The present disclosure relates to self-cleaning compositions and a process for preventing and reducing surface stain accumulation due to bird droppings, bug wastes, food debris, and other stain causing materials.
Both interior and exterior surfaces of automobile, such as coatings, paints, and seat fabrics, are subject to contamination and corrosions when they are under prolonged exposure to bird dropping, insect debris, resins of conifer, microbes, gums, etc. Certain stains, such as insect-originated stains, are hard to remove with regular automatic brush-free washing. Interior surfaces and coatings may also be easily get stained with oil, protein, sugar and other ingredients in foods and beverages, and timely removal of such stains may present certain challenges.
Here, the present invention specifically involves the incorporation of digestive proteins including lysozymes, proteases, lipases, cellulases, etc., onto surfaces such as paints and coatings. The catalytic activity of the digestive proteins enables ongoing self-cleaning to reduce and eliminate stain contaminations. The mechanism of action of these digestive proteins is mainly enzymatic in nature and does not involve the use of any corrosive or oxidative components; therefore, they are environmentally friendly.
Stains of interests in the initial stage of this work include those formed from broken bodies of bugs, animal (like bird) wastes, foods, milk and other beverages, and cosmetic and personal care products. Although the detailed components vary with sources of stains, the major components of stains that are adhesive to surfaces are proteins, polysaccharides, fats or oils.
It is known to incorporate enzymes into coating or into substrates for the purpose of providing a surface with antimicrobial, antifungal or antifouling properties. Yet it is novel to the best knowledge of Applicants to attach digestive proteins to a surface for the purpose of enzymatically decomposing stain molecules in contact with the surface.
U.S. Pat. No. 6,818,212 discloses an enzymatic antimicrobial ingredient for disinfection and for killing microbial cells.
Wang et al. 2001 discloses lifespan extension of an enzyme upon its covalent binding at wet conditions; yet the reference does not seem to mention the utilization of such covalently bound enzyme in the area of surface self-cleaning.
U.S. Pat. No. 3,705,398 discloses polymeric articles having active antibacterial, antifungal and combinations of antibacterial and antifungal properties. The antibacterial and antifungal activating agents are distributed within the polymeric composition and migrate to the surface.
U.S. Pat. No. 5,914,367 discloses a method of preparing a polymer-protein composite including polymerizing a monomer in the presence of a protein dissolved in an organic phase via the ion-pairing of the protein with a surfactant. This reference, however, does not seem to mention the prevention or reduction of stain accumulation using the digestive power of such a polymer-protein composite.
U.S. Pat. No. 6,150,146 discloses a method of releasing a compound having antimicrobial activity from a matrix at a controlled rate. The method includes an enzyme and a substrate within the matrix beforehand to allow the enzyme and substrate to react with each other in the matrix, thereby to produce a compound having antimicrobial activity. The patent also discloses a coating composition comprising a film-forming resin, an enzyme, a substrate and any enzyme capable of reacting with the substrate.
U.S. 2005/0058689 discloses paints and coatings having antifungal growth and antibacterial materials. Specific chemicals and formations are disclosed for incorporation into painted surfaces which are antifungal compositions to inhibit growth of mold, bacterial, and fungi on building materials.
The object of the present invention is to provide self-cleaning composition and process containing digestive proteins for preventing and reducing stain accumulation.
The following summary of the invention is provided to facilitate an understanding of some of the innovative features unique to the present invention and is not intended to be a full description. A full appreciation of the various aspects of the invention can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
Provided are compositions for self-cleaning of a stain that include a substrate, a lysozyme capable of decomposing a microbe, and a linker moiety between the substrate and the lysosyme, where the linkage is or is between an active group, optionally a free amine, on the lysosyme and the substrate.
The compositions as provided herein may be useful as a mechanism to prevent the accumulation of contacting stains and dirt by an “automatic” enzymatic degradation reaction. It is neither required nor necessary for the lysozymes to have functional binding pockets all facing towards stain particles. A layer of lysozymes delivers enough coverage and digesting activity even though the lysozymes may be randomly arranged on a surface.
Optionally, a surface may be pretreated with a layer of polymer comprising one or more active groups. A digestive protein suspension may be spin coated onto the polymer layer with the active groups to form covalent bonds between the proteins and the polymer layer. The active groups may comprise alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, and ester, etc. Alternatively, digestive proteins may be attached to nanoparticles before their suspension with paints or coatings.
The present invention is further illustrated by reference to the accompanying drawings, in which
The present disclosure relates to, in a first aspect, a composition comprising a substrate, a digestive protein capable of decomposing a stain molecule, and a linker moiety.
This disclosure specifically involves the incorporation of one or more digestive proteins including lysozymes, proteases, lipases, cellulases, etc., onto surfaces such as paints and coatings. The catalytic activity of the digestive proteins enables ongoing self-cleaning to reduce and eliminate stain contaminations.
Various stains include those formed from broken bodies of bugs, animal (such as bird) wastes, foods, milk and other beverages, and cosmetic and personal care products. Although the detailed components vary with sources of stains, the major components of stains that are adhesive to surfaces are proteins, polysaccharides, fats or oils.
The activity of the digestive proteins toward different stain sources may be evaluated in a solution environment. Tests are conducted at different conditions including different pH and temperature, in an attempt to evaluate the proteins' performance in an automobile environment instead of that in a washer machine as they have been traditionally applied. Tests include: protein-related activity; starch-related activity tests; tests with oily stains. Protein activity unit is defined as: one unit of digestive protein hydrolyzes casein to produce absorbance difference equivalent to 1.0 μmol of tyrosine per minute at 37° C. under the conditions of the assay. Results of activity assay show covalent cross-linked protease present an activity that is nine times more than that of a physically absorbed protease.
There are several ways to incorporate the digestive proteins onto a substrate. One of which involves the application of covalent bonds. Specifically, free amine groups of the digestive proteins may be covalently bound to an active group of the substrate. Such active groups include alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, ester, or any combination thereof. This method of incorporating digestive proteins delivers unique advantages. First, the covalent bonds tether the proteins permanently to the substrate and thus place them as an integral part of the final composition with much less, if not at all, leakage of digestive protein species. Second, the covalent bonds provide for extended enzyme lifetime. Over time, proteins typically lose activity because of the unfolding of their polypeptide chains. Chemical binding such as covalent bonding effectively restricts such unfolding, and thus improves the protein life. The life of a protein is typically determined by comparing the amount of activity reduction of a protein that is free or being physically adsorbed with that of a protein covalently-immobilized over a period of time. Results have shown that a protein that is in free form or being physically adsorbed to a substrate loses its activity much faster that a protein in covalent-bond form.
Alternatively, digestive proteins may be uniformly dispersed throughout the substrate network to create a homogenous protein platform. In so doing, digestive proteins may be first modified with polymerizable groups. The modified proteins may be solubilized into organic solvents in the presence of surfactant, and thus engage the subsequent polymerization with monomers such as methyl methacrylate (MMA) or styrene in the organic solution. The resulted composition includes digestive protein molecules homogeneously dispersed throughout the network.
Also, digestive proteins may be attached to surfaces of a substrate in comparison to the above mentioned cross-linking methods. An attachment of digestive proteins corresponding to ˜100% surface coverage was achieved with polystyrene particles with diameters range from 100 to 1000 nm.
