The present disclosure relates to the field of phytosanitary products, specifically to new strains of Hypholoma spp. effective in the prevention and/or reduction of fungal diseases in natural forests, plantations and orchards.
Armillaria Root Disease (ARD), caused by several wood decaying fungal species in the genus Armillaria (Fr.) Staude, is found throughout the world on a broad variety of host species in natural forests, plantations and orchards. Ten Armillaria species have been found in North America. Some, (e.g. A ostoyae and A. gallica), are widely distributed, while others, (e.g. A. tabescens and A. mellea), are more regionally abundant. In Canada, ARD affects all commercially important tree species in south-central British Columbia (Kile et al. 1991; Wargo & Kile 1992), and in southern Ontario, ARD caused by A. ostoyae is the most widespread and serious disease affecting conifer plantations (McLaughlin 2001a; McLaughlin et al. 2010, 2011). In the United States, ARD is widespread, with impacts particularly severe in the USDA Forest Service's Pacific Northwest and Northern Regions where commercially and ecologically important species (e.g. pines, spruces, true firs, Douglas-fir) of all ages are susceptible to ARD (Lockman & Kearns 2016). The impacts of ARD are not limited to timber species. ARD also causes losses in peach orchards in the SE US (Cox & Scherm 2006) and fields of soft fruit such as blueberry in British Columbia. Likewise, ARD caused by A. ostoyae is a primary pathogen of conifers in northern Europe, while A. mellea causes ARD of broadleaf species in more southerly regions of Europe (Guillaumin et al. 1993).
According to current understanding, the root systems and stumps of trees left after a partial or complete harvest serve as a food base/energy source for Armillaria already present to some degree on the root systems of trees which do not exhibit noticeable symptom of infection (Whitney et al. 1989). The sudden increase in the pathogen's food base provides the energy it needs to spread and cause disease in adjacent healthy trees. Indeed, ARD infects new hosts when uninfected roots of susceptible trees contact infected stumps or roots. The fungus grows across root contacts and invades the root tissues of new hosts. Armillaria can also spread by means of mycelial cords called rhizomorphs, which are capable of growing through the soil from infected to uninfected roots. Armillaria infection kills the root, resulting in reduced uptake of nutrients and water, reduced growth and may eventually kill the tree while it is standing. Once mortality pockets appear, they can continue to spread for decades, gradually killing trees in an ever-expanding circle (McLaughlin 2001b).
Whilst there is no effective chemical control of Armillaria at present, two operational treatments are currently used to reduce the spread of the disease and to protect new plantings. One option includes post-harvest mechanical removal of stumps and roots (“stumping”) (Morrison et al. 1988) and the second option is converting stands to species that are more resistant to ARD (Shaw et al. 2012).
Another potential management option for ARD is biological control. As noted by Keča (2009), biological agents potentially capable of controlling ARD should:
A candidate biocontrol agent is Hypholoma fasciculare, a cord forming (i.e., produces rhizomorphs), non-pathogenic wood decay fungus that occupies a similar ecological niche as Armillaria species, and therefore meets the first of the criteria listed above. H. fasciculare has been included in ARD biocontrol studies in British Columbia (Chapman & Xiao 2000; Chapman et al. 2004), the United States (Cox & Scherm 2006), Serbia (Keča 2009) and New Zealand (Hood et al. 2015). Chapman and Xiao (2000) found that after six months of incubation, A. ostoyae was replaced by a mixture of unnamed strains of H. fasciculare from the bark of root discs previously colonized by Armillaria and paired with discs colonized by H. fasciculare, but did not report replacement of A. ostoyae in woody tissue of the root. The commercial production and application of H. fasciculare as a biological control against ARD has been hindered by the lack of effective strains of H. fasciculare.
Because of the problems associated with the use of chemicals or mechanical methods, safer and more effective methods for biologically controlling trees from ARD disease are clearly needed. It would be highly desirable to be provided with new isolates of Hypholoma spp. that have the effectiveness required for commercial use as a biological control agent for controlling ARD populations and/or preventing the spread of Armillaria in forests, commercial plantings or nurseries so that drastic measures such as uprooting stumps and root remnants are not (or less) contemplated or employed.
The present disclosure relates to a particular Hypholoma isolates which can act as a biocontrol agent and reduce and suppress the spread of ARD. In some embodiments, the isolates exhibit strong antagonism towards ARD and to colonize or establish epiphytic hyphal cord networks on roots. The present disclosure further provides a particular, effective new H. fasiculare isolate and methods of using the isolate to efficiently contain the spread of ARD or replace Armillaria in root tissue it previously occupied. The present disclosure further relates to new H. capnoides isolates which can also act as a biocontrol agent and reduce and suppress the spread of ARD.
According to a first aspect, the present disclosure provides an isolated culture of Hypholoma fasiculare, wherein the isolated culture is or comprises H. fasiculare strain Pinnel-B (DSM 32925).
According to a second aspect, the present disclosure relates to an isolated culture of Hypholoma capnoides, wherein the isolated culture is or comprises H. capnoides strain TAK02 (DSM 33061).
According to a third aspect, the present disclosure relates to an isolated culture of Hypholoma capnoides, wherein the isolated culture is or comprises H. capnoides strain TAK05 (DSM 33078).
