The present invention relates to biological interface systems that include one or more devices controlled by processed multicellular signals of a patient. A processing unit produces a control signal based on multicellular signals received from a sensor comprising multiple electrodes. More particularly, the system includes a controlled device selector, used by the patient or other operator to select one or more devices to be controlled.
Biological interface devices, for example neural interface devices, are currently under development for numerous patient applications including restoration of lost function due to traumatic injury or neurological disease. Sensors, such as electrode arrays, implanted in the higher brain regions that control voluntary movement, can be activated voluntarily to generate electrical signals that can be processed by a biological interface device to create a thought invoked control signal. Such control signals can be used to control numerous devices including computers and communication devices, external prostheses, such as an artificial arm or functional electrical stimulation of paralyzed muscles, as well as robots and other remote control devices. Patients afflicted with amyotrophic lateral sclerosis (Lou Gehrig's Disease), particularly those in advanced stages of the disease, would also be applicable to receiving a neural interface device, even if just to improve communication to the external world, including Internet access, and thus improve their quality of life.
Early attempts to utilize signals directly from neurons to control an external prosthesis encountered a number of technical difficulties. The ability to identify and obtain stable electrical signals of adequate amplitude was a major issue. Another problem that has been encountered is caused by the changes that occur to the neural signals that occur over time, resulting in a degradation of system performance. Neural interface systems that utilize other neural information, such as electrocorticogram (ECOG) signals, local field potentials (LFPs) and electroencephalogram (EEG) signals have similar issues to those associated with individual neuron signals. Since all of these signals result from the activation of large groups of neurons, the specificity and resolution of the control signal that can be obtained is limited. However, if these lower resolution signals could be properly identified and the system adapt to their changes over time, simple control signals could be generated to control rudimentary devices or work in conjunction with the higher power control signals processed directly from individual neurons.
Commercialization of these neural interfaces has been extremely limited, with the majority of advances made by universities in a preclinical research setting. As the technologies advance and mature, the natural progression will be to more sophisticated human applications, such as those types of devices regulated by various governmental regulatory agencies including the Food and Drug Administration in the United States.
When sophisticated biological interface systems are commercially available it will become important for these systems to include numerous safety features required in the various locations of patient care and other patient settings. Also, systems which allow multiple devices to be controlled in a safe and reliable manner will be mandated. Convenience and flexibility to the patient, their caregivers and family members will also be a requirement.
There is therefore a need for an improved biological interface system which includes means of selecting devices to be controlled. Controlled access to the selecting means will be required. Multi-functionality, including control within the system as well as control of other devices will provide numerous benefits to the patient and the health care system.
According to a first aspect of the invention, a biological interface system is disclosed. The biological interface system collects multicellular signals emanating from one or more living cells of a patient and transmits processed signals to a controlled device. The system comprises a sensor for detecting multicellular signals, and the sensor comprises a plurality of electrodes. The electrodes are designed to detect the multicellular signals. A processing unit is designed to receive the multicellular signals from the sensor and process the multicellular signals to produce the processed signals transmitted to the controlled device. The system includes a first controlled device for receiving the processed signals and a second controlled device for receiving the processed signals. The system further includes a selector module that is used to select the specific device to be controlled by the processed signals.
In another preferred embodiment, the biological interface system produces processed signals that include a unique identifier of the device to be controlled, and each controlled device includes means of accepting or rejecting the processed signals when the appropriate identifier is confirmed. The processed signals are preferably transmitted via wireless communication means. In an alternative embodiment, the processed signals are transmitted to one or more controlled devices with a physical connection such as wire conductors or optical fibers. Selection of the device to be controlled is accomplished with a signal selection means which determines which controlled devices receive processed signals.
In yet another preferred embodiment, the selector module includes one or more input or output elements such as visual displays, touch screens and keypads. The selector module may perform additional functions including: providing a connection to a computer network such as the Internet; reacting to a system alarm condition with an audible or visual alert, or by transmitting a distress signal to a remote site; providing a memory storage function; providing a system parameter synchronization function; providing system geographic location information; including or attaching to one or more sensors; providing a signal processing function such as to contribute to the processing unit of the biological interface system; providing a system configuration function; providing a patient feedback function such as an audible signal that correlates to one or more states of a controlled device; providing a system or patient diagnostic function; and providing a secondary function such as a personal data assistant, a phone, a cellular phone, a pager, and a calculator; an electronic game, a glucometer, a computer, a device remote control, a universal remote control, and an environmental control device.
In yet another preferred embodiment, the sensor is an array of electrodes. The electrodes may be placed into neural tissue, such as brain tissue, and one or more electrodes may stimulate tissue as well as detect cellular signals. The sensor may comprise more than one discrete component, each component including at least one electrode. The sensor components may comprise one or more of an array of electrodes, wire or wire bundle electrodes, subdural grid electrodes, scalp electrodes, and cuff electrodes.
In yet another preferred embodiment, the selection process is activated by one or more of a device, a biological signal, and an operator action. Neural and non-neural signals can be used to perform the selection. Signals generated by eye motion, eyelid motion, facial muscle, or other electromyographic activity can be used. The selection can be accomplished with devices such as: a sip and puff device; an eye gaze device; a hand, tongue or other muscle joystick or switch; another mechanical switch; an electromyogram (EMG) activated switch; and an electro-oculogram (EOG) activated switch
According to another aspect of the invention, a biological interface system is disclosed. The biological interface system collects multicellular signals emanating from one or more living cells of a patient and transmits processed signals to a controlled device. The system comprises a sensor for detecting multicellular signals, the sensor comprising a plurality of electrodes. The electrodes are designed to detect the multicellular signals. A processing unit is designed to receive the multicellular signals from the sensor and process the multicellular signals to produce the processed signals transmitted to the controlled device. The processing unit includes two components, a processing unit first portion and a processing unit second portion. The system further includes the controlled device for receiving the processed signals. The sensor is implanted within the skull of the patient, and the processing unit first portion is implanted under the scalp on the skull of the patient. The processing unit second portion is placed above the scalp of the patient at a location proximal to the processing unit first portion.
In a preferred embodiment processing unit first portion is placed in a recess in the skull, creating during a surgery, the recess at a location near but above the patient's ear. Processing unit first portion transmits neural information to processing unit second portion, through the skin, using infrared communication means. Processing unit first portion preferably does not include an embedded power supply. A coil integral to processing unit first portion converts electromagnetic signals received from processing unit second portion into power and/or data.
Both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the embodiments of the invention as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various embodiments of the present invention, and, together with the description, serve to explain the principles of the invention. In the drawings:
To facilitate an understanding of the invention, a number of terms are defined immediately herebelow.
Definitions
As used herein, the term “biological interface system” refers to a neural interface system or any system that interfaces with living cells that produce electrical activity or cells that produce other types of detectable signals.
