1. Field of the Invention
The present invention relates to a biological information measurement device including an output terminal for establishing connection to an external terminal unit.
2. Description of the Background Art
An electrocardiograph and a body fat meter represent examples of widely known biological information measurement devices having a measurement electrode to be brought into contact with a living body and obtaining biological information by processing a biological electric signal detected by the measurement electrode. As to the biological information measurement device, conventionally, connection to an external terminal unit has strongly been demanded.
For example, in the electrocardiograph, demand for analysis and storage of obtained electrocardiographic data, printout of the data on paper medium, and transmission of the electrocardiographic data to a remote location has been very strong, and it has also been demanded to provide an interface in a device main body for the purpose of establishing connection to a personal computer (hereinafter, abbreviated as “PC”), a printer, or communication means. Such demands are great particularly in a Holter electrocardiograph and a portable electrocardiograph that have widely been used in recent days. Specifically, in order to present the electrocardiographic data obtained at home to a specialist, connection to the external terminal unit has strongly been demanded.
In order to realize connection to the external terminal unit in the electrocardiograph, some kind of interface should be provided in the device main body of the electrocardiograph for communicating a signal between the device main body of the electrocardiograph and the external terminal unit. As the interface, a variety of interfaces such as infrared communication, fiber optics communication, magnetic coupling, inductive coupling, and the like may be adopted (see Japanese Patent Laying-Open Nos. 9-224917, 63-206225, and 5-7560, for example). When such an interface is adopted, however, not only a device structure is complicated, but also cost and performance are not satisfactory. Here, as a connection method to realize ensured communication of a signal with low cost, wired connection using a serial bus such as a USB (Universal Serial Bus) and an RS-232C may be employed.
In wired connection using the USB, for example, an output terminal is provided in the device main body of the electrocardiograph and an input terminal is provided in a main body of the external terminal unit. Then, the output terminal and the input terminal are connected to each other via a USB connection cable, so that connection between the device main body of the electrocardiograph and the external terminal unit is established. In this manner, communication of the signal between the device main body of the electrocardiograph and the external terminal unit is reliably realized with low cost.
Meanwhile, when wired connection using a connection cable is adopted, a power supply voltage input to the external terminal unit may be introduced as a surge into a processing circuit provided inside the device main body of the electrocardiograph through the connection cable. If the power supply voltage is introduced while a subject touches the measurement electrode, the subject may receive electric shock through the measurement electrode. Therefore, considering safety of the subject, some measure to prevent electric shock should be provided in order to avoid such an accident of electric shock.
A commonly known measure to prevent electric shock employs a photocoupler (see Japanese Utility Model Laying-Open No. 5-9507, and Japanese Patent Laying-Open Nos. 61-232832 and 63-272324, for example). The photocoupler optically couples two electrically isolated electric circuits with each other, and the photocoupler is normally implemented by a combination of a light-emitting diode and a phototransistor. When the photocoupler is employed, an internal circuit in the external terminal unit can electrically be isolated from the measurement electrode of the electrocardiograph. Therefore, occurrence of an electric shock accident can be prevented.
In order to provide the electric shock prevention measure in the electrocardiograph by using the photocoupler, however, a plurality of photocouplers (two to four) should be mounted on the device main body of the electrocardiograph. The photocoupler is a relatively expensive element, and mounting of a plurality of photocouplers results in increase in manufacturing cost. In addition, larger size of the device is unavoidable.
Meanwhile, the electric shock prevention measure can be provided in the electrocardiograph having the measurement electrode drawn out of the device main body via the connection cable in the following manner. Specifically, such an electrocardiograph may be structured such that simultaneous connection to the device main body of the electrocardiograph, of the connection cable for establishing connection between the device main body of the electrocardiograph and the measurement electrode and the connection cable for establishing connection between the device main body of the electrocardiograph and the external terminal unit is not allowed (see Japanese Utility Model Laying-Open Nos. 5-9508 and 5-9509, and Japanese Patent Laying-Open No. 6-197875, for example). According to such a structure, while the device main body of the electrocardiograph is connected to the external terminal unit, the processing circuit provided inside the device main body of the electrocardiograph is electrically isolated from the measurement electrode in an ensured manner. Therefore, the accident of electric shock as described above can reliably be avoided.
