The present invention has its technical field in the area of biotechnology since it produces bioconjugated molecules, formed between two or more of the following functional groups: sugars, prebiotics, oligosaccharides, polysaccharides, triglycerides, fatty acids, fatty acids esters, anti-inflammatories; with its production process (synthesis and purification); and its applications as prebiotic nutraceutical, anti-inflammatory, antitumoral, intestinal vector, techno-functional ingredient for food applications (emulsifier, fat substitute) and cosmetic; which are possible since these are non toxic molecules. They will be used for human and veterinarian applications.
Carbohydrate fatty acid sugars esters (CFAE) are chemically classified as non ionic surfactants with a carbohydrate hydrophilic head with one ore more fatty acids as lipophilic component, with biological and techno functional properties of interest. The main properties of these bioconjugates, in comparison with other typical surfactants obtained form petroleum, are their biodegradability and absence of toxicity, besides they can be produced form removable natural sources like fatty acids and carbohydrates (Allen and Tao, 1999). Therefore they are usually used as surfactant and emulsifiers in pharmaceutical, cosmetic and food industries (Chang and Shaw, 2009). CFAE can be synthetized chemically or enzymatically (Plat and Linhardt, 2001).
In the first case, the traditional method for saccharose esters synthesis is based in the transesterification between a fatty acid methyl or ethyl ester and the disaccharides, in an aprotic solvent using basic catalysis (potassium carbonate) at high temperatures and pressure. Depending on the amount of acylating agent and the reaction time, sucrose esters with different degrees of substitution are obtained. The reaction generates a mixture of regio-isomers and the production yield is below 50% (Osipow et al., 1956). This is the process usually used industrially. Besides the low yield obtained, it produces colored sub products, and for its application in the food industry all toxic solvents must be removed (this is not easy due to the high boiling points they have).
For the second case, enzymatic acylation of carbohydrates (specially mono- and disaccharides) is catalyzed by hydrolases with a technique that although is not new, it presents challenges such as selection of solvents, enzymes and enzymatic support (Plou et al., 2002). The main advantage of enzymatic acylation of carbohydrates regarding chemical synthesis is its high regioselectivity that avoids using long processes of protecting and unprotecting. With enzymatic bioconjugation no soaps are formed. In addition, the reaction conditions are mild, while in direct chemical acylation extreme conditions are used (e.g. temperatures over 100° C. that can caramelize sugars). From the “marketing” point of view there is another advantage, CFAE produced enzymatically can be labeled as “natural” surfactants (Sarney and Vulfson, 1995).
Until now enzymatic esterification of simple sugars such as glucose (Ruela et al., 2013), short fructo-oligo-saccharides (FOS) (Sagis et al., 2008; ter Haar et al., 2010) and starch (Alissandratos et al., 2010) have been reported. However, unlike the present invention, the FOS used in the previously mentioned works, use lineal fructans with β(2→1) links. Before the present invention, no previous reports of enzymatic esterification of branched fructans like the ones of Agave tequilana, with β(2→1) y β(2→6) links (Lopez et al., 2003; Mellado-Mojica and Lopez, 2012; Praznik et al., 2013), were found. The presence of this type of links will confer different properties to FOS. For example, they would be more hydrophilic than lineal FOS like inulin and would have benefits in intestinal health at a prebiotic level (Gomez et al., 2010). Another novelty of this invention is that no previous reports were found where oils, esters or omega-3 fatty acids were used for the acylation of sugars to produced bioconjugates. Therefore, the enzymatic bioconjugation of fructans form A. tequilana with different fatty acids, including omega-3, represent an opportunity for innovation. In addition, this represents a scientific challenge caused by the importance of the regioselectivity against the different OH of the prebiotics, that makes biocatalysis a powerful tool that takes advantage of enzyme selectivity in innocuous and environmentally friendly conditions.
For these reactions, activity and specificity of hydrolases, and the characteristics of the products obtained, are influenced by the nature of the organic solvent. The optimal reaction conditions compromise maximal enzymatic activity and substrate solubility. The problem increases with the size of the sugar: monosaccharide < disaccharide < trisaccharide < oligosaccharide < polysaccharide.
Several strategies exist to overcome these limitations. The first strategy is the hydrophobization of sugar through different methods like boronic acid or production of acetals (Sarney and Vulfson, 1995). The second strategy selects the appropriate solvent or solvents to solubilize the carbohydrate and the acylating agent and where the enzyme is active, like in the previously mentioned works. In the third strategy the right enzyme and support is chosen. The optimization of solvent/enzyme/support is part of this invention.
