The present application is based on and claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2021-126082, filed on Jul. 30, 2021, and Japanese Patent Application No. 2022-089891, filed on Jun. 1, 2022. The contents of Japanese Patent Application No. 2021-126082 and Japanese Patent Application No. 2022-089891 are incorporated herein by reference in their entirety.
Embodiments of the present disclosure relate to a biological measurement device, a pulse wave sensor, a sphygmomanometer, and a meeting support system.
In one embodiment of the present disclosure, there is provided a biological measurement device that includes:
a light emitting unit configured to emit light on a body of a test subject;
a light detecting unit configured to detect light reflected in the body of the test subject;
a control unit configured to calculate information regarding a pulse wave of the body of the test subject based on the light detected by the light detecting unit;
a circuit board that is flexible and has a first surface on which the light emitting unit and the light detecting unit are provided, the circuit board further having wiring connecting the light emitting unit and the control unit together and connecting the light detecting unit and the control unit together;
a shielding unit that is provided on the first surface, the shielding unit being situated between the light emitting unit and the light detecting unit and configured to protrude beyond the light emitting unit and the light detecting unit in a direction perpendicular to the first surface; and
an adhesive part for firmly contacting with the body of the test subject.
It is desired to improve the detection accuracy of biological information such as a pulse wave, blood pressure, and the like of a body of a test subject.
According to the embodiments of the present disclosure, the accuracy in detecting biological information such as the pulse wave and the like can be enhanced because the shielding unit is provided between the light emitting unit and the light detecting unit on the circuit board that is flexible.
Herein, embodiments of a pulse wave sensor, a sphygmomanometer, a diagnostic system, a diagnostic method, a recording medium, and a meeting support system are described in detail with reference to the appended drawings.
The sticker-type pulse wave sensor 100 according to the present embodiment is used for measuring pulse waves of a test subject (a person, for example). The sticker-type pulse wave sensor 100 according to the present embodiment includes a (non-illustrated) adhesive layer. Further, the person serving as the test subject removes the sticker-type pulse wave sensor 100 from (non-illustrated) release liner and affixes the sticker-type pulse wave sensor 100 to a point for measuring pulse waves.
As long as the aforementioned components can be mounted on the sticker-type pulse wave sensor 100, the sticker-type pulse wave sensor 100 may be any size. For example, the sticker-type pulse wave sensor 100 may have a rectangular shape with a height of 3 cm and a width of 5 cm. It is to be noted that the size of the sticker-type pulse wave sensor 100 is by no means limited to this shape, and may be of a size and shape suitable for the location to which the sticker-type pulse wave sensor 100 is to be affixed.
The sticker-type pulse wave sensor 100 is assumed to be disposable after the pulse wave measurement is performed (what is known as a single-use disposable). That is, after the person serving as the test subject affixes the sticker-type pulse wave sensor 100 to a part and performs a measurement for a predetermined period of time, the person can remove and dispose the sticker-type pulse wave sensor 100.
Consideration need not be paid to repeated use of the sticker-type pulse wave sensor 100 according to the present embodiment, and thus it is sufficient as long as the sticker-type pulse wave sensor 100 has durability sufficient for performing a pulse wave measurement once. Therefore, the sticker-type pulse wave sensor 100 is constituted by a thin film.
The flexible printed circuit board (FPC) 101 is a type of printed circuit board and includes a flexible cable (example of wiring) connecting the control device 112 and the LEDs together 113_1 to 113_4 together and includes a flexible cable (example of wiring) connecting the control device 112 and the PD 114 together.
The flexible printed circuit board (FPC) 101 is a flexible circuit board that can change shape in accordance with changes in movement on a surface of a test subject due to body movement and the like and can maintain electrical characteristics even when the shape changes.
The battery 111 is a power source that provides power to the control device 112, the LEDs 113_1 to 113_4, the PD 114, and the like while a pulse wave is being measured, and is for example a button battery. The sticker-type pulse wave sensor 100 according to the present embodiment conceivably measures one day's worth of pulse waves of a test subject, for example. In such a case, the battery 111 according to the present embodiment is sufficient as long as the battery 111 can provide power to the control device 112, the LEDs 113_1 to 113_4, the PD 114, and the like for a day or longer.
Also, the sticker-type pulse wave sensor 100 is single-use disposable, and thus the battery 111 does not need to be rechargeable. Therefore, the sticker-type pulse wave sensor 100 need not have an external port for charging and can be a sealed configuration owing to a resin thereof that is water resistant.
The control device 112 includes a wireless communication unit 115 and a storage unit 116 and controls the entirety of the sticker-type pulse wave sensor 100. For example, the control device 112 individually controls the emitting of the four LEDs 113_1 to 113_4.
The wireless communication unit 115 is a configuration for performing wireless communication with an external device. As a method of wireless communication of the wireless communication unit 115 according to the present embodiment, it is conceivable to use a wireless communication scheme such as Wi-Fi (registered trademark), Bluetooth (registered trademark, and the like. Is should be noted that the external device with which the wireless communication unit 115 communicates may be a communication device or the like that is owned by the test subject.
The storage unit 116 is used for storing detection information indicating the detection results transmitted from the PD 114 as well for storing the programs that is executed by the control device 112. It is sufficient as long as the storage unit 116 is a non-volatile recording medium capable of reading and writing.
The four light emitting diodes (LEDs) 113_1 to 113_4 emit light with a wavelength of close to 520 nm and a luminous intensity of close to 100 cd in accordance with a control from the control device 112. It should be noted that the wavelength and the luminous intensity at which the LEDs 113_1 to 113_4 emit light is an example and is by no means limited to the aforementioned wavelength and luminous intensity. It is sufficient as long as the wavelength and the luminous intensity are such that measurement of the pulse wave or the like of the test subject is measurable. In the present embodiment, although an example in which LEDs are used as an example of the light emitting unit is described, the LEDs are by no means a limitation, and any configuration may be used as long as the configuration is configured to emit light.
The PD 114 (example of the light detecting unit) detects light reflected (propagated) in the test subject. The PD 114 according to the present embodiment uses a component in which the IC for control of the preamplifier, A/D converter, storage unit, and the like are built on the same circuit board. This is because when there is wiring between the photodiode and the amplifier, there is a possibility that the detection accuracy of the pulse waves will decrease due to noise generated by the wiring. As such, in the present embodiment, the PD including the IC for control are referred to as the PD 114.
The PD 114 according to the present embodiment transmits a detection value indicative of the detection result to the control device 112 as a digital signal. Although any technique may be used as the transmission technique, it is conceivable to perform transmission based on a standard such as I2C or the like.
The control device 112 also functions as an LED driver by performing control such that the four LEDs 113_1 to 113_4 are individually caused to emit light periodically in time division by power provided from the battery 111.
The light emitted from each of the LEDs 113_1 to 113_4 incidents a measurement part of the to-be-detected body and then, after reflecting and scattering repeatedly in the measurement part, the light is transmitted towards the sticker-type pulse wave sensor 100. Then, the PD 114 measures the transmitted light and outputs a signal indicating the detection result to the control device 112.
Incidentally, oxyhemoglobin exists in the blood of the artery of the test subject and the oxyhemoglobin has a characteristic of absorbing incident light. Therefore, the control device 112 according to the present embodiment measures the pulse wave signal based on light detected by the PD 114, by measuring in time series, the blood flow amount blood flow amount that changes in accordance with heart pulsations (volume change of artery).
As described above, since it is necessary for the PD 114 to detect light reflected inside the test subject, a shielding layer 121 is provided between the PD 114 and the LEDs 113_1 to 113_4 in the present embodiment.
The shielding layer 121 is a shielding member formed such that light is blocked in order to inhibit light emitted from the LEDs 113_1 to 113_4 from directly incidenting on the PD 114. A conceivable example of the shielding member is a silicone resin in which black carbon is mixed. Next, an optical system of the sticker-type pulse wave sensor 100 is described.
As illustrated in
The battery 111 and the control device 112 are provided on the second surface 101B, i.e., on the surface facing away from the side to be firmly contacted with the test subject (on the positive Z-axis side). Further, in order to flatten any irregularities caused by the battery 111 and the control device 112, a silicone resin layer 211 is provided on the second surface 101B.
Furthermore, the outer side of the silicone resin layer 211 is provided with a cover layer 212. The cover layer 212 is a flexible member that inhibits light from entering inside the sticker-type pulse wave sensor 100. Examples of the cover layer 212 include an aluminum metalized film and the like.
The first surface 101A is a surface on the side to be firmly contacted with the test subject (on the negative Z-axis side). The PD 114 is provided at the center of the first surface 101A and other components are around the PD 114.
As illustrated in
In the example illustrated in
Furthermore, an attachment 202 is provided on the outer side of the LEDs 113_1 and 113_2.
Furthermore, the PD-use attachment 201 and the attachment 202 are provided in order to flatten any irregularities formed by the placement of the PD 114 and the LEDs 113_1 and 113_2 on the first surface 101A. It is sufficient as long as the PD-use attachment 201 and the attachment 202 are flexible members. It is conceivable to use a silicone resin or the like as the PD-use attachment 201 and the attachment 202. As the silicone resin, it is possible to consider applying a commonly-used cloudy material to the PD-use attachment 201 and the attachment 202. By doing so, the absorption of light can be inhibited as much as possible.
Furthermore, both surfaces of the PD-use attachment 201 are treated such that both surfaces function as mirrors. As the treating method, the film forming of a vapor-deposited aluminum film is conceivable. Aluminum film formation is not limited to vapor deposition, and a low cost manufacturing technique such as plating may be used.
In the present embodiment, by imparting the PD-use attachment 201 with a mirror function (light can be reflected), light arriving at the PD-use attachment 201 can be reflected again toward the test subject without any absorption by the PD-use attachment 201. The light incident on the test subject is reflected again inside the test subject. In other words, the incidenting of light on the test subject and the reflecting by the PD-use attachment 201 leading up to the light entering the PD 114 are repeated. That is, the amount of light arriving at the PD 114 can be increased. By doing so, the amount of light detected by the PD 114 can be increased, and thus the accuracy in measuring the pulse wave can be increased.
By imparting the PD-use attachment 201 according to the present embodiment with a mirror function, the amount of light incident on the PD 114 can be increased, and thus the electrical amplifier settings of the PD 114 can be made smaller. By doing so, the noise generated by detection of the signal of the PD 114 can be reduced.
The mirror function of the PD-use attachment 201 according to the present embodiment is merely an example, and thus the PD-use attachment 201 need not necessarily have a mirror function.
Also, an adhesive layer 203 may be provided on the test subject side such that the PD 114, the LEDs 113_1 and 113_2, the PD-use attachment 201, and the attachment 202 arranged on the first surface 101A are covered.
The adhesive layer 203 serves as a member for firmly contacting the sticker-type pulse wave sensor 100 with the test subject. An acrylic adhesive is conceivable as the material of the adhesive layer 203. Given that the adhesive function is to be firmly contacted with skin, it is also necessary to have a function that does not damage the skin. A material that has good breathability and next to no irritation on the skin such as sticking plaster is selected as the adhesive layer 203. Although an adhesive layer with a thickness of 10 μm exhibits functionality, the adhesive layer 203 is set to have a thickness of approximately 100 μm in order to deal with irregularities on the surface or the like.
The adhesive layer 203 is a member that is transparent to light emitted from the LEDs 113_1 and 113_2. The adhesive layer 203 is not limited to a transparent member, and although a cloudy member may be used, it is preferably to keep the light attenuation coefficient low as much as possible. By doing so, the sticker-type pulse wave sensor 100 according to the present embodiment can suppress a reduction in the amount of light that is incident on the PD 114, and thus the accuracy in detecting the pulse wave can be enhanced.
The shielding layer 121 is provided on the first surface 101A and is situated between the PD 114 and the LEDs 113_1 to 113_4 such that the shielding layer 121 protrudes beyond the PD 114 and the LED 113_1 to 113_4 in a direction (Z-axis direction perpendicular to the first surface 101A. Specifically, the length of the shielding layer 121 in the Z-axis direction is substantially the same as a length obtained by adding thickness of the adhesive layer 203 to the length of the PD 114 and the LEDs 113_1 to 113_4 in the Z-axis direction. By doing so, the light emitted from the LEDs 113_1 to 113_4 can be suppressed from incidenting on the PD 114 via the adhesive layer 203 without crossing into the test subject.
