Biological adhesive loading station and method

Information

  • Patent Grant
  • 6679300
  • Patent Number
    6,679,300
  • Date Filed
    Monday, January 14, 2002
    22 years ago
  • Date Issued
    Tuesday, January 20, 2004
    20 years ago
Abstract
A loading station having a dispensing manifold for loading syringe pairs with thrombin and adhesive and clotting proteins for use as a biological adhesive. The resulting loaded syringe pairs are compatible with a variety of biological adhesive dispensers and may be used in a surgical setting.
Description




FIELD OF THE INVENTION




The following invention relates generally to instrumentalities and methodologies in preparing and administering biological adhesives. More specifically, the instant invention is directed to a method and apparatus for simultaneously loading dispensing assemblies with multiple components of biological glue and preparing the biological glue in a manner specific to the required need.




BACKGROUND OF THE INVENTION




This application represents applicant's ongoing efforts in the field of collecting, preparing, and dispensing components of biological adhesives.




U.S. Pat. No. 5,759,171 discloses a sprayer for fibrin glue configured with a pistol grip, barrel, and trigger, and adapted to hold two syringes containing the fibrin glue components. Activation of the trigger moves a plunger support, emptying the two syringes. Each syringe communicates with an outlet having an atomizer, and the atomizers are oriented to form the fibrin glue away from the tip of the sprayer, to prevent clogging.




U.S. Pat. No. 5,975,367 is directed to a hand-held dispenser for fibrin glue. The dispenser includes a spring-based rack that communicates with two syringes containing fibrin glue components such that the dispensed components may mix away from the tip of the dispenser. Drops or elongate lines of fibrin glue may be dispensed.




U.S. Pat. No. 6,077,447 reveals an apparatus, system and method for fractionating from whole blood, plasma, or other blood products the clotting factor known as fibrinogen, one component of a biological adhesive. A container is loaded with blood product containing fibrinogen, and the container is then put in registry with a heat transfer platen. The platen and container combination is rocked contemporaneously with temperature changes that induce a phase change in the blood product. The fibrinogen is then extracted from the container for subsequent use.




U.S. Pat. No. 6,274,090 B1 divulges an apparatus and method for preparing thrombin, another component of a biological adhesive. The thrombin component is extracted from donor plasma and converted to thrombin, while also removing contaminating proteins. Additionally, a system is described in which thrombin and adhesive and clotting proteins are simultaneously harvested from the same donor plasma, providing a more stable product than previously available. Both procedures occur in about one hour in a sterile environment, and are thereby optimized for use in a surgical setting.




WIPO application 00/74713A1 describes an improved thrombin processing unit that may be used with the methods revealed in U.S. Pat. No. 6,274,090 B1.




SUMMARY OF THE INVENTION




The present invention streamlines processing of thrombin and adhesive and clotting proteins to produce biological adhesives. Processing time is shorted, and the loading of syringes with the biological adhesives may be accomplished with improved sterility, less waste and more expeditious and particularly safer handling (e.g., from needle sticks) than heretofore experienced.




The present invention especially enhances the economics and practicalities of processing blood into biological adhesives. Customarily, a donor provides 500 mL (one “unit”) of whole blood. This unit, when processed, yields 250-300 mL of plasma, which results in two components: 4.5-8.5 mL clotting proteins and about 8.5 mL of thrombin. Since the minimum quantum of biological adhesive needed comprises 1-2 mL, and because each component comprises approximately 50 percent of the two-part adhesive, one unit of whole blood can generate approximately 4 to 8 doses of biological adhesive. The instant invention loads and packages biological adhesive in convenient doses.




Syringe pair assemblies are attached to a dispensing manifold on a loading station. Processing units for each component of the biological adhesive are mounted near the dispensing manifold, with dispensing lines running therebetween. Blood product is introduced into the separate processing units for the components for the adhesive. The desired component is extracted from the blood product. The components run through separate dispensing lines into syringes such that each syringe pair contains one syringe loaded with each component. The syringe pairs are removed from the dispensing manifold, and may be utilized in a variety of ways when in actual use. The syringes are compatible with an adhesive spraying apparatus, and may also be used with a heating station to maintain the adhesive components at an optimal temperature for use in a surgical setting.




