Mao et al., “Intramuscular Delivery of LacZ Plasmid Encapsulated in Microspheres Composed of Biodegradable Phosphate Chain-Extended Poly(L-lactide)” Proceed. Int'l, Symp. Control. Rel, Bioact. Mater., 25 (1998). |
Mao et al., “Design of New Biodegradable Polymers Based on Chain-Extension of Oligomeric Lactides by Phosphates,” Proceedings of the Topical Conference on Biomaterials Carriers for Drug Delivery and Scaffold for Tissue Engineering, Peppas, N.A. et al., eds. Los Angeles, CA, pp. 193-195 (1997). |
Zhang et al., Controlled Release Society, Inc. Program Book And Proc., Conf. On Adv. Controlled Delivery, pp. 135-136 (Aug. 19-20, 1996). |
Dang et al., “Controlled Release of Lidocaine Using Biodegradable Polyphosphoester Polymer,” AAPS 1997 Annual Meeting and Exposition Boston, Massachusetts, Paper #1214. |
Fu et al., “Studies on the Melt Copolymerization of Phosphorus-Containing Diacid and BIS (p-Carboxyphenoxy) Propand for DDS,” J. Wuhan Univ. (Natural Science Edition), 43(4):467-470 (1997). |
Fu et al., “Studies on the Syntheses and Drug Release Properties of Polyanhydrides Containing Phosphonoformic (or Acetic) Acid Ethyl Ester in the Main Chain,” Chemical Journal of Chinese Universities, 18(10)1706-1710 (1997). |
Fu et al., “Studies on the Syntheses and Properties of Phosphorus-Containing Polyanhydrides for DDS,” Chemical Journal of Chinese Universities, 18(5):813-817 (1997). |
Liu et al., “Synthesis of Phosphatidyl Ehtanolamine Polyphosphate Liposomal Materials,” Chemical Journal of Chinese Universities, 18(9):1556-1559 (1997). |
Mao et al., “Biodegradable Copolymer for Drug Delivery: Poly(phosphate-terephthalate)s,” Proceedings of the Topical Conference on Biomaterials Carriers for Drug Delivery and Scaffold for Tissue Engineering, Peppas, N.A. et al., eds. Los Angeles, CA pp. 141-143. |
Langer et al., “Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents”, J. Macro. Sci., Rev. Macro. Chem. Phys., C23(1), 61-125 (1983). |
Chein, Y.W. et al., Novel Drug Delivery Systems (1982). |
Pitt et al., “Biodegradable Drug Delivery Systems Based on Aliphatic Polyesters: Application to Contraceptives and Narcotic Antagonists”, Controlled Release of Bioactive Materials, 19-44 (Richard Baker, ed., 1980). |
Heller et al., “Release of Norethindrone form Poly(Ortho Esters)”, Polymer Engineering Sci, 21:11, 727-31 (1981). |
Leong et al., “Polyanhydrides for Controlled Release of Bioactive Agents”, Biomaterials, 7:364 (1986). |
Kadiyala et al., Biomedical Applications of Synthetic Biodegradable Polymers, Chapter 3: “Poly(phosphoesters): Synthesis, Physicochemical Characterization and Biological Response”, 33-57, (Jeffrey O. Hollinger ed., 1995). |
Langer et al., “New Methods of Drug Delivery”, Science, 249(4976):1527-33 (1990). |
Pulapura et al., “Trends in the Development of Bioresorbable Polymers for Medical Applications”, Journal of Biomaterials Applications, 6(1):216-50 (1992). |
Bruin et al., “Biodegradable Lysine Diisocyanate-based Poly(glycolide-co-ε-caprolactone)-urethane Network in Artificial Skin”, Biomaterials, 11(4):291-95 (1990). |
Penczek et al., “Phosphorus-Containing Polymers”, Handbook of Polymer Synthesis, Part B, Chpt. 17, 1077-1132 (Kricheldorf ed. 1992). |
Pretula et al., “High-Molecular-Weight Poly(alkylene phosphonate)s by Condensation of Dialkylphosphonates with Diols”, Makromol. Chem., 119:671-680 (1990). |
Wang, Ya Min, et al., In vitro and in vivo evaluation of taxol release from poly(lactic-co-glycolic acid) microspheres containing isopropyl myristate and degradation of the microspheres, Journal of Controlled Release, 49 (1997) 157-166. |
Demetrick, Jeffrey S., et al., The Development of a Novel Intraperitoneal Tumor-Seeding Prophylactic, The American Journal of Surgery®, vol. 173, May 1997. |
Francis, Prudence, et al., Phase I Feasibility and Pharmacologic Study of Weekly Intraperitoneal Paclitaxel: A Gynecologic Oncology Group Pilot Study, Journal of Clinical Oncology, vol. 13, No. 12 (Dec.), 1995: pp. 2961-2967. |