The digestive proteins of the composition may include proteases which hydrolyze protein molecules, lipases which hydrolyze lipids and fats, cellulases which hydrolyze cellulose, and amylases which hydrolyze carbohydrates. It is neither required nor necessary for the digestive proteins to have their functional binding pockets all facing toward stain particles. A layer of digestive proteins delivers enough coverage and digesting activity even though the digestive proteins may be randomly arranged on a surface.
Optionally, a surface is pretreated with a layer of polymer comprising one or more surface active groups of succinimide ester. A digestive protein suspension is spin coated onto the layer of the polymer with the active groups to form covalent bonds with the proteins. Alternatively, digestive proteins may be attached to nanoparticles before their suspension with paints or coatings.
This disclosure is further directed to a composition comprising a digestive protein capable of decomposing a stain molecule, and a coating substrate wherein the digestive protein may be entrapped in the coating substrate. In this composition, the digestive protein may be selected from lysozymes, proteases, lipases, cellulases, glycosidases, and amylases.
In another aspect of this disclosure, a process is disclosed for reducing and or eliminating stain contaminations. The process comprises binding a substrate to a surface and forming a linker moiety between an active group of a digestive protein and the substrate. In this process, the substrate may comprise surface active groups such as alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, ester, and any combinations thereof.
Enzymes may be attached to surfaces of plastics. An enzyme attachment corresponding to ˜100% surface coverage may be achieved with polystyrene particles with diameters range from 100 to 1000 nm. By coating with digestive protein, these particles may be used along with paints or coatings to functionalize the surfaces of materials. The same chemical bonding approach may be applied to coat enzymes onto preformed plastic parts, and thus form a protein coating on the parts' surfaces. As shown in
Particles as previously described may be synthesized by mixing an aqueous solution (mixture of water and ethanol, ˜20 ml), containing a polymerizable surfactant (2-sulfoethylmethacrylate), a stabilizer (polyvinylpyrrolidone, PVP) and an initiator (2,2′-Azobis [2-methyl-N-(2-hydroxyethyl) propionamide]), will be mixed with an organic solution (˜1 ml) of styrene, N-acryloxysuccinimide (NAS, a functionalized vinyl monomer), and divinyl benzene (˜1% v/v). The particle size may be controlled by adjusting phase ratio (1/30˜1/15, oil/aqueous) and the concentration of ethanol (0.125˜0.50 ml/ml), 2-sulfoethyl methacrylate and PVP (0˜5.5 mg/ml). The reaction may be performed with stirring at 70° C. for 10 h, followed by washing the resulted particles with ethanol and DI water in a stirred ultrafiltration cell with a polyethersulfone membrane (cut off MW: 300 kDa).
Stains may be generated from different sources of contacts. Body residues of bugs, animal wastes, food, milk and other beverages, and cosmetic and personal care products may all cause stains. Although the detailed components vary with sources of stains, the major components that are adhesive to surfaces are proteins, simple sugars and polysaccharides, fats and/or oils. Digestive proteins including lipases, proteases, amylase and cellulose, each of them attacks different components, are thus far the most effective, safe and economic agents to fight against such stains. As shown below in Table 1, these proteins were examined and tested in our initial screening tests, and eventually we selected protease to proceed for the majority of the subsequent experiments due to the easiness in activity measurement.
Bacillus
licheniformis
Pseudomonas
fluorescens
Bacillus subtilis
Aspergillus niger
N-acryloxy succinimide (392 mg), 1.2 ml of styrene and 29.2 mg of 4,4′-azobis-(4-cyanovaleric acid) were mixed with 16 ml of chloroform in a 20 ml glass reaction vial. The vial was purged with nitrogen, sealed and incubated at 70° C. for 12 hrs with stirring, followed by the removal of solvent by purging nitrogen. The polymer product was re-dissolved in chloroform at a concentration of 50 mg/ml. One milliliter of the resulting solution was spin-coated onto a polystyrene plate (11 cm in diameter) at 6000 rpm. Protease from Subtilisin Carlsberg was dissolved in 0.05 M phosphate buffer at a concentration of 10 mg/ml. The enzyme was applied onto the active polymer coated plate via 3-step layer-by-layer spin coating: 1) 1 ml of the protease solution, 2) 1 ml of protease solution containing 0.5% (V/V) of glutaraldehyde, 3) 1 ml of protease solution. The spin-coated plates were kept at 4° C. for 12 h, followed by extensive washing with 0.05 M Tris buffer (pH 8), 2M NaCl solution and DI water. Finally the plates were air-dried and cut into small pieces (1×2 cm). This method was designated as covalent cross-linking. As a comparison, similar procedure was applied on a polystyrene plate without the active polymer coating, which was called as physical adsorption.
Fluorescent dye (Oregon green, Invitrogen Corp.) was first dissolved in dimethyl sulfoxide at a concentration of 2 mg/ml. The sample plates with physically adsorbed and covalently immobilized enzyme were incubated in the dye solution at room temperature with gentle shaking for 2 hours, followed by rinsing with DI water. The plates were then dried in nitrogen and observed under a fluorescence microscope. The images are shown in
The amount of enzyme attached to the plastic plate was determined by a reversed Bradford method. Typically, a working solution was first prepared by diluting Bradford reagent with DI water (1:5, by volume). A calibration curve was first obtained using free protease as the standards. In a 1 ml cuvette, 0.5 ml of protease solution was mixed with 0.5 ml of the working solution and then allowed to react for 5 min. The absorbance of the solution was measured at 465 nm on a spectrophotometer. After testing a series of different protease concentrations, a calibration curve was obtained as shown in
To determine the loading of immobilized enzyme, a piece of enzyme-coated plate (1 cm×2 cm) was placed into a 20-ml glass vial, followed by the addition of 0.5 ml of DI water and 0.5 ml of the working solution. The vial was slightly agitated for 5 min at room temperature to allow binding of the dye to the immobilized enzyme. The absorbance of the supernatants was then recorded at 465 nm. Similarly a blank plastic plate without enzyme coating was also measured as the control. The reading obtained with the blank plate was subtracted from the reading obtained from the enzyme loaded plate. Comparing the obtained reading difference with the calibration curve gave the loading on the plate, which was then normalized into a unit of μg/cm2. The enzyme loading by covalent cross-linking and physical adsorption were 8.5 and 1.0 μg/cm2, respectively.
Enzyme in solution: The proteolytic activity of protease was determined using 0.65% (w/v) casein as the substrate. Protease solution (0.1 ml) was incubated with 0.5 ml of casein solution for 10 min at 37° C. The reaction was stopped by the addition of 0.5 ml of tricholoroacetic acid (110 mM). The mixture was centrifuged to remove the precipitation. The resulting supernatant (0.4 ml) was mixed with 1 ml of sodium carbonate (0.5 M) and 0.2 ml of diluted Folin & Ciocalteu's phenol reagent (1:4 by diluting Folin & Ciocalteu's phenol reagent with DI water), followed by incubation at 37° C. for 30 min. Finally the mixture was centrifuged again and the absorbance of the supernatant was measured at 660 nm on a spectrophotometer. Blank experiment was performed without enzyme solution by adding 100 μl of buffer and carrying out similar test. The absorbance of the blank was subtracted from the sample (enzyme solution).
The activity unit was defined as: one unit of enzyme hydrolyzes casein to produce absorbance difference equivalent to 1.0 μmol of tyrosine per minute at 37° C. under the conditions of the assay. Tyrosine amino acid was used for calibration. Various concentrations of tyrosine were reacted with Folin-Ciocalteau reagent and the resulting calibration curve is shown in
Enzyme coating: The activity of the immobilized protease was determined in a similar manner by using an enzyme coated polymer piece (1×2 cm) instead of enzyme in solution and a blank polymer coated piece as control. The activity of protein was termed as surface activity per unit area.