Also, the shielding layer 121 has a width in the X-axis direction and the Y-axis direction to an extent that the light incident from the LEDs 113_1 to 113_4 does not reach the PD 114. For example, the width LW of the shielding layer 121 may be from 2 mm to 3 mm.
As illustrated in
Therefore, the light emitted from the LED 113_1 travels along a path 401 and incidents on a measurement part P1 of the test subject. The incident light is reflected inside the measurement part P1 of the test subject. Then, the PD 114 receives the light traveling along a path 402 after having been reflected inside the measurement part P1 of the test subject.
As described above, the flexible printed circuit board 101, the PD-use attachment 201, the attachment 202, and the adhesive layer 203 of the sticker-type pulse wave sensor 100 are flexible. Also, the adhesive layer 203 of the sticker-type pulse wave sensor 100 is affixed to an entire surface of the sticker-type pulse wave sensor 100 except for where the shielding layer 121 is. Therefore, as illustrated in
In order to address this, the sticker-type pulse wave sensor 100 according to the present embodiment changes to a shape protruding in the direction of arrow 502 such that the sticker-type pulse wave sensor 100 follows along the skin (measurement part P2) of the test so as not to form a void between the shielding layer 121 and the skin (measurement part P2) of the test subject. By doing so, direct light can be suppressed from propagating from the LED 113_1 to the PD 114.
Therefore, the light emitted from the LED 113_1 travels along a path 511 and incidents on a measurement part P2 of the test subject. The incident light is reflected inside the measurement part P2 of the test subject. Then, the PD 114 receives the light traveling along a path 512 after having been reflected inside the measurement part P2 of the test subject.
By providing the sticker-type pulse wave sensor 100 according to the present embodiment with the aforementioned configuration, the light emitted from the LED 113_1 gets reflected by the measurement part of the test subject, and thus the PD 114 can receive this reflected light. Then the control device 112 measures the pulse wave based on the received light.
The storage unit 116 stores therein a program to be executed by the control unit 602. The control unit 602 implements the various configurations by executing programs and the like stored in the storage unit 116.
The control unit 602 serves as an LED driver 611, a waveform pre-processing unit 612, a waveform post-processing unit 613, and a pulse wave calculation unit 614 by executing programs stored in the storage unit 116.
The LED driver 611 is a driver for controlling the LEDs 113_1 to 113_4. The LED driver 611 performs control such that the four LEDs 113_1 to 113_4 are individually caused to emit light periodically in time division.
The LED driver 611 repeats light emission and light non-emission at a timing of approximately 1 kHz as the light emission timing of the LEDs 113_1 to 113_4.
Also, a method for obtaining a detection value difference at a timing synchronized with that repetition, what otherwise known as a method of a lock-in amplifier, is adopted by the amplifier of the PD 114.
The waveform pre-processing unit 612 generates signals to control the LEDs 113_1 to 113_4 by using the LED driver 611 and performs pre-processing with respect to the generated signals. As this pre-processing, smoothing, filtering such as noise reduction or the like, and so on is performed for example.
The waveform post-processing unit 613 performs post-processing with respect to detection information input from the PD 114, and after doing so, stores the detection information into the storage unit 116. As this post-processing, smoothing, filtering such as noise reduction or the like, and so on is performed for example.
The pulse wave calculation unit 614 calculates, based on detection information stored in the storage unit 116, a pulse wave (an example of information regarding the pulse wave) by detecting a volume of the artery of the test subject which changes in accordance with pulsations.
Although an example is given in which the sticker-type pulse wave sensor 100 calculates a pulse wave in the present embodiment. The pulse wave may be calculated by an external device that is connected to the sticker-type pulse wave sensor 100. In this case, features (an example of information regarding a pulse wave) that is necessary for calculation of the pulse wave by the external device may be extracted by the sticker-type pulse wave sensor 100. Then, the sticker-type pulse wave sensor 100 may transmit the feature to the external device (for example, a mobile terminal of the test subject). In this case, the program for calculating biological information such as the pulse wave of the test subject, based on this feature, is stored in the external device.
By providing the sticker-type pulse wave sensor 100 according to the present embodiment with the aforementioned configuration, the light emitted from the LED 113_1 to 113_4 can be suppressed from directly incidenting on the PD 114, and thus the accuracy in measuring the pulse wave can be enhanced.
Since the flexible printed circuit board 101 and the like of the sticker-type pulse wave sensor 100 according to the present embodiment are flexible, the optical system (for example, the PD 114 and the LEDs 113_1 to 113_4) can always maintain firm contact with the skin via the adhesive layer 203. By doing so, the sticker-type pulse wave sensor 100 can suppress the effect of fluctuating factors caused at the interface of the skin and air. Therefore, the sticker-type pulse wave sensor 100 can enhance the accuracy in detecting pulse waves can be enhanced.
Since the light that is detected by the sticker-type pulse wave sensor 100 according to the present embodiment is only light that propagated in the body of the test subject, external environmental effects can be suppressed, and thus minute changes in the detected light can be detected. Therefore, the light that is detected by the sticker-type pulse wave sensor 100 enables highly accurate detection of the waveform of pulse waves.
It is envisaged that the sticker-type pulse wave sensor 100 according to the present embodiment will perform continuous measurements over a long-period of time such as 24 hours. The shielding layer 121 of the sticker-type pulse wave sensor 100 is placed such that the shielding layer 121 surrounds the PD 114. The shielding layer 121 is thicker than the flexible printed circuit board 101 and the elastic modulus is high. Furthermore, the shielding layer 121 is elastic to the extent that the shielding layer 121 can conform with the shape of the specimen. The sticker-type pulse wave sensor 100 according to the present embodiment can maintain a state where the shielding layer 121 is abutted against the skin even when a depression forms due to body movement of the test subject. With this, highly accurate measurement of pulse waves can be maintained even when body movement occurs.
In the sticker-type pulse wave sensor 100 according to the present embodiment, the shielding layer 121 is provided between the LEDs 113_1 to 113_4 and the PD 114, and is on the same plane as the surface contacting with the test subject. Also, the adhesive layer 203 is provided in a region other than were the shielding layer 121 is. Therefore, peeling of the sticker-type pulse wave sensor 100 from the skin of the test subject can be suppressed.
Also, since the sticker-type pulse wave sensor 100 according to the present embodiment is provided with the aforementioned configuration, use as a disposable is also possible. In other words, although the durability of the sticker-type pulse wave sensor 100 is low, an extremely soft material can be adopted. In doing so, the sticker-type pulse wave sensor 100 can conform with the shape of the test subject, and thus the test subject is unlikely experience any discomfort.
With the sticker-type pulse wave sensor 100, it is assumed that the adhesive layer 203 too will only be used once, and thus a member having an adhesive force strong enough so that the adhesive surface can withstand skin cells, detritus, and the like of the test subject.
In the first embodiment, an example is described in which an adhesive layer 203 having the smallest possible light attenuation coefficient is used. However, the adhesive layer may have a shielding property. Thus, in the second embodiment, an example is described in which the shielding layer also functions as an adhesive layer.
The PD 114 is provided at the center of the first surface 101A and other components are arranged around the PD 114.
As illustrated in
The shielding layer 701 is a shielding member formed such that light is blocked in order to inhibit light emitted from the LEDs 113_1 to 113_4 from directly incidenting on the PD 114. A conceivable example of the shielding member is a silicone resin in which black carbon is mixed. Furthermore, an end surface, of the shielding layer 701, firmly contacting with the test subject is formed as an adhesive part. In the present embodiment, the entire surface of the shielding layer 701 of
In the present embodiment, although a case is described in which the end surface of the shielding layer 701 firmly contacting with the test subject is formed as the adhesive part, an adhesive layer may be provided on the end surface of the shielding layer 701. In this case, a black carbon or the like is mixed in the adhesive layer, and by doing so, the adhesive layer can be formed such that light can be blocked, thereby imparting a light blocking function. In other words, the adhesive layer also functions as a shielding layer.
As illustrated in
Therefore, light emitted from the LED 113_1 incidents on a measurement part P3 of the test subject along a path 911. The incident light is reflected inside the measurement part P3 of the test subject. Then, the PD 114 receives the light traveling along a path 912 after having been reflected inside the measurement part P3 of the test subject.
As described above, the flexible printed circuit board 101 and the shielding layer 701 of the sticker-type pulse wave sensor 700 are flexible. Also, the shielding layer 701 of the sticker-type pulse wave sensor 700 is affixed to an entire surface of the sticker-type pulse wave sensor 700 except for where the PD 114 and the LEDs 113_1 to 113_4 are. Therefore, as illustrated in
The sticker-type pulse wave sensor 700 according to the present embodiment changes shape such that the sticker-type pulse wave sensor 700 follows the body movement of the skin (measurement part P4) of the test subject so as not to form a void between the shielding layer 701 and the skin (measurement part P4) of the test subject. By doing so, direct light can be suppressed from propagating from the LED 113_1 to the PD 114.
Therefore, the light emitted from the LED 113_1 travels along a path 1011 and incidents on a measurement part P4 of the test subject. The incident light is reflected inside the measurement part P4 of the test subject. Then, the PD 114 receives the light traveling along a path 1011 after having been reflected inside the measurement part P4 of the test subject.
As described above, the flexible printed circuit board 101 and the shielding layer 701 of the sticker-type pulse wave sensor 700 are flexible. Also, the shielding layer 701 of the sticker-type pulse wave sensor 700 is affixed to an entire surface of the sticker-type pulse wave sensor 700 except for where the PD 114 and the LEDs 113_1 to 113_4 are. Therefore, as illustrated in
The sticker-type pulse wave sensor 700 according to the present embodiment changes shape such that the sticker-type pulse wave sensor 700 follows the body movement of the skin (measurement part P5) of the test subject so as not to form a void between the shielding layer 701 and the skin (measurement part P5) of the test subject. By doing so, direct light can be suppressed from propagating from the LED 113_1 to PD 114.
Therefore, the light emitted from the LED 113_1 travels along path 1111 and incidents on a measurement part P5 of the test subject. The incident light is reflected inside the measurement part P5 of the test subject. Then, the PD 114 receives the light traveling along a path 1112 after having been reflected inside the measurement part P5 of the test subject.
In the present embodiment, by providing the aforementioned configuration, the shielding unit also firmly contacts with the skin the test subject, and substantially the same effects as in the first embodiment can be obtained. Therefore, even when the measurement part is in a recessed shape, the sticker-type pulse wave sensor 700 can perform highly-accurate measurements of pulse waves.
In the aforementioned embodiments, a case is described where a pulse wave is measured in the sticker-type pulse wave sensor. However, embodiments described above by no means limit the technique to a technique of measuring only pulse waves. As such, in the third embodiment, a case is described in which blood pressure is measured based on the pulse waves.
A sticker-type pulse wave sensor according to the third embodiment has substantially the same shape and substantially the same optical system as the sticker-type pulse wave sensor according to the first embodiment and the second embodiment, and thus such descriptions are omitted. The sticker-type pulse wave sensor according to the third embodiment differs from the sticker-type pulse wave sensor according to the first embodiment and the second embodiment in that the sticker-type pulse wave sensor of the first embodiment is a program that is executed in the control device.
Incidentally, nowadays, wristwatch-type biological measurement devices are prevalent in use. Even in these biological measurement devices, there is a function that estimates blood pressure. In these biological measurement devices, it is often the case that blood pressure estimation involving the use of a pulse wave propagation time method is used. Since these biological measurement devices are worn around the wrist, the relative height relationship with the heart is not stable. Consequently, the blood pressure measurements performed by these biological measurement devices are prone to error because the height relationship with the heart is not stable. In order to inhibit such errors, it is often the case that a measurement technique is used in which the arm, i.e. the measurement part, on which the biological measurement device is worn, is raised to the height of the chest, to perform measurement and the like, for example.
In contrast to this, the sticker-type pulse wave sensor according to the present embodiment involves a technique in which the sticker-type pulse wave sensor is attached to the measurement part of the test subject. Therefore, it is easy to attach the sticker-type pulse wave sensor according to a location that is substantially the same height as the heart in order to perform the blood pressure measurement by the sticker-type pulse wave sensor of the present embodiment. As such, an example of the attachment position of the sticker-type pulse wave sensor according to the third embodiment is described.