Though such an electric shock prevention measure as above is extremely effective in the electrocardiograph having the measurement electrode drawn out of the device main body through the connection cable, the electrocardiograph having the measurement electrode provided on an outer surface of the device main body (a type mainly found in portable electrocardiographs) cannot adopt such an electric shock prevention measure, and therefore, another measure should be provided.
An object of the present invention is to provide a biological information measurement device with an electric shock prevention measure that can be adapted without increasing manufacturing cost regardless of its device structure and can reliably prevent occurrence of an accident of electric shock.
A biological information measurement device according to the present invention includes: a measurement electrode brought into contact with a living body; a processing circuit provided inside a device main body and processing a biological electric signal detected by the measurement electrode; an output terminal provided in the device main body and supplying biological information obtained by processing in the processing circuit to an external terminal unit; a first contact point provided in the device main body and electrically connected to the measurement electrode; a second contact point provided in the device main body and electrically connected to the processing circuit; and a switching portion provided in the device main body and switching electrical connection and disconnection between the first contact point and the second contact point.
According to such a structure, the switching portion is operated so as to switch electrical connection and disconnection between the measurement electrode and the processing circuit. Accordingly, by electrically disconnecting the measurement electrode from the processing circuit without fail when the external terminal unit is connected to the device main body of the biological information measurement device, an accident of electric shock can reliably be prevented. In addition, as the electric shock prevention measure is implemented by such a simplified structure that the contact point is simply provided between the measurement electrode and the processing circuit, this measure can be adapted to the biological information measurement device having any device structure. Moreover, larger size of the device or increase in manufacturing cost is not caused.
In the biological information measurement device according to the present invention, preferably, while a connection terminal for establishing connection to the external terminal unit is connected to the output terminal, the switching portion electrically disconnects the first contact point from the second contact point.
In this manner, while the output terminal provided in the device main body of the biological information measurement device is connected to the connection terminal for establishing connection to the external terminal unit, the switching portion electrically disconnects the first contact point from the second contact point without fail. Thus, further ensured electric shock prevention measure can be provided.
Preferably, the biological information measurement device according to the present invention further includes a cover provided in the device main body. Preferably, the cover disallows connection of the connection terminal for establishing connection to the external terminal unit to the output terminal by covering the output terminal when the cover is closed, and allows connection of the connection terminal for establishing connection to the external terminal unit to the output terminal by exposing the output terminal when the cover is opened. The switching portion preferably operates in association with an opening and closing operation of the cover, so as to electrically connect the first contact point to the second contact point when the cover is closed and so as to electrically disconnect the first contact point from the second contact point when the cover is opened.
In this manner, the switching portion is operated in association with the operation of the cover which allows or disallows connection of the connection terminal to the output terminal. Thus, the reliable electric shock prevention measure can be realized based on the operation of the cover by a user.
As described above, according to the present invention, a biological information measurement device with an electric shock prevention measure that can be adapted to the biological information measurement device having any device structure without increasing manufacturing cost and can reliably prevent occurrence of an accident of electric shock can be provided.
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
In the following, one embodiment of the present invention will be described in detail with reference to the drawings. In the embodiment as set forth below, a portable electrocardiograph that can be carried and can easily measure and store an electrocardiographic waveform will be described by way of example of a biological information measurement device.
Initially, an appearance of the portable electrocardiograph in the present embodiment will be described.
As shown in FIGS. 1 to 6, in order to realize excellent usability, a portable electrocardiograph 100 in the present embodiment has such a light weight and a small size that it can be held by one hand. Portable electrocardiograph 100 includes a device main body 110 having a flat and elongated, substantially rectangular parallelepiped shape. On its outer surfaces (a front face 111, a rear face 112, a top face 113, a bottom face 114, a right side face 115, and a left side face 116), a display unit, an operation unit, a measurement electrode, and the like are disposed.
