The present invention relates to an innovative biodegradable reinforced paper packaging material and its manufacturing method.
Several approaches to provide closed packages or wrappers from paper coated with extruded polyethylene have been designed in the past. One of these closed packages is used for packaging reams R of paper or to wrap food products. In order to increase the mechanical strength of the packaging material, thicker films of paper coated on one surface with polyethylene have been used. This approach does not prevent the mechanical strength infirmity encountered when the package is exposed to a high humidity steam environment. The heavier paper makes the final package much more expensive.
Usually to seal packages (such as those used to package reams of paper) the state of the art uses liquid, pasty or hot melt adhesives applied during the packaging operation. Controlling and registering these adhesives in the packaging operation is difficult. It is necessary to adjust the speed, of the machinery handling the paper, as well as the temperature and viscosity of the glue. The equipment has to operate at reduced speed losing production hours for cleaning and maintenance. Additionally, there are costs associated with using adhesives during the packaging operation.
The present invention provides paper packaging material with reduced thickness while increasing its mechanical strength and also eliminates the need to use glue. Also, a barrier against moisture is provided allowing a clean and full speed operation. The package closing is achieved with controlled thermo-sealing techniques without using external adhesives on the packaging.
These novel features, while desired for a long time, have not been provided by the paper packaging materials currently existing in the state of the art.
The need for using ecologically compatible materials for wrappers and flexible materials for packaging in general is well documented. See WO2011075830 corresponding to a patent publication for a flexible cellulosic fiber-based honeycomb material dated Dec. 22, 2009. While the approach discussed in this publication utilizes recyclable and biodegradable materials in creating a honeycomb, the space taken by the hexagonal open-ended core cells does not make the resulting material suitable for wrapping. In the present invention the grids formed with vegetal biodegradable resin are intertwined with the cellulose fibers in the paper layer with the attendant reinforcement keeping the paper layer to a minimum thickness. Additionally, the vegetal resin used in the present invention provides impermeability as well as strength with less amount of material.
The paper wrapping industry faces the problem of optimizing the structural integrity of the packaging materials while maintaining a minimum weight and helping its impermeability characteristics with the use of plastic materials. The present invention solves the problem providing a remarkable leap in the optimization of the film's desired characteristics while reducing its weight.
Paper packaging material in the present invention is reinforced paper layer with a biodegradable low-density polyethylene layer in the surface and having a biodegradable resin that provides sufficient impermeable characteristics to protect the wrapped contents against humidity damage.
Applicant believes that another related reference corresponds to U.S. Pat. No. 8,551,614 for a three-layer wrapping and its manufacturing process. However, it differs from the present invention because it utilizes three layers (two of polymeric material and one natural material) of material with the consequent increase in weight and cost. This is characteristic of the state of the art in this field and it is this problem what this invention solves.
Other documents describing the closest subject matter provide for a number of more or less complicated features that fail to solve the problem in an efficient and economical way. None of these patents suggest the novel features of the present invention.
It is one of the objects of the present invention to provide a biodegradable paper packaging material or wrapper with increased mechanical strength allowing the use of reduced basis weight papers (less thickness) while at the same time generating a lighter, more resistant and economical packing material.
It is another object of the invention to provide a method for the manufacturing of the package for material referred to in the previous paragraph.
It is another object of the present invention to provide such a packaging material with increased efficacy against moisture and steam of polyethylene-coated papers, offering more impermeability with supplementary strength, protecting the product inside the package from excess of moisture.
It is still another object of the present invention to provide such a paper packing resulting in a clean package closing by thermo-sealing operation without using adhesives or glues in the process.
It is a further object of this invention to provide such an article of manufacture that is inexpensive with low cost packaging maintenance, while exploring maximum machine speed with guaranteed effectiveness.
Further objects of the invention will be brought out in the following part of the specification, wherein detailed description is for the purpose of fully disclosing the invention without placing limitations thereon.
The present invention relates to a paper packaging material 10 using a biodegradable vegetal based resin to create a strong chemical pulp fiber bonding that penetrates inside the layer of a paper web 20, while simultaneously the same vegetal based resin 30 creates a better barrier against moisture. The packaging material 10 includes a controlled thermo-sealing area on the side 22 of the paper web 20 that contains a layer of polyethylene. The resulting packaging material 10 is biodegradable and a compostable additive is added to turn it sustainable.
The first step of the method for manufacturing package material 10 is printing the graphics for publicity and/or the advertising. These can be applied preferably by flexographic, rotogravure, offset and/or digital printing technologies on surface or face 22.
The second step of the method is drying paper web 20 that will be used by unwinding it in a proper machine. The drying process should remove between 30% and 60% of paper original moisture by either using heated calendars or blown hot air with temperatures in the range between 60° C. and 120° C. during enough time and speed to achieve mentioned parameters. The paper's moisture is brought below its typical moisture values.
The third step is the application of the waterproof liquid vegetal resin composition to the paper. The printing or application of vegetal resin 30 is performed using, in one of the preferred embodiments, rotogravure techniques. Rotogravures techniques include the use of an electrostatic field to achieve resin penetration inside paper web 20. The electrostatic process is referred to as ESA. See http://www.eltex.com/en/products/systeme/electrostatic-printing-assist.
The vegetal resin is applied on the other surface 24 of the paper either by rotogravure or indirect flexography technologies, utilizing engraved cylinders with alveolar shaped designs. By alveolar shaped designs it is to be understood any designs that are closed such as squares, diamonds, rhomboids, honeycomb like, etc. These designs are similar to those used in construction for reinforcement grids inserted in concrete slabs. This third step has the following characteristics:
The fourth step is the application of polyethylene 40 by extrusion coating on the same surface of the paper where publicity or advertising printing is applied as follows:
The fifth step is the application of a thermo-sealing varnish 50 by using the rotogravure process on pre-defined areas that will be set for closing the package with the following characteristics:
The above five described steps complete the production of the film of paper with alveolar shape reinforcement and thermo-sealing features. The film of paper in rolls (that can be cut in sheets) is now ready to be used in the packaging process generating savings by reducing the packaging material weight in addition to eliminating of glue cost.
This new chemical strengthening technique and thermo-sealing control affinity can be used with monolayer papers or laminated papers with other substrates such as polypropylene with one or more layers and can also be used with bi-axially oriented polypropylene (BOPP) with one or more layers. The thickness for above-mentioned films may vary from 10 microns (0.4 mil) to 300 microns (12 mil).
The biodegradable and compostable resin chemical formula is disclosed below.
Hereafter a comparison between Product 1 (traditional package) and Product 2 (Invention's package):
By analyzing laboratory tests made on the new product in comparison to the conventional packing material, we can observe a mechanical resistance increase by 12.38%, plus a humidity resistance increase by 15%. Both parameters lead to the conclusion that the present invention results in better product allowing the possibility to reduce the paper basis weight as well as the polyethylene resin volume application by approximately 12% while maintaining the same protection level. This results in substantial packaging cost savings. The greater tear resistance provides greater physical strength of the packaging and reducing moisture absorption, keeping these mechanical strength characteristics more stable and durable. For example, if the mechanical strength increases by 12% we can say that it is possible to reduce the thickness of the paper proportionally, thus reducing its cost per package and follow having an equal resistance of the package. If the moisture in the paper falls by 15%, will have greater strength of the paper in the package not break when exposed to moisture.
The foregoing description conveys the best understanding of the objectives and advantages of the present invention. It is to be understood that all matter disclosed herein is to be interpreted merely as illustrative, and not in a limiting sense.