Furthermore, the affixing position when blood pressure measurement is to be performed in the sticker-type pulse wave sensor 1200 according to the present embodiment is by no means limited to the upper arm portion, and thus other body portions may be used.
Since the height of the clavicle portion area and the height of the heart portion are substantially the same, the sticker-type pulse wave sensor 1200 according to the present embodiment is capable of blood pressure measurements with little error of estimation and without any constraints imposed on the test subject with respect to movement.
Incidentally, the subclavian artery is at the upper portion of the clavicle. The subclavian artery is an artery extending from the heart, which is beneath the ribs, and is located closer to the skin surface than the ribs are. Therefore, the pulse wave of the artery appears clearly. Moreover, since the movement of the legs and arms has little effect on pulse waves, the pulse waves are unlikely to be affected by body movements. Therefore, by affixing the sticker-type pulse wave sensor 1200 to the surface of the clavicle, pulse waves with little noise can be detected, and thus accuracy of blood pressure estimation can be increased.
Since the sticker-type pulse wave sensor 1200 according to the present embodiment is flexible, even when the portion of the test subject such as the clavicle portion area has a recessed shape, the sticker-type pulse wave sensor 1200 can be affixed such that the sticker-type pulse wave sensor 1200 conforms to the shape. Since the clavicle portion area is unlikely to move due to body movements, a signal with little noise can be detected with high accuracy, and thus pulse waves and blood pressure estimations can be performed with high accuracy.
Next, a configuration for measuring blood pressure and the like by the sticker-type pulse wave sensor 1200 according to the present embodiment is described.
The control device 1400 differs from the control device 112 according to the aforementioned embodiments in that the control device 1400 includes a control unit 1401 with processing different from that of the control unit 602.
The control unit 1401 includes a feature extraction unit 1411, a propagation time calculation unit 1412, a blood pressure conversion unit 1413, and an individual difference correction unit 1414, in addition to including the same components as those in the control unit 602.
The feature extraction unit 1411 extracts, from a pulse wave, a feature for estimating blood pressure. Peaks of a percussion wave (PW) and a tidal wave (TW) exist in the pulse wave. The PW is depicted as a peak of the wave caused by the beat of the heart. Also, the TW is depicted as a beat reflected by a peripheral blood vessel of the leg. Furthermore, characteristic rises and falls, such as a dip (ND) that occurs when the aortic valve closes, are present in the pulse wave. Therefore, the feature extraction unit 1411 extracts peaks such as PW and TW and characteristic rises and falls, such as a dip, as features.
The propagation time calculation unit 1412 calculates a pulse wave propagation time based on the features of the pulse wave extracted by the feature extraction unit 1411. The pulse wave propagation time is a time necessary for pulse pressure waveform to propagate the length of the arterial tree.
The blood pressure conversion unit 1413 converts the calculated pulse wave propagation time to blood pressure. There is a correlative relationship between pulse wave propagation time and blood pressure. Therefore, the blood pressure conversion unit 1413 according to the present embodiment converts the pulse wave propagation time to blood pressure.
Any method may be used as the blood pressure conversion technique, one example being the technique introduced in the publication: Satomi Suzuki and Koji Oguri, “Cuffless Blood Pressure Estimation with Photoplethysmograph Signal by Classifying on Account of Cardiovascular Characteristics of Old Aged Patients”, The Transactions on Electrical and Electronic Engineering. C, A Publication of Electronics, Information and System Society, Vol. 130, Issue 2, pp. 261 to 266, 2010.
The individual difference correction unit 1414 performs correction based on individual differences with respect to the blood pressure converted by the blood pressure conversion unit 1413. Any techniques can be used for the correction techniques, one example being a correction that his performed by using an AI learning model trained based on parameters depicting an individual (for example, age, height, weight, and so on).
In the third embodiment, an example is described in which individual difference-based corrections are performed. However, blood pressure measurements are not limited to only to individual-based corrections, and thus corrections based on other factors may be performed. As an example, a sticker-type pulse wave sensor according to the present variation has a built-in acceleration sensor.
The acceleration sensor included in the sticker-type pulse wave sensor according to present variation transmits a measurement result to the control device 1400. Also, the control device 1400 calculates a relative positional relationship between the position of the sticker-type pulse wave sensor and the heart based on the measurement result of the acceleration sensor and corrects the blood pressure based on the positional relationship. It is to be noted that the blood correction technique performed based on the relative positional relationship is not limited to known techniques, and thus any technique may be used.
It is conceivable that as the relative positional relationship of the sticker-type pulse wave sensor and the heart changes, an error occurs in the blood pressure measurement. To address this, the control device 1400 of the present variation calculates the relative positional relationship and performs blood pressure correction based on the positional relationship, and thus the accuracy of blood pressure estimations can be increased.
The technique involving the use of the acceleration sensor in the present variation is by no means a limitation and thus another sensor such as a level that detects angular deviations with the direction of gravity may be used to detect a relative position of an arm or the like to which the sticker-type pulse wave sensor is affixed. Also, it is conceivable to use an acceleration sensor of Micro Electro Mechanical Systems (MEMS) that are mass-produced and are low in cost due to smartphones.
Also, initial settings and the like regarding the relative positional relationship between the sticker-type pulse wave sensor and the heart may be set by the test subject via a mobile terminal that can communicate with the sticker-type pulse wave sensor.
As a setting technique, it is conceivable to, for example, instruct the sticker-type pulse wave sensor via the mobile terminal to set, as an initial state, a state in which the arm has been lowered vertically.
The technique for calculating the relative position of an arm or the like is described. For example, the sticker-type pulse wave sensor adds up the degree of acceleration received from the acceleration sensor with respect to each of the three axes of the acceleration sensor. By converting the sum totals of each of the three axes to movement distances of each of the three axes, the extent to which the part, to which the acceleration sensor is affixed, such as the arm, moves, can be calculated.
In other words, although the upper arm portion and the like of the test subject can move at various angles, the three-axes acceleration sensor is used in the present variation. By doing so, the body actions such as the raising and lower of an arm and body actions such as walking, standing, and the like can be differentiated. Therefore, the control device of the sticker-type pulse wave sensor according to the present variation can calculate the raising and lowering of the arm based on signals from the acceleration sensor and can detect a difference in height with heart to make corrections.
An example is described in LEDs are arranged around the PD 114 of the sticker-type pulse wave sensor according to the aforementioned embodiments in four directions. However, such an arrangement example is by no means a limitation. As such, in the fourth embodiment, an example is described in which the PD 114 (light detector) and the LED 113 are arranged in one-to-one correspondence. The sticker-type pulse wave sensor according to the present embodiment is affixed such that a line segment connecting the PD 114 and the LED unit 113 is perpendicular with respect to the artery running direction of the test subject.
Incidentally, in a typical pulse wave measurement, the main purpose is to provide information such as the oxygen saturation level and the number of pulse waves, for example. With respect to this, when a blood pressure estimation is to be made from the pulse wave sensor, there is demand for extremely high-accuracy waveform measurement of a pulse wave on the order of 1 msec. If an error as high as 10 msec occurs with respect to the relative position characteristic peak of a pulse wave, an error of ±10 mmHg will, in turn, occur with respect to the blood pressure estimation. As such, there is demand for extremely high-accuracy waveform measurement of a pulse wave by sphygmomanometer using a pulse wave sensor.
The pulse wave propagates along an artery. When the PD (detecting device) and the LED (light emitting device) are arrayed in parallel to the traveling direction, the light propagation path also becomes parallel, and thus the position near the heart and the position far from the heart are both encompassed. A deviation between the time at which the pulse wave propagates to the portion close heart and the time at which the pulse wave propagates to the portion far from the heart occurs equal to the speed of propagation. The deviation is approximately a pulse wave propagation time of 1 msec with respect to a 10 mm length of artery, and when this deviation occurs, a blood pressure estimation error will be approximately several mmHg for high accuracy pulse wave time measurement.
In order to address this, in the sticker-type pulse wave sensor according to the present embodiment, the PD (detecting device) 114 and the LED (light emitting device) 113 are arrayed such that the propagation path is perpendicular to the traveling direction of the artery. In other words, since the light propagation path and the traveling direction of the artery are perpendicular to each other, the PD (detecting device) 114 and the LED (light emitting device) 113 are at substantially the same distance with respect to the heart, and thus error can be suppressed.
It is considered that the sticker-type pulse wave sensor according to the present embodiment is affixed to the upper arm, for example. The sticker-type pulse wave sensor can be fixed for one day or longer (may be even two to three days, for example) depending on the adhesive layer, as in the aforementioned embodiments. For the upper arm as well, the inner side is preferable because the travelling position of the artery is close and there are fewer muscle artifacts.
For the sticker-type pulse wave sensor according to the aforementioned embodiments, a technique is described in which there is one PD and either a pulse wave or blood pressure is measured. However, measurement may be performed using multiple PDs. As such, in the fifth embodiment, an example is described in which multiple PDs are used.
The PD-LED unit 1501 is a combination of a PD 1511 and an LED 1512, and the PD 1511 detects light output from the LED 1512. In the present embodiment as well, a shielding layer (not illustrated) is provided between the PD 1511 and the LED 1512 as is the case for those in the previously-described embodiments.
The PD-LED unit 1502 is a combination of a PD 1521 and an LED 1522, and the PD 1521 detects light output from the LED 1522. In the present embodiment as well, a shielding layer (not illustrated) is provided between the PD 1521 and the LED 1522 as is the case for those in the previously-described embodiments.
Similarly to that in the fourth embodiment, each of the PD-LED units 1501 and 1502 of the sticker-type pulse wave sensor 1500 are configured such that line segments connecting the PD and LED of the corresponding PD-LED units 1501 and 1502 are perpendicular to the artery running direction of test subject P8.
Furthermore, in the present embodiment, the PD-LED unit 1501 and the PD-LED unit 1502 are separated from each other by a predetermined distance L1. The distance L1 may be adjusted to suit the embodiment, and the distance L1 may be 10 cm, for example.
A control device 1503 measures a pulse wave and blood pressure based on signals from the PD-LED unit 1501 and 1502.
At such timing, the control device 1503 according to the present embodiment measures the pulse wave and the like by using the multiple PDs, that is, the PD 1511 and the PD 1521. The control device 1503 detects, from the multiple PDs 1511 and 1521, a common pulse wave having a phase shift corresponding to the time equivalent to the distance L1 between the PDs 1511 and 1521.
In other words, the control device 1503 calculates the pulse wave propagation time by taking into consideration the quantified phase shift and the feature of the pulse wave calculated from each of the PDs 1511 and 1521. In the present embodiment, the calculation of a more accurate pulse wave propagation time is achieved by taking into consideration the measurement results of the multiple PDs 1511 and 1521 and the distance between the PDs 1511 and 1521.
Furthermore, the control device 1503 performs a conversion into blood pressure based on the calculated pulse wave propagation time. By doing so, highly accurate blood pressure measurement can be achieved.
The present embodiment is by no means limited to the affixing of the sticker-type pulse wave sensor 1500 to the upper arm portion.
The multiple PD-LED units are not limited to a form in which the multiple PD-LED units are provided on a single flat component as is the case for the sticker-type pulse wave sensor 1500 according to the fifth embodiment. As such, in the sixth embodiment, a case in which two sticker-type pulse wave sensors are used is described.
In other words, in the present embodiment, the two sticker-type pulse wave sensors 1701 and 1702 are respectively affixed to the upper portion and to the lower portion of the upper arm. Since the distance between the two sticker-type pulse wave sensors 1701 and 1702 is set, a more accurate pulse wave propagation time can be calculated based on the phase shift between the two sticker-type pulse wave sensors 1701 and 1702.
The sticker-type pulse wave sensor 1702 includes an LED 1721, a PD 1722, and a communication device 1723. The PD 1722 detects light output from the LED 1721. In the present embodiment as well, a shielding layer (not illustrated) is provided between the LED 1721 and the PD 1722 as is the case for those in the previously-described embodiments. Also, the communication device 1723 transmits the detection result of the PD 1722 to a control device 1713.
