typically result in different release profiles in vivo.
In yet further embodiments of the present disclosure, the organogel drug depot has a lower limit to its viscosity range that is sufficiently high such that without application of extrinsic force the organogel drug depot exhibits substantially no flow. Furthermore, the organogel drug depot has an upper limit to its viscosity range that is sufficiently low such that application of mechanical force (e.g., a hand or surgical tool or device) to the organogel drug depot permits the even spreading or distribution (i.e., shearing) of the organogel drug depot to the necessary locations in and around the surgical site, such as the soft or hard tissues, or any implantable medical devices at the surgical site.
According to the present disclosure, a method of delivering an active agent to a surgical site is described including the steps of:
perioperatively compounding solid particles of an active agent within a biocompatible organogel matrix so as to form an organogel drug depot configured for controlled release; and intraoperatively delivering the organogel drug depot to the surgical site; where the organogel matrix includes an organogelator and a biocompatible organic solvent; and, where the organogel drug depot is in a solid or semisolid state during the step of intraoperative delivery.
According to embodiments of the present disclosure, the organogel matrix includes an organogelator and a biocompatible organic solvent. In certain embodiments, the organogelator is from a category of organogelator known as low molecular-mass organic gelators (LMOGs). LMOGs are characterized by their ability to form self-assembled gel networks, such as for example, fibrillar networks. The ability to self-assemble can occur from the formation of non-covalent interactions between the individual monomeric sub-units. According to certain embodiments, suitable organogelators can include fatty acids and derivatives thereof. For example, considering the fatty acid steric acid as an example, suitable embodiments would include stearic acid (fatty acid), sodium stearate (fatty acid salt), and sorbitan monostearate (fatty acid ester). Suitable organogelators can also include n-alkanes. In additional embodiments, suitable organogelators result in an organogel drug depot that has a melting point of at least about 37° C., and can, in certain embodiments, have a melting point as high as about 80° C.
According to certain embodiments, the biocompatible organic solvent is an organic solvent approved for use in humans by the U.S. Food and Drug Administration. In certain embodiments, the biocompatible organic solvent is a plant or animal based oil or a synthetic derivative thereof. In certain embodiments, the oil includes one or more fatty acids. In still further embodiments, the one or more fatty acids can include unsaturated fatty acids, saturated fatty acids, or a combination or mixture thereof. In some embodiments, the one or more fatty acids can include free fatty acids, or can include fatty acids in the form of triglycerides, or a combination or mixture thereof. In one embodiment, the one or more fatty acids includes linoleic acid, which, for example, is a main component of cotton seed oil. In still further embodiments, the oil has a melting point below 20° C.
According to certain embodiments, the active agent is an antimicrobial agent, antibiotic agent, or an anesthetic agent, or a combination thereof. In preferred embodiments, the active agent is selected from Cephalosporins, Aminoglycosides, Glycopeptides, Fluoroquinolones, Lipopeptides, Carbapenems, Rifamycins, as well as Antifungals, and combinations thereof. Suitable exemplary active agents can include cefazolin, cefuroxime, amikacin, gentamicin, tobramycin, vancomycin, ciprofloxacin, moxifloxacin, daptomycin, meropenem, ertapenem, rifampin, amphotericin-B, and fluconazole. Suitable anesthetic agents can include, for example, benzocaine, proparacaine, tetracaine, articaine, dibucaine, lidocaine, prilocaine, pramoxine, dyclonine, and bupivacaine.
According to certain embodiments, the active agent is soluble, freely soluble, or very soluble in water, as defined by the United States Pharmacopeia (USP). In alternative embodiments, the active agent is sparingly soluble, slightly soluble, very slightly soluble, or insoluble in water, as defined by the USP.
According to certain embodiments, the solid particles of the active agent are disposed within the organic solvent component of the organogel matrix. In still further embodiments, the solid particles can have a D(50) median particle size (by volume distribution) in the range of about 1-1000 μm, such as, for example, in the range of about 1 μm to about 10 μm, about 1 μm to about 5 μm, about 5 μm to about 10 μm, about 10 μm to about 20 μm, about 10 μm to about 50 μm, about 1 μm to about 50 μm, about 50 μm to about 100, about 1 μm to about 100 μm, about 100 μm to about 500 μm, or about 100 μm to about 1000 μm.