Results of activity assay showed that plates with covalent cross-linked protease afford 5.6×10−3 unit/cm2, while physical adsorbed enzyme only displayed an activity of 0.6×10−3 unit/cm2.
Egg white was used as the model stain to determine the stain degradation on enzyme coating. Onto a plate (11 cm in diameter) with protease-coating, 2 ml of egg white solution (10 mg/ml in DI water) was spin-coated at 2000 rpm. The plate was then cut into smaller pieces (1×2 cm) and kept at room temperature (25° C.) for various period of time to allow the degradation of egg white. After certain intervals, one small plate was carefully washed with DI water and the egg white in the washing solution was analyzed using gel permeation chromatography (GPC) to determine the molecular weight changes. Typically two peaks were found in the GPC chromatograph (
Thermal stability of the enzyme coating was studied at 80° C. in an air-heating oven. At certain time intervals, the sample plate(s) were taken out of the oven and the activity were measured following the procedure as described in Working Example 2. The decrease of activity with time was plotted in
Various modifications of the present invention, in addition to those shown and described herein, will be apparent to those skilled in the art of the above description. Such modifications are also intended to fall within the scope of the appended claims.
It is appreciated that all reagents are obtainable by sources known in the art unless otherwise specified or synthesized by one of ordinary skill in the art without undue experimentation.
Patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are incorporated herein by reference to the same extent as if each individual application or publication was specifically and individually incorporated herein by reference.
The foregoing description is illustrative of particular embodiments of the invention, but is not meant to be a limitation upon the practice thereof. The following claims, including all equivalents thereof, are intended to define the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 15/790,846 filed Oct. 23, 2017, which is a continuation of U.S. patent application Ser. No. 11/562,503 filed Nov. 22, 2006, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3220928 | Brenner | Nov 1965 | A |
3519538 | Messing et al. | Jul 1970 | A |
3672955 | Stanley et al. | Jun 1972 | A |
3705938 | Hyman | Dec 1972 | A |
3857934 | Bernstein et al. | Dec 1974 | A |
3935862 | Kraskin | Feb 1976 | A |
3957974 | Hata | May 1976 | A |
4016043 | Schuurs et al. | Apr 1977 | A |
4026814 | Johnson et al. | May 1977 | A |
4034078 | Van Horn | Jul 1977 | A |
4094744 | Hartdegen et al. | Jun 1978 | A |
4098645 | Hartdegen et al. | Jul 1978 | A |
4128686 | Kyle et al. | Dec 1978 | A |
4195127 | Hartdegen et al. | Mar 1980 | A |
4195128 | Hildebrand et al. | Mar 1980 | A |
4195129 | Fukui et al. | Mar 1980 | A |
4229536 | DeFilippi | Oct 1980 | A |
4237591 | Ginocchio | Dec 1980 | A |
4297137 | Sachetto et al. | Oct 1981 | A |
4315828 | Church | Feb 1982 | A |
4322308 | Hooper et al. | Mar 1982 | A |
4385632 | Odelhog | May 1983 | A |
4539982 | Bailly | Sep 1985 | A |
4551187 | Church et al. | Nov 1985 | A |
4552813 | Grams | Nov 1985 | A |
4897352 | Chonde et al. | Jan 1990 | A |
4910234 | Yamamori et al. | Mar 1990 | A |
5112602 | Miki et al. | May 1992 | A |
5279955 | Pegg et al. | Jan 1994 | A |
5405766 | Kallury et al. | Apr 1995 | A |
5418146 | Joo et al. | May 1995 | A |
5420179 | Fourquier et al. | May 1995 | A |
5492821 | Callstrom et al. | Feb 1996 | A |
5496710 | Nagao et al. | Mar 1996 | A |
5508185 | Kawamura et al. | Apr 1996 | A |
5514671 | Lyon et al. | May 1996 | A |
5523027 | Otsuka | Jun 1996 | A |
5543309 | Pischel | Aug 1996 | A |
5559163 | Dawson et al. | Sep 1996 | A |
5593398 | Weimer | Jan 1997 | A |
5595728 | Brockett et al. | Jan 1997 | A |
5631343 | Binns et al. | May 1997 | A |
5643559 | Eigen et al. | Jul 1997 | A |
5719039 | Dordick et al. | Feb 1998 | A |
5728544 | Tanaka et al. | Mar 1998 | A |
5739004 | Woodson | Apr 1998 | A |
5739023 | Harada et al. | Apr 1998 | A |
5770188 | Hamade et al. | Jun 1998 | A |
5800804 | Laney | Sep 1998 | A |
5801140 | Langley et al. | Sep 1998 | A |
5817300 | Cook et al. | Oct 1998 | A |
5837483 | Hirata | Nov 1998 | A |
5868720 | Van Antwerp | Feb 1999 | A |
5876802 | Brunnemann et al. | Mar 1999 | A |
5912408 | Trinh et al. | Jun 1999 | A |
5914367 | Dordick et al. | Jun 1999 | A |
5919689 | Selvig et al. | Jul 1999 | A |
5942435 | Wheeler | Aug 1999 | A |
H1818 | Potgieter et al. | Nov 1999 | H |
5981743 | Gross et al. | Nov 1999 | A |
5998200 | Bonaventura et al. | Dec 1999 | A |
5998512 | Schloman | Dec 1999 | A |
6030933 | Herbots et al. | Feb 2000 | A |
6060043 | Hayden et al. | May 2000 | A |
6080391 | Tsuchiya et al. | Jun 2000 | A |
6107392 | Antonelli et al. | Aug 2000 | A |
6150146 | Hamade et al. | Nov 2000 | A |
6265191 | Mizusawa et al. | Jul 2001 | B1 |
6291582 | Dordick et al. | Sep 2001 | B1 |
6303290 | Liu et al. | Oct 2001 | B1 |
6342386 | Powers et al. | Jan 2002 | B1 |
6472493 | Huynh-Ba | Oct 2002 | B1 |
6599627 | Yeo et al. | Jul 2003 | B2 |
6638526 | Deussen et al. | Oct 2003 | B1 |
6663949 | Tanaka et al. | Dec 2003 | B1 |
6713660 | Roe et al. | Mar 2004 | B1 |
6759220 | LeJeune et al. | Jul 2004 | B1 |
6818212 | Johansen et al. | Nov 2004 | B2 |
6844028 | Mao et al. | Jan 2005 | B2 |
6855746 | Yoshitake et al. | Feb 2005 | B2 |
6875456 | Delest et al. | Apr 2005 | B2 |
6881711 | Gershun et al. | Apr 2005 | B1 |
6905733 | Russell et al. | Jun 2005 | B2 |
7164037 | Dietsche et al. | Jan 2007 | B2 |
7211275 | Ying et al. | May 2007 | B2 |
7335400 | Russell et al. | Feb 2008 | B2 |
7632793 | Lang | Dec 2009 | B2 |
7687554 | Schellenberg et al. | Mar 2010 | B2 |