The sticker-type pulse wave sensor 1701 includes an LED 1711, a PD 1712, and the control device 1713. The PD 1712 detects light output form the LED 1711. In the present embodiment as well, a shielding layer (not illustrated) is provided between the PD 1712 and the LED 1711 as is the case for those in the previously-described embodiment. Also, the control device 1713 performs a blood pressure measurement based on the detection result received from the communication device 1723 and a detection result of the PD 1712. The blood pressure measurement technique is omitted as the technique is the same as that of the fifth embodiment.
In the aforementioned embodiments, a technique is described in which blood pressure is measured based on a pulse wave. However, the aforementioned embodiments are not limited to a technique using only a pulse wave when measuring blood pressure. Therefore, in the seventh embodiment, a case is described in which blood pressure is measured using a pulse wave and an electrocardiogram.
The sticker-type pulse wave sensor 1800 includes a PD 1811, an LED 1812, and a control device 1813. The PD 1811 detects light output from the LED 1812. In the present embodiment as well, a shielding layer (not illustrated) is provided between the PD 1811 and the LED 1812 as is the case for those in the previously-described embodiments.
Also, the control device 1813 of the sticker-type pulse wave sensor 1800 receives the detection results of the electrocardiogram-use electrode (−) 1851 and the electrocardiogram-use electrode (+) 1852. Then, the control device 1813 performs a blood pressure measurement based on the PD 1811 the detection results from electrocardiogram-use electrode (−) 1851 and the electrocardiogram-use electrode (+) 1852. Thus, the sticker-type pulse wave sensor 1800 also functions as a sphygmomanometer using a pulse wave and an electrocardiogram.
Incidentally, typical electrocardiogram involves a technique in which an electrical signal generated in conjunction with a muscle contraction of the heart. The electrodes of the electrocardiogram are detected by the potential difference between the positive and negative electrodes. Generally, the potential can be detected by attaching electrodes to the left and right of the heart.
Therefore, in the present embodiment, electrodes are fixedly placed on the right foot and the left foot. By fixedly placing the electrodes, the heart can be crossed as a current path, and thus the electrocardiogram (electrocardiogram waveform) can be detected with high accuracy.
Furthermore, in order to enhance the accuracy of a blood pressure measurement, it is necessary to accurately detect the pulse wave propagation time. The pulse wave propagation time is the time it takes for the pulse wave generated by a pulsation of the heart to propagate. Therefore, in the present embodiment, the pulse wave propagation time is calculated by combining the electrocardiogram for detecting the pulsation of the heart and the pulse wave.
Also, the sticker-type pulse wave sensor 1800 may be affixed to a heel of a foot, for example. Since peripheral nerves are concentrated in the foot (the heel, for example), the measurement accuracy can be enhanced.
For example, for a test subject in an intensive care unit or the like, the foot can be easily accessed because there are no other sensors fixedly placed there. Since such a test subject in unlikely to stand up much, the sticker-type pulse wave sensor 1800 can be provided on the sole of the foot or the like. For a test subject such as this who is often sleeping, the measurement can be easily performed because the location is easily accessible by a medical practitioner. Therefore, blood pressure can be easily measured continuously over a period of 24 hours.
The control device 1813 is different from the control device 1400 according to the above-described embodiment in that the control device 1813 includes a control unit 1901 whose processing is different from that of the control unit 1401.
In the control unit 1901, compared to the control unit 1401, an electrocardiogram peak detection unit 1911 is added, and processing of a propagation time calculation unit 1912 is changed.
The electrocardiogram peak detection unit 1911 measures the electrocardiogram from the potential difference between the right foot and the left foot, which is the detection result of the electrocardiogram-use electrode (−) 1851 and the electrocardiogram-use electrode (+) 1852. Furthermore, the electrocardiogram peak detection unit 1911 detects, from the electrocardiogram, an R peak which is a pulsation of the heart.
The propagation time calculation unit 1412 calculates a pulse wave propagation time based on the feature of the pulse wave extracted by the feature extraction unit 1411 and the R peak detected by the electrocardiogram peak detection unit 1911. Specifically, the propagation time calculation unit 1412 calculates the pulse wave propagation time by measuring the time delay between the R peak and the rising position of the pulse wave. Subsequent processing is substantially the same as those in the previous-described embodiment and thus description is omitted.
In the present embodiment, by measuring biological information such as blood pressure in combination with an electrocardiogram, influences such as noise due to body movements can be reduced, and thus highly accurate blood pressure estimation can be achieved.
In the above-described embodiments, application examples of the sticker-type pulse wave sensor were described. In contrast to these, in the present embodiment, a diagnostic service involving use of the sticker-type pulse wave sensor is described. The sticker-type pulse wave sensor also functions as a sphygmomanometer as described above. Therefore, this can also be referred as a diagnostic service involving use of a sphygmomanometer.
Conventionally, when 24-hour continuous measurement is to be performed, a cuff-type sphygmomanometer is fixedly placed by hand by a nurse, and therefore, a visit to the home of the patient by the nurse or an outpatient visit is necessary. Moreover, the measurement-based diagnosis cannot be carried out until the 24-hours continuous measurement is performed, the patient revisits the doctor, and the doctor reviews the measurement results. If the cuff comes off or an measurement error occurs during measurement, it is difficult to make corrections midway through the procedure.
By performing the steps described below in the diagnostic procedure according to the present embodiment, more a simplified long-term measurement can be achieved.
A health examination institution sends a blood pressure examination kit including a sticker-type pulse wave sensor in advance to the person who is to undergo a medical examination, i.e., the medical examination examinee. (S2001).
The medical examination examinee wears the received sticker-type pulse wave sensor (which also functions as a sphygmomanometer) for 24 hours by affixing it the part of the body to be diagnosed (S2002) At such timing, the medical examination examinee sets the sticker-type pulse wave sensor and the mobile terminal 2011 to be able to communicate.
The sticker-type pulse wave sensor (an example of the first transmitting unit) transmits the blood pressure estimation result and the detection result (an example of information determined based on the pulse wave of the test subject) of the PD 2112 to the mobile terminal 2011 (an example of the first communication device) (S2003: an example of the first transmitting step). Then, the mobile terminal 2011 (an example of the second transmitting unit) transmits measurement data (including blood pressure estimation results and PD 2112 detection results) indicating the measurement results of the information regarding blood pressure to the cloud system 2012 (an example of the second communication apparatus) via the public network (S2004: an example of the second transmission step).
The cloud system 2012 manages measurement data indicating the estimation results of the blood pressure and the detection results of the PD 2112. The cloud system 2012 regularly confirms malfunction of the sticker-type pulse wave sensor and erroneous detection of the sticker-type pulse wave sensor based on the received measurement data, and estimates the blood pressure value of the medical examination examinee based on the received measurement data. Since the estimation takes into account various parameters, highly-accurate estimation, estimation can be performed with higher accuracy than with the estimation results of the sticker-type pulse wave sensor.
The cloud system 2012 transmits information regarding the estimated blood pressure value to the information processing device 2013 of the health examination institution (S2005). The information processing device 2013 (an example of the display unit) of the health examination institution displays information regarding the estimated blood pressure value, and the physician makes a diagnosis of the medical examination examinee, for example, a diagnosis of hypertension, based on the information regarding the estimated blood pressure value (S2006: an example of the display step).
The information processing device 2013 (an example of the third transmitting unit) transmits the diagnostic result of hypertension or the like to the mobile terminal 2011 of the medical examination examinee (S2007: an example of the third transmission step) by operation performed by the physician.
The medical examination examinee confirms the diagnostic result of hypertension or the like on the mobile terminal 2011 (S2008). After doing so, the medical examination examinee discards the blood pressure test kid including the sticker-type pulse wave sensor (S2009).
The sticker-type pulse wave sensor 2014 includes an LED 2111, the PD 2112, a control device 2113, and a battery 2114. The sticker-type pulse wave sensor 2014 is driven by power supplied from the battery 2114, and the PD 2112 detects light reflected by a body part of the medical examination examinee among the light emitted from the LED 2111. The sticker-type pulse wave sensor 2014 according to the present embodiment also includes a shielding layer as in the previously-described embodiments. The sticker-type pulse wave sensor 2014 is driven by power supplied from the battery 2114 and the PD 2112 detects light reflected by a body part of the medical examination examinee among the light emitted from the LED 2111. The control unit 2015 of the control device 2113 measures blood pressure or the like from the detection result of the PD 2112, and transmits the measurement result, the detection result of the PD 2112, or the like to the mobile terminal 2011 by using a wireless communication unit 115. The blood pressure estimation technique is substantially the same as same omitted as in the above-described embodiment.
The mobile terminal 2011 includes an interface 2121, a control unit 2122, storage unit 2123, a display unit 2124, and a wireless communication unit 2125. A program that performs the processing below is executed in the control unit 2122.
The wireless communication unit 2125 stores the detection result or the like received from the sticker-type pulse wave sensor 2014 into the storage unit 2123 and transmits the detection result or the like to the cloud system 2012.
Further, in the mobile terminal 2011, the display unit 2124 displays the result of blood pressure estimation, which is estimated based on the detection result, in accordance with the operation received by the interface 2121 from the medical examination examinee.
The sticker-type pulse wave sensor 2014 initiates the start of the timer after being affixed to a body part of the medical examination examinee (S2201).
The PD 2112 of the sticker-type pulse wave sensor 2014 starts detection (S2202). The detection interval of the PD 2112 is 1 kHz, for example.
The LED 2111 of the sticker-type pulse wave sensor 2014 starts detection (S2203). The light emission interval of the LED 2111 is 100 Hz, for example.
The pulse wave calculation unit 614 calculates a pulse wave (an example of information related to the pulse wave) based on the detection information that is the detection result of the PD 2112 (S2204).
The feature extraction unit 1411 extracts a feature (for example, peaks of the PW and the TW, and so on) (S2205)
The propagation time calculation unit 1412 calculates the pulse wave propagation time based on the feature of the pulse wave (S2206).
The blood pressure conversion unit 1413 estimates the blood pressure based on the calculated pulse wave propagation time (S2207). At such timing, a correction may be made based on individual differences or the like.
The wireless communication unit 115 transmits both the estimation result of the blood pressure estimated based on the pulse wave and the detection result of the PD 2112 (an example of information obtained based on the pulse wave of the test subject) to the mobile terminal 2011 (an example of the first communication device) (S2208).
A wireless communication unit 2125 of the mobile terminal 2011 receives the estimation result of the blood pressure and the detection result of the PD 2112 (S2211).
The control unit 2122 of the mobile terminal 2011 stores the received blood pressure estimation result and the detection result of the PD 2112 into the storage unit 2123, and displays the blood pressure estimation result on the display unit 2124 in response to an operation from the user (S2212).
The wireless communication unit 2125 of the mobile terminal 2011 transmits the blood pressure estimation result and the detection result of the PD 2112 to the cloud system 2012 (an example of the second communication apparatus) via a public network (S2213).
The cloud system 2012 receives the estimation of the blood pressure and the detection result of the PD 2112 from the mobile terminal 2011 (S2221).
The cloud system 2012 accumulates information indicating the estimation result of the blood pressure and the detection result of the PD 2112 (S2222).
The cloud system 2012 estimates blood pressure based on the accumulated information (S2223). Since various parameters are stored in the cloud system 2012, blood pressure estimation can be performed with higher accuracy than with the sticker-type pulse wave sensor 2014.
In the diagnosis system according to the present embodiment, since the above-described configuration is provided, the diagnostic result of the physician can be obtained easily without any need for the medical examination examinee to go to the hospital or for a medical practitioner to visit the home of the medical examination examinee.
In the diagnostic system according to the present embodiment, a determination can be made as to whether or not the cloud system 2012 is operating normally based on information received in real-time from the sticker-type pulse wave sensor 2014. Furthermore, since a third party such as a medical practitioner can confirm the measurement result, a blood pressure estimation error due to malfunction can be suppressed.
In recent years, the cost of general purpose semiconductors has been decreasing owing to the advancement of IoT. Therefore, even when the sticker-type pulse wave sensor is used only once and disposed thereafter, this sticker-type pulse wave sensor can be realized at a low cost. Disposability provides various advantages, such as eliminating the need for reuse of the adhesive layer, achieving a simple waterproof package that does not require any charging, saving one the trouble of having to send the sensor back by mail, and reducing sanitary considerations.