Hagiwara, Akeo, M.D., et al., Pharmacologic Effects of Cisplatin Microspheres on Peritoneal Carcinomatosis in Rodents, Cancer, Feb. 1, 1993, vol. 71, No. 3, pp. 844-850. |
Hagiwara, Akeo, et al., Clinical trials with intraperitoneal cisplatin microspheres for malignant ascites—a pilot study, Anti-Cancer Drug Design (1993), 8, 463-470. |
Höckel, M. et al., Prevention of Peritoneal Adhesions in the Rat with Sustained Intraperitoneal Dexamethasone Delivered by a Novel Therapeutic System, Annales Chirurgiae et Gynaecologiae 76: 306-313, 1987. |
Jameela, S.R., et al., Antitumour Activity of Mitoxantrone-loaded Chitosan Microspheres Against Ehrlich Ascites Carcinoma, J. Pharm. Pharmacol. 1996, 48: 685-688. |
Kumagai, Seisuke, et al., Improvement of Intraperitoneal Chemotherapy for Rat Ovarian Cancer Using Cisplatin-containing Microspheres, Jpn. J. Cancer Res. 87, 412-417, Apr. 1996. |
Owusu-Ababio, G., et al., Efficacy of sustained release ciprofloxacin microspheres against device-associated Pseudomonas aeruginosa biofilm infection in a rabbit peritoneal model, J. Med. Microbiol., vol. 43 (1995), 368-376. |
Pec, E.A., et al., Biological Acitivity of Urease Formulated in Poloxamer 407 after Intraperitoneal Injection in the Rat, Journal of Pharmaceutical Sciences, vol. 81, No. 7, Jul. 1992. |
Sharma, Amarnath, et al., Antitumor Efficacy of Taxane Liposomes on a Human Ovarian Tumor Xenograft in Nude Athymic Mice, Journal of Pharmaceutical Sciences, vol. 84, No. 12, Dec. 1995. |
Kaetsu, Isao, et al., Biodegradable Implant Composites for Local Therapy, Journal of Controlled Release, 6(1987) 249-263. |
Zhang, Xichen, et al., Development of Biodegradable Polymeric Paste Formulations for Taxol: An In Vitro and In Vivo Study, International Journal of Pharmaceutics 137 (1996) 199-208. |
Auerbach, Robert, et al., Site-Specific Drug Delivery to the Lung, Polymers for Advanced Technologies, vol. 3, pp. 323-329. |
Walter, Kevin A., et al., Intratumoral Chemotherapy, Neurosurgery, vol. 37, No. 6, pp. 1129-1145, Dec. 1995. |
Burt, Helen M., et al., Controlled Delivery of Taxol from Microspheres Composed of a Blend of Ethylene-Vinyl Acetate Copolymer and Poly (d,l-lactic acid), Cancer Letters, 88 (1995) 73-79. |
Leong, K.W., et al., Polymeric Controlled Drug Delivery, Advanced Drug Delivery Reviews, 1 (1987) 199-233. |
Mao, Hai-Quan, et al., Synthesis and Biological Properties of Polymer Immunoadjuvants, Polymer Journal, vol. 25, No. 5, pp. 499-505 (1993). |
Winternitz, Charles I., et al., Development of a Polymeric Surgical Paste Formulation for Taxol, Pharmaceutical Research, vol. 13, No. 3, pp. 368-375, 1996. |
Wang, Ya Min, et al., Preparation and Characterization of Poly(lactic-co-glycolic acid) Microspheres for Targeted Delivery of a Novel Anticancer Agent, Taxol, Chem. Pharm. Bull. 44 (10) 1935-1940 (1996). |
Sharma, Dayanand, Novel Taxol® Formulation: Polyvinylpyrrolidone Nanoparticle-Encapsulated Taxol® for Drug Delivery in Cancer Therapy, Oncology Research, vol. 8, Nos. 7/8, pp. 281-286, 1996. |
Alkan-Onyuksel, Hayat, et al., A Mixed Micellar Formulation Suitable for the Parenteral Administration of Taxol, Pharmaceutical Research, vol. 11, No. 2, pp. 206-211, 1994. |
Dordunoo, S.K., et al., Release of Taxol from Poly (ε-caprolactone) Pastes: Effect of Water-Soluble Additives, Journal of Controlled Release, 44(1997) 87-94. |
Suh, Hearan, et al., Regulation of Smooth Muscle Cell Proliferation Using Paclitaxel-Loaded Poly(Ethylene oxide)-poly(lactide/glycolide) Nanosphers, J. Biomed. Mater. Res. 42(2): 331-8 (1998). |
Lo, Hungnan, Synthesis of Biodegradable Polymers and Porous Grafts for Orthopedic Applications, Thesis, Johns Hopkins University, Jan. 27, 1995. |
Chemical Abstracts, vol. 99, No. 22, Abstract No. 176481Akutin et al. Polyarylates (1983). |