As used herein, the term “cellular signals” refers to subcellular signals, intracellular signals, extracellular signals, single cell signals, and signals emanating from one or more cells. “Subcellular signals” refers to: a signal derived from a part of a cell; a signal derived from one particular physical location along or within a cell; a signal from a cell extension, such as a dendrite, dendrite branch, dendrite tree, axon, axon tree, axon branch, pseudopod or growth cone; or signals from organelles, such as golgi apparatus or endoplasmic reticulum. “Intracellular signals” refers to a signal that is generated within a cell or by the entire cell that is confined to the inside of the cell up to and including the membrane. “Extracellular signals” refers to signals generated by one or more cells that occur outside of the cell(s). “Cellular signals” include but are not limited to signals or combinations of signals that emanate from any living cell. Specific examples of “cellular signals” include but are not limited to: neural signals; cardiac signals including cardiac action potentials; electromyogram (EMG) signals; glial cell signals; stomach cell signals; kidney cell signals; liver cell signals; pancreas cell signals; osteocyte cell signals; sensory organ cell signals such as signals emanating from the eye or inner ear; and tooth cell signals. “Neural signals” refers to neuron action potentials or spikes; local field potential (LFP) signals; electroencephalogram (EEG) signals; electrocorticogram signals (ECoG); and signals that are between single neuron spikes and EEG signals.
As used herein, “multicellular signals” refers to signals emanating from two or more cells, or multiple signals emanating from a single cell.
As used herein, “patient” refers to any animal, such as a mammal and preferably a human. Specific examples of “patients” include but are not limited to: individuals requiring medical assistance; healthy individuals; individuals with limited function; and in particular, individuals with lost function due to traumatic injury or neurological disease.
As used herein, “configuration” refers to any alteration, improvement, repair, calibration or other system modifying event whether manual in nature or partially or fully automated.
As used herein, “discrete component” refers to a component of a system such as those defined by a housing or other enclosed or partially enclosed structure, or those defined as being detached or detachable from another discrete component. Each discrete component can transmit information to a separate component through the use of a physical cable, including one or more of electrically conductive wires or optical fibers, or transmission of information can be accomplished wirelessly. Wireless communication can be accomplished with a transceiver that may transmit and receive data such as through the use of “Bluetooth” technology or according to any other type of wireless communication means, method, protocol or standard, including, for example, code division multiple access (CDMA), wireless application protocol (WAP), Infrared or other optical telemetry, radio frequency or other electromagnetic telemetry, ultrasonic telemetry or other telemetric technologies.
Systems and methods consistent with the invention detect cellular signals generated within a patient's body and implement various signal processing techniques to generate processed signals for transmission to one or more devices to be controlled. The system includes a sensor, comprising a plurality of electrodes that detect multicellular signals from one or more living cells, such as from the central or peripheral nervous system of a patient. The system further includes a processing unit that receives and processes the multicellular signals and transmits a processed signal to a controlled device. The processing unit utilizes various electronic, mathematic, neural net, and other signal processing techniques in producing the processed signal. Examples of controlled devices include but are not limited to prosthetic limbs, ambulation vehicles, communication devices, robots, computers, or other controllable devices.
In one exemplary embodiment, a biological interface system includes a first controlled device and a second controlled device, both controlled devices for receiving processed signals produced by the processing unit. The system further includes a selector module that is used by an operator to select the specific device to be controlled by the processed signals. Numerous configurations achieving specific device control can be implemented in the system and are described in detail herebelow. It should be noted that the selection processed as referenced in this application includes both selection of a device to be controlled by the processed signals, as well as selecting a device to stop being controlled by the processed signals. In other words, the terms “select,” “selecting,” and the “selection process” as performed by the selector module shall include both selecting and deselecting one or more controlled devices for control by the processed signals.
Reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring now to
Another key element of system 100 is a processing unit that receives the multicellular signals from sensor 200, and utilizes one or more signal processing techniques to produce processed signals. Depicted in
As depicted in
Processing unit first portion 130a includes means of amplifying the cellular signals, amplifier 131, which is preferably an amplifier with a gain of approximately one hundred, a working frequency range of 0.001 Hz to 7.2 kHz, a power requirement of approximately 1.6V and a power dissipation of approximately 30 mW. Processing unit first portion 130a further includes additional signal processing means, signal processing element 132a. Various signal processing techniques can be utilized including but not limited to: filtering, sorting, conditioning, translating, interpreting, encoding, decoding, combining, extracting, sampling, multiplexing, analog to digital converting, digital to analog converting, mathematically transforming, and/or otherwise processing multicellular signals to generate a control signal for transmission to a controlled device. In a preferred embodiment, signal processing element 132a includes a multiplexor function, such as a thirty-two to one multiplexor with a 1 MHz switching frequency. In another preferred embodiment, signal processing element 132a includes an analog to digital converter with twelve-bit resolution that can process 1 megasample per second for thirty-two channels.
It is desirable that all implanted components avoid the need to protrude through the skin of the patient, such as for cosmetics and reduced infection risk. In order for processing unit first portion 130a to transmit one or more signals to an external component, IR transmitter 133 is incorporated into the implant. IR transmitter 133 is preferably one or more infrared (1R) light emitting diodes (LEDs), such IR transmissions able to penetrate through a finite amount of tissue, such as the scalp. In a preferred embodiment, IR transmitter 133 transmits data at 40 megabit per second utilizing direct modulation. IR transmitter 133 receives information from signal processing element 132a, and transmits the information to processing unit second portion 130b by way of its integrated receiver, IR receiver 181. Both IR transmitter 133 and IR receiver 181 can include lenses, filters and other optical components to focus, collect, capture, or otherwise improve the IR transmission and receiving performance.
Processing unit second portion 130b, a component external to the body of the patient, is affixed or otherwise placed at a location in close proximity to the location of processing unit first portion 130a's transmitter, IR transmitter 133. In a preferred embodiment, processing unit first portion 130a is placed in a recess made in the skull, during a surgical procedure, at a location near to and above the ear of the patient. Processing unit second portion 130b is placed on the head just above the ear such that IR receiver 181 is at a location near aligned with IR transmitter 133, such as a line of site distance of approximately 4 mm. Information transfer takes place such as that using various error detection schemes, handshaking functions and other communication and error checking protocols such as ANSI X3.230 protocol and other protocols well known to those of skill of the art and applicable to digital, analog and combined digital/analog critical use communications.