In certain embodiments, the organogel drug depot has an active agent content in the range of about 1% to 30% by weight. In certain embodiments, the active agent content can be in the range of 1% to 5%, 1% to 10%, 5% to 10%, 10% to 20%, 5% to 20%, 10% to 30%, 20% to 30%, about 10%, about 20%, or about 25%, for example, or any combination of ranges listed above.
According to certain embodiments, the organogel matrix is very slightly soluble or insoluble in water, such that, for example, the organogel matrix has a solubility in water of less than lg/L. According to further embodiments, the organogel matrix can have a weight ratio of organogelator to biocompatible organic solvent in the range of about 5:95 to about 70:30. In still further embodiments, the weight ratio can be in the range of about 30:70 to about 50:50. For example the weight ratio can be 10:90, 25:75, 30:70, 40:60, 45:55, 50:50, 55:45, 60:40, or 70:30.
According to the present disclosure, and with reference to
According to certain embodiments, the organogel matrix can further include one or more excipients. In certain embodiments, the one or more excipients includes biocompatible surfactants or biocompatible hydrophilic small molecules, or a combination thereof. In still further embodiments, the biocompatible hydrophilic small molecules can increase the water-solubility of the matrix. In further embodiments, the small molecule has a weight average molecular weight of about 20,000 Daltons (20 kD) or less. In certain embodiments, the one or more excipients can include PEG10 k, Pluronic F127, Tween 80, or a mixture of any combination thereof.
According to certain embodiments, the organogel drug depot is intraoperatively delivered to the surgical site via percutaneous syringe injection through a cannula. In additional embodiments, the surgical site (with or without an implantable medical device) is operatively open and the drug depot is intraoperatively delivered onto soft or hard tissue at the surgical site. In procedures including one or more implantable medical devices, the intraoperative delivery of the organogel drug depot can additionally include delivery adjacent to, or directly onto, an outer surface of an implantable medical device, such as, for example, a metal surface or an orthopedic implant. In certain additional embodiments, the organogel drug depot is first intraoperatively applied onto the implantable device outside the surgical site and then intraoperatively delivered to the surgical site with the implantable medical device.
According to the present disclosure, there is also described a system for preparing an organogel drug depot for local delivery to a surgical site or as has also been described, for local delivery to a non-sterile open wound site. The system includes an organogel matrix including an organogelator and an oil, solid particles of an active agent, a container including at least one wall having an outer surface, where the container defines a volume capable of containing the organogel and active agent solid particles, and a heating element configured to contact the outer surface and supply an amount of heat to the container.
In certain embodiments of the system, the container is a syringe. In alternative embodiments, the container is a vial. In certain instances, the container can be formed specifically to compliment the shape of a heating component. In certain other instances, the vial can be the original drug manufacture vial.
In still further embodiments, the system can include multiple containers, such that the container is a first container, and an additional container is a second container. In some embodiments, the first container has a first opening and the second container has a second opening, and the first opening is adapted to connect to the second opening.
With reference to
In certain embodiments, such as is shown in
In certain embodiments, the heating element 19 is configured to provide a uniform heating profile substantially along the length of the heating component 10. In other embodiments, the heating element 19 is configured such that it can provide one or more heating profiles along the inner wall 17, such that the heating device 10 includes at least a first heating profile and a second heating profile.
Referring to
Referring to
Referring to
Referring to
According to certain embodiments, as shown in
Referring to
Referring to
Referring to
According to the present disclosure, methods of delivering an active agent to a non-sterile open wound site are described including
compounding solid particles of an active agent within a biocompatible organogel matrix to form an organogel drug depot; and,
delivering the organogel drug depot to an open wound site, wherein at the time of delivery the open wound site includes soft tissue, hard tissue, or both, that are exposed to a non-sterile environment;
wherein the step of compounding and the step of delivering are performed contemporaneously; and,
wherein the organogel is in a solid or semisolid state during the step of delivering.
According to other embodiments of the present disclosure, methods of preparing a local drug depot in a non-sterile environment for delivery of an active agent to a non-sterile open wound site comprising:
compounding solid particles of an active agent within a biocompatible organogel matrix to form an organogel drug depot;
wherein the step of compounding is performed contemporaneous to a delivery; and, wherein the organogel is in a solid or semisolid state during compounding.
According to certain embodiment the contemporaneous compounding and delivering are performed within any time period within 2 hours or less from the start of the preparation of the organogel drug depot, for example, 1.5 hours, 1.0 hour, 45 minutes, 30 minutes, 20 minutes, or 10 minutes, or any range or combination of ranges within 2 hours or less.