OBJECTS OF THE INVENTION




Accordingly, it is a primary object of the present invention to provide a new and novel device and method for loading multiple syringes with biological glue components.




It is a further object of the present invention to provide a device and method as characterized above in which the loading procedure is independent of the application for which the biological glue is utilized.




It is a further object of the present invention to provide a device and method as characterized above which minimizes waste in loading the biological glue dispenser, improves efficiency and maintains sterility.




It is a further object of the present invention to provide a device and method as characterized above that minimizes clogging of the dispenser in delivering the biological glue to the intended site.




It is a further object of the present invention to provide a device and method as characterized above that may be utilized in a surgical setting.




Viewed from a first vantage point, it is an object of the present invention to provide an apparatus for collecting thrombin and clotting proteins, comprising, in combination: a first conduit operatively connected to a source of thrombin; and a second conduit operatively connected to a source of clotting proteins, each said conduit operatively connected to a plurality of dispensing means.




Viewed from a second vantage point, it is an object of the present invention to provide a method for loading dispensing means with thrombin and clotting proteins, the steps including: attaching a plurality of said dispensing means to separate dispensing lines containing thrombin and clotting proteins; manipulating said plurality of dispensing means to purge air in each of said dispensing lines; and sequentially filling said plurality of dispensing means through each of said dispensing lines.











These and other objects will be made manifest when considering the following detailed specification when taken in conjunction with the appended drawing figures.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of the loading station.





FIG. 2

is a side view of the dispensing manifold with attached syringes within their associated membranes.





FIG. 3

is a view of the dispensing manifold.





FIG. 4

is a view of the syringe pair assembly in its membrane in the contracted position.





FIG. 5

is a view of the syringe pair assembly in its membrane in the extended position.





FIG. 6

depicts the first step in a loading process, extending the syringe pair assembly in the endmost position.





FIG. 7

depicts the second step in a loading process, contracting the syringe pair assembly in the endmost position.





FIG. 8

depicts the third step in a loading process, filling the syringe pair assembly closest to the support.





FIG. 9

depicts the fourth step in a loading process, filling the syringe pair assembly second from the support.





FIG. 10

depicts the fifth step in a loading process, filling the syringe pair assembly third from the support.





FIG. 11

depicts the sixth step in a loading process, filling the syringe pair assembly fourth from the support.





FIG. 12

is a view of the syringe pair assembly in its contracted position within its associated membrane.





FIG. 13A

is a top view of a syringe pair assembly that may be used with the loading station of the present invention.





FIG. 13B

is a bottom view of a syringe pair assembly that may be used with the loading station of the present invention.





FIG. 14

is a view of the syringe pair assembly in its extended position within its associated membrane.





FIG. 15

depicts a spraying apparatus for use with the syringe pair assembly of the present invention.





FIG. 16

depicts the spraying apparatus and a syringe pair assembly having a first attachment.





FIG. 17

depicts the spraying apparatus and a syringe pair assembly having a second attachment.





FIG. 18

depicts the spraying apparatus and a syringe pair assembly having a third attachment.





FIG. 19

depicts the spraying apparatus and a syringe pair assembly having a fourth attachment.





FIG. 20

is a top view of a syringe pair assembly having an output coupling and spray nozzle.





FIG. 21

is a bottom view of the syringe pair assembly having an output coupling and spray nozzle.





FIG. 22A

is a perspective view of the output coupling.





FIG. 22B

is a view along the section


22


B-


22


B, depicting the outlet path of the contents of one syringe of the syringe pair assembly.





FIG. 22C

is a view along the section


22


C-


22


C, depicting the outlet path of the contents of the other syringe of the syringe pair assembly.





FIG. 23

is an exploded view of a nozzle attachment that may be associated with the output coupling of the present invention.





FIG. 24

is a cutaway view of a nozzle attachment that may be associated with the output coupling of the present invention.