Processing unit first portion 130a may include one or more additional elements, not shown, but included within, on the surface of, or attached to processing unit first portion 130a. Such elements may include but are not limited to: a temperature sensor, a pressure sensor, a strain gauge, an accelerometer, a volume sensor, an electrode, an array of electrodes, an audio transducer, a mechanical vibrator, a drug delivery device, a magnetic field generator, a photo detector element, a camera or other visualization apparatus, a wireless communication element, a light producing element, an electrical stimulator, a physiologic sensor, a heating element and a cooling element. Alternatively, processing unit first portion 130a may include an integrated power supply, not shown, to provide power to amplifier 131, signal processing element 132a, IR transmitter 133, or another component, not shown, of processing unit first portion 130a. In addition, power may be supplied to a power requiring component of sensor 200 such as by way of one or more conductors of wire bundle 220. Depicted in
Through inductive coupling, power can be transferred from processing unit second portion 130b to processing unit first portion 130a by supplying a driving signal to coil assembly 182 that generates an electromagnetic field that, through inductive coupling, generates power in implanted coil assembly 134. This captured energy is converted to usable power by circuitry incorporated into implanted coil assembly 134 and can be used to power one or more elements of processing unit first portion 130a and/or recharge an integrated power supply, not shown. In the preferred embodiment shown in
Processing unit second portion 130b also includes signal processing element 132b. Signal processing can include one or more of the processes listed above in reference to signal processing element 132a and preferable includes at least a decoding function or a multiplexing function. These signal processing means, in combination with signal processing element 132a of processing unit first portion 130a may complete the processing unit function of the system of the present invention such that the two signal processing means in combination produce the processed signals that will be used to control a first controlled device, a second controlled device, or both, both not shown but described in detail in reference to subsequent figures. Processing unit second portion 130b may include wireless communication means, not shown, or wired communication means to transmit the processed signals to the controlled devices of the system. The various embodiments and elements utilizing wireless communication means can utilize radiofrequency (RF), infrared, ultrasound, microwave, other data transmission technologies that do not require a physical conductor or combinations of the preceding technologies. The various embodiments and elements utilizing wired communication means can comprise electrical conductors, optical fibers, sound wave guiding conduits, other physical cables and conductors or combinations of the preceding.
Also depicted in
Selector module 400 may also include signal processing means, signal processing element 132c, such that selector module 400 can perform signal processing for various purposes including contributing to the processing unit function of the system of the present invention. Signal processing can include one or more of the processes listed above in reference to signal processing element 132a. In an alternative embodiment, signal processing element 132c completes the requirements of the processing unit, in combination with signal processing element 132a of processing unit first portion 130a, and signal processing element 132b of processing unit second portion 130b, such that processed signals can be sent to the controlled devices by a data transmission element, such as information transmission means 410. In a preferred embodiment, selector module 400 performs a signal processing function, and processed signals are transmitted from selector module 400 to the controlled devices. In an alternative preferred embodiment, processing unit second portion 130b completes the signal processing of the multicellular signals, and selector module 400 transmits a selection signal to processing unit second portion 130b. This selection signal identifies which specific device is to be controlled by the processed signals.
A method of controlling one or more specific controlled devices can be accomplished by a unique identifier contained in the processed signals-transmitted to the controlled devices wherein the controlled devices includes means of identifying and/or differentiating the appropriate identifier. This identification confirming means may be a part of each controlled device, or a separate discrete-component in communication with one or more controlled devices. When a controlled device receives the proper unique identifier, control will commence. The transmission of the identifier can be at the outset of control, or may be required on a continuous basis, such as by being included with individual packets of transmitted information. A limited transmission or one-time sending of the identifier can be accompanied by an initiate command to start control. Similar approaches can be performed to cease control of one or more controlled devices. In continuous identifier transmission, cessation of control is accomplished by discontinuation of transmission of the identifier with the individual packets. In limited or one-time transmission of the identifier, the identifier can be resent and accompanied by a cessation command.
The unique controlled device identifier approach is a preferred method when processed signals are transmitted to controlled devices with wireless communication means, such that when two or more controlled devices may both be in proximity to receive the processed signals but only the appropriate one or more controlled devices will be controlled by the processed signals. An alternative method of controlling one or more specific controlled devices involves directing the processed signals to one or more specific conductors connected to one or more specific controlled devices. Referring again to
Referring again to
Information transfer means 410 transmits wireless information received by both third controlled device 300c and fourth controlled device 300d. Utilizing an embedded unique identifier transmission, and unique identifiers incorporated into third controlled device 300c and fourth controlled device 300d, each controlled device can be uniquely controlled or controlled simultaneously. The embodiment of
Selector module 400 includes a data input device, input element 402 that enables a selection of a specific controlled device to receive the processed signals of the system. Input element 402 is connected to power and data bus 420 to receive power from integrated battery 401, as are all elements attached to bus 420, and to transmit and receive signals from one or more elements of selector module 400 such as an integrated central processing unit, CPU 405 and signal processing element 132c. CPU 405 can perform numerous processing functions well known to those of skill in the art of computers and computer controlled devices. The processing functions performed by CPU 405 can work in conjunction with the various elements of selector module 400 such as those connected to bus 420. CPU 405 receives power via power and data bus 420.
Input element 402 may comprise one or more of: a keyboard, a keypad, a data entry mechanical switch or button, a mouse, a digitizing tablet, a touch screen, or other data entry element. Mechanical switches are available in various forms for persons with limited movement such as from a spinal cord injury, these patients being an applicable receiver of the system of the present invention. These forms of switches and other data entry devices include but are not limited to: a sip and puff device; an eye gaze device; a hand, tongue or other muscle joystick; an electromyogram (EMG) activated switch; and an electro-oculogram (EOG) activated switch. Input element 402 may additionally or alternatively include a voice recognition or voice activation element to select the controlled device and/or perform a different function. Alternatively or additionally, input element 402 may include a biological signal input element. Biological signals may include one or more processed signals of the system of the present invention, or a different biological signal such as one that is under voluntary control of the patient. Neural signals can be used to accomplish the selection of the device to be controlled. These neural signals may include one or more of: neuron spikes; electrocorticogram signals; local field potential signals, and electroencephalogram signals. Other signals determining the selection may include signals derived from one or more of: eye motion; eyelid motion; facial muscle; or other electromyographic activity. Signals such as EKG, respiration, and blood glucose can also be used to trigger the selection process, such as to cease control of one or more devices when an abnormal heart rate is detected. Alternatively or additionally, input element 402 may include an input that attaches to a separate device, such as a device designed for a physically impaired person. Applicable devices include but are not limited to: sip and puff devices; eye gaze devices; hand, tongue or other muscle joysticks or switches; other mechanical switches; EMG activated switches; and EOG activated switches.
Input element 402 may provide functions in addition to the selection of the controlled device to be controlled. Input element 402 may include a physical port such as a mechanical jack attached to a power line or other power receiving means such that power can be delivered to selector module 400. Wireless power receiving means may be included to allow power transfer such as through inductive coupling between mating coils. The received power may be used to power one or more elements of selector module 400 or to recharge an internal power supply such as integrated battery 401. Input element 402 may include a physical port for a different purpose, such as to provide a connection between selector module 400 and a computer network. The computer network can be one or more of: a local area network (LAN); a wide area network (WAN); a wireless fidelity network (WIFI) and the Internet. Access via a computer network such as the Internet allows selector module 400 to be accessed from a location remote to the patient of system 100 such as to retrieve information, select a controlled device or perform another function involving two-way data communication.