According to a fourth aspect, the present disclosure relates to an inoculum unit comprising an isolated culture of H. fasciculare, H. capnoides and/or H. sublateritium and a delivering medium. In an embodiment, the isolated culture of said inoculum unit is a culture of H. fasciculare. In another embodiment, the culture of H. fasciculare is H. fasciculare strain Pinnel-B (DSM 32925), H. fasciculare strain OKM-2932-T (USDA), H. fasciculare strain RLG-12668-Sp (USDA) and/or H. fasciculare HHB-14801-Sp (USDA). In yet another embodiment, the isolated culture of H. fasciculare is or comprises H. fasciculare strain Pinnel-B (DSM 32925). Alternatively, the isolated culture can be or comprise a culture of H. sublateritium. In an embodiment, the isolated culture of H. sublateritium is H. sublateritium HHB-11948-Sp (USDA) or H. sublateritium FP-90085-Sp (USDA). In still another embodiment, the isolated culture is or comprises a culture of H. capnoides. For example, the isolated culture of H. capnoides is H. capnoides TAK02 (DSM 33061) and/or H. capnoides TAK05 (DSM 33078). In an embodiment, the delivering medium of said inoculum unit is in a solid form or a liquid form. In yet another embodiment, the delivering medium is in a solid form and comprises a solide substrate. In still another embodiment, said solid substrate comprises wood, sawdust, wood chips, agricultural wastes, bran cereals, cellulose-containing substances or a mixture thereof. For example, said solid substrate can comprise wood, sawdust, wood chips or a mixture thereof. In an embodiment, the isolated culture and/or the inoculum unit of the present disclosure is, when contacted with a woody plant, for reducing the Armillaria population or delaying or impeding the spread of an established Armillaria infection centre in a soil. In specific embodiment, the isolated culture or inoculum is for contacting one or more roots of the woody plant. In some embodiment, the isolated culture described herein or the inoculum described herein has an ability to internally colonize or invade and establish within woody root tissues.
According to a fifth aspect, the present disclosure provides the use of the isolated culture and/or the inoculum unit (which can, in some embodiments, be a biological control agent) for contacting a woody plant for reducing the Armillaria population or delaying or impeding the spread of an established Armillaria infection centre in a soil. In an embodiment, said isolated culture and/or the inoculum unit are placed in contact with one or more roots of the woody plant or are for contacting with one or more roots of the woody plant. In yet another embodiment, the woody plant is a tree or a tree stump. For example, the woody plant is a tree stump. In still another embodiment, the Armillaria population comprises A ostoyae, A. mellea, A. gallica and/or A. tabescens. For example, the Armillaria population can comprise A. ostoyae. In another embodiment, the woody plant is from a species of pinus (Pinus spp.), cedar, firs (Abies spp.), spruces (Picea spp.), hemlocks (Tsuga spp.), maple (Acer spp.) birch (Betula spp.), oak (Quercus spp.), poplars (Populus spp.), ashes (Fraxinus spp.), stone fruit trees (Prunus spp.), brasswood (Tilia spp.) or blueberries (Vaccinium spp.).
According to a sixth aspect, the present disclosure provides a method for reducing an Armillaria population or for delaying or impeding the spread of an established Armillaria infection centre in the soil. The method comprises contacting a woody plant with an isolated culture or an inoculum unit comprising a culture of H. fasiculare, H. capnoides or H. sublateritium. In some embodiments, the method further comprises preparing the inoculum unit. In an embodiment, is the inoculum unit comprises an isolated culture of H. fasciculare. In another embodiment, the isolated culture of H. fasciculare is H. fasciculare strain Pinnel-B (DSM 32925), H. fasciculare strain OKM-2932-T (USDA), H. fasciculare strain RLG-12668-Sp (USDA) and/or H. fasciculare HHB-14801-Sp (USDA). For example, the isolated culture of H. fasciculare can be or comprise H. fasciculare strain Pinnel-B (DSM 32925). In yet another embodiment, is the inoculum unit comprises an isolated culture of H. sublateritium and is, for example, an isolated culture of H. sublateritium is H. sublateritium HHB-11948-Sp (USDA) or H. sublateritium FP-90085-Sp (USDA). In still another embodiment, the inoculum unit is or comprises an isolated culture of H. capnoides and is, for example, H. capnoides TAK02 (DSM 33061) and/or H. capnoides TAK05 (DSM 33078). In an embodiment, the inoculum unit is in a solid form or in a liquid form. For example, the inoculum unit is in a solid form and comprises a culture of H. fasciculare, H. capnoides or H. sublateritium adhered to a solid substrate. In another example, the inoculum unit is in a solid form and comprises a solid substrate. In an embodiment, the solid substrate comprises wood, sawdust, wood chips, agricultural wastes, bran cereals, cellulose-containing substances or a mixture thereof. For example, the solid substrate can comprise wood, sawdust, wood chips or a mixture thereof. In another embodiment, the solid substrate further comprises a source of nitrogen as, for example, ammonium lignosulfonate. In an embodiment, the method comprises contacting the inoculum unit with one or more roots of the woody plant. In another embodiment, the method comprises placing the inoculum unit beneath the surface of the ground (for example for contacting with one or more roots of a woody plant). In an embodiment, the woody plant is a tree or a tree stump and is, for example, a tree stump. In another embodiment, the Armillaria population comprises A. ostoyae, A. mellea, A. gallica and/or A. tabescens and is or comprises, for example, A. ostoyae. In yet another embodiment, examples of woody plant can be species of pinus (Pinus spp.), cedar, firs (Abies spp.), spruces (Picea spp.), hemlocks (Tsuga spp.), maple (Acer spp.) birch (Betula spp.), oak (Quercus spp.), poplars (Populus spp.), ashes (Fraxinus spp.), stone fruit trees (Prunus spp.), brasswood (Tilia spp.) or blueberries (Vaccinium spp.). More particularly, the woody plant can be Pseudotsuga menziesii (Douglas-fir), Pinus contorta (lodgepole pine), Pinus resinosa (red pine), Pinus strobus (white pine), Thuja plicata (western red cedar), Abies spp., Picea spp., Betula papyrifera, Quercus rubra, Populus tremuloides or Prunus nigra. In an embodiment, the woody plant can be Pinus contorta, Pinus resinosa or Pinus strobus.
