The present disclosure relates to novel enhanced surgical tools. In particular, the present disclosure describes apparatus useful for vascular surgical and interventional radiological procedures having improved trapping surface.
The documented needs, for example, for vena caval filters have driven the development of new devices to prevent travel of emboli during surgical interventions. Providing larger and more efficient trapping surfaces while minimizing insertion issues is a longstanding need in the art, and the advent of retrievable IVC filters merely underscores the need without addressing the issues which plague current treatment modes and modalities.
When surgical or radiological interventions are done, and when patients present with systems or disease etiologies that relate to the generation of blood clots, or thrombus, medical devices have been introduced which function to prevent these from passing into other areas of the body where they can be harmful or lethal.
Exemplary devices which have been used to manage such conditions have generated a plurality of longstanding needs yet to be addressed. Incorporated by reference herein, and illustrative of these predicate devices having generated most of these shortcomings are found in the following United States Letters Patents, which serve to define the state of the art prior to the advent of the instant teachings: U.S. Pat. Nos. 6,932,832; 6,669,721; 6,666,882; 6,652,558; 6,582,447; 6,669,721; 6,605,111; 6,517,559; and 6,267,776.
Each of these references has been studied, as have the devices that embody them, as discussed below, and found to be differentiated from the subject matter of the present invention. For that reason and because of the urgent needs to provide for treatments for patients that work better than the state of the art, the instant disclosure is hereby offered for consideration as an instantiation of progress in science and the useful arts, and Letters Patent hereby earnestly solicited for that reason and each of those set forth below and claimed.
The present inventors have overcome longstanding issues in preventing recurrent pulmonary embolism, among other things, by percutaneous placement of an improved biodegradable filter in the vena cava. This enhanced treatment modality addresses pulmonary thromboembolism when anticoagulants are contraindicated, treats thromboembolic disease, addresses massive pulmonary embolism and chronic, recurrent embolisms better than existing devices.
According to a feature of the disc a biodegradable vascular filter system, which comprises, in combination, a self-expanding apparatus which undergoes a phase change enabling it to move from a first, compacted position to a second, expanded position. operatively connected with a plurality of polymeric string-like members, which members expand from a slackened to a tensioned state in conjunction with the phase change of the associated apparatus, wherein the system when emplaced in at least one of a vessel and a lumen is effective for trapping thrombi traveling therethrough.
According to another feature of the disclosure a process for mitigating insult and injury by thrombus comprising, in combination, providing a vascular filter device further comprising a nitinol skeleton operatively linked to a biodegradable polymer, emplacing the vascular filter device at a desired location upstream of at least one of a surgical and an interventional procedure site, performing at least one of a surgical and an interventional procedure, and leaving the vascular filter device in situ.
Briefly stated, novel enhanced products and processes for trapping emboli utilize self-expanding skeletons and biodegradable polymer systems, for example stent-like Nitinol® elements and PLGA, to address longstanding issues related to thrombus capture without deleterious impacts on the vasculature or other negative artifacts of the procedure by at least partial post-use dissolution in situ.
The above-mentioned features and objects of the present disclosure will become more apparent with reference to the following description taken in conjunction with the accompanying drawings wherein like reference numerals denote like elements and in which:
The present inventors have discovered a novel enhanced process and products to mitigate thrombic insult, injury and related and attendant harms. By combining a shape memory alloy, for example Nitinol®, and biodegradable polymer systems an improved surgical filter effective to arrest transmissions of thrombus is disclosed. Processes using various embodiments are also taught.
Those skilled in the art readily understand that a biodegradable polymer system includes any related biocompatible set of moieties approved, or to be approved, for use in animals. By way of illustrative example, poly(lactic-co-glycolic) acid (hereafter “PLGA”), is readily substitutable for any number of biodegradable polymers having a strong history of usage in U.S. Food and Drug Administration (“FDA”) approved devices.
Likewise, delivery systems are conventional, and used by all of the major cardiovascular disease companies, which must be given consideration in the design and execution of such medical devices. The trend in these devices is procurement of larger and more effective trapping surfaces and smaller and less invasive insertion systems.
Prominent examples of the other devices in these fields include the LP brand of filter from B. Braun, the Gunther Tulip™ brand of Vena Cava filter, and the Cordis Optease brand of permanent vena cava filter, in addition to the Recovery brand of filter system offered by Bard Peripheral Vascular, a division of C.R. Bard Incorporated. Unacceptably high records of adverse events are associated with all of these devices. It may be synthesized by the co-polymerization of glycolide and lactide. The present inventors have searched predicate devices and approaches but are unaware of other usages of PLGA such as those taught according to the present disclosure.
Likewise, although indications are clearly available for improved filters nothing which has effectively addressed and solved the problems at which the present invention is directed currently is known. By way of further example of the need for the present invention vena caval filters have commonly been adapted or used in a other lumens as needed.
Another known filter is the Greenfield brand of filter from Boston Scientific. Each of these devices have been studied and found to subject to various complications stemming from common challenges. The present disclosure overcomes such issues.
Filter occlusion, from trapped emboli, often results in adverse events ranging from renal failure, the need for heightened thrombolytic therapy, to death of the subject patients. Metal fatigue and fracture, poor flow characteristics and areas of stagnation also generate significant issues. Fixation hooks associated with known devices, and the high radial force associated with the deployment of known systems have also added vasculature insult and injury to the list.
Turning now to
Referring now also to
Turning now to
The medical device usage of shape-memory alloys, whose function as is well know to those skilled in the art in accordance with the PALMAZ-type of self expanding stent (Cordis Endovascular, Johnson & Johnson), to render device 101 effective to be delivered by known systems of catheters, and to be placed at an appropriate juncture in a vessel without damaging the same. For example, placement in any known vessel by a femoral cut-down using a trocar, introducer and guidewire system (available from Medtronic AVE, Guidant, Edward LifeSciences LLC or Cook Endovascular as approved by the U.S. FDA), is conventional.
The benefits of stent-like device 101, with for example PLGA web 113, are significant in comparison to known teachings. For example, as opposed to leaving the filter in the patient, or attempting to retrieve the same by dragging it out, each of which does more harm than good—the instant disclosure teaches leaving the device in, and using the PLGA to dissolve which permits the remainder of the assembly to dissolve in situ.
Turning now to
The devices in the field are designed to trap emboli during these procedures, but generally add more risk factors than they prevent. The instant disclosure overcomes these issues and allows surgeons and interventionalists an option.
It is also prominent in the literature that permanent vena cava filters often cause pulmonary embolisms, and other significant complications many of which are addressed and overcome by the instant teachings.
Likewise,
While the apparatus and method have been described in terms of what are presently considered to be the most practical and preferred embodiments, it is to be understood that the disclosure need not be limited to the disclosed embodiments. It is intended to cover various modifications and similar arrangements included within the spirit and scope of the claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structures. The present disclosure includes any and all embodiments of the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | 11281128 | Nov 2005 | US |
Child | 15279742 | US |