Input element 402 may be a mechanical switch port, such that a switch can be attached to selector module 400 to perform one or more tasks; initiate, cease or modify one or more processes or functions; or enter data. Applicable switches include but are not limited to: a sip and puff device; an eye gaze device; a hand, tongue or other muscle joystick; an electromyogram (EMG) activated switch; and an electro-oculogram (EOG) activated switch. Input element 402 may include a tilt switch, such that if selector module 400 is in an unacceptable orientation, a signal is provided via bus 420 to one or more elements. In a preferred embodiment, selector module 400 is mounted to a wheel chair, and a tilt switch would indicate when the wheelchair had fallen over. The tilt switch signal could be processed, such as by CPU 405 and selector module 400 or another component of system 100 enter an alarm condition. An audible alert can alert a nearby party, or wireless transmission of information can alert a remote party of the emergency situation. Input element 402 may include one or more sensors. A power failure sensor can be incorporated to monitor various power levels including the battery level of integrated battery 401. Other applicable sensors include but are not limited to: a physiological sensor including a neural sensor; an EKG sensor; a glucose sensor; a respiratory sensor; an activity or motion sensor; an environmental sensor; a temperature sensor; a strain gauge, an implanted sensor; a position sensor; an accelerometer; an audio sensor such as a microphone; and a visual sensor such as a photodiode.
As depicted in
As depicted in
System 100 of
Selector module 400 of
Selector module 400 further includes functional module 404, an element that can perform various functions valuable to a patient, operator or other user of system 100. The functions performed by functional module 404 may include but are not limited to: personal data assistant; phone; cellular phone; pager; calculator; electronic game; glucometer; computer; device remote control; universal remote control; and environmental control device. In a preferred embodiment, functional module 404 includes a cellular phone, and this phone can automatically dial one or more predetermined phone numbers during an alarm state or condition.
In a preferred embodiment, selector module 400 includes patient feedback means. The patient feedback means can be used to improve device control and/or to assist in patient training and system configuration. Feedback can be provided by output element 403, such as incorporating one or more of a visual display, an audible transducer, a tactile transducer or other transducer. Each transducer of output element 403 may be incorporated into or on a housing of selector module 400 or one or more transducers or displays may connect to a jack provided on selector module 400. In a preferred embodiment, the patient feedback function utilizes, at a minimum, audio feedback.
In another preferred embodiment, selector module 400 includes a separate device control function. Examples of separate devices to be controlled, such as via input element 402, include a universal remote or a medical device such as a therapeutic device, a diagnostic device, a restorative device, and an implanted device.
Selector module 400 includes one or more integrated parameters used to perform a function. These types of integrated parameters are incorporated into multiple discrete components of system 100. Examples of integrated parameters and the functions dependent on their use are described in detail throughout this application. A typical function requiring one or more integrated parameters is production of the processed signals of the present invention. The integrated parameters of selector module 400 can be stored in memory storage element 407. When the integrated parameters of selector module 400 are modified, a permission routine, described in detail in reference to a subsequent figure of this application, may be invoked.
Other functions incorporated into selector module 400 include an information retrieval function, used to retrieve current or historic information from one or more discrete components of system 100 such as selector module 400; an interrogation function used to query the current or historic status of one or more discrete components of system 100; a system diagnostic function, used to diagnose one or more conditions, occurrences or states of system 100; a patient diagnostic function, used to perform or assist in the performance of a patient diagnostic event; and a configuration function, such as a calibration or other configuration process performed on system 100 to improve system performance and safety. In a preferred embodiment, the configuration function may be performed at least one time during the use of system 100, and in another preferred embodiment, the configuration function may be successfully completed prior to initiation of control of the controlled devices of system 100.
Alternative embodiments of selector module 400 should also be considered within the spirit and scope of this application. Selector module 400 may comprise two or more discrete components, such as a wheelchair mounted component and a bed mounted component, and each discrete component may be able to operate independently with full functionality. Selector module 400 may include an embedded identifier, such as to confirm compatibility of selector module 400 with other components of system 100, the confirmation process described in detail in reference to subsequent figures. Selector module 400 may be implanted within the patient. Selector module 400 may be a controlled device of the system of the present invention.
Referring now to
Electrode array 210 serves as the sensor for the biological interface system of the present invention. While
In the embodiment shown in
In the preferred embodiment depicted in
In an alternative embodiment, processing unit first portion 130a may be placed entirely within skull 260 or be shaped and placed to fill the craniotomy hole instead of bone flap 261. Processing unit first portion 130a can be placed in close proximity to array 210, or a distance of 5-20 cm can separate the two components. Processing unit second portion 130b, placed at a location proximate to implanted processing unit first portion 130a but external to patient 500, receives information from processing unit first portion 130a via wireless communication through the skin. Processing unit second portion 130b can include means of securing to patient 500 including but not limited to: an ear attachment mechanism; a holding strap; adhesives; magnets; or other means. Processing unit second portion 130b, includes, in addition to wireless information receiving means, power transfer means, signal processing circuitry, an embedded power supply such as a battery, and information transfer means. The information transfer means of processing unit second portion 130b may include means to transfer information to one or more of: implanted processing unit first portion 130a; a different implanted device; and an external device such as an additional component of the processing unit of the present invention, a controlled device of the present invention, or a computer device such as a computer with Internet access.
Referring back to
Each projection 211 of electrode array 210 may include a single electrode, such as an electrode at the tip of the projection 211, or multiple electrodes along the length of each projection. Each electrode 212 may be used to detect the firing of one or more neurons, as well as other cellular signals such as those from clusters of neurons. Additional electrodes, not shown, such as those integrated into subdural grids, scalp electrodes, cuff electrodes, scalp electrodes, and other electrodes, can also detect cellular signals emanating from the central or peripheral nervous system, or other part of the body generating cellular signals, such that the processing unit uses these signals to produce the processed signals to send to the controlled device, not shown. Examples of detected signals include but are not limited to: neuron spikes, electrocorticogram signals, local field potential signals, electroencephalogram signals, and other signals between single neuron spikes and electroencephalogram signals. The processing unit may assign one or more specific cellular signals to a specific use, such as a specific use correlated to a patient imagined event. In a preferred embodiment, the one or more cellular signals assigned to a specific use are under voluntary control of the patient. In an alternative embodiment, cellular signals are transmitted to processing unit 130 via wireless technologies, such as infrared communication, such transmissions penetrating the skull of the patient, and obviating the need for wire bundle 220, array wires 221 and any physical conduit passing through skull 260 after the surgical implantation procedure is completed.
Referring back to
Processing unit first portion 130a and processing unit second portion 130b may independently or in combination also conduct adaptive processing of the received cellular signals by changing one or more parameters of the system to achieve acceptable or improved performance. Examples of adaptive processing include, but are not limited to, changing a parameter during a system configuration, changing a method of encoding neural information, changing the type, subset, or amount of neural information that is processed, or changing a method of decoding neural information. Changing an encoding method may include changing neuron spike sorting methodology, calculations, thresholds, or pattern recognition. Changing a decoding methodology may include changing variables, coefficients, algorithms, and/or filter selections. Other examples of adaptive processing may include changing over time the type or combination of types of signals processed, such as EEG, LFP, neural spikes, or other signal types.