Device main body 110 contains a processing circuit 150 for processing a biological electric signal detected by the measurement electrode (see
As shown in
As shown in
As shown in
As shown in
Negative electrode 121 and indifferent electrode 123 described above are formed with a conductive member, and electrically connected to first contact points 134 (see FIGS. 7 to 9) respectively which will be described later. In addition, negative electrode 121 and indifferent electrode 123 are disposed in concave portion 115a provided in right side face 115 such that their surfaces are exposed on the outer surface of device main body 110. Negative electrode 121 is located closer to top face 113 on right side face 115, while indifferent electrode 123 is located closer to bottom face 114 on right side face 115.
As shown in
As described above, portable electrocardiograph 100 according to the present embodiment has output terminal 131 for establishing wired connection to the external terminal unit in the prescribed position in top surface 113 of device main body 110. Output terminal 131 is used for supplying the electrocardiographic information temporarily stored in the memory provided inside device main body 110 to the external terminal unit. For the output terminal, a terminal adapted to the USB or RS-232C, for example, is employed.
In the following, output terminal 131 and a structure in its periphery will be described further in detail.
As shown in FIGS. 7 to 9, in portable electrocardiograph 100 according to the present embodiment, output terminal 131 for establishing connection to the external terminal unit is provided on the outer surface of device main body 110 in a portion covered with cover 130 described above. In addition, in the vicinity of output terminal 131, first contact points 134 electrically connected to negative electrode 121, positive electrode 122 and indifferent electrode 123 respectively are provided electrically independent of one another. First contact point 134 is formed of a conductive member, and disposed on the outer surface of device main body 110 in a portion covered with cover 130 when the cover is closed, in a manner similar to output terminal 131. As shown in
As described above, cover 130 covers output terminal 131 in a closed state, while it exposes output terminal 131 in the opened state. Therefore, in the closed state, insertion into output terminal 131 of the connection terminal of the connection cable for establishing wired connection to the external terminal unit is not allowed, whereas in the opened state, insertion into output terminal 131 of the connection terminal is allowed.
As shown in
As shown in
As shown in
Meanwhile, as shown in
In this manner, in portable electrocardiograph 100 according to the present embodiment, electrical connection or disconnection between first contact point 134 and second contact point 135 is switched in association with the operation of cover 130. In other words, in portable electrocardiograph 100 according to the present embodiment, cover 130 attains a function as the switching portion. In an electrically connected state, negative electrode 121, positive electrode 122 and indifferent electrode 123 are electrically connected to processing circuit 150 provided inside device main body 110, thereby measurement of an electrocardiographic waveform being allowed. On the other hand, in an electrically disconnected state, negative electrode 121, positive electrode 122 and indifferent electrode 123 are electrically disconnected from processing circuit 150 provided inside device main body 110. Therefore, measurement of an electrocardiographic waveform is not allowed even when negative electrode 121 and positive electrode 122 are pressed against the skin.
Next, a measurement posture to be taken by the subject in measuring an electrocardiographic waveform using portable electrocardiograph 100 having the above-described structure will be described.
During measurement, a subject 200 first closes cover 130 provided in device main body 110. By setting the closed state of cover 130, negative electrode 121, positive electrode 122 and indifferent electrode 123 are electrically connected to processing circuit 150 provided inside device main body 110, and a waiting state in which measurement of the electrocardiographic waveform is allowed is attained.
Thereafter, as shown in
A state that portable electrocardiograph 100 is held with right hand 210 will now be described.
As shown in
When such a measurement posture is taken, negative electrode 121 and indifferent electrode 123 located on right side face 115 of device main body 110 of portable electrocardiograph 100 come in contact with forefinger 212 of right hand 210 of subject 200, and positive electrode 122 located on left side face 116 of device main body 110 comes in contact with chest 250 of subject 200. In this manner, a measurement circuit is implemented in the body of the subject by right hand 210 being in contact with negative electrode 121, forearm 220 without contacting chest 250, a brachium 230 and a right shoulder 240 without contacting chest 250, and chest 250 to which positive electrode 122 is attached, in this order.