In the sticker-type pulse wave sensor, the blood pressure can be estimated based on the waveform of the detected pulse wave, and the change in the blood pressure value can be recorded in the cloud system 2012 or the like. For example, variations in blood pressure during the day and night are important information, and in this embodiment, such information can be accumulated in the cloud system 2012 with the above-described configuration. Furthermore, a medical practitioner can confirm such information. This makes it easier to determine subtypes of hypertension such as masked hypertension and white-coat hypertension. Furthermore, the medical examination examinee can easily receive the determination result.
The configuration of the sticker-type pulse wave sensor is not limited to the above-described embodiments, and various aspects can be considered. Therefore, in the ninth embodiment, another aspect of the sticker-type pulse wave sensor is described together with processing involving use of the sticker-type pulse wave sensor.
The sticker-type pulse wave sensor 2300 according to the present embodiment further includes a first electrode 2301 and a second electrode 2302 compared to the sticker-type pulse wave sensor 100. Before the sticker-type pulse wave sensor 2300 is fixedly placed on the test subject, a protective sheet 2303 affixed to the adhesive layer 203.
The protective sheet 2303 is manufactured such that the protective sheet 2303 contains, for example, carbon black at a predetermined ratio or more. Therefore, the protective sheet 2303 has conductivity.
In other words, the electrical conduction between the first electrode 2301 and the second electrode 2302 changes depending on the presence or absence of the protective sheet 2303. A signal indicating a change in electrical conduction between the first electrode 2301 and the second electrode 2302 is output to the control device 112. Thus, the control device 112 can recognize that the protective sheet 2303 has been peeled off. Upon confirming that the protective sheet 2303 has been peeled off, the control device 112 can start measuring the biological information about the test subject.
A sensor ID for identifying the sticker-type pulse wave sensor 2300 may be stored in the storage unit 116 of the control device 112. The sensor ID may be identification information for a disposable.
The sticker-type pulse wave sensor 2300 according to the present embodiment is used, for example, when the diagnostic system according to the present embodiment is to determine a subtype of hypertension such as masked hypertension or white-coat hypertension.
For example, the sticker-type pulse wave sensor 2300 may be a disposable measuring device as those in above-described embodiments. Therefore, the sticker-type pulse wave sensor 2300 may be delivered to the home of the test subject. Thus, the sticker-type pulse wave sensor 2300 can enable easy measurement at the home of the test subject. Moreover, the diagnostic system according to the present embodiment can obtain the determination of the medical institution based on the measurement result of the sticker-type pulse wave sensor 2300.
With the diagnostic service according to the present embodiment, a diagnosis can be made for each test subject.
As shown in
The production facility according to the present embodiment produces a sticker-type pulse wave sensor 2300 to which a sensor ID is assigned. The sensor ID is registered, for example, in the storage unit 116 in the control device 112 of the sticker-type pulse wave sensor 2300.
At the production facility the sensor ID is printed on the package when the sticker-type pulse wave sensor 2300 is manufactured. At the production facility, the sticker-type pulse wave sensor 2300 is stored in a package. In the present embodiment, one sticker-type pulse wave sensor 2300 is stored in one package. The sensor ID printed on the package is a sensor ID for identifying the stored sticker-type pulse wave sensor 2300. The production facility sends the sticker-type pulse wave sensor 2300 stored in the package to the medical institution.
The medical institution is an institution for diagnosing test subjects and includes medical personnel and a terminal 2402 used by the medical personnel.
The medical institution sends the sticker-type pulse wave sensor 2300, which is sent from the production institution, to the test subject to be diagnosed. In the present embodiment, an example in which the medical institution sends the sticker-type pulse wave sensor 2300 to the test subject is described, but the method of sending the sticker-type pulse wave sensor 2300 to the test subject is by no means limited, and for example, the production facility may send the sticker-type pulse wave sensor 2300 directly to the test subject or may send the sticker-type pulse wave sensor 2300 to the test subject by way of another institution such as a pharmacist.
The test subject carries a communication terminal 2411. The communication terminal 2411 has the same configuration as the mobile terminal 2011 described above. The communication terminal 2411 can communicate with various communication devices (a cloud server 2401, for example) connected to a public network (not illustrated).
The cloud server 2401 manages information regarding the test subject necessary for the diagnosis involving use of the sticker-type pulse wave sensor 2300. In the present embodiment, the cloud server 2401 is composed of one or a plurality of communication devices (including the information processing device) terminals, and can provide various services.
The test subject uses the communication terminal 2411 to access the address provided together with the sticker-type pulse wave sensor 2300 by the medical institution. By doing so, the communication terminal 2411 downloads and installs an application for performing the measurement. Thereafter, the communication terminal 2411 executes the application to display an input screen for inputting attributes of the test subject.
The communication terminal 2411 receives the input of the sensor ID indicated on the package and information for identifying the test subject (for example, the test subject ID) via the input screen. The communication terminal 2411 transmits the received the sensor ID and the test subject ID, which were input, to the cloud server 2401.
By doing so, the cloud server 2401 registers the sensor ID and the test subject ID in association with each other. Table 1 illustrates the correspondence relationship between the sensor ID and the test subject ID registered in the cloud server 2401.
Further, the communication terminal 2411 may receive the input of the attribute of the test subject through the input screen. The attributes for which inputs are received include, for example, the name of the test subject, the address of the test subject, and the telephone number (an example of identification information of the communication terminal) of the communication terminal (a smartphone, for example) used by the test subject. The attribute is by no means limited to such information, and may include various types of information such as a password, age, gender, weight, presence or absence of any underlying disease, details of the underlying disease, physical condition, body temperature, and the like. Also, the communication terminal 2411 associates the sensor ID, the test subject ID, and the attribute with one another, and transmits them to the cloud server 2401. By doing so, the cloud server 2401 can manage the test subject ID and the attribute of the test subject in association with each other.
In the present embodiment, the preparation for measurement involving use of the sticker-type pulse wave sensor 2300 of the test subject is performed by executing the processing corresponding to the above-described inputs. The measurement of the test subject is, for example, a 24-hour measurement of the blood pressure or the like.
The medical institution may also transmit information (a dataset) regarding the test subject together with the test subject ID to the cloud server 2401. By doing so, the cloud server 2401 can manage information regarding the test subject in association with the test subject ID. The information (dataset) regarding the test subject includes, for example, other measurement data such as a complete medical checkup held by the medical institution. Hence, a detailed diagnosis can be realized.
The test subject fixedly places the sticker-type pulse wave sensor 2300 on an upper arm portion, a clavicle portion, or the like in accordance with the guidance of the installed application.
At such timing, the test subject peels off the protective sheet 2303 from the sticker-type pulse wave sensor 2300. The control device 112 of the sticker-type pulse wave sensor 2300 can recognize that the protective sheet 2303 has been peeled off based on a signal indicating a change in electrical conduction between the first electrode 2301 and the second electrode 2302. Upon doing so, the control device 112 starts the control for performing measurement.
The communication terminal 2411 and the sticker-type pulse wave sensor 2300 are connected by wireless communication. Thus, the application of the communication terminal 2411 confirms that the sensor ID for which an input was received matches with the sensor ID included in the information transmitted from the sticker-type pulse wave sensor 2300. Then, application of the communication terminal 2411 transmits the confirmation result to the cloud server 2401. By doing so, the cloud server 2401 can recognize whether or not the associated information is appropriate.
Thereafter, the sticker-type pulse wave sensor 2300 performs starts measurement and then transmits information (hereinafter, referred to as measurement information) indicating the measurement result to the communication terminal 2411. Then, the communication terminal 2411 transmits the sensor ID together with the measurement information to the cloud server 2401. The cloud server 2401 measurement information stores the measurement information, which is received together with the sensor ID, in association with the test subject ID corresponding to the sensor ID.
The terminal 2402 of the medical institution acquires and displays the information of the test subject and the information of the test subject and measurement information from the cloud server 2401. The terminal 2402 of a medical institution receives an input of a diagnostic result of the test subject from a physician. Thereafter, the terminal 2402 of the medical institution transmits the diagnostic result to the communication terminal 2411 of the test subject. The measurement information used in the diagnosis includes, for example, a change in the blood pressure of the test subject over a period of 24 hours, but the diagnosis target is by no means limited to blood pressure, and as such, other information may be used.
In the present embodiment, although an example is described in which the communication terminal 2411 transmits the sensor ID and the test subject ID, the transmission of the sensor ID and the test subject ID is by no means limited to the communication terminal 2411. For example, the terminal 2402 of the medical institution may transmit, to the cloud server 2401, the sensor ID of the sticker-type pulse wave sensor 2300 and the information (including the test subject ID) of the test subject to whom the sticker-type pulse wave sensor 2300 is sent.
By managing the sensor ID of the sticker-type pulse wave sensor 2300, the cloud server 2401 can reissue the same sensor ID. Although the disposable sticker-type pulse wave sensor requires a ID countless times, because the ID is reused, there is no lack of IDs.
In the present embodiment, the medical institution is by no means limited to a method for diagnosing the test subject by referring to the measurement information (for example, a change in blood pressure over a period of 24 hours) received from the cloud server 2401.
In other words, the cloud server 2401 according to the present embodiment may correct the measurement information to facilitate diagnosis prior to transmission to the terminal 2402 of the medical institution. In the present embodiment, the cloud server 2401 stores the information of the test subject illustrated in Table 2, for example. The information of the test subject illustrated in Table 2 is stored in association with the test subject ID (the test subject ID: A000001, for example). In order for the cloud server 2401 to accumulate the test subject information (e.g., age, gender, weight, height, blood test value (cholesterol levels), blood glucose level, and any underlying disease (by selection)) illustrated in Table 2, for example, the communication terminal 2411 may receive the input of the information on the input screen, for example. The information of the test subject to be used for correction is not limited to the information input by the test subject, and as such, may be, for example, the results of a blood test or the like performed at the same or another medical institution after obtaining the consent of the test subject.
Further, the cloud server 2401 extracts the feature of the test subject from the information regarding the test subject, and models the test subject based on the extracted feature, and models the test subject. After doing so, the cloud server 2401 corrects the measurement information based on the model of the test subject. Then, the cloud server 2401 transmits the corrected measurement information to the terminal 2402 of the medical institution. By performing this processing, the medical institution can make a diagnosis in consideration of various factors such as age and body shape, so that a highly accurate diagnosis can be realized.
In the aforementioned embodiments, an example is described in which a determined is made based on the measurement result, such as blood pressure or the like of the test subject. However, when diagnosing a test subject, it is preferable perform the diagnosis in consideration of an event actually being performed by the test subject. Therefore, in the diagnostic system according to the tenth embodiment, a case where an event being performed by the test subject is input is described.
The control device 112 according to the present embodiment may include an MPU 112A as a configuration for executing a program. The MPU 112A can measure the test subject by executing the program stored in the storage unit 116.
As illustrated in
As illustrated in
The acceleration sensor 2501 detects acceleration of the test subject and outputs a detection result to a control device 112. The microphone 2502 detects sound around the test subject (including conversation and the like with the test subject) and outputs the detection result to the control device 112.
The control device 112 detects the body temperature of the test subject and the ambient air temperature (or indoor temperature) of the test subject based on signals input from the first thermocouple 2503 and the second thermocouple 2504. Although the present embodiment describes an example of detecting the body temperature of the test subject and the ambient temperature (or indoor temperature) of the test subject, one or more of the body temperature of the test subject and the ambient temperature (or room temperature) of the test subject may be detected.
The control device 112 determines what state (hereinafter, referred to as event information) the test subject is in based on the acceleration sensor 2501, the microphone 2502, and the first and second thermocouples 2503 and 2504. The event information may be, for example, an item illustrated in Table 3 below.
In this manner, the control device 112 acquires, based on the detection result of the above-described sensor, an event number (an example of the event information) indicating whether the test subject is in a state of getting up after sleeping, going to bed, going to the bathroom, bathing, standing, sitting, being administered medicine, eating, drinking alcohol, or exercising. Table 3 illustrates an example of an event number and other events may be included. The event number is preferably information in which items that affect blood pressure are divided into categories.
Then, the control device 112 transmits the acquired event number in association with the acquired time to the communication terminal 2411.
The communication terminal 2411 can display the event number in association with blood pressure as a time series. Then, the test subject can confirm whether or not the event number displayed on the communication terminal 2411 is consistent with the actual action. If it is determined that even number is not consistent with the actual action, the test subject may perform an operation to correct the event number with respect to the communication terminal 2411.