Processing unit first portion 130a and processing unit first portion 130b may independently or in combination also transmit signals to one or more electrodes 212 such as to stimulate the neighboring nerves or other cells. Stimulating electrodes in various locations can be used by processing unit 130 to transmit signals to the central nervous system, peripheral nervous system, other body systems, body organs, muscles, and other tissue or cells. The transmission of these signals is used to perform one or more functions including but not limited to: pain therapy, muscle stimulation, seizure disruption, and patient feedback.
Processing unit first portion 130a and processing unit second portion 130b independently or in combination include signal processing circuitry to perform one or more functions including but not limited to: amplification, filtering, sorting, conditioning, translating, interpreting, encoding, decoding, combining, extracting, sampling, multiplexing, analog to digital converting, digital to analog converting, mathematically transforming, and otherwise processing cellular signals to generate a control signal for transmission to a controlled device. Processing unit first portion 130a transmits raw or processed cellular information to processing unit second portion 130b through integrated wireless communication means, such as radiofrequency communications, infrared communications, inductive communications, ultrasound communications, and microwave communications. This wireless transfer allows the array 210 and processing unit first portion 130a to be completely implanted under the skin of the patient, avoiding the need for implanted devices that require protrusion of a portion of the device through the skin surface. Processing unit first portion 130a may further include a coil, not shown, which can receive power, such as through inductive coupling, on a continual or intermittent basis from an external power transmitting device as has been described in detail in reference to
In an alternative embodiment, not shown, processing unit first portion 130a, and potentially additional signal processing functions are integrated into array 210, such as through the use of a bonded electronic microchip. In another alternative embodiment, processing unit first portion 130a may also receive non-neural cellular signals and/or other biologic signals, such as from an implanted sensor. These signals may be in addition to received neural multicellular signals, and they may include but are not limited to: EKG signals, respiration signals, blood pressure signals, electromyographic activity signals, and glucose level signals. Such biological signals may be used to turn the biological interface system of the present invention, or one of its discrete components, on or off, to begin a configuration routine, or to start or stop another system function. In another alternative embodiment, processing unit first portion 130a and processing unit second portion 130b independently or in combination produce one or more additional processed signals, to additionally control the controlled device of the present invention or to control one or more additional controlled devices.
In an alternative embodiment, a discrete component such as a sensor of the present invention, is implanted within the cranium of the patient, such as array 210 of
Each sensor discrete component of the present invention can have as few as a single electrode, with the sensor including multiple sensor discrete components that collectively contain a plurality of electrodes. Each electrode is capable of recording a plurality of neurons, or other electrical activity. In an alternative embodiment, one or more electrodes are included in the sensor to deliver electrical signals or other energy to the tissue neighboring the electrode, such as to stimulate, polarize, hyperpolarize, or otherwise cause an effect on one or more cells of neighboring tissue. Specific electrodes may record cellular signals only, or deliver energy only, and specific electrodes may provide both functions.
Referring now to
The sensor electrodes of system 100′ can be used to detect various multicellular signals including neuron spikes, electrocorticogram signals (ECoG), local field potential (LFP) signals, electroencelphalogram (EEG) signals, and other cellular and multicellular signals. The electrodes can detect multicellular signals from clusters of neurons and provide signals midway between single neuron and electroencephalogram recordings. Each electrode is capable of recording a combination of signals, including a plurality of neuron spikes. The sensor can be placed on the surface of the brain without penetrating, such as to detect local field potential (LFP) signals, or on the scalp to detect electroencephalogram (EEG) signals.
A portion of the processing unit, such as processing unit second portion 130b receives signals from an implanted processing unit component, such as has been described in reference to
In
The sensor is connected via a multi-conductor cable implanted in patient 500 to an implanted portion of the processing unit which includes some signal processing elements as well as wireless communication means as has been described in detail in reference to
Processing unit second portion 130b includes various signal processing elements including but not limited to: amplification, filtering, sorting, conditioning, translating, interpreting, encoding, decoding, combining, extracting, sampling, multiplexing, analog to digital converting, digital to analog converting, mathematically transforming, and/or otherwise processing cellular signals to generate a control signal for transmission to a controllable device. Processing unit second portion 130b includes a unique electronic identifier, such as a unique serial number or any alphanumeric or other retrievable, identifiable code associated uniquely with the system 100′ of patient 500. The unique electronic identifier may take many different forms in processing unit second portion 130b, such as a piece of electronic information stored in a memory module; a semiconductor element or chip that can be read electronically via serial, parallel, or telemetric communication; pins or other conductive parts that can be shorted or otherwise connected to each other or to a controlled impedance, voltage or ground, to create a unique code; pins or other parts that can be masked to create a binary or serial code; combinations of different impedances used to create a serial code that can be read or measured from contacts, features that can be optically scanned and read by patterns and/or colors; mechanical patterns that can be read by mechanical or electrical detection means or by mechanical fit, a radio frequency identifier or other frequency spectral codes sensed by radiofrequency or electromagnetic fields, pads and/or other marking features that may be masked to be included or excluded to represent a serial code, or any other digital or analog code that can be retrieved from the discrete component.
Alternatively or in addition to embedding the unique electronic identifier in processing unit second portion 130b, the unique electronic identifier can be embedded in one or more implanted discrete components. Under certain circumstances, processing unit second portion 130b or another external or implanted component may need to be replaced, temporarily or permanently. Under these circumstances, a system compatibility check between the new component and the remaining system components can be confirmed at the time of the repair or replacement surgery through the use of the embedded unique electronic identifier.
The unique electronic identifier can be embedded in one or more of the discrete components at the time of manufacture, or at a later date such as at the time of any clinical procedure involving the system, such as a surgery to implant the sensor electrodes into the brain of patient 500. Alternatively, the unique electronic identifier may be embedded in one or more of the discrete components at an even later date such as during a system configuration such as a calibration procedure.
Referring again to
The various components of system 100′ communicate with wireless transmission means, however it should be appreciated that physical cables can be used to transfer information alternatively or in addition to wireless means. These physical cables may include electrical wires, optical fibers, sound wave guide conduits, and other physical means of transmitting data and/or power, and any combination of those means.