FIG. 25

is an exploded view of attachments that may be associated with the output coupling of the present invention, one having a spray nozzle and the other having a helical mixing path.





FIGS. 26 and 27

are cutaway views of lengthening attachments having helical mixing paths and spray nozzle ends that may be associated with the present invention.





FIG. 28

depicts a heating apparatus that receives the syringe pair assembly of the present invention, here used with the spraying apparatus of FIG.


15


.





FIG. 29

depicts a heating apparatus that receives the syringe pair assembly of the present invention, here used with the assembly shown in

FIGS. 20 and 21

.











DESCRIPTION OF PREFERRED EMBODIMENTS




Considering the drawings, wherein like reference numerals denote like parts throughout the various drawing figures, reference numeral


10


as shown in

FIG. 1

is directed to the loading station according to the present invention.




In its essence, the loading station


10


includes a support


2


, to which the following are mounted: a thrombin processing unit


4


, a clotting and adhesive proteins processing unit


6


, and a dispensing manifold


8


. Each unit


4


,


6


has a separate dispensing line


16




a


,


16




b


to the dispensing manifold


8


as shown in

FIG. 1

, to maintain sequestration of each component of the biological glue. The outlet


12


connected to the thrombin processing unit


4


leads into a reserve vessel


14


, whereby pressure from a thrombin syringe


7


causes thrombin to enter the reserve vessel


14


. Rods


1


suspend support


2


. Hooks


3


support the thrombin processing unit


4


, the clotting and adhesive proteins processing unit


6


, and reserve vessel


14


. Clips


5


support the dispensing manifold


8


. The dispensing manifold


8


is preferably oriented to load a plurality of syringe pair assemblies


20


(

FIG. 13B

) with components of the biological glue.

FIG. 2

depicts four such syringe pair assemblies


20


, but it is also observed from

FIG. 2

that additional assemblies


20


may be present.




The syringe pair assembly


20


is pictured in

FIGS. 13A

,


13


B. The assembly


20


includes two syringes


22




a


,


22




b


; a barrel-holding frame


24


; and a plunger connector


26


. A fitting


18


is also present, the fitting


18


adapted to frictionally hold the syringe pair assembly


20


together and link to the dispensing manifold


8


via tubing


9


(a plurality of delivery means). The barrel-holding frame


24


includes a spring-based plastic retaining member


28


; in

FIG. 13B

, the retaining member


28


secures the barrel-holding frame


24


to the fitting


18


. The spring


27


is shown as a resilient leaf (

FIG. 13B

) integral with frame


24


and leading to the retainer


28


. The assembly


20


is housed inside a membrane


30


, particularly during loading. The membrane


30


is preferably flexible plastic, formed with a gathered (doubled-over) portion


32


about the assembly


20


. The gathered portion


32


is formed by creating pleats


36


using “accordion”-type folds in the membrane


30


, with a first layer


30




a


(

FIG. 11

) of the membrane


30


proximate the syringe pair assembly


20


(

FIGS. 4

,


12


) and an outer layer


30




b


which moves from an overlying position (relative to the first layer


30




a


) to a coextensive position after loading a syringe pair assembly


20


, one with clotting proteins and the other with thrombin. One end of the membrane


30


is sealed over the tubing


9


that connects to the dispensing line


16




a


,


16




b


via dispensing manifold


8


. The other end of the membrane


30


is also closed and is deployed about the syringe plungers


38




a


,


38




b


, to allow an operator to grasp and extend the plunger end during filling of the syringe pair assembly


20


without exposure to ambient conditions. Downward force, shown by the arrow A in

FIG. 6

, while grasping the plunger end and the membrane


30


allows the pleats


36


of the gathered portion


32


to expand while always encasing the now-fully extended assembly


20


(

FIGS. 5

,


14


). The plunger end of the membrane


30


will be opened (

FIG. 14

) in an operatory to allow access to the filled syringe pair assembly


20


during a surgical procedure. As shown in

FIG. 14

, a free end


37


of the membrane


30


shows the membrane as formed from the parts


37




a


,


37




b


, sealed together but separable (by peeling apart) to expose plunger connector


26


of the loaded syringe pair. Thus, the loaded syringe pair is maintained sterile until actual use in surgery.