According to a seventh aspect, the present disclosure provides a method for reducing an Armillaria population in soil comprising (a) contacting a woody plant with an inoculum unit comprising an isolated culture of H. fasciculare, H. capnoides or Hypholoma sublateritium in an amount sufficient to reduce the Armillaria population in the soil; (b) obtaining a test root sample from the woody plant after step (a) and from untreated control root sample(c) quantifying and comparing the changes in the Armillaria population in the test root sample and the untreated control root sample; and (d) observing a reduction in the Armillaria population in the test root sample when compared to the untreated control root sample. In some embodiments, the method further comprising preparing the inoculum unit comprising the isolated culture. In additional embodiment, the method comprises contacting the incolum unit with one or more roots of the woody plant. In an embodiment, the isolated culture of H. fasciculare is or comprises H. fasciculare strain Pinnel-B (DSM 32925). In a further embodiment, the isolated culture of H. capnoides is or comprises H. capnoides TAK02 (DSM 33061) and/or H. capnoides TAK05 (DSM 33078). In an embodiment, the woody plant is a tree or a tree stump and is, more particularly, a tree stump. In an embodiment, the Armillaria population comprises A. ostoyae, A. mellea, A. gallica or A. tabescens and, in a further embodiment, A. ostoyae.
According to an eight aspect, the present disclosure concerns a method of preparing an inoculum unit. The method comprises contacting the isolated culture described herein with a delivering medium. In an embodiment, the delivering medium is a liquid or a solid substrate. In still another embodiment, the solid substrate comprises wood, sawdust, wood chips, agricultural wastes, bran cereals, cellulose-containing substances or a mixture thereof. In still a further embodiment, the solid substrate comprises wood, sawdust, wood chips or a mixture thereof. In still another embodiment, the solid substrate further comprises a source of nitrogen. In yet another embodiment, the nitrogen source is ammonium lignosulfonate.
The present disclosure relates generally to Hypholoma strains, their use in compositions (such as inoculum units) and methods for biologically controlling ARD in woody plants, in particular, conifers and broadleaf trees. The present disclosure relates to an Hypholoma fasciculare isolate as well as H. capnoides isolates which can also act as a biocontrol agent and reduce and suppress the spread of ARD.
1. Strains of Hypholoma spp.
1.1 Strain of Hypholoma fasciculare
The following strain has been deposited on the 20 Sep. 2018, at the German Type Culture Collection (DSMZ), Inhoffenstraβe 7 B, 38124 Braunschweig (Germany). The deposit of the deposited strain whose reference is H. fasciculare designated as Pinnel-B, was identified by the DSMZ with the accession number DSM 32925 once said International Depositary Authority declared that said strain in question was viable, under the stipulations of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.
The original strain was obtained directly from the soil and was kept under the acquisition name Pinnel-B.
Characterization of the Isolate of H. fasciculare Pinnel-B
Hypholoma
fasciculare
Strain Pinnel-B is a purified isolate. “H. fasciculare strain Pinnel-B” includes any cultures, spores, cells and progeny produced from said strain such as by asexual reproduction. As described below, strain Pinnel-B exhibits a number of advantageous properties over other strains of H. fasciculare.
As presented in the Examples 1 to 3, several studies were conducted to compare the potential of H. fasciculare strain Pinnel-B with other strains of H. fasciculare and other Hypholoma species as a biocontrol agent against ARD. The performance of one of the strains included in our study, H. fasciculare OKM-7107-Sp, has been previously reported by Cox & Scherm (2006). Because H. fasciculare OKM-7107-Sp was the only named and available strain of H. fasciculare reported in published studies of biocontrol of ARD, the latter was also included in our studies. This strain, H. fasciculare OKM-7107-Sp, was treated as a benchmark against which the performance of the other test strains was measured, especially H. fasciculare Pinnel-B. In the study by Cox and Scherm (2006), H. fasciculare OKM-7107-Sp, along with strains of other species of wood decay fungi, reduced the growth of Armillaria tabescens and Armillaria mellea under the bark of peach root pieces previously colonized by the Armillaria species “ . . . but none of the antagonists was able to internally colonize root segments pre-colonized by Armillaria”.
In the Examples below, the ability of H. fasciculare strain Pinnel-B to combat A. ostoyae is shown. The studies were designed so as to allow assessment of the various test strains for a superior biocontrol agent capable of controlling ARD; that is, it should:
Pinnel-B is an isolated strain of H. fasciculare that exhibits a number of characteristics that make it particularly effective as a biological control agent for the reduction of the occurrence and impact of ARD. More particularly, H. fasciculare strain Pinnel-B is able to penetrate woody root tissues and to establish inside woody root tissues. In an embodiment, H. fasciculare strain Pinnel-B has an improved ability to internally colonize or invade and establish within woody root tissues, including inner bark, sapwood and pith area compared to, amongst others, the benchmark strain, H. fasciculare strain OKM-7107-Sp. Once the woody root tissues are occupied by the biological control agent, H. fasciculare strain Pinnel-B has the capacity to displace (or to block growth of to suppress) the occupying organism as, for example, Armillaria. This competitive exclusion is a principal means by which H. fasciculare reduces the occurrence and impact of ARD. In another embodiment, H. fasciculare strain Pinnel-B is able to block further colonization of root tissue by the ARD pathogen simply by pre-emptive occupation of the tissues.
Without wishing to be bound to theory, it is understood that that H. fasciculare has the ability to protect trees from ARD by: pre-emptive colonization of below-ground substrate (i.e. roots) that Armillaria would colonize and use to fuel its attack on the roots of adjacent living trees; by restricting the further colonization of roots already occupied by Armillaria; or by replacing Armillaria in occupied root tissue. The aim of the presence of H. fasciculare strain Pinnel-B is to protect residual trees around an infected tree/stump or to protect new trees that will be planted where Armillaria has been present below ground by reducing Armillaria's presence and strength.
1.2 Strains of Hypholoma capnoides
The following strain has been deposited on the 8 Feb. 2019, at the German Type Culture Collection (DSMZ), Inhoffenstraβe 7 B, 38124 Braunschweig (Germany). The deposit of the deposited strain whose reference is H. capnoides designated as TAK02, was identified by the DSMZ with the accession number DSM 33061 once said International Depositary Authority declared that said strain in question was viable, under the stipulations of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.