A qualified individual, such as operator 110, may perform a configuration of system 100′ at some time during the use of system 100, preferably soon after implantation of the sensor. In a preferred embodiment, at least one configuration routine is performed and successfully completed by operator 110 prior to use of system 100′ by patient 500. As depicted in
In a preferred embodiment, an automatic or semi-automatic configuration function or routine is embedded in system 100′. This embedded configuration routine can be used in place of a configuration routine performed manually by operator 110 as is described hereabove, or can be used in conjunction with one or more manual configurations. Automatic and/or semi-automatic configuration events can take many forms including but not limited to: monitoring of cellular activity, wherein the system automatically changes which particular signals are chosen to produce the processed signals; running parallel algorithms in the background of the one or more algorithms currently used to create the processed signals, and changing one or more algorithms when improved performance is identified in the background event; monitoring of one or more system functions, such as alarm or warning condition events or frequency of events, wherein the automated system shuts down one or more functions and/or improves performance by changing a relevant variable; and other methods that monitor one or more pieces of system data, identify an issue or potential improvement, and determine new parameters that would reduce the issue or achieve an improvement. In a preferred embodiment of the disclosed invention, when specific integrated parameters are identified, by an automated or semi-automated calibration or other configuration routine, to be modified for the reasons described above, an integral permission routine of the system requires approval of a specific operator when one or more of the integrated parameters is modified.
Operator 110 may be a clinician, technician, caregiver, patient family member, or even the patient themselves in some circumstances. Multiple operators may be needed or required to perform a configuration or approve a modification of an integrated parameter, and each operator may be limited by system 100′, via passwords and other control configurations, to only perform or access specific functions. For example, only the clinician may be able to change specific critical parameters, or set upper and lower limits on other parameters, while a caregiver, or the patient, may not be able to access those portions of the configuration procedure or the permission procedure. The configuration procedure includes the setting of numerous parameters needed by system 100′ to properly control one or more controlled devices. The parameters include but are not limited to various signal conditioning parameters as well as selection and de-selection of specific multicellular signals for processing to generate the device control creating a subset of signals received from the sensor to be processed. The various signal conditioning parameters include, but are not limited to, threshold levels for amplitude sorting, other sorting and pattern recognition parameters, amplification parameters, filter parameters, signal conditioning parameters, signal translating parameters, signal interpreting parameters, signal encoding and decoding parameters, signal combining parameters, signal extracting parameters, mathematical parameters including transformation coefficients, and other signal processing parameters used to generate a control signal for transmission to a controlled device.
The configuration routine will result in the setting of various configuration output parameters, all such parameters to be considered integrated parameters of the system of the present invention. Configuration output parameters may comprise but are not limited to: electrode selection, cellular signal selection, neuron spike selection, electrocorticogram signal selection, local field potential signal selection, electroencephalogram signal selection, sampling rate by signal, sampling rate by group of signals, amplification by signal, amplification by group of signals, filter parameters by signal, and filter parameters by group of signals. In a preferred embodiment, the configuration output parameters are stored in memory in one or more discrete components, and the parameters are linked to the system's unique electronic identifier.
Calibration and other configuration routines, including manual, automatic, and semi-automatic routines, may be performed on a periodic basis, and may include the selection and deselection of specific cellular signals over time. The initial configuration routine may include initial values, or starting points, for one or more of the configuration output parameters. Setting initial values of specific parameters, may invoke a permission routine. Subsequent configuration routines may involve utilizing previous configuration output parameters that have been stored in a memory storage element of system 100′. Subsequent configuration routines may be shorter in duration than an initial configuration and may require less patient involvement. Subsequent configuration routine results may be compared to previous configuration results, and system 100′ may require a repeat of configuration if certain comparative performance is not achieved.
The configuration routine may include the steps of (a) setting a preliminary set of configuration output parameters; (b) generating processed signals to control the controlled device; (c) measuring the performance of the controlled device control; and (d) modifying the configuration output parameters. The configuration routine may further include the steps of repeating steps (b) through (d). The configuration routine may also require invoking the permission routine of the present invention.
In the performance of the configuration routine, the operator 110 may involve patient 500 or perform steps that do not involve the patient. The operator 110 may have patient 500 imagine one or more particular movements, imagined states, or other imagined events, such as a memory, an emotion, the thought of being hot or cold, or other imagined event not necessarily associated with movement. The patient participation may include the use of one or more cues such as audio cues, visual cues, olfactory cues, and tactile cues. The patient 500 may be asked to imagine multiple movements, and the output parameters selected during each movement may be compared to determine an optimal set of output parameters. The imagined movements may include the movement of a part of the body, such as a limb, arm, wrist, finger, shoulder, neck, leg, angle, and toe, and imagining moving to a location, moving at a velocity or moving at an acceleration. The patient may imagine the movement while viewing a video or animation of a person performing the specific movement pattern. In a preferred embodiment, this visual feedback is shown from the patient's perspective, such as a video taken from the person performing the motion's own eye level and directional view. Multiple motion patterns and multiple corresponding videos may be available to improve or otherwise enhance the configuration process. The configuration routine correlates the selected movement with modulations in the multicellular signals received from the sensor, such as by correlating the periodicity of the movement with a periodicity found in one or more cellular signals. Correlations can be based on numerous variables of the motion including but not limited to position, velocity, and acceleration.
The configuration routine will utilize one or more configuration input parameters to determine the configuration output parameters. In addition to the multicellular signals themselves, system or controlled device performance criteria can be utilized. Other configuration input parameters include various properties associated with the multicellular signals including one or more of: signal to noise ratio, frequency of signal, amplitude of signal, neuron firing rate, average neuron firing rate, standard deviation in neuron firing rate, modulation of neuron firing rate as well as a mathematical analysis of any signal property including but not limited to modulation of any signal property. Additional configuration input parameters include but are not limited to: system performance criteria, controlled device electrical time constants, controlled device mechanical time constants, other controlled device criteria, types of electrodes, number of electrodes, patient activity during configuration, target number of signals required, patient disease state, patient condition, patient age, and other patient parameters and event based (such as a patient imagined movement event) variations in signal properties including neuron firing rate activity. In a preferred embodiment, one or more configuration input parameters are stored in memory and linked to the embedded, specific, unique electronic identifier. All configuration input parameters shall be considered an integrated parameter of the system of the present invention.
It may be desirous for the configuration routine to exclude one or more multicellular signals based on a desire to avoid signals that respond to certain patient active functions, such as non-paralyzed functions, or even certain imagined states. The configuration routine may include having the patient imagine a particular movement or state, and based on sufficient signal activity such as firing rate or modulation of firing rate, exclude that signal from the signal processing based on that particular undesired imagined movement or imagined state. Alternatively, real movement accomplished by the patient may also be utilized to exclude certain multicellular signals emanating from specific electrodes of the sensor. In a preferred embodiment, an automated or semi-automated calibration or other configuration routine may include through addition, or exclude through deletion, a signal based on insufficient activity during known patient movements.