The procedure for loading the assemblies


20


with thrombin and adhesive and clotting proteins is shown in

FIGS. 6-11

. Before loading, all assemblies


20


are encased in membranes


30


and attached to the dispensing manifold


8


using the fittings


18


. The assembly


20


located furthest from the end of the dispensing manifold


8


is preferably drawing on the dispensing lines


16




a


,


16




b


by extending the syringe plungers (

FIG. 6

) to fill the dispensing lines


16




a


,


16




b


and dispensing manifold


8


. It is then preferably returned to its original contracted position (

FIG. 7

) after having expelled excess air. Beginning from the opposite end, each assembly


20


is successively extended to fill the syringe barrels


34




a


,


34




b


with the appropriate amounts of thrombin and clotting and adhesive proteins (FIGS.


8


-


11


). After all assemblies


20


are loaded, each assembly


20


and its associated membrane


30


may then be removed from the dispensing manifold


8


by heat sealing or crimping tubing


9


and severing at the crimp or heat seal, or upstream at the juncture


11


of the tubing


9


with the manifold


8


.




To remove assembly


20


from membrane


30


, spring


27


is depressed toward syringes


22




a


,


22




b


to list retaining member


28


from mating catch on fitting


18


. Syringes


22




a


,


22




b


are twisted and pulled away from fitting


18


, allowing assembly


20


to reside loose within membrane


30


. Membrane


30


is then peeled apart, as described earlier, to remove assembly


20


.




Once filled and removed, the assembly


20


may be fitted with an outlet coupling


40


, shown in FIG.


22


A. The retaining member


28


latches to a catch


42


on coupling


40


(FIG.


21


). As shown in

FIGS. 22B and 22C

, the outlet coupling


40


equips each syringe


22




a


,


22




b


with a separate exit path


44




a


,


44




b


, such that the thrombin and the adhesive and clotting proteins may exit separately as lines or dots from ports


46




a


,


46




b


in the outlet coupling


40


, thereby preventing clogging of the outlet coupling


40


. A recessed threaded area


48


is located proximate the ports


46




a


,


46




b


of the outlet coupling


40


to support a dispensing attachment.




The recessed female threaded area


48


of the outlet coupling


40


may receive any of a variety of dispensing attachments having a threaded end


49


; examples of attachments are shown in

FIGS. 16-21

,


23


-


27


. The spray nozzle


50


shown in

FIGS. 23

,


24


may be combined with lengthening attachments, shown in

FIGS. 25-27

. These lengthening attachments are preferably constructed with an external cylindrical shroud


63


which overlies intermediate sleeves


65


that support a central internal helical path


54


to enhance admixture of the thrombin and the adhesive clotting proteins. Mixing of the thrombin with the adhesive and clotting proteins occurs within the chosen attachment and is dispensed out the spray end


52


of the spray nozzle


50


for precise placement. The spray nozzle


50


is comprised of a barrel


51


having tactile enhancing, longitudinally extending peripheral ribs


53


. The end


52


includes a flow diverter


55


and a restrictor orifice body


57


having an orifice


59


. The body


57


is press-fit into bore


61


of nozzle


50


or attached by other means.





FIG. 15

depicts a dispensing apparatus


60


adapted to receive the syringe pair assembly


20


. In this embodiment, the outlet coupling


40


connects to the dispensing apparatus


60


by registering a clasp


42


present on the underside of the outlet coupling


40


with a pivot


62


(FIG.


15


). The syringe pair assembly


20


is inserted into the outlet coupling


40


and the frame


24


is removed.