7932230 | McDaniel | Apr 2011 | B2 |
7939500 | McDaniel | May 2011 | B2 |
8008180 | Takahashi et al. | Aug 2011 | B2 |
8011381 | Newman et al. | Sep 2011 | B2 |
8011938 | Martin et al. | Sep 2011 | B2 |
8222015 | Wang et al. | Jul 2012 | B2 |
8252571 | Wang et al. | Aug 2012 | B2 |
8311297 | Du et al. | Nov 2012 | B2 |
8324295 | Jia et al. | Dec 2012 | B2 |
8388904 | McDaniel et al. | Mar 2013 | B1 |
8394618 | Buthe et al. | Mar 2013 | B2 |
8497248 | McDaniel | Jul 2013 | B2 |
8618066 | McDaniel | Dec 2013 | B1 |
8679825 | Wang et al. | Mar 2014 | B2 |
8796009 | Jia et al. | Aug 2014 | B2 |
8932717 | Lee et al. | Jan 2015 | B2 |
9012196 | Buthe et al. | Apr 2015 | B2 |
9121016 | Jia et al. | Sep 2015 | B2 |
9193873 | Wang et al. | Nov 2015 | B2 |
9388370 | Wu et al. | Jul 2016 | B2 |
9428740 | Buthe et al. | Aug 2016 | B2 |
9828597 | Wang et al. | Nov 2017 | B2 |
10563094 | Jia et al. | Feb 2020 | B2 |
20020019615 | Roe et al. | Feb 2002 | A1 |
20020192366 | Cramer et al. | Dec 2002 | A1 |
20030089381 | Manning | May 2003 | A1 |
20030096383 | Shimizu et al. | May 2003 | A1 |
20030161789 | Ermantraut | Aug 2003 | A1 |
20030166237 | Allermann et al. | Sep 2003 | A1 |
20040009159 | Polsenski et al. | Jan 2004 | A1 |
20040063831 | Sheppard et al. | Apr 2004 | A1 |
20040067279 | Delest et al. | Apr 2004 | A1 |
20040108608 | Ju et al. | Jun 2004 | A1 |
20040109853 | McDaniel | Jun 2004 | A1 |
20040175407 | McDaniel | Sep 2004 | A1 |
20040241497 | Sasaki et al. | Dec 2004 | A1 |
20040242831 | Tian et al. | Dec 2004 | A1 |
20040259746 | Warren et al. | Dec 2004 | A1 |
20050049166 | Huang | Mar 2005 | A1 |
20050058689 | McDaniel | Mar 2005 | A1 |
20050059128 | Arnold et al. | Mar 2005 | A1 |
20050079594 | Marion | Apr 2005 | A1 |
20050147579 | Schneider et al. | Jul 2005 | A1 |
20050176905 | Moon et al. | Aug 2005 | A1 |
20050255078 | Sakamoto et al. | Nov 2005 | A1 |
20050272141 | Crawford | Dec 2005 | A1 |
20060094626 | Horton | May 2006 | A1 |
20070093618 | Cheng et al. | Apr 2007 | A1 |
20070282070 | Adams et al. | Dec 2007 | A1 |
20080038241 | Schasfoort et al. | Feb 2008 | A1 |
20080108745 | Russell et al. | May 2008 | A1 |
20080119381 | Wang et al. | May 2008 | A1 |
20080145906 | Boucher et al. | Jun 2008 | A1 |
20080293117 | Wang et al. | Nov 2008 | A1 |
20080319193 | Grauert et al. | Dec 2008 | A1 |
20090023859 | Sakanoue et al. | Jan 2009 | A1 |
20090045056 | Berberich et al. | Feb 2009 | A1 |
20090104086 | Zax et al. | Apr 2009 | A1 |
20090238811 | McDaniel et al. | Sep 2009 | A1 |
20090274846 | Wada et al. | Nov 2009 | A1 |
20090325843 | Man et al. | Dec 2009 | A1 |
20100210745 | McDaniel et al. | Aug 2010 | A1 |
20100236582 | Heintz et al. | Sep 2010 | A1 |
20100248334 | McDaniel | Sep 2010 | A1 |
20100269731 | Tofte Jespersen et al. | Oct 2010 | A1 |
20100279376 | Wang et al. | Nov 2010 | A1 |
20100305014 | Miralles et al. | Dec 2010 | A1 |
20110076738 | Wang et al. | Mar 2011 | A1 |
20110195035 | Vondruska et al. | Aug 2011 | A1 |
20110240064 | Wales et al. | Oct 2011 | A1 |
20110250626 | Williams et al. | Oct 2011 | A1 |
20110311482 | Wang et al. | Dec 2011 | A1 |
20110312057 | Buthe et al. | Dec 2011 | A1 |
20120097194 | McDaniel et al. | Apr 2012 | A1 |
20120114961 | Lee et al. | May 2012 | A1 |
20120136119 | Davis et al. | May 2012 | A1 |
20120208923 | Jia et al. | Aug 2012 | A1 |
20120238005 | Wieland et al. | Sep 2012 | A1 |
20120276617 | Jia et al. | Nov 2012 | A1 |
20130065291 | Jia et al. | Mar 2013 | A1 |
20130137159 | Buthe et al. | May 2013 | A1 |
20140083324 | Wales et al. | Mar 2014 | A1 |
20140141490 | Wang et al. | May 2014 | A1 |
20140193888 | Souter et al. | Jul 2014 | A1 |
20150175982 | Buthe et al. | Jun 2015 | A1 |
20150191607 | McDaniel | Jul 2015 | A1 |
20180044658 | Wang et al. | Feb 2018 | A1 |
20190153422 | Wang et al. | May 2019 | A1 |
20190153423 | Wang et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
2003304222 | Jan 2005 | AU |
2004257205 | Jan 2005 | AU |
2010201732 | May 2010 | AU |
2538124 | Dec 2004 | CA |
616033 | Sep 1994 | EP |
0670380 | Sep 1995 | EP |
609691 | May 1998 | EP |
0896056 | Feb 1999 | EP |
1161502 | Dec 2004 | EP |
1551927 | Jul 2005 | EP |
1609826 | Dec 2005 | EP |
1644452 | Apr 2006 | EP |
1660596 | May 2006 | EP |
001661955 | May 2006 | EP |
2746378 | Jun 2014 | EP |
2832145 | May 2003 | FR |
1518746 | Jul 1978 | GB |
2410249 | Jul 2005 | GB |
2430436 | Mar 2007 | GB |
167413 | Dec 2010 | IL |
174122 | Sep 2011 | IL |
173658 | Apr 2012 | IL |
208769 | Apr 2012 | IL |
214668 | Jan 2013 | IL |
214669 | Jan 2013 | IL |
214670 | Jan 2013 | IL |
214671 | Jan 2013 | IL |
214672 | Jan 2013 | IL |
218129 | Sep 2013 | IL |
S6377999 | Apr 1988 | JP |
S63171678 | Jul 1988 | JP |
S63202677 | Aug 1988 | JP |
H01-285188 | Nov 1989 | JP |
H0268117 | Mar 1990 | JP |
H02-227471 | Sep 1990 | JP |
09-038183 | Feb 1997 | JP |
9-059470 | Mar 1997 | JP |
2002526430 | Aug 2002 | JP |
2002-537470 | Nov 2002 | JP |
2002332739 | Nov 2002 | JP |
2004506089 | Feb 2004 | JP |
2009-511072 | Mar 2009 | JP |
2010-510380 | Apr 2010 | JP |
6096748 | Mar 2017 | JP |
6192022 | Sep 2017 | JP |
8906278 | Jul 1989 | WO |
9516029 | Jun 1995 | WO |
9721804 | Jun 1997 | WO |
9957157 | Nov 1999 | WO |
0050521 | Aug 2000 | WO |
0153010 | Jul 2001 | WO |
0216521 | Feb 2002 | WO |
2005026269 | Mar 2005 | WO |
2005103372 | Nov 2005 | WO |
2007017701 | Feb 2007 | WO |
2008000646 | Jan 2008 | WO |
2008063902 | May 2008 | WO |
2009155115 | Dec 2009 | WO |
2012110563 | Aug 2012 | WO |
Entry |
---|
Hall et al. “Spin Coating of Thin and Ultrathin Polymer Films”, Polymer Engineering and Science, Dec. 1993, vol. 38, No. 12, pp. 2039-2045. (Year: 1993). |