The following strain has been deposited on the 5 Mar. 2019, at the German Type Culture Collection (DSMZ), Inhoffenstraβe 7 B, 38124 Braunschweig (Germany). The deposit of the deposited strain whose reference is H. capnoides designated as TAK05, was identified by the DSMZ with the accession number DSM 33078 once said International Depositary Authority declared that said strain in question was viable, under the stipulations of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.
Characterization of the Isolate of H. capnoides TAK02 and TAK05
Hypholoma
capnoides
Strains TAK02 and TAK05 are purified isolates. “H. capnoides strains TAK02 and TAK05” include any cultures, spores, cells and progeny produced from said strain such as by asexual reproduction. As described in the Examples and as described above for H. fasciculare, several studies were conducted to compare the potential of H. capnoides strains TAK02 and TAK05 with other strains of H. capnoides as a biological agent against ARD. The strains TAK02 and TAK05 exhibit a number of advantageous properties over other strains of H. capnoides.
1.3 Other Strains
It was also found that H. fasciculare strain OKM-2932-T (USDA), H. fasciculare strain RLG-12668-Sp (USDA), H. fasciculare HHB-14801-Sp (USDA), H. sublateritium OKM-6192-Sp (USDA), H. sublateritium HHB-11948-Sp (USDA) and H. sublateritium FP-90085-Sp (USDA) have the ability to invade woody root tissue and replace Armillaria.
1.4 Identification of the Strains
The fungus was first identified in the field on the roots of a decaying conifer stump by its characteristic white hyphal cords. The next step in identifying the fungus was to use the Polymerase Chain Reaction method (PCR) to obtain sequence data from the Internal Transcribed Spacer Region of the nuclear ribosomal DNA of the fungus. The identification was confirmed by conducting a BLAST search of the DNA sequence data library (GenBank) held by the NCBI (National Center for Biotechnology Information) for identical sequence data.
2. Preparation of an Inoculum Unit
According to an aspect, the present disclosure relates to the use of a culture of H. fasciculare strain Pinnel-B for biologically controlling ARD of woody plants such as conifers and broadleaf trees. More particularly, the culture of H. fasciculare strain Pinnel-B of the present disclosure is particularly suitable for reducing, delaying, impeding, preventing, inhibiting or eliminating, either partially or fully, the spread of Armillaria populations and/or the spread of an established Armillaria infection centre in the soil. The present disclosure further relates to new H. capnoides isolates which can also act as a biocontrol agent and reduce and suppress the spread of ARD.
As used herein, the term “woody plants” refers to conifers as well as woody broadleaf vegetation, and more particularly to trees and shrubs. As used herein, the term “woody plants” refers to trees or tree stumps. A non-exhaustive list of woody plants includes the ARD-susceptible commercially important species of conifers: Douglas-fir (Pseudotsuga menziesii), pines [e.g. lodgepole pine (Pinus contorta), red pine (Pinus resinosa), white pine (Pinus strobus), jack pine (Pinus banksiana), western white pine (Pinus monticola), Ponderosa pine (Pinus ponderosa)], true firs [e.g. balsam fir (Abies balsamea), subalpine fir (Abies lasiocarpa)], spruces [e.g. black spruce (Picea mariana), white spruce (Picea glauca), red spruce (Picea rubens), Engelmann spruce (Picea engelmannii)], hemlocks [e.g. western hemlock (Tsuga heterophylla), eastern hemlock (Tsuga canadensis)], western larch (Larix occidentalis); broadleaf species: maples [e.g. sugar maple (Acer saccharum), red maple (Acer rubrum)], birches [e.g. white birch (Betula papyrifera), yellow birch (Betula alleghaniensis)], oaks (e.g. Quercus rubra), poplars [e.g. balsam poplar (Populus balsamifera), trembling aspen (Populus tremuloides), big-tooth aspen (Populus grandidentata)], ashes [e.g. white ash (Fraxinus Americana), green/red ash (Fraxinus pennsylvanica)], beech (Fagus grandifolia), black cherry (Prunus nigra), peach (Prunus persica), basswood (Tilia Americana); and the soft-fruit blueberry species (Vaccinium spp.).
A “biological control” is herein defined as the control of a pathogen by using a second organism. Biological control agents of plant diseases are most often referred to as “antagonists”. Successful biological control reduces the population density of the target species. The term “biocontrol agent” (which is used interchangeably with the term “biological control agent”) refers to a microorganism or compound or composition which originates in a biological matter and is effective in the treatment, control, prevention, amelioration, inhibition, elimination or delaying the onset of at least one of bacterial, fungal, viral, insect, or any other plant pest infections or infestations and inhibition of spore germination and hyphae growth. In specific embodiments, the “biological control agent” as used herein refers to a microorganism which can reduce the effects of plant disease when applied in the environs of the plant disease causing organism. It is appreciated that any biocontrol agent is environmentally safe, that it, it is detrimental to the target species, but does not substantially damage other species in a non-specific manner. As described herein, H. fasciculare strain Pinnel-B as well as H. capnoides strains TAK02 and TAK05 are examples of a biological control agents.
It is appreciated that the biological control agent is also effective for treating, preventing, ameliorating, inhibiting, reducing, eliminating or delaying the spread of an established Armillaria infection centre in a managed forest, plantation or orchard, thus protecting adjacent trees from the disease. The ARD is caused by A. ostoyae, A. mellea, A. gallica and/or A. tabescens. In an embodiment, the ARD is caused by A. ostoyae.
As used herein, the terms “treat” or “treating” include substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating symptoms of a condition or substantially preventing the appearance of symptoms of a condition, said condition is brought about in plants and woody plants by pathogens, including fungal pests, spores or hyphae.
The term “prevent” is intended to mean the countering in advance of fungal proliferation, infestation, infection, spore germination and hyphae growth. It is understood that, when used in a preventative manner, the biological control agent is applied prior to exposure to said pathogen.
The terms “ameliorate” and “amelioration” relate to the improvement in the growth and health of the managed woody plants (such as natural forest, plantation or orchard) brought about by the biological control agent and methods wherein said improvement may be manifested in the forms of reduced incidence of ARD and the individual tree growth loss and/or mortality it causes. In general, the term refers to the improvement in the overall health and productivity of a managed natural forest, plantation or orchard.
