This invention relates to improved biodiesel fuel. It is more particularly concerned with biodiesel fuel containing non-phenolic additives that enhance the oxidative stability and simultaneously decrease the acid number.
Carbon dioxide emissions from fuel usage are generally considered a major contributor to global warming. As a means to alleviate the problem, an increased use of biomass derived fuel components (biofuels) in gasoline and diesel fuel is being pursued in many parts of the world. A significant portion of the total amount of biofuels used in the transportation sector is taken by biodiesel, whose consumption in the European Union is already in the millions of tons. The accepted source of biodiesel are various types of vegetable or animal fats and oils, which are generally transesterified to a mixture of fatty acid methyl or ethyl esters so as to reduce viscosity and improve combustion behavior. The resulting biodiesel is quite similar to conventional diesel fuel in many of its properties, such as viscosity, density and ignition quality. Biodiesel is also very compatible with conventional diesel and the two can be blended in any proportion.
In order for biodiesel to be acceptable as a fuel for diesel engines, either alone or mixed with conventional petrodiesel, it has to meet a number of quality criteria irrespective of the raw material that was used for its production. To this end, a number of specifications have been developed, such as EN 14214 in Europe and ASTM D-6751 in the United States, which strictly control the properties and characteristics of biodiesel fuels. The difference in chemical structure between biodiesel (a mixture of liquid carboxylic esters) and the conventional, petroleum derived diesel fuel or petrodiesel (a mixture of liquid hydrocarbons) leads to some notable differences in chemical behavior. Among the most important such differences are the lower stability of biodiesel towards oxidation and also its higher acidity in comparison to petrodiesel. Recognizing this, the European Standard EN 14214 places strict limits both as to the oxidative stability and as to the acidity of biodiesel. It is also noteworthy that the newest version of the European Standard EN 590 for road diesel, which allows the addition of up to 7% of biodiesel, also mandates that the final fuel blend meet specific new requirements as to its oxidative stability.
The oxidative stability of biodiesel has been the subject of extensive research in recent years. The consensus is that unsaturation in the fatty acid alkyl chain, particularly as it appears in polyunsaturated fatty acids, is the major cause of oxidative instability. One remedy for this situation is the careful selection of the raw materials used for biodiesel production so as to minimize the content of unsaturated fatty acids. The disadvantage of this approach is that large quantities of vegetable oils would be labeled as unfit for biodiesel production in the face of a constantly increasing demand for this renewable fuel. The alternative solution that has been widely adopted is the addition of small quantities of antioxidant additives that greatly enhance the oxidative stability of biodiesel. The vast majority of antioxidant additives that are used for this purpose are of the phenolic type, so named because they possess at least one hydroxyl group directly attached to an aromatic ring. Among the most common phenolic antioxidants are 2,6-di-tert-butyl-4-cresol, commonly known as BHT (butylated hydroxytoluene), 2,6-di-tert-butyl-4-methoxyphenol, commonly known as BHA (butylated hydroxyanisol), propyl gallate, 1,2,3-trihydroxybenzene (pyrogallol), and tert-butyl-hydroquinone (TBHQ). The chemical structures of these materials are drawn below, plainly displaying their common feature of one or more phenolic hydroxyls.
These and many other phenolic antioxidants have appeared in the technical literature (cf. Gerhard Knothe, “Some aspects of biodiesel oxidative stability”, Fuel Processing Technology, vol. 88, pp. 669-677, 2007; Southwest Research Institute, “Characterization of biodiesel oxidation and oxidation products”, CRC Project No. AVFL-2b, 2005; and references therein) and are also the subjects of various patents (e.g. German Patent DE 10 252 714 A1, 2002; German Patent DE 10 2005 015 474 A1, 2006; European Patent EP 1989275, 2007).
References to other types of antioxidant additives for biodiesel are scant; a recent world patent (WO 2008 121526 A1) discloses antioxidant blends of aromatic diamines with phenolic antioxidants for biodiesel.
Phenolic antioxidants are generally effective in improving the oxidative stability of biodiesel. However, because of the acidic character of the phenolic hydroxyl, they tend to have a negative impact on the acid number of biodiesel. This behavior was reported in a recent study, where it was observed that phenolic antioxidants of various types generally increased the acid number of biodiesel and sometimes brought it above the specification limit, thus making the biodiesel unfit for purpose (Sigurd Schober and Martin Mittelbach, “The impact of antioxidants on biodiesel oxidation stability”, Eur. J. Lipid Sci. Technol., vol. 106, pp. 382-389, 2004).