Minier et al. (Covalent Immobilization of Lysozyme on Stainless Steel. Interface Spectroscopic Characterization and Measurement of Enzymatic Activity, Langmuir 2005, 21, 5957-5965) (Year: 2005). |
“Emulsion Stability and Testing”, Technical Brief 2011 vol. 2, Particle Sciences, Inc. |
“Enzyme Nomenclature—Recommendations (1978) of the Nomenclature Committee of the international Union of Biochemistry”, Academic Press, New York, (1979) pp. 234-239. |
“Enzyme Nomenclature—Recommendations (1978) of the Nomenclature Committee of the international Union of Biochemistry”, Academic Press, New York, (1979) pp. 274-277. |
“Printing & Packaging Industrial Coatings Technical Data Sheet Tinuvin 400” BASF The Chemical Company, Dec. 2010 Rev 1. |
A. Dorinson et al, “Refractive Indices and Densities of Normal Saturated Fatty Acids in the Liquid State”, J. Am. Chem. Soc., 1942, 64(12), pp. 2739-2741. |
A. Gole et al., “Pepsin-Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity”, Langmuir 2001, 17, pp. 1674-1679. |
A. Gole et al., “Studies on the formation of bioconjugates of Engoglucanase with colloidal gold”, Colloids and Surfaces B: Biointerfaces 25 (2002) pp. 129-138. |
A. Koohestanian et al.,“The Separation Method for Removing of Colloidal Particles from Raw Water”, American-Eurasian J. Agric. & Environ. Sci., 4 (2): pp. 266-273 (2008). |
Amendment and RCE Response filed Aug. 26, 2015 for U.S. Appl. No. 14/097,128. |
Anil K. Jain et al., “Integrating Faces, Fingerprints, and Soft Biometric Traits for User Recognition”, Proceedings of Biometric Authentication Workshop, LNCS 3087, pp. 259-269,Prague, May 2004. |
Annamaria Guagliardi et al., “Stability and activity of a thermostable malic enzyme in denaturants and water-miscible organic solvents” Eur. J. Biochem. 183, 25-30 (1989). |
Arthur and Elizabeth Rose, “The Condensed Chemical Dictionary (7th Ed.)”, New York: Reinhold Publishing Co., pp. 80, 104, 222-223, 545, 556, 644-645, 691, 704, 716, 887, 891 (1961). |
As-filed U.S. Appl. No. 12/820,063, filed Jun. 21, 2010. |
B. Drozdowski et al.,. “Isopropyl Alcohol Extraction of Oil and Lipids in the Production of Fish Protein Concentrate from Herring”, Journal of the American Oil Chemists' Society, (Jul. 1969) vol. 46, pp. 371-376. |
B. Scruton et al, “The deposition of fingerprint films” 1975 J. Phys. D: Appl PHys. 8 pp. 714-723. |
B.M. Craig, “Refractive Indices of Some Saturated and Monoethenoid Fatty Acids and Methyl Esters”, Canadian Journal of Chemistry, 1953, 31(5): pp. 499-504, https://doi.org/10.1139/v53-068. |
Bernfield, P. and Wan, J., “Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers”, Science 142 (3593), pp. 678-679 (1963). |
Bo Chen et al., “Candida antarctica Lipase B Chemically Immobilized on Epoxy-Activated Micro- and Nanobeads: Catalysts for Polyester Synthesis”, Biomacromolecules (published Jan. 16, 2008), vol. 9, Issue 2, pp. 463-471. |
C.P. Poole, Jr. et al., “Introduction to Nanotechnology”, John Wiley & Sons, 2003, Hoboken, NJ, Table 12.1 on p. 315. |
Chen et al. Biomacromolecules. Feb. 2008: 9(2): 463-71. Epub Jan. 16, 2008. |
Ciba Tinuvin 1130, Ciba Specialty Chemicals Inc., Coating Effects Segment, Edition: 15.12.97 Basle. |
Ciba Tinuvin 328 Light Stabiliser, Ciba Specialty Chemicals Inc., Coating Effects Segment, Edition: 9.12.97 Basle. |
David B. Volkin, Henryk Mach and C. Russell Middaugh, “Review: Degradative Covalent Reactions Important to Protein Stability”, Molecular Biotechnology 105, vol. 8, pp. 105-121 (1995). |
David Rozzell and Friiz Wager (Eds), Biocatalytic Production of Amino Acids & Derivatives, Chapter 13 “Immobilized Enzymes: Techniques & Applications”, Hanser Publishers (1992), pp. 306-319. |
Declaration of Dr. David Rozzell, Ph.D. (Exhibit 1009 from IPR2019-00867)—May 14, 2018. |
Defoamer Technologies Agitanò, Münzing, PCA Apr. 2012. |
Deliang He et al., a-Amylase immobilized on bulk acoustic-wave sensor by UV-curing coating, Biochemical Engineering Journal 6 (2000) 7-11. |
Deposition Transcript of Dr. Jonathan S. Dordick from IPR2016-01914 (Exhibit 1015 from IPR2019-00867)—Oct. 18, 2017. |
Diane K. Williams et al., “Analysis of Latent Fingerprint Deposits by Infrared Microspectroscopy”, Applied Spectroscopy, vol. 58, No. 3, (2004) pp. 313-316. |
Dieter Stoye and Werner Freitag (Editors) “Paints, Coatings and Solvents”, Second, Completely Revised Edition, “5. Paint Additives”, 1998, p. 170, Wiley VCH. |
Drevon, G. et al.; High-Activity Enzyme-Polyurethane Coatings, Biotechnology and Bioengineering, 79(7): 785-794, Sep. 30, 2002. |
Drevon, Géraldine F., “Enzyme Immobilization into Polymers and Coatings”, University of Pittsburgh School of Engineering Dissertation, Nov. 2002. |
E. Roland Menzel, Fingerprint Detection with Lasers, Chapter 7 “Photoluminescence-Based Physical Treatments” Marcel Dekker, Inc. (1999) pp. 155-178. |
E.A. Stein et al., “Alpha-Amylases as Calcium-Metalloenzymes. I. Preparation of Calcium-free Apoamylases by Chelation and Electrodialysis”, Biochemistry, vol. 3, No. 1, Jan. 1964, pp. 56-61. |
Edward Bartick et al., “Spectrochemical Analysis and Hyperspectral Imaging of Latent Fingerprints”, 16th Meeting of the International Association of Forensic Sciences, (2002) pp. 61-64. |
Enzyme Nomenclature 1984, “Recommendations of the Nomenclature Committee of the International Union of Biochemistry on the Nomenclature and Classificiation of Enzyme-Catalysed Reactions”, Academic Press, New York (1984) pp. 270-279. |
Final Office Action dated Apr. 27, 2015 for U.S. Appl. No. 14/166,376. |
Fukui et al., “[20] Entrapment of Biocatalysts with Photo-Cross-Linkable Resin Prepolymers and Urethane Resin Prepolymers”, Methods in Enzymology, vol. 135, 1987, pp. 230-252. |
Fukui et al., “Application of Photo-Crosslinkable Resin to Immobilization of an Enzyme”, FEBS Letters, Jul. 1976, pp. 179-182, vol. 66, No. 2. |