FIGS. 28

,


29


depict a heating apparatus


70


, which includes a plurality of elongated arctuate indentations


72


, each shaped with projecting saddles


73


to receive a syringe pair assembly


20


and to ensconce a large portion of each syringe's barrel. The heating apparatus


70


contains resistive heating elements


74


to maintain the assemblies


20


at a constant temperature for heat transfer through indentations


72


and saddles


73


. The power cord


76


is connected to a power supply


78


, which in turn plugs into an electrical supply outlet. A sensor and microcontroller


76


optimize temperature. Compatible dispensing assemblies include, but are not limited to, the spraying apparatus


60


of FIG.


15


and the basic syringe setup depicted in

FIGS. 20

,


21


. Thus, the prepared biological glue is readily available for use during the medical procedure.




Moreover, having thus described the invention, it should be apparent that numerous structural modifications and adaptations may be resorted to without departing from the scope and fair meaning of the instant invention as set forth hereinabove and as described hereinbelow by the claims.



Claims
  • 1. An apparatus for collecting thrombin and clotting proteins, comprising, in combination:a first conduit operatively connected to a source of thrombin; and a second conduit operatively connected to a source of clotting proteins, each said conduit operatively connected to a plurality of delivery means, each said delivery means operatively coupled to one of a plurality of collection means to collect said thrombin and said clotting proteins, each of said collection means adapted to dispense its contents.
  • 2. The apparatus of claim 1 wherein said collection means are clustered in pairs, wherein said pairs travel as pairs during and after collection of said thrombin and said clotting proteins, with one of each said pair of collection means receiving thrombin and the other receiving clotting proteins.
  • 3. The apparatus of claim 2 wherein each pair is ensconced in a membrane.
  • 4. The apparatus of claim 3 wherein said collection means are equipped with a removable fitting for connection to each said conduit.
  • 5. The apparatus of claim 4 wherein said membrane opens at an end opposite said conduits, whereby removal or adjustment of said collection means may occur.
  • 6. An apparatus for collecting thrombin and clotting proteins, comprising, in combination:a first conduit operatively connected to a source of thrombin; and a second conduit operatively connected to a source of clotting proteins, each said conduit operatively connected to a plurality of dispensing means, wherein said dispensing means are clustered in pairs, with one of each said pair receiving thrombin and the other receiving clotting proteins, and wherein each pair is ensconced in a membrane, and wherein said dispensing means are equipped with a removable fitting for connection to each said conduit, and wherein said membrane opens at an end opposite said conduits, whereby removal or adjustment of said dispensing means may occur wherein said membrane includes a gathered portion of accordion folds, whereby expansion of said dispensing means causes said gathered portion of accordion folds to unfold.
  • 7. The apparatus of claim 6 wherein each said pair is held together by a frame, said frame including a retaining member.
  • 8. The apparatus of claim 7 wherein said dispensing means are received by spraying means, said spraying means having means for simultaneous delivery of the thrombin and clotting proteins.
  • 9. The apparatus of claim 8 wherein a plurality of said dispensing means in said spraying means are received by heating means, whereby contents of said dispensing means are maintained at a desired temperature until dispensed.
  • 10. The apparatus of claim 7 wherein a plurality of said dispensing means are received by heating means, whereby contents of said dispensing means are maintained at a desired temperature until dispensed.
US Referenced Citations (17)
Number Name Date Kind
1948388 Liberson Feb 1934 A
3949746 Wallach Apr 1976 A
4166533 Maitland Sep 1979 A
4666429 Stone May 1987 A
4795441 Bhatt Jan 1989 A
4954239 Mueller Sep 1990 A
5037390 Raines et al. Aug 1991 A
5243982 Mostl et al. Sep 1993 A
5298020 Stone Mar 1994 A
5411490 Tennican et al. May 1995 A
5423769 Jonkman et al. Jun 1995 A
5713403 Clusserath et al. Feb 1998 A
5759171 Coelho Jun 1998 A
5975367 Coelho et al. Nov 1999 A
6077447 Coelho et al. Jun 2000 A
6274090 Coelho et al. Aug 2001 B1
6355024 Small et al. Mar 2002 B1
Foreign Referenced Citations (1)
Number Date Country
WO 0074713 Dec 2000 WO