The acid number is a measure of the amount of acidic components that exist in biodiesel or any other fuel. Since the acidic components are unwanted (they can lead to corrosion of the fuel system and general instability of the fuel itself) the acid number of biodiesel is strictly controlled both in Europe (EN 14214) and the United States (ASTM D-6751). Up to now no additives have been mentioned that would act as acid number depressants.
From the above considerations it becomes obvious that there is a need for antioxidant additives for biodiesel that will possess the same or higher antioxidant activity as the phenolic antioxidants without their negative impact on the acid number. The present invention offers an answer to this need.
The basis of the invention is the discovery that the reaction product of a carboxylic acid and a polyamine, when added to biodiesel in small amounts, is capable of greatly improving the oxidative stability of the biodiesel and simultaneously lowering its acidity, as determined by measuring the acid number.
It is known in the art that when a carboxylic acid (I) is reacted with a 1,2-diamine (II) a 5-membered heterocyclic ring, imidazoline (III) is eventually formed by loss of water, as shown by reaction scheme (1):
In a similar fashion, if a 1,3-diamine (IV) is reacted with a carboxylic acid, a 6-membered heterocyclic ring, tetrahydropyrimidine (V) is formed, as in reaction scheme (2):
As mentioned above, the unexpected discovery was made that certain preparations containing the imidazoline (formal name: 4,5-dihydro-1H-imidazole) or tetrahydropyrimidine (formal name: 1,4,5,6-tetrahydro-pyrimidine) moieties (III) and (V) are very effective antioxidants and acid number reducers for biodiesel and its mixtures with petrodiesel. Imidazoline and tetrahydropyrimidine derivatives have been mentioned in the patent literature as components in pharmaceutical preparations (e.g. U.S. Pat. Nos. 5,470,856; 5,925,665; 6,294,566; 6,410,562; 6,875,788; 6,884,801; 7,173,044; 7,482,358), corrosion inhibitors (e.g. U.S. Pat. Nos. 7,057,050; 4,518,782), fuel detergents (e.g. U.S. Pat. Nos. 4,247,300; 2,961,308) etc. To our knowledge the use of imidazoline and tetrahydropyrimidine derivatives as improvers for biodiesel and biodiesel/petrodiesel blends has not been reported up to know and is novel.
For the purposes of this invention, the carboxylic acid portion in reactions (1) and (2) can be either a free acid or a lower ester (preferably a methyl or ethyl ester); in the latter case one mole of water and one mole of alcohol are evolved with the formation of the heterocyclic ring. The desired structure of the carboxylic moiety for the above reactions is shown in formula (VI):
Where:
Based on formula (VI), the carboxylic moiety can be, but is not limited to, any linear monocarboxylic acid from acetic to melissic; a branched carboxylic acid such as isovaleric or isooctanoic; an unsaturated carboxylic acid such as oleic, linoleic, or linolenic; a hydroxyacid such as ricinoleic; a carbocyclic acid such as cyclohexanoic; an aromatic acid such as benzoic or toluic; and the like. The methyl or ethyl esters of the above acids are also desirable. Mixtures of acids and/or esters, such as those derived from fats and oils by saponification or transesterification are particularly desirable because of their low cost.
The amine portion in reactions (1) and (2) must fulfill certain structural requirements. It must contain at least one primary amine nitrogen atom which is separated by two or three carbon atoms from a second amine nitrogen atom that is primary or secondary. More amine nitrogen atoms may be present and are desirable. Aromatic amines are not preferred because of their high toxicity. Thus the desired structure of the amine moiety is as shown in formula (VII):
Where:
Based on formula (VII), the amine moiety can be a diamine, such as 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminocyclohexane, and the like; commercially available mixtures of diamines, such as the various substituted 1,3-propanediamines with the trade name DUOMEEN, can also serve as the amine moiety. Polyamines, such as diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), dipropylene triamine, and the like are also desirable forms of the amine moiety. The commercially available polyamines such as TETA, TEPA, and their higher homologues are not pure compounds but mixtures of linear, branched, and cyclic polyamines. It is evident that the reaction products of these mixed polyamines with the carboxylic moieties of formula (VI) are not in their turn pure imidazolines or tetrahydropyrimidines; they were found, nevertheless, to be very effective antioxidants and acid number reducers for biodiesel and are therefore among the preferred embodiments of the present invention.