Fusee, Murray C., “[42] Industrial Production of L-Aspartic Acid Using Polyurethane-Immobilized Cells Containing Aspartase”, Methods in Enzymology, vol. 136, 1987, pp. 463-471. |
G L Thomas and T E Reynoldson, “Some observations on fingerprint deposits”, 1975 J. Phys. D: Appl. Phys. vol. 8 (1975) pp. 724-729. |
G. Muralikrishna et al., “Cereal a-amylases—an overview”, Carbohydrate Polymers 60 (2005) pp. 163-173. |
G.J. Calton et al., “[45] Phenylalanine Production via Polyazetidine-Immobilized Escherichia coli: Optimization of Cell Loading” Methods in Enzymology, vol. 136, 1987, pp. 497-502. |
G.M. Mong et al. “Advanced Fingerprint Analysis Project Fingerprint Constituents,” Technical Report, Pacific Northwest Laboratory (1999). |
G.W. Xing et al., “Influence of reaction conditions on syntheses of sweetener precursors catalyzed by thermolysin in tert-amyl alcohol”, J. Peptide Res. vol. 52, Issue 4, pp. 300-304 (Date: 1998). |
Gary Mong et al., “The Chemistry of Latent Prints from Children and Adults”, The Chesapeake Examiner, Fall 1999, vol. 37, No. 2, pp. 4-6. |
Geraldine F. Drevon et al.; High-Activity Enzyme-Polyurethane Coatings; (2002) Biotechnology and Bioengineering, vol. 70, No. 7, Inc. pp. 785-794. |
Green, Philip, “Fineness of Grind”, European Coatings Journal, (2003), Issue 10, p. 53. |
H. Domininghaus, “Plastics for Engineers: Materials, Properties, Applications”, 1993, p. 612, Carl Hanser. |
Pollak et al., “Enzyme Immobilization by Condensation Copolymerization into Cross-Linked Polyacrylamide Gels”, J. Am. Chem. Soc. 1980, 102, pp. 6324-6336. |
Pre-Brief Appeal Conference Decision dated Jul. 21, 2015 for U.S. Appl. No. 14/166,376. |
Product Sheet by Novozymes A/S for Temnamyl 120L, Type L pp. 1:4-4:4 (2002). |
R. Balasubramanian et al., “Extraction and Dispersion of Large Gold Nanoparticles in Nonpolar Solvents”, J. Dispersion Science and Technology, vol. 22, No. 5, pp. 485-489 (2001). |
R. Lambourne and T.A. Strivens (Editors), “Paint and surface coatings—Theorgy and practice” second edition, “5.18 Ultraviolet absorbers”, 1999, pp. 195-196, William Andrew Publishing. |
Ramotowski, R.S., in Advances in Fingerprint Technology, Chapter 3, Henry C Lee and R.E. Gaensslen, eds., CRC Press, Boca Raton, (2001) pp. 63-104. |
Reactive Surfaces v. Toyota Motor Corporation, Case IPR2016-01462, Paper No. 51 (PTAB, Jan. 12, 2018). |
Reactive Surfaces v. Toyota Motor Corporation, Case IPR2016-01914, Paper No. 64 (PTAB, Mar. 1, 2018). |
Reactive Surfaces v. Toyota Motor Corporation, Case IPR2017-00572, Paper No. 42 (PTAB, Feb. 5, 2017). |
Reactive Surfaces v. Toyota Motor Corporation, Case IPR2017-00572, Paper No. 42 (PTAB, Feb. 5, 2018). |
Reactive Surfaces v. Toyota Motor Corporation, Case IPR2018-01194 filed Jun. 4, 2018, Petition for Inter Partes Review of U.S. Pat. No. 9,193,873 B2 with Declaration and Resume of Dr. David Rozzell, Ph.D. |
Reactive Surfaces v. Toyota Motor Corporation, Case IPR2019-00867, Petition for Inter Partes Review of U.S. Pat. No. 9,428,740 B2, PTAB (Mar. 21, 2019). |
Rebuttal document produced during oral deposition of Douglas Lamb, Ph.D.; May 10, 2017. |
Recorded Assignment Documentation for U.S. Appl. No. 14/643,445, filed Mar. 10, 2015 (Exhibit 1003 from PR2019-00867). |
Reply Declaration of Eric Ray; Nov. 6, 2017. |
Rinkoo Devi Gupta, “Recent advances in enzyme promiscuity”, Sustain Chem Process, vol. 4, Issue 2 (Date: 2016). |
Robert D. Olsen, Sr., “Chemical Dating Techniques for Latent Fingerprints: A Preliminary Report”, Identification News, (Feb. 1987) pp. 10-12. |
Robert D. Olsen, Sr., “Scott's Fingerprint Mechanics” Chapter III, “Latent Fingerprints and Crime Scene Procedures”, (1978) pp. 109-158. |
Robert S. Ramotowski, Advances in Fingerprint Technology (2nd ed.), Chapter 3, “Composition of Latent Print Residue”, In H.C. Lee and R.E. Gaensslen (Eds), Boca Raton: CRC Press, (2001) pp. 63-104. |
Roberts, “Chemistry for peptide and protein PEGylation”, Advanced Drug Delivery Reviews, vol. 54, 2002, p. 459-476. |
Roman Pichot, “Stability and Characterisation of Emulsions in the presence of Colloidal Particles and Surfactants” A thesis submitted to the University of Birmingham for the degree of Doctor of Philosophy, Nov. 2010. |
Ruby Ynalvez et al., “Mini-review: toxicity of mercury as a consequence of enzyme alternation”, Biometals (2016) 29: 781-788. |
S. Gourinath et al. “Mercury induced modifications in the stereochemistry of the active site through Cys-73 in a serine protease—Crystal structure of the complex of a partially modified proteinase K with mercury at 1.8 Å resolution”, Indian Journal of Biochemistry & Biophysics, vol. 38, Oct. 2001, pp. 298-302. |
S.M. Bleay et al, “Fingerprint Source Book: manual of development techniques”, London: Home Office—Centre for Applied Sciences and Technology. Chapter 2: Finger mark examination techniques within scope of ISO 17025, pp. 3-38 (2013) URL: http://www.gov.uk/govemment/publications/fingerprint-source-book. |
Science News Staff, “Fleeting Fingerprints May Yield Powerful New Tools”, Apr. 15, 1997. |
Shigeru Yamanaka et al., “[37] Regiospecific Interesterification of Triglyceride with Celite-Adsorbed Lipase,” Methods in Enzymology, vol. 136, pp. 405-411 (1987). |
Solvent Miscibility Table / Solvent Polarity Chart (2013). |
Sookkheo et al., Protein Expression and Purification (2000) 20: 142-151. |
T. Kent (Ed.), Manual of Fingerprint Development Techniques—A Guide to the Selection and Use of Processes for the Development of Latent Fingerprints, 2nd Ed 1998 (Revised Jan. 2001), Sandridge: Home Office Police Scientific Develpment Branch, Chapter 1 “Latent Fingerprints”, Sections 1.1, 1.2, 2.6 and “Visual Examination”. |