According to certain embodiments, the open wound site can include exposed soft tissue, hard tissue, and fascia, as well as other underlying internal organs, the surfaces of which each are suitable for delivery of the organogel drug depot.
It should be appreciated that the previously disclosed components of the organogel drug depot, its properties, apply equally to this method of treatment of preparing and delivering an active agent to a non-sterile open wound site.
As such, according to certain embodiments, contemporaneous compounding and delivery are within two hours or less of each other, for example within 1.5 hours, with 1.0 hours, or within 0.5 hours.
According to certain embodiments, the compounding comprises heating the organogel matrix to melt the matrix and incorporating the solid particles into the melted matrix. In further embodiments, the method further comprises, after incorporating the solid particles, cooling the melted matrix to form the organogel drug depot. In certain additional embodiments, cooling the melted matrix is in about 10 minutes or less.
According to certain embodiments, compounding comprises a physical mixing between the organogel matrix in solid or semisolid state and the solid particles.
According to certain embodiments, the organogel matrix has a solubility in water of less than 1 g/L.
In certain embodiments, the organogel matrix is configured to adhere to the soft tissue, hard tissue, or both, in a substantially aqueous environment
According to certain embodiments, the active agent is an antimicrobial agent, antibiotic agent, or an anesthetic agent, or a combination thereof. In certain embodiments, the antibiotic agent is gentamicin or vancomycin. In additional embodiments, the active agent is soluble, freely soluble, or very soluble in water. According to alternative embodiments, the active agent is sparingly soluble, slightly soluble, very slightly soluble, or insoluble in water. In still further embodiments, the active agent solid particles have a D(50) median particle size distribution in the range of 1 μm to about 1 mm.
According to certain embodiments, the organogel matrix further comprises one or more excipients. In certain embodiments, the one or more excipients includes biocompatible surfactants or biocompatible hydrophilic small molecules, or a combination thereof. In still further embodiments, the one or more excipients includes Poly(ethylene glycol) (PEG), Pluronic F127, Tween 80, or a mixture of any combination thereof.
According to certain embodiments, the contemporaneous compounding and delivering are within 1.5 hours or less of each other. In still further embodiments, the contemporaneous compounding and delivering are within 1.0 hours or less, and can be within 0.5 hours or less.
Metal Adherence
An application of 50:50 sorbitan monostearate:linoleic acid organogel matrix was applied onto the bottom surface of a metal weigh boat through an aqueous medium of phosphate buffered saline (PBS), as shown in
In a separate experiment, three different organogel matrix formulations were applied to the bottom surface of a metal weigh boat. The organogel formulations were composed of 30:70, 40:60, and 50:50 sorbitan monostearate:linoleic acid respectively. Each formulation was forcefully rinsed with deionized water from a squirt bottle to simulate aqueous conditions and fluid flow that can occur in vivo. The water stream did not dislodge the 40:60 and 50:50 organogel matrix formulations, while some of the 30:70 sorbitan monostearate:linoleic acid organogel matrix was dislodged but a visually-apparent quantity remained, which can be seen in
These results indicate the organogel matrix formulations of the present disclosure can be applied to metal surfaces, such as implantable medical devices like orthopedic implants in wet environments. Thus, the methods described herein can permit the organogel drug depots to be applied to the implantable medical device in vivo after completion of internal fixation, as well as prior to or subsequent to final irrigation before closure of the orthopedic implant site. It is further noted, that the solid/semisolid state of the organogel matrix at the time of delivery is sufficiently important to prevent the migration of the matrix away from the intended site and achieve good adherence to the desired surface.