Practical purification of these compounds is scarcely described in literature. In bench scale, flash chromatography is useful (Baker et al., 2000), however like preparative chromatography (Jaspers et al., 1987) is complicated and expensive at an industrial level.
Most patents describe purification methods using solvents (Schaefer, 2005), or a two-step process: precipitation followed by an alcohol wash (de-la-Motte et al., 1991). None of these methods was useful for the purification of our bioconjugates, so the purification method proposed is new.
The application of the products generated by this invention come from the biological and techno functional activities they present. Literature and patents of bioconjugates formed by simple sugars and fatty acids mainly describe techno functional properties such as emulsifiers and food surfactants; cosmetic applications like capillary treatments, eyelashes treatments and deodorants; and antimicrobial effect, probiotic properties when FOS are used, antitumoral and pharmaceutical vector. Since bioconjugates with branched fructans like the ones of A. tequilana have not been synthetized, these properties have not been studied in these new molecules and they might not have the same properties of simple sugar or lineal FOS bioconjugates. So the biological and techno-functional activities of the bioconjugates and their uses were tested. Finally the anti-inflammatory activity had not been previously reported for this type of bioconjugates.
The present invention regards the synthesis of bioconjugated molecules formed between two or more of the following functional groups: prebiotics, triglycerides, fatty acids, sugars, anti-inflammatories; with its production process (synthesis and purification); and its applications as prebiotic nutraceutical, anti-inflammatory, antitumoral, intestinal vector, techno functional ingredient for food applications as emulsifier and fat substitute, and cosmetic; which are possible since these are non toxic molecules. The characteristic details of these molecules and the production process are clearly shown in the following description and Figures, which are mentioned as examples and should not be considered to limit the scope of the present invention:
The process of the present invention is shown in
The acylating agent can be a a) carboxylic acid (free fatty acid) of medium chain (8-12 carbons) or long chain (>12 carbons); or b) one of its esters (methyl, ethyl, vinyl, etc.); or c) an oil with different carboxylic acids, saturated or unsaturated such as omega-3; or d) a mixture of esters oils such as commercially available ethyl esters of omega-3. When the acylating agents are mixtures of fatty acids or their esters the complexity of the produced molecules increases.
The enzyme used in this invention is part of the serine-hydrolases, such as proteases, lipases, esterases, cutinases or any other that act or synthetizes an ester link. For better productivity the enzyme can be immobilized making its recovery and reuse easier. If the bioconjugated molecules will be used in foods, the enzyme must be food grade, if they will be used in pharmaceuticals or cosmetics, the enzyme should comply with the required standards.
Regarding solvent, the reaction can be carried out in organic solvents, including hydrophobic solvents such as hexane, heptane, isooctane, decane, etc.; hydrophilic solvents such as 2-methyl-2-propanol, 2-metyl-2-butanol, acetone, etc.; as well as biphasic systems with hydrophobic solvents/water; or in the absence of solvents, being the acylating agent the solvent. The molecular sieve (porous silica, zeolite or clay with pore size of 3-4 Å, or any other water absorbent) is optional when the acylating agent produces water as reaction sub-product.
The synthesis process of a mixture of bioconjugated molecules, also denoted as “bioconjugates” in the present invention, includes the following steps:
1. Synthesis reaction. In this step sugars, oligo- or polysaccharides, are conjugated (esterified) with the acylating agent in a ratio of 1:1 to 1:10 w/w, in a reaction biocatalyzed by the enzyme which is added in a ratio of 1:1 to 1:10 w/w regarding the acylating agent; in a solvent with a ratio of 1:2 to 1:100 w/v regarding the acylating agent; in an hermetically sealed container, heated to a temperature that ensures the acylating agent is in liquid state when is a solvent free reaction or at a temperature below the boiling point of the solvent (generally between 40 and 80° C.), under agitation (manual, mechanic, magnetic, orbital, vibrations, thermic or passive diffusion) that allows good mass transfer (100-1000 r.p.m.). Optionally molecular sieve or other absorbent is added, when the acylating agent produces water during the reaction, in a ratio of 1:1 to 1:5 w/w. The reaction time is between 48 and 120h. At the end of the reaction the mixture is called “crude reaction mixture” (2) and is composed by the bioconjugates, unreacted acylating agent and sugars, and the enzyme (also the molecular sieve it was added).