Takagi, Toshio, “Confirmation of Molecular Weight of Aspergillus oryzae a-Amylase Using the Low Angle Laser Light Scattering Technique in Combination with High Pressure Silica Gel Chromatography”, J. Biochem. vol. 89, No. 2, (1981), pp. 363-368. |
The American Heritage Stedman's Medical Dictionary, Second Edition, (Copyright 2007 and 2004, Houghton Mifflin), pp. 463-464, 884. |
Third-Party Submission Under 37 CFR 1.290 dated Aug. 13, 2018 filed in U.S. Appl. No. 15/790,846, filed Oct. 23, 2017. |
Third-Party Submission Under 37 CFR 1.290 dated Jul. 25, 2018 filed in U.S. Appl. No. 15/810,700, filed Nov. 13, 2017. |
Third-Party Submission Under 37 CFR 1.290 dated Jul. 25, 2018 filed in U.S. Appl. No. 15/810,713, filed Nov. 13, 2017. |
Travis J. O'brien et al., Effects of hexavalent chromium on the survival and cell cycle distribution of DNA repair-deficient S. cerevisiae, DNA Repair 1 (2002) 617-627, Elsevier. |
U.S. Appl. No. 12/643,666, filed Dec. 21, 2009. |
U.S. Appl. No. 14/093,347, filed Nov. 29, 2013. |
U.S. Appl. No. 14/097,128, filed Dec. 4, 2013. |
United States Department of Justice—Federal Bureau of Investigation, “The Science of Fingerprints—Classificiation and Uses”, (Rev. 12-84), Chapter XIII “Latent Impressions” pp. 170-174 (1985). |
W. Stöber et al., “Controlled Growth of Monodisperse Silica Spheres in the micron Size Range”, Journal of Colloid and Interface Science 26, pp. 62-69 (1968). |
Wang, P. et al., Enzyme Stabilization by Covalent Binding in Nanoporous Sol-Gel Glass for Nonaqueous Biocatalysis; Biotech. Bioeng. 2001, 74(3):249-255. |
Yang et al. Biotechnol Lett. Jul. 2010: 32(7): 951-6. Epub Mar. 8, 2010 (Year: 2010). |
Young Duk Kim et al., “Siloxane-Based Biocatalytic Films and Paints for Use as Reactive Coatings”, Biotechnology and Bioengineering, vol. 72, No. 4, Feb. 20, 2001, pp. 475-482. |
Yu et al. Biotechnol Lett. Apr. 2004; 26(8): 629-33 (Year: 2004). |
H.N. Fernley and P.G. Walker, “Studies on Alkaline Phosphatase: Inhibition by Phosphate Derivatives and the Substrate Specificity” Biochem. J. (1967) 104, 1011-1018. |
J. David Rozzell, “Immobilized Aminotransferases for Amino Acid Production”, Methods in Enzymology, vol. 136, (1987) pp. 479-497. |
J.M. Widholm et al., “Inhibition of Cultured Cell Growth by Tungstate and Molybdate”, Plant Cell Reports (1983) 2:15-18, Springer-Verlag. |
Jaroslava Turková; Immobilization of Enzymes on Hydroxyalkyl Methacrylate Gels; Immobilization Techniques; Methods in Enzymology; (1976); 344: pp. 66-83. |
Joan L. Huber et al., “Inactiviation of Highly Activated Spinach Leaf Sucrose-Phosphate Synthase by Dephosphorylation”, Plant Physiol. (1991) 95, 291-297. |
Johan Bieleman (Editor), “Additives for Coatings”, “8,2,3 Properties of Light Stabilizers”, 2000, pp. 279-280, Wiley VCH. |
Johanna Mansfeld et al.; Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics; Biotechnol. Appl. Biochem. (2000); pp. 189-195. |
Jose L. Muñoz-Muñoz et al., “Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism”, Biochem. J. (2008) 416, 431-440. |
K. Bagi et al., “Immobilization and characterization of porcine pancreas lipase”, Eyzyme and Microbial Technology vol. 20, pp. 531-535 (1997). |
K. Hans Brockerhoff et al., “Lipolytic Enzymes”, Academic Press, Inc., New York, New York, 1974, pp. 1-2, 4 and 8. |
K. Won et al., “Effects of Water and Silica Gel on Enzyme Agglomeration in Organic Solvents”, Biotechnol. Bioprocess Eng. 2001, vol. 6, No. 2, pp. 150-155. |
K. Yokozeki et al., “Application of Immobilized Lipase to Regio-Specific Interesterification of Triglyceride in Organic Solvent”, European J Appl Microbiol Biotechnol (1982) 14:1-5. |
K.D. Ralston et al., “Electrochemical Evaluation of Constituent Intermetallics in Aluminum Alloy 2024-T3 Exposed to Aqueous Vanadate Inhibitors”, Journal of The Electrochemical Society, 156 (4) C135-C146 (2009). |
K.J. Lewis, J.H. Aklian, A. Sharaby, J.D. Zook, “Quantitative methods of predicting relative effectiveness of corrosion inhibitive coatings”, Aircraft Engineering and Aerospace Technology, (1996) vol. 68 Issue: 3, pp. 12-22. |
Keiji G. Asano et al., “Chemical Composition of Fingerprints for Gender Determination”, J Forensic Sci, Jul. 2002, vol. 47, No. 4. |
Kim Y. et al., Siloxane-based biocatalytic films and paints for use as reactive coatings, Biotechnology and Bioengineering 2001, 72(4), 475-482. |
Kimone M. Antoine, “Chemical Differences are Observed in Children's Versus Adults' Latent Fingerprints as a Function of Time”, J Forensic Sci, Mar. 2010, vol. 55, No. 2. |
Kiyotaka Oyama et al., “[46] Production of Aspartame by Immobilized Thermoase”, Methods in Enzymology vol. 136, pp. 503-516 (1987). |
Kostadin Bobev, “Fingerprints and Factors Affecting Their Condition”, J. Forensic Ident. 176/45 (2) 1995, pp. 176-183. |
Kuniyo Inouye et al.; Engineering, expression, purification, and production of recombinant thermolysin; Biotechnology Annual Review; vol. 13; ISSN 1387-2656; pp. 43-64 (2007). |
L.R. Murphy et al., “Research Paper Protein hydraftion and unfolding”, Folding & Design vol. 3, No. 2, 1998, pp. 105-118. |
Lt Col C. Carl Bostek, “Effective methods of in-line intravenous fluid warming at low to moderate infusion rates” Journal of the American Association of Nurse Anesthetists, vol. 60, No. 6, Dec. 1992. |
M. Melchiors et al., “Recent developments in aqueous two-component polyurethane (2K-PUR) coatings”, Progress in Organic Coatings 40 (2000), pp. 99-109, p. 100, first complete paragraph. |
M.S. Kunz et al., “Colloidal Gold Dispersions in Polymeric Matrices”, Journal of Colloid and Interface Science 156, pp. 240-249 (1993). |
Majumder et al. Int. J. Pharma Bio Sci. (2012) 3(1):610-627 (Year: 2012). |
Mansfeld et al. Biotechnol. Bioengineer. (2007) 97: 672-679 (Year: 2007). |
Mansfeld, “The Stability of Engineered Thermostable Neutral Proteases from Bacillus Stearothermophilus in Organic Solvents and Detergents”, Biotechnol. Bioeng (2007) 97 (4): 672-679. |