The communication terminal 2411 transmits the time at which measurement was performed, the event number, and the measured information (including blood pressure) in association with the sensor ID in association with the measurement information (including blood pressure) to the cloud server 2401.
The cloud server 2401 receives the measurement information in time-series order. The measurement information includes information for identifying the blood pressure. In other words, the cloud server 2401 receives changes (waveform, for example) in the blood pressure representing the blood pressure of the test subject in time-series order, as acquired by the sticker-type pulse wave sensor 2500.
The cloud server 2401 receives the measurement information together with an event number indicating the event that occurred with the test subject in the time-series order.
The cloud server 2401 stores the information (measurement information and event numbers) received in time-series order in association with the test subject ID.
The acquisition of event information is not limited to the technique performed by the control device 112 of the sticker-type pulse wave sensor 2500. For example, the communication terminal 2411 of the test subject may identify the event number (example of event information) based on the information input from the sticker-type pulse wave sensor 2500. The event number may be acquired by any technique, for example, by using an AI-trained learning model trained by the events and the detection results of the sensor.
The present embodiment is not limited to an example in which the sticker-type pulse wave sensor 2500 acquires an event number (an example of event information). For example, the communication terminal 2411 of the test subject may have an event input function.
The communication terminal 2411 can receive inputs of event information performed by the test subject, for example. Event numbers that can be input include those that are of value to the physician's diagnosis, such as, for example, taking medicine, eating, going to the bathroom, bathing, and so on. For example, the communication terminal 2411 can receive a selection of an event number from a display screen of an application. When the input of the event number is received, a time stamp is issued and the communication terminal 2411 transmits, to the cloud server 2401, the event number in association with vital measurement information including blood pressure.
Thus, the cloud server 2401 can receive and store the measurement information and the event information in time-series order. The medical institution can evaluate drug efficacy or the like based on the information stored in the cloud server 2401.
Selectable event information may include, for example, taking medicine, eating (bread, rice, one slice of bread, two slices of bread, one serving of rice, two servings of rice, . . . ), drinking alcohol (type and amount), going to the bathroom, sleeping, and exercising (running and cycling). Further, the communication terminal 2411 may be configured such that detailed information to be conveyed to a physician, such as the contents of meals, body temperature at time of temperature check, physical condition, or mood, can be input by voice, test, or the like.
The cloud server 2401 generates, based on the accumulated information and in time-series order, a graph in which changes in blood pressure (changes in measurement information) of the test subject and events in the time-series order as they occurred during measurement of the test subject are illustrated in superimposed form. Then, the cloud server 2401 transmits, to the terminal of the medical institution, a graph in which the changes in blood pressure and the events in time-series order are superimposed onto each other.
The terminal 2402 of the medical institution displays a graph in which the blood pressure changes and the events are superimposed onto each other. The graph in which the changes in the blood pressure of the test subject and the events are superimposed onto each other in time-series order is not limited to the technique generated by the cloud server 2401, and as such, may be generated by the terminal 2402 of the medical institution. For example, the terminal 2402 of the medical institution includes an MPU as a configuration for executing a program, and the MPU executes the program stored in a storage unit (not illustrated) to generate a graph or display information necessary for diagnosis.
Thus, for example, the terminal 2402 of the medical institution can display the blood pressure of the test subject in time series based on the measurement information acquired from the sticker-type pulse wave sensor 2500.
If in the graph displayed on the terminal 2402 of the medical institution, for example, the timing of bathing coincides with the sudden rise in blood pressure and, the medical personnel belonging to the medical institution may diagnose that the sudden rise in blood pressure is not problematic. In this way, by displaying the measurement information in association with the event, the noise component displayed on the graph can be disregarded upon visual inspection, and thus the diagnostic accuracy can be improved.
Next, the displaying at the medical institution is described. The terminal of the medical institution can display time-series information (blood pressure waveform) of blood pressure measured by the sticker-type pulse wave sensor 2500 and stored on the cloud server 2401.
The terminal 2402 of the medical institution can recognize blood pressure during sleep by displaying event information (icons indicating sleep and getting up after sleeping) and time-series information of continuous blood pressure (waveform data 2701) in a superimposed manner. Thus, medical personnel can easily determine whether blood pressure during sleep is higher or lower than blood pressure during the daytime. Thus, the present embodiment can improve the accuracy of the 24 hour blood pressure diagnosis by the medical personnel.
Furthermore, the diagnostic system according to the present embodiment has a function of performing pattern matching.
The cloud server 2401 according to the present embodiment stores a waveform model (an example of a change model) representing a predetermined blood pressure waveform (a time-series change in blood pressure) in a storage unit (not illustrated) for each classification representing characteristics of sleep of the test subject during sleep time.
Then, the cloud server 2401 extracts the time-series changes in the blood pressure determined based on the acquired measurement information. Then, the cloud server 2401 superimposes the events (starting of sleep and getting up after sleeping) indicated by the event information onto the time-series changes in the blood pressure, and extracts the time-series changes in the blood pressure during sleep based on the events.
Then, the cloud server 2401 identifies the classification of the test subject by performing pattern-matching between the time-series changes in the blood pressure extracted during the sleep and the time-series change model of the blood pressure. The classification of the test subject identified by the cloud server 2401 is output to the terminal 2402 of the medical institution. By doing so, the terminal 2402 of the medical institution can display a result of the pattern-matching on the cloud server 2401.
In the pattern-matching illustrated in
Further, the matching rate between the change in the time-series of the blood pressure of the test subject (waveform data 2701) by the cloud server 2401 and each of the four types of change models are calculated. The calculated matching rates are illustrated in Table 4.
Generally, a slightly lower blood pressure value during sleep is a healthy state, but a slightly higher change pattern (Riser type) or a pattern in which the blood pressure significant decreases (Extreme-dipper type) may become a health problem. The matching rates illustrated in Table 4 are calculated by the cloud server 2401, but may be calculated by another terminal such as the terminal 2402 of the medical institution. The matching rate may be calculated by any technique, for example, by using a correlation coefficient with a typical waveform.
Also, pattern-matching is not limited to changes in blood pressure in time-series during sleep. For example, in a case of early morning hypertension, the pattern-matching may be performed by patterning the timing with getting up after sleeping. When pattern-matching is performed, changes in blood pressure caused by going to the bathroom, going on a walk in the early morning, or exercising may affect the calculation of the matching rate. Therefore, when calculating the pattern-matching and the matching rates, the cloud server 2401 may exclude, the changes in the time series of the blood pressure of the test subject, the blood pressure fluctuations occurring at the same time as the event information affecting the pattern-matching, based on the event information described above from the change of the blood pressure of the test subject in the time-series.
The technique of the measurement of the blood pressure in the above-mentioned embodiment is described. However, the system described above may be used for purposes other than blood pressure measurement. Therefore, in the eleventh embodiment, for example, a state regarding stress of the test subject may be measured. For example, by holding a meeting with a plurality of subjects who are wearing the above-described sticker-type pulse wave sensors and performing measurements at the same time, stressors that cause stress can be objectively extracted, and interventions, such as the prompting of corrections, can also be implemented.
A stress measurement technique is implemented by affixing a 24-hour pulse wave sensor to the test subject in the same manner as the 24-hour blood pressure measurement described above. In the measurement of stress or the like, points that differ the measurement of blood pressure in the above-described embodiment are described. The differences are measurement of cerebral blood flow, modeling of the test subject, event input function, and speaker identification function.
In a diagnostic system according to the present embodiment, measurement is basically performed while the test subject engages in his or her normal everyday-life activities. This is because the purpose of the diagnostic system according to the present embodiment is to capture, as data, a disease in which blood pressure fluctuates due to any psychological effects caused by an external stimulus, one example of such a disease being known as workplace hypertension. In the diagnostic system according to the present embodiment, the diagnosis result of the cloud server 2401 may be transmitted to a communication terminal installed at a workplace so that a type of diagnosis other than a medical diagnosis can be performed.
In the diagnostic system according to the present embodiment, the test subject is psychologically affected consequently altering the autonomic nervous system, a determination is made by using an element that changes blood pressure. With the diagnostic system according to the present embodiment, hypertension medication for the test subject can be optimized, and when the blood pressure of the test subject increases, it is possible to notify the test subject or someone else that the blood pressure has increased, and to make the test subject aware of the increased blood pressure, thereby enabling intervention in the control of the blood pressure.
In this embodiment, the sticker-type pulse wave sensor 2500 is fixedly placed on the upper arm, and at the same time, another sticker-type pulse wave sensor is worn on the head.
The sticker-type pulse wave sensor 2900 is provided with surface-emitting lasers (VCSEL: Vertical-Cavity Surface-Emitting Laser) 2902 and 2903 in place of the LED 113. The surface-emitting lasers 2902 and 2903 output short-pulse laser beams. The sticker-type pulse wave sensor 2900 further includes a Single Photon Avalanche Diode (SPAD) 2901 as a detector. The sticker-type pulse wave sensor 2900 may have the LED 113 together with the surface-emitting lasers 2902 and 2903.
The distance from the surface-emitting lasers 2902 and 2903 to the SPAD 2901 is, for example, 30 mm. With this configuration, the light, which is output by the surface-emitting lasers 2902 and 2903, returning to the SPAD 2901 from the skin is minimized, and thus detection of cerebral blood flow occurring at the brain surface inside the skull is facilitated. Therefore, light shielding layer 2911 is provided between the surface-emitting laser 2902 and the SPAD 2901, and the shielding layer 121 is provided between the surface-emitting laser 2903 and the SPAD 2901.
The surface-emitting lasers 2902 and 2903 according to the present embodiment use, for example, a thin oxide confinement layer in order to keep a light confinement coefficient referred to as “gamma switch” low. Specifically, the surface-emitting lasers 2902 and 2903 are characterized in that a low refraction region is formed by oxide confinement, the thickness of the high refraction region that is not oxidized is 35 nm or less, and the thickness of the low refraction region at a position 3 μm from the tip of the boundary between the low refraction region and the high refraction region is 2 times or less the thickness of the high refraction region. By having this feature, the surface-emitting lasers 2902 and 2903 can stabilize sub-nanosecond short-pulse light emission. Wavelengths at which there is little optical absorption by water yet there is absorption by hemoglobin, such as 780 nm and 805 nm, are selected as the wavelengths at which light is emitted by the surface-emitting lasers 2903 and 2903. Further, as the wavelength of light emitted by the surface-emitting lasers 2902 and 2903, a wavelength of 940 nm at which the light absorption by water is small or a wavelength of 870 nm at which the detection sensitivity of the SPAD 2901 is high may be selected.
The SPAD 2901 is a light receiving unit having a sensor that is a single photon detecting element. The SPAD 2901 includes photoelectric conversion units (not illustrated) having a photoelectric conversion element for receiving light; a pulse generation unit (not illustrated) to generate a pulse signal corresponding to the amount of light received by the photoelectric conversion element; and a bit counter unit (not illustrated) to count the pulse signals. The bit counter unit is provided in each of the photoelectric conversion units in a distributed manner. By increasing the aperture ratio of the light-receiving region of each photoelectric conversion unit, the sensitivity of the SPAD 2901 is increased, and thus minute light diffused in the brain can be detected.
The sticker-type pulse wave sensor 2900 according to the present embodiment is affixed to three positions on the head of the test subject.
The temporal lobe, illustrated in
In the diagnostic system according to the present embodiment, the affixing positions of the sticker-type pulse wave sensor 2900 are merely examples, and as such, the affixing positions are by no means a limitation. In addition, although the present embodiment describes an example in which three sticker-type pulse wave sensors 2900 are affixed, the number of sticker-type pulse wave sensors 2900 to be affixed is not limited, and as such, the number may be two or less or four or more.
The sticker-type pulse wave sensor 2900 according to the present embodiment includes a microphone 2502. The microphone 2502 may be configured as a package of several millimeters, for example, by MEMS technology. Such an extremely small microphone 2502 is mounted on the flexible printed circuit board 101. The vocal sounds collected by the microphone 2502 may be stored in the storage unit 116 or may be stored in the communication terminal 2411 on the cloud server 2401 via the wireless communication unit 115. This makes it easy to confirm what has happened when the condition (e.g., blood pressure) of the test subject suddenly changes.