2. Filtering. As observed in
3. Bioconjugate recovery from “organic phase” is carried out by solvent evaporation (omitted if the acylating agent was the solvent). This is achieved by heating above the boiling point of the solvent used or using a rotary evaporator with reduced pressure and appropriate temperature. The dried product is called “organic phase bioconjugate” (OPB, 6) and although it might have unreacted acylating agent, they can be used in the applications described.
4. Bioconjugate recovery from “solid phase” is carried out by washing with an alcohol, such as methanol, ethanol, t-butanol, isopropanol or other hydrophilic solvent, in a ratio of 1:2 to 1:5 w/v. In the solid phase of this step (8), the enzyme, molecular sieve (if added) and unreacted sugars are recovered; while in the liquid phase, after alcohol evaporation as described in step 3, the “solid phase bioconjugates” (SPB, 10) are recovered, and although it might have unreacted acylating agent, they can be used in the applications described
5. Drying (optional).
6. Purification (optional): If the reaction did not reached 100% yield or if the acylating agent was in excess, the acylating agent can be removed by several purification methods that will be described:
a. With diluted alkali (
b. With water: It can be hot (
Depending on the purification method employed the final state of the product can be a water-soluble gel or a powder of molecules with longer retention times. The present invention has human and veterinarian applications.
Example 1. Bioconjugated molecules agave FOS+lauric acid. 16 g, agave FOS 50 g, vinyl laurate 500 ml, hexane 50 g, immobilized lipase (C. antarctica B) 50 g, molecular sieve of 3 Å The mixture is agitated at 60° C. for 96h, is filtrated and purified following one of the methods mentioned in step 6. The chromatogram of the bioconjugates synthetized this way is presented in
Example 2. Bioconjugated molecules agave FOS+omega-3. 16 g, agave FOS 50 g, fish oil 500 ml, hexane 50 g, immobilized lipase (C. antarctica B) 50 g, molecular sieve of 3 Å The mixture is agitated at 60° C. for 96h, is filtrated and purified following one of the methods mentioned in step 6. The chromatogram of the bioconjugates synthetized this way is presented in
Example 3. Application of bioconjugates in foods and pharmaceuticals.
The bioconjugated molecules synthetized according to example 1 and purified by one of the methods in
Example 4. Application of bioconjugates as prebiotics.
The bioconjugated molecules synthetized according to example 1 (purified by one of the methods in
Example 5. Application of bioconjugates as prebiotics anti-inflammatories.
The bioconjugated molecules synthetized according to example 1 (purified by one of the methods in
For the concentrations tested,
Example 6. Application of bioconjugates as antitumorals.
The bioconjugates synthetized according to example 1, purified according to the method in
Example 7. Application of bioconjugates as intestinal vector.
The bioconjugates synthetized according to example 1, purified according to one of the methods in step, were used as intestinal vector. In this case the prebiotic non-digestible part of the bioconjugates vectorizes the acylating part of the molecules. For this it was verified that the bioconjugates were not hydrolyzed before reaching the intestine in an intestinal tract simulator. The simulator was described by Gonzalez-Avila et al., (Gonzalez-Avila et al., 2012).
Example 8. Application of bioconjugates as emulsifiers.
The bioconjugated molecules synthetized according to example 1 (purified by one of the methods in
Example 9. Application of bioconjugates as fat substitute.
The bioconjugated molecules synthetized according to example 1 (purified by one of the methods in
Example 10. Cosmetic formulation using bioconjugates.
The bioconjugated molecules synthetized according to examples 1 or 2 (purified by one of the methods in
Having sufficiently described the invention, it is a novelty and what is claim is:
Number | Date | Country | Kind |
---|---|---|---|
MX/A/2013/015020 | Dec 2013 | MX | national |
This application is a divisional of U.S. patent application Ser. No. 15/104,421 filed on Jun. 14, 2016, pending, which is a national stage entry of PCT/MX2014/000013 filed Jan. 17, 2014, under the International Convention claiming priority over Mexican Patent Application No. MX/a/2013/015020 filed Dec. 18, 2013.
Number | Date | Country | |
---|---|---|---|
Parent | 15104421 | Jun 2016 | US |
Child | 15797486 | US |