All the reaction products that are useful for the purposes of this invention, as described above, are obtained as solids or viscous liquids. In many instances it is convenient for handling purposes to employ them in the form of concentrated solutions. These solutions may contain from 5% to 95% by weight of the active ingredient dissolved in a suitable solvent, such as a liquid hydrocarbon mixture of high flash point, a biodiesel suitable for use in a compression ignition engine, or a mixture of the two:
The common structural feature of all the products arising from the reaction between a carboxylic acid (VI) and an amine (VII) is that of the imine group (VIII):
However, the imine group by itself is not sufficient to impart antioxidant activity. It was found that an open chain imine such as that in tetramethylguanidine (IX) is totally ineffective. Similarly, an imine such as that in an oxazoline (X) is of very low effectiveness.
Thus it appears that for good antioxidant effectiveness the desired structural feature is that of a cyclic carboxamidine, where the imine group and an amine group are attached to the same carbon atom of a 5-membered or a 6-membered heterocyclic ring, thus forming either an imidazoline of structure (III) or a tetrahydropyrimidine of structure (V).
The methods for preparing imidazolines and tetrahydropyrimidines are simple and well known in the art and have been reported in the patent literature since the 1930's (cf. U.S. Pat. No. 2,155,877). However, particularly in the cases where the starting amine is of the polyamine type, the published preparation procedures, despite their simplicity, require heating of the reactants at temperatures up to 300° C. for long periods of time. It was found that addition to the reaction mixture of a small amount of a strong organic base (e.g. tetramethylguanidine) can speed up the reaction and permit its completion at lower temperatures.
Having described the invention in general terms, we will proceed with specific examples that illustrate its implementation and efficacy.
Examples 1 to 10 were pure chemical entities, produced by the reaction of a single carboxylic moiety of formula (VI) with either 1,2-diaminoethane (II) or 1,3-diaminopropane (IV); thus their chemical structure was that of either a substituted imidazoline (III) or a substituted tetrahydropyrimidine (V). Comparison examples 11 and 12 had the oxazoline structure (X), whereas comparison example 13 was tetramethylguanidine (IX), obtained from a chemical supply house. Experimental details are provided for the preparation of examples 1, 5, and 11 which are typical for the three classes of compounds (III), (V), and (X). Table 1 lists details of all the above examples.
Examples 14 to 30 were prepared from mixtures of carboxylic moieties of formula (VI), mixtures of amine moieties of formula (VII), or both. In these cases it was found advantageous to add a small amount of tetramethylguanidine (IX) as a reaction promoter. Experimental details are provided for the preparation of Examples 14 and 28, which is typical of all the others. Table 2 lists details of examples 14 to 30.
Example 31 demonstrates the effectiveness of examples 1 to 30 as antioxidants in biodiesel, based on experimental measurements. Example 32 deals with the antioxidant effectiveness in blends of biodiesel with conventional petrodiesel, as required by the latest European Standard EN 590. Finally, example 33 addresses the effect on acid number of representative examples.
In a round bottom flask equipped with a water separator and a reflux condenser were placed 50 g (0.25 mol) of lauric acid dissolved in 150 mL toluene and then 16.8 g (0.28 mol) of 1,2-diaminoethane were added dropwise and with stirring. The mixture was heated under reflux until water stopped separating and then the toluene was distilled off in vacuo. The solid residue was recrystallized from a mixture of toluene and heptane, thus affording the desired 2-undecyl imidazoline as colorless crystals, m.p. 123-125° C.
Lauric acid and 1,3-diaminopropane were reacted in the same fashion as example 1 and afforded 2-undecyl tetrahydropyrimidine, m.p. 66-67° C.
Lauric acid and 2-aminoethanol were reacted in the same fashion as example 1 and afforded 2-undecyl oxazoline, m.p. 71-74° C.
50 g of commercial tetraethylenepentamine (TEPA) was placed in a 500 mL round bottom flask and 0.25 g of tetramethylguanidine was added. The mixture was brought to a temperature of 100° C. with stirring under a nitrogen atmosphere. Technical oleic acid of 90% purity (141 g) was then added dropwise over a period of 30 minutes with continued stirring. A vacuum of about 50 mm Hg was then applied and the temperature was increased to 170° C. and was kept there for 4 hours. The heating was then discontinued, the vacuum was broken with nitrogen being admitted, and the flask was allowed to cool to room temperature. The product was a light brown viscous oil and its weight revealed the loss of about 1 mol of water.
The procedure of example 14 was repeated, except that the oleic acid was replaced by 130 g of a mixture of fatty acids obtained from the saponification of cottonseed oil. The product was a viscous and clear brown oil.