The term “inhibit” and all variations of this term is intended to encompass the restriction, retardation, reduction, decrease or prohibition of fungal growth, as well as spore germination.
The term “eliminate” relates to the substantial eradication or removal of an established fungi population by contacting them with the composition of the present disclosure. The fungus of the present disclosure has the capacity to penetrate, invade and establish into internal host tissues and to suppress and/or control diseases in woody plants caused by ARD.
The terms “delay”, “retard” or “impede” and all variations thereof are intended to encompass preventing or slowing the progress of fungal growth, spore germination and hyphae growth for a period of time, such that said fungal growth, infestation, infection, spore germination and hyphae growth do not progress as far along in development, or appear later than in the absence of the treatment according to the present disclosure.
The inoculum unit of the present disclosure comprises an effective amount of Hypholoma (such as a H. fasciculare fungus) as defined previously, in association with an environmentally acceptable carrier, delivering medium or substrate. In an embodiment, the strain Pinnel-B, TAK02 or TAK05 are used alone or in combination. Alternatively, the strains of the present disclosure are used in combination with other strains of Hypholoma or with fungi belonging to other genus. The term “inoculation unit” or “inoculum unit” as used herein refers to a carrier, delivering medium or substrate that has been colonized with Hypholoma. The inoculum unit may be in a solid form or a liquid form. An “environmentally acceptable carrier, delivering medium or substrate” refers to any suitable carriers, delivering medium or substrate non-toxic to the fungus and not harmful to non-target vegetation, animals or humans. It may also be biodegradable. A person skilled in the art will know how to select suitable carrier, delivering medium or substrate. According to an embodiment, the carrier, delivering medium or substrate comprises nutritive elements and enough resources suitable for sustaining the growth of the fungus.
Also provided are methods for the production of an inoculum unit of Hypholoma, the method comprising inoculating a carrier, delivering medium or substrate with an isolated culture of the fungus and incubating the substrate under conditions suitable for fungal growth to produce a culture of Hypholoma. This step may be accomplished by any known methods in the art.
In an embodiment, the inoculum unit is solid and Hypholoma is cultured on a solid substrate. The solid substrate will include those on which the organism can be cultured, such as wood, sawdust, wood chips, wood fibre material, agricultural wastes, bran cereals, cellulose-containing substances or a mixture thereof.
Conditions suitable for mycelial growth of Hypholoma for making the inoculum unit are known in the art. For example, cultures can be started on standard concentration PDA (potato dextrose agar) plates and incubated at 15° C. until fully colonized. The culture is then transferred into a sterilized grain or a mixture of sterilized grains (rice, wheat, rye, oat, millet, sorghum, corn, barley, etc.). Prior to inoculation, the grain is sterilized according to any method known in the art. The inoculated grain incubated at 15° C. until fully colonized. The grain inoculum is used to inoculate the delivering medium or substrate in a container comprising wood, sawdust and/or wood chips, agricultural wastes, bran cereals or other cellulose-containing substances, or mixtures thereof. The delivering medium can be sterilized prior to the inoculation with the grain inoculum. A variety of containers can be used for incubation, including high-density polyethylene and polypropylene bags, glass and polypropylene jars, metal containers, etc. The containers are incubated at around 15° C. in refrigerated warehouses until the inoculum unit is fully colonized by the fungus, i.e. by the mycelium of the fungus.
Alternatively, the inoculum unit may be in a liquid form. This liquid formulation can be produced by any known manner, for example by mixing the mycelium of the fungus (e.g. obtained from solid or liquid culture) with a liquid carrier. Liquid carriers useful in the present disclosure include aqueous, organic or non-organic based liquid solutions that are not toxic to fungi and the environment. For example, the liquid carrier can be water or any emulsions with water as the continuous phase (i.e. an oil in water emulsions).
The concentration of fungus that is used, in terms of mycelia, can range from about 1×105 to about 1×1011 CFU (colony forming unit)/ml in the formulation may vary depending on the conditions in which the formulation is to be used, e.g. the woody plant species to be protected, the degree of infection, the climatic conditions, the application method, woody plant material, geographical conditions and selected formulation. In terms of treatment and protection, the concentration (the “effective amount”) of fungus that is used is the amount enough to successfully and quickly colonize the residual stump and root system and to hinder the progression of the fungal disease.
Further agents can be added to the delivery medium or substrate (in a solid or liquid form) of the present disclosure. Agents that may be beneficial to the fungus itself may be added. For instance, the beneficial agents may be those that optimize the efficiency of the fungus towards ARD, those that promote its growth or its viability, those that promote its ability to adapt to the environment (for example dry conditions) may be used simultaneously.
Examples of such beneficial agent includes vitamins, growth factors, nutrients (such as proteins, peptides, carbohydrates, lipids), fertilizers, fungicides, etc) or mixtures thereof.
More particularly, a nitrogen source (e.g. ammonium lignosulfonate) can be added to the delivering medium or substrate to help Hypholoma spp. strains get started colonizing the stumps and roots. Furthermore, emulsifiers, dispersants, protectants, biocides, thickeners or adjuvants may be added to the inoculum unit.