As described above, an action potential produced by an activity of cardiac muscle is detected as a potential difference between negative electrode 121 and positive electrode 122 serving as the measurement electrodes, and processed by processing circuit 150 provided inside portable electrocardiograph 100. Electrocardiographic information including the electrocardiographic waveform can thus be obtained. The electrocardiographic information obtained in such a manner is temporarily stored in memory 155 provided inside portable electrocardiograph 100 and output to the external terminal unit when necessary.
A system configuration when the portable electrocardiograph according to the present embodiment is connected to the external terminal unit and the electrocardiographic information stored in the memory is output to the external terminal unit will now be described. It is noted that the system configuration as set forth below employs a PC as the external terminal unit connected to the device main body of the portable electrocardiograph by way of example.
As shown in
In portable electrocardiograph 100 according to the present embodiment, by operating cover 130 in order to connect device main body 110 to PC 300, first contact point 134 is electrically disconnected from second contact point 135. Therefore, while device main body 110 is connected to PC 300, negative electrode 121, positive electrode 122 and indifferent electrode 123 are electrically isolated from processing circuit 150 provided inside device main body 110 without fail. Even if a power supply voltage from a power supply circuit 353 in PC 300 should be introduced as surge into processing circuit 150 of portable electrocardiograph 100 through the internal circuit in PC 300 and connection cable 400, the power supply voltage does not reach negative electrode 121, positive electrode 122 and indifferent electrode 123. Therefore, even if the subject touches the measurement electrode when the surge is introduced, there is no possibility of reception of electric shock by the subject.
As described above, in the portable electrocardiograph according to the present embodiment, electrical connection between the measurement electrode and the indifferent electrode and the processing circuit provided inside the device main body is switched between the electrically connected state and the electrically disconnected state, in association with the operation of cover. More specifically, when the cover is opened in order to connect the portable electrocardiograph to the external terminal unit, the first contact point is not in contact with the second contact point. Therefore, while the device main body of the portable electrocardiograph is connected to the external terminal unit, the measurement electrode and the indifferent electrode are electrically isolated from the processing circuit provided inside the device main body without fail. Therefore, an electric shock accident that may take place when the portable electrocardiograph is connected to the external terminal unit can reliably be prevented.
In addition, a structure to prevent electric shock as above can be implemented by such a simplified structure that the contact point is simply provided between the measurement electrode and the processing circuit. Therefore, this structure can be adapted to the biological information measurement device having any device structure. For example, as shown in
In the present embodiment described above, an example in which the cover is attached to the device main body such that the cover is freely opened and closed has been described. The present invention, however, is not limited to such an example. For example, the cover may be attached to the device main body in a detachable manner or in a manner slidable with respect to the device main body.
In addition, in the present embodiment described above, an example in which electrical connection or disconnection between the first contact point and the second contact point is switched in association with the opening and closing operation of the cover has been described. The present invention, however, is not limited to such an example. For example, electrical connection or disconnection between the first contact point and the second contact point may be switched in association with an operation to connect the connection terminal to the output terminal. Alternatively, a switch simply switching electrical connection and disconnection between the first contact point and the second contact point may separately be provided in the device main body, without being associated with a connection operation by the user in particular.
Moreover, in the present embodiment described above, an example in which the signal is output solely from the portable electrocardiograph to the external terminal unit has been described. It is naturally possible, however, to attain a structure allowing input and output of the signal in a bidirectional manner. In addition, the external terminal unit to be connected is not limited to the PC, and a variety of terminal units such as a printer and a communication device are applicable.
Furthermore, in the present embodiment described above, the present invention has been applied to the portable electrocardiograph having the measurement electrode and the indifferent electrode provided on the outer surface of the device main body and the Holter electrocardiograph having the measurement electrode and the indifferent electrode drawn out of the device main body by way of example. The present invention, however, may naturally be applied to a stationary electrocardiograph installed in a hospital, for example. In addition, an application of the present invention is not limited to the electrocardiograph. The present invention is applicable to any biological information measurement device having a measurement electrode to be brought into contact with a living body and obtaining biological information by processing a biological electric signal detected by the measurement electrode. Examples of the biological information measurement device include a measurement device to measure a myoelectric potential, brain wave, living body impedance (impedance of internal tissue or skin), or the like.
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-022796 | Jan 2004 | JP | national |