Ex vivo application to simulated orthopedic implant site
A 45:55 sorbitan monostearate:linoleic acid organogel matrix was loaded with toluidine blue O dye (to simulate a hydrophilic active agent) and was applied as a simulated organogel drug depot to orthopedic implant sites on chicken thighs. One site was used for open application along with a stainless steel plate, as shown in
It is believed that the semisolid nature of the organogel matrix permits it to be sheared over a large area without compromising the overall matrix; without being bound to any particular theory, this can be facilitated by weak associations between particles or self-assembled structures that stabilize the semisolid. The semisolid nature of the organogel matrix appears to prevent penetration of the matrix into adjacent tissue structures, as shown in
In a further experiment, pieces of the chicken thigh tissue that had been covered with the organogel drug depot (muscle fascia, see
Melt Reconstitution
An organogel matrix formulation of 45:55 sorbitan monostearate:linoleic acid was prepared and heated to achieve a molten state. The molten organogel matrix was loaded into a syringe and allowed to cool to room temperature. Its appearance was observed at one minute intervals until the matrix was visually observed to reform into a solid/semisolid state. As shown in
Heat Energy Analysis
In order to determine the total amount of heat required to transform the organogel matrix into a molten state, two organogel matrix formulations were prepared; one, a base formulation of 45:55 sorbitan monostearate:linoleic acid, and a second including the base formulation with the addition of excipients, 5% PEG10 k 0.5% Pluronic F127. Each sample was measured in a differential scanning calorimeter (DSC) from −20° C. to 80° C. The resultant graphs of the scans are shown in
As an example, a battery-powered microprocessor-controlled device according to the embodiment shown in
Method for in vitro elution from organogel gentamicin formulations
To evaluate the in vitro release of gentamicin sulfate from organogel formulations, approximately 193 mg of organogel-gentamicin sulfate formulation was loaded into a 13 mm diameter depression in a stainless steel disc and placed in a jar with 60 mL of phosphate buffered saline at 37° C. The buffer was sampled at 1 hour, and 1, 2, 3, 4, 7, 10 and 14 days. Complete buffer exchange was performed at all timepoints except 1 hour. Each eluent sample was briefly vortexted to ensure the sample was homogenous. Then, 1 mL of each eluent sample and corresponding blank was transferred to a separate 15 mL sterile tube. An equal volume of ethyl acetate was then added to each tube and then the tubes were either vortexed or manually shaken for about 10 seconds. The tubes were then placed on a test-tube rack and the layers were allowed to separate undisturbed for 10-15 minutes. The top layer containing any organogel components dissolved in the ethyl acetate layer was then carefully removed with a micropipette tip. An additional volume of ethyl acetate was then added to the tube and the extraction was repeated again to remove any additional organogel or excipients from the aqueous layer. The extracted aqueous bottom layer that contained gentamicin sulfate was then derivatized for quantification by UV absorbance. The derivatization reaction involved the reaction of the three primary amine groups on gentamicin with o-phthaladehyde (OPA) under basic conditions to form UV-absorbing fluorophores. Briefly, 1 mL of either the blank (usually phosphate buffered saline (PBS)) or extracted sample was added to a 15 mL sterile tube. To this, 500 μL isopropyl alcohol (IPA) and 150 μL of basic OPA was added to each tube that was then vortexed to mix. The tubes were then covered with foil for 15 minutes to allow the derivatization reaction to proceed at room temperature. Each sample was then transferred to a disposable plastic cuvette and the absorbance of the sample and blank was measured on a spectrophotometer at 332 nm. Quantification of gentamicin sulfate was then determined by interpolation from a standard curve constructed with gentamicin standards using Beer's law.
In vitro elution from syringe-to-syringe mixed organogel formulations
A 3 mL syringe of organogel formulation was loaded with approximately 930 mg of organogel formulation and a second syringe was loaded with micronized gentamicin sulfate equaling 20% of the organogel mass, approximately 187 mg. The micronized gentamicin sulfate was blended into the organogel by syringe-to-syringe mixing at room temperature. The organogel formulations consisted of a 45:55 sorbitan monostearate:linoleic acid base formulation and two additional formulations that included the base formulation plus excipients. One excipient formulation included a 5% PEG10 k and 0.5% Pluronic F-127 excipient addition, and a second excipient formulation included 5% PEG10 k and 0.2% Tween 80 excipient addition. The mixed formulations contained 16.7% gentamicin sulfate by mass.
In vitro elution from melt-mixed organogel formulations
A 3 mL syringe of organogel formulation was loaded with approximately 947 mg of grease formulation and a glass vial was loaded with micronized gentamicin sulfate equaling 20% of the organogel mass, approximately 189 mg. The organogel formulation was injected into the glass vial using a vial adapter. The vial was placed into a water bath to melt the organogel. The vial was then shaken to suspend the gentamicin sulfate particles in the molten organogel, and the organogel plus gentamicin sulfate was drawn back into the syringe to cool and form into semisolid formulations of organogel plus gentamicin sulfate. The melt-mixed formulations contained 16.7% gentamicin sulfate by mass. As above, the organogel formulations consisted of a 45:55 sorbitan monostearate:linoleic acid base formulation and same two excipient formulations, base formulation plus 5% PEG10 k and 0.5% Pluronic F-127 and base formulation plus 5% PEG10 k and 0.2% Tween 80.