3. Method of Use of the Inoculum Unit
According to a further aspect of the present disclosure, a method for biologically controlling ARD is provided. The method comprises the step of colonizing a woody plant (and in some embodiments the roots of the woody plant, which can be, in further embodiments the roots of recently cut stumps of a woody plant) with an effective amount of at least one strain of Hypholoma spp. of the present disclosure. The application of at least one strain of fungus, as such or in the form of suitable culture (e.g. in the form of an inoculum unit), can be effected on roots at the base of stumps the woody plants. More particularly, the method for biologically controlling ARD of woody plants in forests (as, for example, managed forests), plantations or orchards comprises the step of applying to the roots and stumps of the woody plants an amount of at least one strain of Hypholoma or a culture of Hypholoma or a carrier, delivery medium or substrate comprising said culture (i.e. an inoculum unit in a solid or liquid form) to successfully and quickly colonize the stump and roots. In an embodiment, the method comprises applying the Hypholoma cultures (such as the inoculum units) to recently cut woody plants. As used herein, the term “recently cut stump” refers to a stump that has not yet been colonized by other opportunistic organisms (for example other wood decay fungi or insect larvae) that might prevent or reduce colonization of the roots and stumps by the biocontrol fungus, i.e. by a strain of Hypholoma. Most preferably, a recently cut stump consists of a stump cut up to 18 months or less before the application of the composition of the present disclosure onto such cut stump. In another embodiment, the method comprises applying the Hypholoma cultures (such as the inoculum units) to cut woody plants which are known of being infected by Armarilla or are susceptible of being infected by Armarilla.
More particularly, methods of use of the present disclosure are those in which the fungus is provided with an opportunity to contact the roots of the woody plants or stumps either directly or indirectly by application to the target roots such that contact is made after the growth of its mycelium. For example, an inoculum unit of the present disclosure may be applied by burying said inoculation unit in a shallow hole excavated immediately next to one or more major roots of the recently cut stump.
It is appreciated that the compositions of the present disclosure are particularly suited for the reduction of Armillaria inoculum in a natural or managed forest, plantation or orchard and thus may be useful for protecting woody plants from ARD.
The inoculum unit and the isolated cultures of the present disclosure can have, under specific conditions, the ability to internally colonize or invade and establish within woody root tissues. For example, a dose of at least 105, 108, 107, 108, 109 or 1010 colony forming units of Hypholoma sp. can be provided to internally colonize or invade and establish within woody root tissues. The internal colonization or establishment within woody root tissues can be observed at least 10, 20, 30, 40, 50 days or more after the application of the dose of the inoculum or the isolated cultures to the woody plants (for example to one or more roots of the woody plant).
The word “comprising” in the claims may be replaced by “consisting essentially of” or with “consisting of,” according to standard practice in patent law.
The following example serves to further describe and define the invention, and is not intended to limit the invention in any way.
Strains of three Hypholoma species were acquired from the culture collection of the USDA-Forest Service's Centre for Forest Mycology Research (Wood Products Laboratory in Madison, Wis.), Ontario Ministry of Natural Resources (OMNR), and Lallemand's field collections. The putative species of each Hypholoma strain was confirmed or corrected through PCR and sequencing of the ITS region and a BLAST search of sequence data in GenBank (Table 1).
Hypholoma
Acer
Hypholoma
fasciculare (Fr.) P.
glabrum
fasciculare
douglasii
Hypholoma
Vaccinium
Hypholoma
fasciculare (Fr.) P.
fasciculare
Hypholoma
Pinus
Hypholoma
fasciculare (Fr.) P.
ponderosa
fasciculare
Hypholoma
Platanus
Hypholoma
fasciculare (Fr.) P.
wrightii
fasciculare
Hypholoma sp.
Hypholoma
fasciculare
fasciculare
Hypholoma
Quercus
Hypholoma
fasciculare (Fr.) P.
hypoleucoides
fasciculare
Hypholoma sp.
Alnus
Hypholoma
fasciculare
fasciculare
Hypholoma
Pseudotsuga
Hypholoma
fasciculare (Fr.) P.
menziesii
fasciculare
Hypholoma
Hypholoma
sublateritium
sublateritium
Hypholoma
Acer stump
Hypholoma
sublateritium
sublateritium
Hypholoma
Hypholoma
sublateritium
sublateritium
Hypholoma
Hypholoma
sublateritium
sublateritium
Hypholoma
Hypholoma
sublateritium
sublateritium
Hypholoma
Hypholoma
capnoides (Fr.) P.
capnoides
Hypholoma
Pinus
Hypholoma
capnoides (Fr.) P.
resinosa
capnoides
Hypholoma
Pinus
Hypholoma
capnoides (Fr.) P.
resinosa
capnoides
Hypholoma
Pinus
Hypholoma
capnoides (Fr.) P.
resinosa
capnoides
Hypholoma
Hypholoma
capnoides (Fr.) P.
capnoides
resinosa
Armillaria ostoyae
Pinus
Armillaria
resinosa
ostoyae
Armillaria ostoyae
Pinus
Armillaria
resinosa
ostoyae
Growth rates of strains of Hypholoma fasciculare, H. capnoides, and H. sublateritium, at 15° C.
In this Example, it was to determine the variability in growth rate of the candidate strains, in particular at 15° C. (below-ground temperature).
Growth rate was measured in two ways: as in vitro radial growth and mycelial dry-weight, on two media types, 2% malt agar (MA) and on a pine-wood infusion medium (PWI).
Plates (three replicates of each strain) were inoculated with 7 mm plugs placed at the edge of the plates and incubated in the dark at 15° C., a temperature chosen to simulate the cooler below-ground conditions (Dowson et al. 1989; Cox & Scherm 2006). The linear growth was measured along three lines (approximately 20° apart) radiating from the inoculum plug, every 24-hours starting from day 5 (to allow an establishment period) and the study was terminated when the first Hypholoma strain reached the opposite side of the plate on both media.
The mycelium dry-weight produced by each strain was determined after the linear growth study was terminated, according to the following procedures:
Continuous data of the radial growth and mycelial dry-weight were normal and thus analyzed using a One-way ANOVA followed by mean separation and multiple comparisons according to the Tukey-Kramer method (α=0.05).
Radial growth of all strains of Hypholoma and A. ostoyae was more rapid on the PWI medium than on 2% MA, with the fastest growing strain reaching the far side of the plate after 30 days and 36 days, respectively. Growth rates among strains were significantly different on both PWI and 2% MA, with H. fasciculara Pinnel-B the first to reach the limits of the plate on both media (Tables 2 and 3). Further, H. fasciculara Pinnel-B grew significantly more quickly than the benchmark strain, H. fasciculara OKM-7107-Sp (Tables 2 and 3), reaching the far side of the plate before H. fasciculara OKM-7107-Sp had reached the mid-point. In addition, the radial growth rate of H. fasciculara Pinnel-B significantly exceeded that of the two strains of A. ostoyae (Tables 2 and 3). Similarly, H. capnoides TAK02 and TAK05 grew significantly more quickly than the benchmark strain, H. capnoides OKM-1523-T.