Mansfeld, et al.: The Stability of Engineered Thermostable Neutral Proteases from Bacillus Stearothermophilus in Organic Solvents and Detergents, Biotechnol. Bioeng. (2007) 97 (4): 672-679. |
Manuela F. Frasco et al., “Mechanisms of cholinesterase inhibition by inorganic mercury”, FEBS Journal 274 (2007) 1849-1861. |
Masahiro Takagi et al.; Nucleotide Sequence and Promoter Region for the Neutral Protease Gene from Bacillus stearothermophilus; Journal of Bacteriology, Sep. 1985, pp. 824-831. |
McDaniel, C.S. et al., “Biocatalytic paints and coatings,” ACS Symposium Series (2009), 1002 (Smart Coatings II), pp. 239-249. |
McDaniel, Steve et al., “Functional Additives: A Platform for Revitalizing the Paint and Coatings Industry”, coatingsworld.com, Feb. 2010. |
McDaniel, Steve, “Bioengineered Additives A Pipeline of Value Delivering Unique Functionality to Your Coating”, Coatings World, vol. 15, No. 5, coatingsworld.com, May 2010. |
McDaniel, Steve, “Formulating with Bioengineered Additives: Enhancing the Performance and Functionality of Paints and Coatings”, coatingsworld.com, Mar. 2010. |
Methods in Biotechnology, vol. 17, Microbial Enzymes and Biotransformations, Humana Press, Inc., Totowa, NJ, (2005), Scott J. Novick and J. David Rozzell, “Immobilization of Enzymes by Covalent Attachment”. |
Michelle V. Buchanan et al., “Chemical Characteristics of Fingerprints from Adults and Children,” in Forencsic Evidence Analysis & Crime Scene Investigation, 2941 Proc. SPIE 89 (Feb. 5, 1997). |
Minoru Kumakura et al.; 201. Interaction of Enzyme with Polymer Matrix in Immobilized Enzymes; Helvetica Chimica Acta; vol. 66; Fasc. 7; (1983); pp. 2044-2048. |
Muxin Liu, Michael A. Brook, Paul M. Zelisko and Amro N. Ragheb, “Chapter 11. Preparation and Applications of Silicone Emulsions Using Biopolymers”, Colloidal Biomolecules, Biomaterials, and Biomedical Applications (2003). |
N.F. Almeida et al., “Immobilization of Glucose Oxidase in Thin Polypyrrole Films: Influence of Polymerization Conditions and Film Thickness on the Activity and Stability of the Immobilized Enzyme”, Biotechnology and Bioengineering, vol. 42, pp. 1037-1045 (1993). |
Non-Final Office Action dated Jan. 14, 2015 for U.S. Appl. No. 14/166,376. |
Non-Final Office Action dated Sep. 25, 2015 from U.S. Appl. No. 14/643,445, filed Mar. 10, 2015. |
Notice of Allowance and Notice of Allowability dated Apr. 28, 2016 from U.S. Appl. No. 14/643,445, filed Mar. 10, 2015. |
Notice of Allowance and Notice of Allowability dated Jul. 24, 2015 for U.S. Appl. No. 14/166,376. |
Notice of Appeal and Pre-Brief Conference Request filed on Jun. 26, 2015 for U.S. Appl. No. 14/166,376. |
Novick, S. et al.; Protein-containing hydrophobic coatings and films, Biomaterials, 23: 441-448, 2002. |
Office Action Response filed Apr. 14, 2015 for U.S. Appl. No. 14/166,376. |
Office Action Response filed Apr. 27, 2015 for U.S. Appl. No. 14/097,128. |
Office Action Response filed Dec. 29, 2015 from U.S. Appl. No. 14/643,445, filed Mar. 10, 2015. |
OMG Borchers GmbH; “Low molecular weight methyl polysiloxane for improved leveling and anti-float properties in solvent based coatings systems. 100 % active ingredient”; Aug. 28, 2009. |
OMG Borchers GmbH; “Low molecular weight methyl polysiloxane for improved leveling and anti-float properties in solvent based coatings systems. 100 % active”; Jul. 1, 2014. |
Toyota Motor Corporation v Reactive Surfaces Ltd., LLP, United States Courty of Appeals for the Federal Circuit, Case: 18-1906, Document: 58, p. 1; Filed: Jul. 10, 2020. |
Chica et al. Curr Opin Biotechnol. Aug. 2005; 16(4):378-84. Year: 2005). |
Singh et al. Curr Protein Pept Sci. 2017, 18, 1-11 (Year: 2017). |
Non-Final Office Action dated Jul. 21, 2020 for U.S. Appl. No. 16/258,560. |
U.S. Appl. No. 11/562,503, filed Nov. 22, 2006, Ping Wang et al. |
U.S. Appl. No. 12/820,101, filed Jun. 21, 2010, Hongfei Jia et al. |
U.S. Appl. No. 13/229,277, filed Sep. 9, 2011, Hongfei Jia et al. |
U.S. Appl. No. 13/567,341, filed Aug. 6, 2012, Songtao Wu et al. |
U.S. Appl. No. 14/812,087, filed Jul. 29, 2015, Hongfei Jia et al. |
U.S. Appl. No. 15/193,242, filed Jun. 27, 2016, Songtao Wu et al. |
U.S. Appl. No. 15/468,694, filed Mar. 24, 2017, Hongfei Jia et al. |
U.S. Appl. No. 15/790,846, filed Oct. 23, 2017, Ping Wang et al. |
U.S. Appl. No. 15/810,700, filed Nov. 13, 2017, Andreas Buthe et al. |
U.S. Appl. No. 15/810,713, filed Nov. 13, 2017, Andreas Buthe et al. |
U.S. Appl. No. 16/255,416, filed Jan. 23, 2019, Ping Wang et al. |
U.S. Appl. No. 16/258,556, filed Jan. 26, 2019, Ping Wang et al. |
U.S. Appl. No. 16/258,557, filed Jan. 26, 2019, Ping Wang et al. |
U.S. Appl. No. 16/258,560, filed Jan. 26, 2019, Andreas Buthe et al. |
U.S. Appl. No. 16/258,561, filed Jan. 26, 2019, Songtao Wu et al. |
U.S. Appl. No. 16/258,364, filed Jan. 26, 2019, Hongfei Jia et al. |
U.S. Appl. No. 16/258,567, filed Jan. 26, 2019, Hongfei Jia et al. |
U.S. Appl. No. 16/258,568, filed Jan. 26, 2019, Hongfei Jia et al. |
U.S. Appl. No. 16/724,682, filed Dec. 23, 2019, Hongfei Jia et al. |
U.S. Appl. No. 16/900,386, filed Jun. 12, 2020, Andreas Buthe et al. |
U.S. Appl. No. 16/903,028, filed Jun. 16, 2020, Hongfei Jia et al. |
U.S. Appl. No. 16/933,425, filed Jul. 20, 2020, Songtao Wu et al. |
U.S. Appl. No. 15/468,694, filed March 24, 2017, Hongfei Jia et al. |
U.S. Appl. No. 16/258,564, filed Jan. 26, 2019, Hongfei Jia et al. |
U.S. Appl. No. 16/724,682, filed Jun. 16, 2020, Hongfei Jia et al. |
Number | Date | Country | |
---|---|---|---|
20200342098 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15790846 | Oct 2017 | US |
Child | 16900404 | US | |
Parent | 11562503 | Nov 2006 | US |
Child | 15790846 | US |