Organogel v. Hydrogel in vitro antibiotic elution
Gentamicin sulfate release from the three melt-mixed organogel formulations described above and shown in
Hydrophobic v hydrophilic in vitro elution profiles
Two organogel matrix base formulations having 45:55 sorbitan monostearate:linoleic acid compositions were prepared by physical syringe-to-syringe mixing at room temperature in the semisolid state. One organogel matrix formulation included a 10% by weight addition of toluidine blue O dye to simulate a hydrophilic active agent. The other organogel matrix formulation included 10% by weight of rifampin, a relatively more hydrophobic active agent. Two additional organogel matrix excipient formulations were prepared with the base formulations previously described and including the addition of 5% PEG10 k and 0.5% Pluronic F-127. The formulations were then placed into a 13 mm diameter depression in a stainless steel disc and placed in a jar with 60 mL of PBS plus 20% fetal bovine serum at 37° C., and their respective active agent elution profiles were measured. At each time point, the color of eluent was compared to visual standards prepared of 0, 1, 2.5, 3.75, 5, 7.5, 10, 15, 20, 30, 40, and 50 ppm of rifampin or toluidine blue O dye in PBS plus 20% fetal bovine serum. As shown in the graph at
Furthermore, because the organogel matrix of the present disclosure has sparing water solubility due to the hydrophobic nature of its composition, the active agent particles' elution is limited by water availability for dissolution (irrespective of either a hydrophilic or hydrophobic active agent), followed by diffusion through the hydrophobic matrix. As previously discussed above, significant disadvantages are associated with hydrogel drug depots such as DAC-Gel, Dr. Reddy's DFA-02, Sonoran PNDJ, and Poloxamer 407 thermoreversible hydrogels. These exemplary hydrophilic drug depots are water-rich environments where the drug is in its soluble form, and release is only limited by diffusion through the water-rich network. As a result, hydrogel matrices are unable to achieve the long release durations and high drug loading ratios of the organogel matrices described herein. An additional benefit of the limited water availability within the organogel matrix is the relative stability of the active agent within the depot. Where the active agent is in particulate form, it has limited susceptibility to chemical reactions associated with degradation. Furthermore, the dissolution-limited approach enables both hydrophobic and hydrophilic molecules to be released at similar rates.
Antibacterial efficacy versus Staphylococcus aureus biofilm
Four sets of standard stainless steel trauma plates were colonized with Staphylococcus aureus while rolling in an inoculum of 105 CFU/mL in 0.3% tryptic soy borth (TSB) in 15 mL tubes over 4 hours. The inoculated plates were placed into a lateral flow cell with intermittent 0.3% TSB medium replenishment every 4 hours with no flow between feedings.
Biofilm growth proceeded in 0.3% TSB medium at 37° C. for 3 days to produce a mature biofilm. Each plate was rinsed twice in PBS, then returned to a sterile lateral flow cell for 1 day of treatment. One set of plates served as a control group, fed with 0.3% TSB growth medium. The second set was treated with 0.3% TSB plus 1 μg/ml gentamicin sulfate. The third set was treated with 0.3% TSB plus 10 μg/m1 gentamicin sulfate. These concentrations represent a range of clinically-relevant blood levels for systemic administration of gentamicin sulfate, here provided as a supplement to the 0.3% TSB medium. The fourth group consisted of a 590 mg organogel drug depot placed into the growth chamber without contacting the trauma plate with adhered bacterial biofilm. The organogel drug depot included 16.7% by weight of gentamicin sulfate melt-mixed with 45:55 sorbitan monostearate:linoleic acid (corresponding to a 1:5 weight ratio of drug:organogel matrix) with the addition of 5% PEG10 k and 0.5% Pluronic F-127 as excipients. This group was fed with 0.3% TSB growth medium without any antibiotics. In all four sets, the culture medium was exchanged once every four hours by lateral flow for four minutes. Note that the gentamicin sulfate released from the organogel formulation inside the growth chamber was rinsed away every four hours, requiring additional gentamicin sulfate to elute from the formulation to continue antibacterial activity. As shown in
This application claims the benefit of U.S. Provisional Application No. 62/835,556, filed on Apr. 18, 2019, the contents of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62835556 | Apr 2019 | US |