Patient 500 of
Alternatively, system 100 can be utilized by patient 500 to enhance performance, such as if patient 500 did not have a disease or condition from which a therapy or restorative device could provide benefit, but did have an occupation wherein thought control of a device provided an otherwise unachieved advancement in healthcare, crisis management, and national defense. Thought control of a device can be advantageous in numerous healthy individuals including but not limited to: a surgeon, such as an individual surgeon using thought control to maneuver three or more robotic arms in a complex laparoscopic procedure; a crisis control expert, such as a person who in attempting to minimize death and injury uses thought control to communicate different pieces of information and/or control multiple pieces of equipment, such as urban search and rescue equipment, simultaneously during an event such as an earthquake or other disaster, both natural disasters and those caused by man; a member of a bomb squad, such as an expert who uses thoughts to control multiple robots and/or robotic arms to remotely diffuse a bomb; and military personnel who use thought control to communicate with personnel and control multiple pieces of defense equipment, such as artillery, aircraft, watercraft, land vehicles, and reconnaissance robots. It should be noted that the above advantages of system 100′ to a healthy individual are also advantages achieved in a patient such as a quadriplegic or paraplegic. In other words, a quadriplegic could provide significant benefit to society, such as in controlling multiple bomb diffusing robots, in addition to his or her own ambulation and other quality of life devices. Patients undergoing implantation and use of the system 100′ of the present invention may provide numerous occupational and other functions not available to individuals that do not have the biological interface system of the present invention.
The systems of the present invention, such as system 100′ of
In order for the processing unit of system 100′ to perform one or more functions, one or more integrated parameters are utilized. These parameters include pieces of information stored in, sent to, or received from, any component of system 100, including but not limited to: the sensor; a processing unit component; processing unit second portion 130b; or a controlled device. Parameters can be received from devices outside of system 100′ as well, such as configuration apparatus 120, a separate medical therapeutic or diagnostic device, a separate Internet based device, or a separate wireless device. These parameters can be numeric or alphanumeric information, and can change over time, either automatically or through an operator involved configuration or other procedure.
In order to change an integrated parameter, system 100′ includes a permission routine, such as an embedded software routine or software driven interface that allows the operator to view information and enter data into one or more components of system 100. The data entered must signify an approval of the parameter modification in order for the modification to take place. Alternatively, the permission routine may be partially or fully located in a separate device such as configuration apparatus 120 of
Referring now to
A sensor 200 for detecting multicellular signals, preferably a two dimensional array of multiple protruding electrodes, has been implanted in the brain of patient 500 in an area such as the motor cortex. In a preferred embodiment, the sensor 200 is placed in an area to record multicellular signals that are under voluntary control of the patient. Alternatively or additionally to the two dimensional array, the sensor may include: an additional array; one or more wires or wire bundles which include a plurality of electrodes; subdural grids; cuff electrodes; scalp electrodes; or other single or multiple electrode configurations. Sensor 200 is attached to transcutaneous connector 165 via wiring 216, a multi-conductor cable that preferably, though not necessarily, includes a separate conductor for each electrode of sensor 200. Transcutaneous connector 165 includes a pedestal which is attached to the skull of the patient such as with glues and/or bone screws, preferably in the same surgical procedure in which sensor 200 is implanted in the brain of patient 500. Electronic module 170 attaches to transcutaneous connector 165 via threads, bayonet lock, magnetic coupling, velcro, or other engagement means. Transcutaneous connector 165 and/or electronic module 170 may include integrated electronics including but not limited to signal amplifier circuitry, signal filtration circuitry, signal multiplexing circuitry, and other signal processing circuitry, such that transcutaneous connector 165 and/or electronic module 170 provide at least a portion of the processing unit of the disclosed invention. Transcutaneous connector 165 preferably includes electrostatic discharge protection circuitry. Electronic module 170 includes wireless information transfer circuitry, utilizing one or more of radiofrequency, infrared, ultrasound, microwave, or other wireless communication means. In an alternative embodiment, transcutaneous connector 165 includes all the appropriate electronic signal processing, electrostatic discharge protection circuitry, and other circuitry, and also includes wireless transmission means, such that the need for electronic module 170 is obviated.
In a preferred embodiment, electronic module 170 includes wireless transmission means and a power supply, not shown, such that, as the power supply is depleted or electronic module 170 has a malfunction, it can be easily replaced. In another preferred embodiment, electronic module 170 is a disposable component of system 100″. Electronic module 170 transmits information to processing unit transceiver 135 which is integrated into a portion of system 100″s processing unit, such as processing unit first portion 130a. In a preferred embodiment, processing unit transceiver 135 is a two-way wireless communication device, and electronic module 170 is also a two-way wireless communication device such that information can be sent to or from electronic module 170.
All of the physical cables of
Processing unit second portion 130b includes further signal processing means which in combination with the signal processing of processing unit first portion 130a produces processed signals, such as to control multiple controlled devices. Processing unit first portion 130a and/or processing unit second portion 130b include various functions including but not limited to: a spike sorting function, such as a threshold based neuron spike sorting function; an amplifier function; a signal filtering function; a neural net software function; a mathematical signal combination function; a neuron signal separation function such as a spike discrimination function or a minimum amplitude sorting function; and a database storage and retrieval function such as a database including a list of acceptable neural information or a database of unacceptable neural information each of which can be used to perform a system diagnostic. In another preferred embodiment, the processing unit assigns one or more cellular signals to a specific use, such as a specific use that is correlated to a patient imagined event.
The processed signals emanating from processed unit second portion 130b can be analog signals, digital signals, or a combination of analog and digital signals. The processing unit of the present invention may include digital to analog conversion means as well as analog to digital conversion means. The processed signals can be transmitted to one or more controlled devices with a hardwired connection, a wireless connection or a combination of both technologies. As depicted in
The three controlled devices are shown permanently attached to physical cables, with each physical cable including a removable connection at the other end. Controlled computer 305 is attached to cable 311 that has female plug 155 at its end. First controlled device 300a is attached to first controlled device cable 301a which has female plug 159 at its end. Second controlled device 300b is attached to second controlled device cable 301b which has female plug 157 at its end. Each physical cable can be attached and detached from processing unit second portion 130b. Female plug 159 attaches to male receptacle 158; female plug 157 attaches to male receptacle 156, and female plug 155 attaches to male receptacle 154.
Each of controlled computer 305, first controlled device 300a, and second controlled device 300b preferably has embedded within it a unique identifier of the particular device. Additional codes, such as the unique system identifier, may also be embedded. When any of the physical cables are first attached, such as controlled computer cable 311 being attached via female plug 157 to male receptacle 156, a compatibility check is performed by system 100″ to assure that the unique system identifier embedded in controlled computer 305 is identical or otherwise compatible with a unique electronic identifier embedded in any and all other discrete components of system 100″, such as the unique electronic identifier embedded in processing unit second portion 130b. Similar system compatibility checks can be performed with the attachment of first controlled device 300a or second controlled device 300b. If improper compatibility is determined by system 100″, various actions that can be taken include but are not limited to: entering an alarm state, displaying incompatibility information, transmitting incompatibility information, deactivation of controlled device control, limiting controlled device control, and other actions.
Also depicted in
Selector module 400 may include access passwords or require mechanical or electronic keys to prevent unauthorized use, and may also include a function, such as a permission routine function, to select a controlled device to modify its control. Selector module 400 may have other integrated functions such as information recall functions, system configuration, or calibration functions, as well as a calculator, cellular telephone, pager, or personal data assistant (PDA) functions. Clinician control unit 400 may be a PDA that has been modified to access system 100″ to select one or more controlled device to modify its control, such as through the use of a permission routine.