A cloud server 2401 accumulates voice data collected by the microphone 2502 from the sticker-type pulse wave sensor 2900 provided by each of the test subjects through the communication terminal 2411, and analyzes the accumulated voice data. In the analysis, for example, it is determined which of the test subjects the speaker of the vocal sounds (hereinafter, also referred to as voice) included in the voice data is. Any technique may be used for associating the voice with the test subject, including well-known techniques. For example, the speaker may be identified by performing similarity determination with the voice data registered in advance for each test subject.
In this embodiment, the cloud server 2401 identifies the event number related to the conversation based on the received measurement information and various types of information of the sticker-type pulse wave sensor 2900. However, in the present embodiment, the method of identifying the event number is not limited to the method where identification is performed by the cloud server 2401, and as such, the event number may be input from a test subject or the like via the communication terminal 2411.
The cloud server 2401 identifies the event number of the test subject based on the voice corresponding to the test subject and the measurement information of the test subject. Some of the identified event numbers are illustrated in Table 5. As illustrated in Table 5, even the event is determined to be a meeting, the event number corresponding to the test subject may be identified from among meeting A (lots of speech), the meeting B (little speech), and the meeting C (no speech) in accordance with the amount of speech. In addition, the cloud server 2401 identifies an event number corresponding to the content of work such as office work.
Then, a communication terminal provided in the workplace displays a screen illustrating the determination result of the cloud server 2401. On this screen, a score obtained by converting a blood pressure fluctuation range may be displayed together with events and blood pressure fluctuations illustrated in
In other words, the cloud server 2401 acquires multiple blood pressure waveforms representing the blood pressure of the test subject (body of the test subject) in the time series for each test subject from the measurement information acquired by the sticker-type pulse wave sensors 2500 and 2900. Further, the cloud server 2401 acquires an event number (example of conversation event information) indicating the timing of conversation with another person for each test subject from the voice data acquired together with the measurement information.
For each user (the test subject, for example) illustrated in
In the present embodiment, an example is given in which a one-on-one conversation is performed when the variation in blood pressure during conversation is measured. Although it is preferable that the test subjects be at rest before and during the conversation, the state of the test subjects and the state of the conversation are not limited, and as such any state may be used.
By calculating the score, the it is possible to objectively recognize which test subject's conversation causes an increase in blood pressure. In the present embodiment, by using the same technique, the stress level with respect to an event such as a conference or an interview can be compared and verified.
In the present embodiment, each of test subjects is equipped with the sticker-type pulse wave sensors 2500 and 2900. For example, one manager and several staff members of the manager may wear the same sticker-type pulse wave sensors 2500 and 2900 at the same time. In this case, individual interviews may be conducted between the manager and each staff member in a one-on-one format. In this embodiment, the blood pressure variation of each interview participant is calculated as a score. The calculation results are illustrated in Table 7.
In the example illustrated in Table 7, the terminal provided in the workplace can display the calculation results illustrated in Table 7. Since the conversation scores of the staff members can be compared, the manager knows who is likely to be stressed. Thus, the manager can hand over a task suitable for each staff member. In addition, staff members can objectively recognize that they are inflicting stress or experiencing stress by making an average comparison with other colleagues. Staff members can also encourage behavioral changes in their manager and improve the well-being index of the work environment.
Further, in the diagnostic system according to the present embodiment, the stress generated in the workplace environment can be quantified, such as the score at the time of conversation, even in a flat-organizational relationship rather than the manager-staff member relationship. Therefore, for example, all five test subjects working in the workplace wear the same sticker-type pulse wave sensors 2500 and 2900. The diagnostic system measures all five people for 24 hours. During the measurement, test subjects are allowed to converse with each other as appropriate while performing their usual duties. The diagnostic system acquires blood pressure fluctuations during conversation. Thus, a score for each speaker illustrated in Table 6 is generated for each test subject. Then, the cloud server 2401 can quantify the person who inflicts stress on the other test subjects out of the five test subjects based on the scores of the five test subjects. For example, after adding up and averaging the scores calculated for interview participant, the interview participant with the highest score can be identified as the stressor. Table 8 illustrates the scores calculated for each test subject. In the example illustrated in Table 8, user B has the highest score and can therefore be identified as the stressor.
The score described above is a numerical value of the blood pressure increase rate of the test subject. In some cases, however, the rate of increase in blood pressure does not correspond exactly with the degree of stress. Therefore, the cloud server 2401 according to the present embodiment may correct the score by referring to the measurement result of the cerebral blood flow of the test subject. Any technique may be used as the correction technique.
For example, the DLPFC located at the temple is known to act to alleviate stress. For this reason, when it is determined that the test subject is experiencing stress, the cloud server 2401 corrects the score in consideration of the stress by regarding that stress-induced alleviation is working when the cerebral blood flow near the temple is increased. For example, the cloud server 2401 performs correction by, for example, dividing the calculated score by 0.9 or so on.
As another example, when cerebral blood flow is rising in the prefrontal area, such as between the eyebrows, concentration is improved and blood pressure is likely rising. Therefore, the cloud server 2401 determines that there is a high possibility that the increase in the blood pressure is not only due to the effect of the interview participant, and performs correction by multiplying the calculated score by 0.9.
The technique of correcting the score is not limited to the above-described techniques, and as such, machine learning may be employed, for example. Also, if the interview participant has a high position in the company, the other interview participant inevitably feels stress. In such a case, the cloud server 2401 may perform the correction according to a model inputted in advance. For example, the cloud server 2401 may perform correction according to a personality model based on personnel information inputted in advance. Next, the correction according to the model is described.
The cloud server 2401 receives input of information indicating a job title in the company and a social position as a model of a manager and a test subject for which correction is to be performed from a communication terminal provided in a workplace. The cloud server 2401 may store the job description of the supervisor and the test subject in a database. The cloud server 2401 may receive a selection from a test subject from a list of job descriptions stored in a database through a communication terminal provided in a workplace.
In the diagnostic system according to the present embodiment, the profiling and modeling of the test subject and the manager are facilitated by the configuration selected from the choices. A variety of information is input to generate a model, including company job title, job description, and coworker organizational makeup. The cloud server 2401 models the test subject from the information that is input. In the present embodiment, a biological model and a social model are generated. In the diagnostic system according to the present embodiment, the modeling is not limited to the above-described model, and a personality model may be generated.
In the biological model, as biological parameters of the test subject, for example, age, gender, weight, height, blood test value (cholesterol level), uric acid value, and underlying disease (optional) are each quantified.
In the social model, each of company information, job type, job title, number of team members, related people, voice information, and personnel information is appropriately processed and modeled as social parameters of the test subject and the manager. In the social model, a job defined as a job type may be used.
<Personality Model>
The personality model is generated by referring to subjective-centered information based on a questionnaire survey as personality parameters of the test subject and the manager.
The cloud server 2401 corrects the score of the test subject who conversed with the manager, according to the model (for example, the social model or the personality model) corresponding to the manager. Therefore, the cloud server 2401 retains the correction values or the correction formulas. The correction values are determined based on the social model of the manager and the paper-based personality model. Further, the cloud server 2401 corrects the scores calculated using the models (for example, the biological model, the social model, and the personality model) of the test subject. Therefore, the cloud server 2401 retains the correction values determined based on the biological model, the social model, and the paper-based personality model of the test subject or retains correction formulas. It should be noted that the specific correction values and the correction formulas are determined based on the embodiment, and as such, descriptions thereof are omitted.
Although an example is described in which the cloud server 2401 performs the calculation of the score, the correction of the score, and the classification of the personality, the technique performed by the cloud server 2401 is not limited. For example, a communication terminal provided in a workplace may calculate a score and correct the score.
In the present embodiment, an example is described in which a physical condition of a test subject, including stress in a workplace environment, is measured. In the workplace environment, physical condition may change due to stress or the like. In this case, the diagnostic system according to the present embodiment may alert the test subject to a change in physical condition. For example, workplace hypertension can be consciously corrected by the individual. Therefore, in the diagnostic system according to the present embodiment, the sticker-type pulse wave sensors 2500 and 2900 detect a change in the stress or blood pressure of the test subject, and prompt the test subject to change his/her behavior to improve the stress or blood pressure at the timing at which the change is detected.
First, the communication terminal 2411 acquires measurement information of the test subject from the sticker-type pulse wave sensors 2500 and 2900 (S3601). Then, the communication terminal 2411 transmits the acquired measurement information to the cloud server 2401 (S3602).
Then, the cloud server 2401 receives the measurement information of the test subject from the communication terminal 2411 (S3611). The cloud server 2401 stores the received measurement information of the test subject in the storage device of the cloud server 2401 (S3612).
Then, the cloud server 2401 determines whether or not the blood pressure has changed to a value greater than or equal to a predetermined threshold based on the stored measurement information of the test subject (S3613). When it is determined that there is no change to a value greater than or equal to the predetermined threshold value (NO in S3613), it is determined whether or not the measurement of the test subject is completed (24 hours have passed since the measurement was started) (S3614). If it is determined that the measurement is not completed (NO in S3614), the cloud server 2401 performs the processing again from S3611.
Conversely, if the cloud server 2401 determines that the measurement is completed (YES in S3614), the processing proceeds to S3620.
In S3613, if it is determined based on the stored measurement information of the test subject that the blood pressure has changed to a value greater than or equal to a predetermined threshold (YES in S3613), the cloud server 2401 transmits a message to the communication terminal 2411 indicating that the test subject should take deep breaths (S3615).
Then, the communication terminal 2411 determines whether or not a message indicating to take deep breaths has been received (S3603). If it is determined that no reception has been made (NO in S3603), the processing proceeds to S3607.
Conversely, if the communication terminal 2411 determines that the message indicating to take deep breaths has been received (YES in S3603), the communication terminal 2411 outputs a message indicating to take deep breaths (S3604). The technique of outputting the message may be displayed on the screen of the communication terminal 2411 or the message may be output as voice as long as the message can be understood by the test subject, for example.
Thereafter, the communication terminal 2411 acquires measurement information of the test subject from the sticker-type pulse wave sensors 2500 and 2900 (S3605), and transmits the acquired measurement information to the cloud server 2401 (S3606).
The cloud server 2401 receives the measurement information of the test subject from the communication terminal 2411 (S3616), and stores the received measurement information of the test subject in the storage device of the cloud server 2401 (S3617).
Then, the cloud server 2401 determines whether or not the message had positive effect on the test subject based on the stored measurement information of the test subject (S3618). If it is determined that the message had no positive effect (NO in S3618), the processing starts again from S3615.
Conversely, if it is determined, based on the stored measurement information of the test subject, that the message had a positive effect (YES in S3618), the cloud server 2401 determines whether or not the measurement of the test subject is completed (24 hours have passed since the measurement was started) (S3619). If it is determined that the measurement is not completed (NO in S3619), the cloud server 2401 performs the processing again from S3611.
Conversely, if the cloud server 2401 determines that the measurement is completed (YES in S3619), the processing proceeds to S3620.
After the measurement is completed, the cloud server 2401 transmits the stored measurement information to the terminal 2402 of the medical institution thereby completing the processing (S3620). When transmitting the measurement information, the cloud server 2401 performs the above-described corrections or the like on the measurement information.
The terminal 2402 of the medical institution receives the measurement information from the cloud server 2401 (S3641). The terminal 2402 of the medical institution displays the received measurement information (S3642).
Then, the terminal 2402 of the medical institution receives the input of the diagnosis result to the test subject from the medical personnel (S3643).
Then, the terminal 2402 of the medical institution transmits the diagnosis result to the communication terminal 2411 (S3644).
In S3607, the communication terminal 2411 determines whether or not the measurement of the test subject is completed (24 hours have elapsed since the measurement was started) (S3607). If the communication terminal determines that the measurement is not completed (NO in S3607), the communication terminal 2411 performs the processing again from S3601.
Conversely, if the communication terminal determines that the measurement of the test subject is completed (24 hours have passed since the measurement was started) (YES in S3607), the communication terminal 2411 receives the diagnosis result from the terminal 2402 of the medical institution (S3608).
Then, the communication terminal 2411 displays the received diagnosis result (S3609).
In the present embodiment, the physical condition of the test subject can be improved by encouraging deep breathing when the blood pressure of the test subject changes by performing the above-described processing. In addition, by grasping such a change in blood pressure by the medical personnel of the medical institution, the test subject can be urged to take more appropriate action after the measurement is completed.