A. ostoyae B249-28
A. ostoyae P162-7
A. ostoyae B249-28
A. ostoyae P162-7
The production of mycelial mass was far less (by a log) on PWI than on 2% MA (compare Tables 4 and 5). On both media types, H. fasciculare Pinnel-B was among the top producers of mycelial mass, producing significantly more mycelial mass than both H. fasciculara OKM-7107-Sp and the two strains of A. ostoyae (Tables 4 and 5).
A. ostoyae P162-7
A. ostoyae B249-28
A. ostoyae B249-28
A. ostoyae P162-7
Results have demonstrated that H. fasciculare Pinnel-B exhibited superior growth and exceeding the performance of the benchmark strain, H. fasciculare OKM-7107-Sp, which in some cases did not perform significantly greater than the A. ostoyae strains. Therefore, the results of these experiments have demonstrated that H. fasciculare Pinnel-B is a superior biocontrol strain of A. ostoyae while H. fasciculara OKM-7107-Sp falls short.
In vitro pairings of candidate biological control strains versus a low-virulence (P162-7) and high-virulence (B249-28) strain of A. ostoyae.
In this Example, the competitive and/or antagonistic interactions between the Hypholoma strains and A. ostoyae were assessed.
To assess the ability of the biocontrol strains to suppress the growth of strains of A. ostoyae, 7-mm-diameter mycelium/agar plugs were cut from the advancing margin of actively growing cultures of the test strains and were plated about 4 cm apart on 2% MA and PWI. Because of its relative slow growth rate at the incubation temperature of 15° C., the Armillaria isolates were allowed to grow alone for 3 weeks before the Hypholoma was added. Each pairing (i.e. biocontrol strain of Hypholoma against the target strain of A. ostoyae) was replicated 3 times and solo growth of the A. ostoyae strains was also recorded, as a benchmark to which the suppressed growth could be compared.
Interactions between biocontrol strains and A. ostoyae. In a second component of this study, interactions between strains of Hypholoma spp. and the low-virulence (P162-7) and high-virulence (B249-28) strains of Armillaria on PWI and 2% MA media were scored according to the degree of antagonism exhibited by the Hypholoma strain towards the Armillaria, based on the categories of Porter (1924): mutual intermingling of both species—1 point; slight mutual inhibition (narrow gap between advancing fronts)—2 points; growth of Hypholoma around the Armillaria (containment)—3 point; and growth of Hypholoma over the Armillaria (predation)—4 points.
Growth rate data for the two A. ostoyae strains and the interaction types were tested for Normality and transformed (log-transformation) as necessary, then analyzed by One-way ANOVA followed by mean separation and multiple comparisons according to the Tukey-Kramer method (α=0.05).
The growth rates of both strains of A. ostoyae differed significantly among the pairings with the biocontrol strains (Tables 6 to 9). As can also be seen in Tables 6-9, H. fasciculare Pinnel-B was significantly more effective at suppressing the growth of the A. ostoyae strains than was H. fasciculara OKM-7107-Sp, which did not suppress growth of either strains of A. ostoyae on the PWI medium.
A. ostoyae on PWI when paired with biocontrol candidate
A. ostoyae P162-7
A. ostoyae on 2% MA when paired with biocontrol candidate
A. osteyae P162-7
A. ostoyae on PWI when paired with biocontrol candidate
A. osteyae B249-28
A. ostoyae on 2% MA when paired with biocontrol candidate
A. ostoyae B249-28
Interactions Between Biocontrol Strains and A. ostoyae.
A range of interaction types (Porters 1924) between the biocontrol candidates and the two strains of A. ostoyae were observed (Table 10). H. fasciculare Pinnel-B was one of three strains of H. fasciculare that totally overgrew both strains of A. ostoyae in all pairings. Results were less consistent for other strains, with different interaction behaviour observed among replications. Approximately half (52.2%) of the interactions were scored as type 3, growth around the Armillaria culture (containment) (data not shown). The benchmark strain H. fasciculare OKM-7107-Sp did not overgrow the Armillaria cultures in any of the replications and in 67% of the replications either exhibited mutual inhibition with the Armillaria or intermingled hyphal growth without noticeable effect on either strain (data not shown).
Strain H. fasciculare Pinnel-B significantly reduced the growth rate of both strains of A. ostoyae on both media types. In addition, H. fasciculare Pinnel-B exhibited predatory behaviour towards A. ostoyae, completely overgrowing the A. ostoyae cultures. In contrast, H. fasciculare OKM-7107-Sp did not consistently suppress the growth of the Armillaria strains and in its interactions with A. ostoyae did not exhibit combative behaviour, at best achieving a “truce” with the advancing Armillaria mycelium, in the form of a narrow zone of inhibition where hyphae of each culture were excluded. H. capnoides TAK02 and TAK05 demonstrated a good efficiency to reduce the growth rate of strains A. ostoyae in comparison to H. capnoides OKM-1523-T.
Foraging/Eradication—Inoculated disc pairing and incubation, followed by assessment of the foraging ability of the biocontrol strains and their ability to replace A. ostoyae in root discs already colonized by A. ostoyae.
In this Example, it was determined if H. fasciculare Pinnel-B and H. capnoides TAK02 and TAK05 could successfully seek out (foraging behaviour) root discs colonized by A. ostoyae and replace it (eradication) in root tissues it previously occupied.
One-cm-thick root discs were cut from root lengths collected from freshly felled red pine. The root discs were placed in flasks or bottles containing 2% malt extract solution and autoclaved for one hour, after which the malt extract solution was poured off and cultures of the test strains (described in Table 1) were cut into small cubes and mixed into the flasks and bottles of discs. The bottles and flasks were incubated at 25° C. in the dark until the root discs were thoroughly colonized.