Selector module 400 of
Numerous configurations and types of controlled devices can be used with system 100″ of
While patient 500 has been implanted with a sensor 200 including a single discrete component, sensor 200 may comprise multiple discrete components, not shown, such as multiple electrode arrays, implanted in different parts of the brain, or in other various patient locations to detect multicellular signals. Cellular signals from the individual sensor discrete components, such as a single electrode component, may be sent to individual processing units, or to a single processing unit. Separate processed signals can be created from each individual discrete component of the sensor, and those particular signals tied to a specific controlled device. Thus, each controlled device can be controlled by processed signals from a different sensor discrete assembly, such as discrete components at different locations in the brain or other parts of the body. It should be appreciated that any combination of discrete component cellular signals can be used in any combination of multiple controlled devices. Alternatively, whether the sensor is embodied in a single discrete component or multiple discrete components, the processed signals for individual controlled devices may be based on specific cellular signals or signals from specific electrodes, such that individual device control is driven by specific cellular signals. Any combination of exclusively assigned cellular signals and shared cellular signals used to create processed signals for multiple controlled devices are to be considered within the scope of this application. In an alternative, preferred embodiment, the system includes multiple patients, these patients collectively selecting and/or controlling one or more controlled devices.
The system 100″ of
The unique electronic identifier of the system is a unique code used to differentiate one system, such as the system of a single patient, from another system, as well as to differentiate all discrete components of a system, especially detachable components, from discrete components of a separate, potentially incompatible system. The unique electronic identifier may be a random alphanumeric code or may include information including but not limited to: patient name, other patient information, system information, implant information, number of electrodes implanted, implant location or locations, software revisions of one or more discrete components, clinician name, date of implant, date of calibration, calibration information, manufacturing codes, and hospital name. In a preferred embodiment, the unique electronic identifier is stored in more than one discrete component such as a sensor discrete component and a processing unit discrete component. The unique electronic identifier may be programmable, such as one time programmable, or allow modifications for multiple time programming, such programming performed in the manufacturing of the particular discrete component, or by a user at a later date. The unique electronic identifier may be configured to be changed over time, such as after a calibration procedure. The unique electronic identifier can be permanent or semi-permanent, or hard wired, such as a hard wired configuration in a transcutaneous connector of the system. The unique electronic identifier can be used in wireless communications between discrete components, or in wireless communications between one or more discrete components and a device outside of the system. The unique electronic identifier can represent or be linked to system status. System status can include but not be limited to: output signal characteristics, level of accuracy of output signal, output signal requirements, level of control needed, patient login settings, such as customized computer configuration information, one or more software revisions, one or more hardware revisions, controlled device compatibility list, patient permissions lists, and calibration status. In a preferred embodiment, the unique identifier includes information to identify the system as a whole, as well as information identifying each discrete component, such as each controlled device applicable to the system. The unique portion identifying each controlled device can be used in wireless communication, after a selection has been made via the selector module, such that the selected controlled devices are properly controlled.
The system 100″ of
In an alternative embodiment, system 100″ of
Patient 500 of
Numerous methods are provided in the multiple embodiments of the disclosed invention. A preferred method embodiment includes a method of selecting a specific device to be controlled by the processed signals of a biological interface system. The method comprises: providing a biological interface system for collecting multicellular signals emanating from one or more living cells of a patient and for transmitting processed signals to control a device. The biological interface system comprises: a sensor for detecting the multicellular signals, the sensor comprising a plurality of electrodes to allow for detection of the multicellular signals; a processing unit for receiving the multicellular signals from the sensor, for processing the multicellular signals to produce processed signals, and for transmitting the processed signals; a first controlled device for receiving the processed signals; a second controlled device for receiving the processed signals; and a selector module that is used to select the specific device to be controlled by the processed signals.
It should be understood that numerous other configurations of the systems, devices, and methods described herein can be employed without departing from the spirit or scope of this application. It should be understood that the system includes multiple functional components, such as a sensor for detecting multicellular signals, a processing unit for processing the multicellular signals to produce processed signals, and the controlled device that is controlled by the processed signals. Different from the logical components are physical or discrete components, which may include a portion of a logical component, an entire logical component, and combinations of portions of logical components and entire logical components. These discrete components may communicate or transfer information to or from each other, or communicate with devices outside the system. In each system, physical wires, such as electrical wires or optical fibers, can be used to transfer information between discrete components, or wireless communication means can be utilized. Each physical cable can be permanently attached to a discrete component, or can include attachment means to allow attachment and potentially allow, but not necessarily permit, detachment. Physical cables can be permanently attached at one end, and include attachment means at the other.
The sensors of the systems of this application can take various forms, including multiple discrete component forms, such as multiple penetrating arrays that can be placed at different locations within the body of a patient. The processing unit of the systems of this application can also be contained in a single discrete component or multiple discrete components, such as a system with one portion of the processing unit implanted in the patient, and a separate portion of the processing unit external to the body of the patient. The sensors and other system components may be utilized for short term applications, such as applications less than twenty four hours, sub-chronic applications such as applications less than thirty days, and chronic applications. Processing units may include various signal conditioning elements such as amplifiers, filters, signal multiplexing circuitry, signal transformation circuitry, and numerous other signal processing elements. In a preferred embodiment, an integrated spike sorting function is included. The processing units perform various signal processing functions including but not limited to: amplification, filtering, sorting, conditioning, translating, interpreting, encoding, decoding, combining, extracting, sampling, multiplexing, analog to digital converting, digital to analog converting, mathematically transforming and/or otherwise processing cellular signals to generate a control signal for transmission to a controllable device. Numerous algorithms and/or mathematical and software techniques can be utilized by the processing unit to create the desired control signal. The processing unit may utilize neural net software routines to map cellular signals into desired device control signals. Individual cellular signals may be assigned to a specific use in the system. The specific use may be determined by having the patient attempt an imagined movement or other imagined state. For most applications, it is preferred that that the cellular signals be under the voluntary control of the patient. The processing unit may mathematically combine various cellular signals to create a processed signal for device control.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims. In addition, where this application has listed the steps of a method or procedure in a specific order, it may be possible, or even expedient in certain circumstances, to change the order in which some steps are performed, and it is intended that the particular steps of the method or procedure claim set forth herebelow not be construed as being order-specific unless such order specificity is expressly stated in the claim.
This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. provisional application No. 60/601,400, filed Aug. 13, 2004. This application relates to commonly assigned U.S. application Ser. No. ______ of Timothy R. Surgenor et al., filed on the same date as this application, and entitled “BIOLOGICAL INTERFACE SYSTEMS WITH CONTROLLED DEVICE SELECTOR AND RELATED METHODS.”
Number | Date | Country | |
---|---|---|---|
60601400 | Aug 2004 | US |