Because of space limitations in Table 2 certain abbreviations are used, whose meaning is the following:
To test the antioxidant activity of the above additives, a biodiesel base fuel was utilized and was designated as Biodiesel A. It was prepared by base catalyzed transesterification with methanol of a vegetable oil blend consisting of 65% rapeseed oil and 35% used frying oil. Two more biodiesel base fuels were used in some of the experiments, designated as Biodiesel B and Biodiesel C; the former was made from a mixture of 36% used frying oil, 20% palm oil, and 44% soybean oil and the latter from a mixture of 32.4% used frying oil, 36% rapeseed oil, and 21.6% soybean oil. Some of the important characteristics of these three biodiesel base fuels are shown in Table 3, along with the respective limits in the European Standard EN 14214 and the methods that were used to measure them.
The method that was used to measure the oxidation stability in all cases was EN 14112, which is prescribed in the European Standard EN 14214 and is commonly known as the Rancimat test. It measures, under specified conditions, the induction period before the onset of rapid oxidation; the minimum acceptable value is 6 hours according to EN 14214.
Each of the examples 1-10 and 14-30 was separately added to Biodiesel A at a concentration of 1000 ppm (0.1% m/m) and the oxidation stability was measured by the Rancimat test in triplicate. For comparison purposes the same procedure was used with comparison examples 11-13 and also with BHT, one of the most widely used phenolic antioxidant additives for biodiesel. To make comparisons easier, the relative effectiveness of each example in comparison to BHT was computed according to formula (3):
R=(SE−S0)/(SB−S0) (3)
Where R is the relative effectiveness in comparison to BHT, SE is the induction period of the biodiesel containing the example additive, S0 is the induction period of the neat biodiesel, and SB is the induction period of the biodiesel containing BHT.
Table 4 shows the Rancimat induction period (average of 3 determinations) and the relative performance of all examples.
On examining the results shown in Table 4, the following observations can be made:
Several of the more effective examples in Table 4 were also tested in the more prone to oxidation Biodiesel B and at a lower concentration of 500 ppm (0.05% m/m). The results of the Rancimat test are shown in Table 5.
All the examples listed in Table 5 showed high antioxidant activity at the lower concentration of 500 ppm and they were all significantly more effective than the phenolic antioxidant BHT in this respect.
Given that the newest European Standard for road diesel EN 590 has a requirement for minimum oxidation stability of the final biodiesel/petrodiesel blend, a series of experiments were run to test the efficacy of the additives of this invention in this respect. Biodiesel C was blended in several concentrations with an ultra low sulfur conventional diesel fuel meeting the current European specifications. Example 29 was used as the antioxidant additive and was compared with the well known phenolic antioxidant TBHQ.
Three batches of Biodiesel C were used for this set of experiments. One was neat, the second contained 1000 ppm of the additive of example 29, and the third contained 1000 ppm of TBHQ. Neat Biodiesel C had an oxidation stability of 6.5 hours, as already mentioned in Table 3; the stability of the second batch was increased to 12.5 hours by the presence of Example 29, whereas the stability of the third batch was brought up to an impressive 21.6 hours by TBHQ, which thus appeared as an extremely effective antioxidant additive for biodiesel.
The three batches were mixed at various proportions with petrodiesel and the oxidation stability of the resulting blends was measured by the modified Rancimat method (EN 15751) as required by EN 590. The specification limit for the induction period in blends is set as 20 hours minimum.
Table 6 contains the results of these tests.
The results in Table 6 show that Example 29 of this invention is effective in enhancing the oxidative stability of biodiesel whether it is neat or blended with conventional diesel fuel in various proportions. The situation is completely different with the phenolic antioxidant TBHQ; it is extremely effective in stabilizing neat biodiesel but in the case of blends its effectiveness disappears and it actually behaves as a pro-oxidant when the biodiesel concentration is 7% or less.
To measure the effect of additives on biodiesel acidity several samples were prepared, each one being a solution containing 1000 ppm of either a phenolic antioxidant or one of the examples of the present invention in one of the biodiesel base fuels A, B, or C. The acid number of each sample was measured with standard method EN 14104 and the results are shown in Table 7.
All phenolic antioxidants increase the acid number of the biodiesel they are dissolved in, which is expected on account of the acidity of the phenolic hydroxyls that they all contain. By contrast, all examples of the present invention reduced the acid number of the biodiesel, a fact that is attributed to the basicity of their chemical structures which can all be classed as amine derivatives.
Having described the invention in detail, those skilled in the art will understand that modifications may be made to the various aspects of the invention without departing from the spirit and scope of the invention that is disclosed herein. It is, therefore, not intended that the scope of the invention be limited to the specific embodiments that were described as examples but rather that the scope of the present invention be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
20090100113 | Feb 2009 | GR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GR09/00047 | 7/8/2009 | WO | 00 | 8/22/2011 |