Similar sized colonized discs of A. ostoyae strain Ao B249-28 (high-virulence) and a candidate biocontrol strain were placed on opposite sides of deep Petri plates containing damp sand which had been sterilized by autoclaving. Self-paired (e.g. H. fasciculare Pinnel-B vs H. fasciculare Pinnel-B) replicates were also included to act as controls to assess foraging behaviour. The plates were sealed with Parafilm™ and incubated in the dark at 15° C. Pairings with the biocontrol strains versus A. ostoyae were replicated six times while, self-pairings were replicated three times.
The six replicated pairings were inspected periodically over 45 days, at which times the percent of overgrowth of the Armillaria discs by the Hypholoma strains which had successfully foraged and discovered the Armillaria discs was estimated and recorded.
Destructive sampling of Armillaria discs was conducted on five of the six replicates 9.5-10.5 months after plating. Wood samples were taken from the inner bark, sapwood and pith of the Armillaria discs and plated on 3% MA with and without 30 ml/L ethanol. Addition of ethanol encourages Armillaria growth while inhibiting Hypholoma, thus reducing the likelihood of committing a Type 1 Error when assessing the hypothesis that Hypholoma can replace Armillaria. A scoring system was devised to reflect the ability of the test strains to replace Armillaria from the sapwood and pith of the Armillaria-colonized root discs. Isolation of Hypholoma from the inner bark scored 2 points, the sapwood of the Armillaria disc scored 4 points, and from the pith area, 6 points. Isolations from the sapwood area scored lower because sapwood tissue contains more easily obtainable nutrients than does heartwood, and in a conifer species, less resin, and is therefore easier to colonize by wood decay fungi (Anon. 1966). Samples that yielded both species scored one point less, (e.g. both Hypholoma and Armillaria isolated from sapwood scored 3 points). Isolation scores from three portions of the discs were totaled and the final score for the strain was calculated as the average score of all six replicates. Because all strains that successfully foraged and overgrew the bark of the Armillaria discs exhibited a high degree of success in replacing it, the subsequent analysis was conducted on a data set comprising only the replacement scores from the sapwood and pith regions of the discs.
Statistical analysis. The data from the first component of the study (foraging and overgrowth) included many 0% and 100% values. These data were first transformed as follows: “0”% values were transformed according to the formula ¼n, where n=6 reps, to become 1.5, and “100”% values were transformed by 100−¼n=98.5. The data set was then arcsin transformed to normalize the data set and then the transformed data were analyzed by One-way ANOVA followed by mean separation and multiple comparisons according to the Student's t method (α=0.05). The data from the second component of the study (replacement) was tested for Normality and log transformed before being analyzed by One-way ANOVA followed by mean separation and multiple comparisons according to the Tukey-Kramer method (α=0.05).
The biocontrol strains varied significantly in their ability to forage for, and overgrow, the Armillaria root discs [F(15,80)=9.19; p<0.0001](Table 11). Within days H. fasciculare Pinnel-B, and some Hypholoma strains, began to produce rapidly growing foraging hyphal cords while others produced hyphal cords that were not as fast-growing or prolific. Growth of foraging hyphal cords appeared to be stimulated by the presence of root discs colonized by Armillaria. Self-pairing of prolific growers such as H. fasciculare Pinnel-B did not produce foraging growth. After 45 days, eight of the strains had successfully foraged and to some degree overgrown the Armillaria discs (Table 11), however, three strains, among them H. fasciculare OKM-7107-Sp, never produced such hyphal cords throughout the entire duration of the experiment.
Hypholoma spp. to forage for, and overgrow, root discs colonized
The biocontrol test strains exhibited significant variation in their ability to replace A. ostoyae in the Armillaria discs [F(14, 60)=10.24; p<0.0001]. When assessed 9.5-10.5 months after initiation of the study, three test strains of Hypholoma, one from each species type (H. ca OKM-1523-T, H. fasciculare OKM-7107-Sp and H. sub 49-1107) had not successfully foraged and replaced Armillaria in any of their five replications. Twelve test strains exhibited the ability to replace A. ostoyae in both the sapwood and the pith area of the root (Table 12). Results have clearly demonstrated that H. fasciculare Pinnel-B exhibited superior activity to replace A. ostoyae in both the sapwood and the pith area of the root.
Although there have been earlier published reports (e.g. Chapman & Xiao 2000) of replacement of Armillaria in the bark of tree roots, this is the first study that demonstrates the ability of strains of Hypholoma species to invade woody root tissue and replace Armillaria. Strain H. fasciculare Pinnel-B very quickly began foraging and directed hyphal cords towards the root discs colonized by A. ostoyae. It overgrew these root discs and successfully invaded the bark, sapwood and pith area tissue where it either completely or partially replaced the A. ostoyae during the 9.5-10.5 month duration of the experiment.
The series of studies reported above provide evidence that the strain H. fasciculare Pinnel-B possesses a unique combination of abilities, not exceeded by any other tested strain, as a biocontrol agent against Armillaria Root Disease. As such, it has the potential to be a viable alternative to the current forest management options of stumping (Morrison et al. 1988) and converting stands to species that are more resistant to ARD (Shaw et al. 2012).
While the invention has been described in connection with specific embodiments thereof, it will be understood that the scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
This application claims priority from U.S. provisional application 62/824,656 filed on Mar. 27, 2019 and herewith incorporated in its entirety. The application makes references to the following biological deposits submitted at the German Type Culture Collection (DSMZ): Hypholoma fasciculare Pinnel-B (Accession number DSM 32925 filed on Sep. 20, 2018), Hypholoma capnoides TAK02 (Accession number DSM 33061, deposited on Feb. 8, 2019), and Hypholoma capnoides TAK05 (Accession number DSM 33078, deposited on Mar. 5, 2019). These biological deposits are incorporated herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/052830 | 3/25/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62824656 | Mar 2019 | US |