In the above-described embodiment, an example in which a medical institution sends a sticker-type pulse wave sensor to a test subject has been described. However, the sending source of the sticker-type pulse wave sensor is not limited to a medical institution. Therefore, the twelfth embodiment describes an example in which a pharmacist sends the sticker-type pulse wave sensor to the test subject.
In this embodiment, the oxygen saturation level of hemoglobin can be measured based on the measurement information of the sticker-type pulse wave sensor 2500. The service related to the home-based medical treatment can be realized by this.
As illustrated in
It is well known that the two kinds of wavelengths, 850 nm and 780 nm, are wavelengths that saliently represent the difference in the spectrum in the redox reaction of hemoglobin. Therefore, in the diagnostic system according to the present embodiment, the oxygen saturation level of the hemoglobin of the test subject can be detected from the absorption coefficients of the two types of wavelengths by reversely calculating the absorption coefficients of the known redox reaction.
For example, in a case where a test subject may have a highly contagious viral disease such as COVID-19, there is a possibility that a person who has been in contact with the test subject may become infected, so online diagnosis and home treatment are desired. In this case, the sticker-type pulse wave sensor 2500 may be used as an oxygen saturation level meter at the discretion of the physician by the online diagnosis in order to perform a specific measurement of the test subject.
In other words, by hospitalizing a test subject who may have a disease, medical personnel (e.g., a physician or nurse) can ascertain the situation of the test subject or provide advanced medical care to the test subject. However, it is costly because of the need for sophisticated virus protective measures. Therefore, it is desirable to create a situation where a detailed understanding of the current situation can be ascertained through use of an online diagnosis and home-based medical treatment. Therefore, in the diagnostic system according to the present embodiment, the sticker-type pulse wave sensor 2500 is used. Thus, the vital amount of at least one of the body temperature, pulse rate, pulse waveform, blood pressure, or respiratory rate of the test subject can be continuously monitored for 24 hours. Further, the cloud server 2401 transmits the vital amount of the test subject to the terminal 2402 of the medical institution, so that the physician belonging to the medical institution can appropriately determine the condition of the test subject based on the vital amount.
In particular, in the case of COVID-19, particular importance is placed on hemoglobin oxygen saturation level as an index by which progression of pneumonia in the test subject can be determined. The diagnostic system according to the present embodiment monitors the hemoglobin oxygen saturation level of the test subject for 24 hours. Thus, the medical personnel of the medical institution can appropriately determine the condition of the lungs of the test subject from the vital amount transmitted from the cloud server 2401. In addition, if the medical personnel determines that the test subject is in dangerous condition, the test subject can cause the medical personal can effect change in the behavior of the test subject to be hospitalized, for example, even if the test subject is not in the position to make appropriate judgment. Thus, in the diagnostic system according to the present embodiment, the danger in home-based medical treatment of the test subject is reduced, and thus safe home-based medical treatment can be achieved.
The diagnostic system according to the present embodiment is not limited to home-based medical treatment, and is effective in providing safe medical treatment, for example, in a facility such as a retirement home where not staffed with on-site physicians and nurses. Since the sticker-type pulse wave sensor 2500 according to the present embodiment is disposable, there is no problem of virus infection caused by the reuse of the sphygmomanometer, and the risk and cost incurred for the cleaning to prevent virus infection can be reduced. Measurement information detected by the sticker-type pulse wave sensor 2500 is stored in the cloud server 2401, and diagnosis is performed at the terminal 2402 of the medical institution. As described above, in the present embodiment, since it is not necessary to return the sensor or the diagnostic device to the medical institution or the like, the time and energy put into sending the sensor or the diagnostic device can be alleviated, and the risk associated breakdown during use can be reduced.
As illustrated in
The production facility according to the present embodiment produces the sticker-type pulse wave sensor 2500 to which a sensor ID is assigned. Specifically, the production facility writes a sensor ID that uniquely identifies the sticker-type pulse wave sensor 2500 when writing a program to the storage unit 116 of the control device 112 by using a connection terminal (not illustrated) to the outside formed on the flexible printed circuit board 101 of the sticker-type pulse wave sensor 2500.
The production facility prints the sensor ID on the package at the time of manufacturing of the sticker-type pulse wave sensor 2500. The production facility stores the sticker-type pulse wave sensor 2500 in the package. The sensor ID of the package is printed at a position that can be read by a person managing inventory, such as a pharmacist.
Then, the production facility sends the sticker-type pulse wave sensor 2500 stored in the package to the pharmacist.
A physician belonging to the medical institution conducts online diagnosis with the test subjects. If the physician determines that an examination is necessary based as per the online diagnosis, the physician sends the pharmacist a prescription containing information about the test subject to whom the sticker-type pulse wave sensor 2500 is to be sent. In the case of the online diagnosis as in the present embodiment, the terminal 2402 of the medical institution may transmit the prescription as electronic information to a terminal 2403 of the pharmacist (pharmacy).
The pharmacist provides the medicine to the test subject based on the prescription from the medical institution. The pharmacist also performs processing for sending the sticker-type pulse wave sensor 2500 to the test subject according based on the prescription.
The prescription the pharmacist receives contains the information of the test subject. The information of the test subject includes the test subject ID and the address of the test subject. In addition, the medical institution or ID of the physician may be provided. Therefore, the terminal 2403 can display the input screen of the prescription from the search screen on the diagnostic system according to the present embodiment using the ID of the medical institution or the physician as the search key. On the prescription input screen, the sensor ID of the sticker-type pulse wave sensor 2500 can be input. Thus, the test subject ID and the sensor ID of the sticker-type pulse wave sensor 2500 can be associated with each other.
The pharmacy manages the inventory of the sticker-type pulse wave sensors 2500 sent from the production facilities. Although inventory management is typically handled by a certified person, such as a pharmacist, the person responsible for inventory management is not limited to such a person. In the present embodiment, a description is provided for a case in which a pharmacist of a prescription pharmacy does the sending to the test subject, but a retail store such as a convenience store or a drug store may sell the sticker-type pulse wave sensor 2500 as is done for self-medication.
For example, the communication terminal (an example of the communication device) transmits to the cloud server 2401, in accordance with an operation from a certified person such as a pharmacist, a notification indicating that: the test subject ID indicating the test subject that is the sending destination; and the sensor ID of the sticker-type pulse wave sensor 2500 to be sent to the test subject, are to be registered in association with each other. When there is an ordering instruction for the sticker-type pulse wave sensor 2500 in the prescription of the physician, the cloud server 2401 can register: the test subject ID of the test subject; and the sensor ID of the sticker-type pulse wave sensor 2500 to be sent to the test subject, in association with each other. As a result, the registration of the sensor ID can be performed at the responsibility of the pharmacist in a reliable and safe manner, as is done for prescriptions of medicine. This ensures a highly safe and reliable diagnosis.
In this embodiment, in order to facilitate handling of electronic information by a pharmacist, it is preferable that an application that enables receiving of a prescription from a medical institution and inputting a test subject ID and a sensor ID of a sticker-type pulse wave sensor 2500 at the same time is installed in the terminal 2403 used by the pharmacist.
Thereafter, the pharmacist removes, from the communication terminal, both the test subject ID indicating the test subject that is the sending destination and the sensor ID printed on the package of the sticker-type pulse wave sensor 2500 to be sent to the test subject. By doing so, the sensor ID can be prevented from being redeployed by other people.
The pharmacist sends the sticker-type pulse wave sensor 2500 from which the sensor ID was removed to the test subject by way of a delivery person.
Online diagnosis has an advantage in that the patient can obtain medicine without any transmitting of a virus. In this embodiment, the sticker-type pulse wave sensor 2500 is sent using a delivery system similar to the online diagnosis. In this delivery system, it is desirable that a delivery person act as an intermediary in order to reduce the chance of virus transmission and reduce the burden on the test subject. The delivery person carries out the delivery in accordance with the instructions of the pharmacist.
The delivery instructions may be given from the terminal 2403 of the pharmacist. It is also desirable that the delivery person be a certified person assigned to the community, such as, for example, a community medical center employee, a health center employee, a pharmacist, or a public health nurse. If delivery is performed by a certified person who responsibly delivers the sticker-type pulse wave sensor 2500, the person delivering the sticker-type pulse wave sensor 2500 can assist the test subject in the fitting of the sticker-type pulse wave sensor 2500. This kind of service is desirable particularly for elderly people who need nursing care or test subjects who are in poor physical condition.
The test subject downloads and installs an application for measuring the sticker-type pulse wave sensor 2500 to the communication terminal 2411 in advance. Thereafter, the communication terminal 2411 may display an input screen for inputting the attribute of the test subject, similarly to the above-described embodiment.
The test subject receives a sticker-type pulse wave sensor 2500 from a pharmacist. When receiving the sticker-type pulse wave sensor 2500 by a delivery person who has taken viral infection-prevention measures, the test subject inputs confirmation information, indicating that the sticker-type pulse wave sensor 2500 has been handed over to him/her, into a software application that was launched on the communication terminal 2411. By doing so, a physician, a pharmacist, or the like can confirm that the sticker-type pulse wave sensor 2500 has been delivered.
The test subject peels off the protective sheet 2303 from the sticker-type pulse wave sensor 2500. The first electrode 2301 and the second electrode 2302 are in contact with the protective sheet 2303. Therefore, when the test subject peels off the protective sheet 2303, the space between the first electrode 2301 and the second electrode 2302 becomes insulated. Thus, the control device 112 of the sticker-type pulse wave sensor 2500 can detect that the protective sheet 2303 has been peeled off. Accordingly, the control device 112 starts preparation for starting the measurement. That is, the sticker-type pulse wave sensor 2500 according to the present embodiment can reduce the consumption of the battery 111 by maintaining a sleep state until the protective sheet 2303 is peeled off. As a result, the sticker-type pulse wave sensor 2500 can reduce battery consumption up to the start of measurement, and thus can be configured in a compact design since having a low battery capacity is sufficient. Further, the battery 111 of the sticker-type pulse wave sensor 2500 can be made compact to improve the comfort when the sticker-type pulse wave sensor 2500 is worn.
Then, the test subject launches the application installed in the communication terminal 2411. Thereafter, wireless communication is established between the communication terminal 2411 and the sticker-type pulse wave sensor 2500. Any standard may be used as the wireless communication. For example, Bluetooth (registered trademark) may be used. When communication is established, the application may indicate so. Thus, the test subject can recognize that communication has been established.
The application of the communication terminal 2411 reads the sensor ID of the sticker-type pulse wave sensor 2500 stored in a storage unit 116. The application associates the already input test subject ID with the sensor ID of the sticker-type pulse wave sensor 2500. The communication terminal 2411 requests the cloud server 2401 as to whether or not the correspondence relationship is consistent. Then, the cloud server 2401 determines whether or not the correspondence relationship already registered matches and transmits the determination result to the communication terminal 2411. Then, the communication terminal 2411 displays the determination result.
The application of the communication terminal 2411 displays guidance such as the position where the sticker-type pulse wave sensor 2500 is to be affixed. For example, the test subject fixedly places the sticker-type pulse wave sensor 2500 on the upper arm, the clavicle, or the like in accordance with the guidance. As a result, the affixing position on the test subject is correct, so that accurate measurement can be performed.
For example, the test subject affixes the sticker-type pulse wave sensor 2500 to a position such as the upper arm in accordance with the guidance. The sticker-type pulse wave sensor 2500 can detect the resistance value of the skin by the first electrode 2301 and the second electrode 2302, and thus can recognize that the sticker-type pulse wave sensor 2500 is affixed to the skin of the test subject.
The sticker-type pulse wave sensor 2500 starts light emission of the LED 113, reading of the PD 114, and the like, in accordance with the recognition. The sticker-type pulse wave sensor 2500 starts biological measurement of the test subject, and upon starting detection of an appropriate pulse, transmits measurement information to the cloud server 2401 via the communication terminal 2411. Thus, a physician, a pharmacist or a delivery person can reliably confirm that the measurement has started. If the start of this measurement cannot be confirmed, a confirmation alarm may be issued by the physician, pharmacist, or delivery person. Thus, the application of the communication terminal 2411 of the test subject outputs an alarm sound and displays a screen for prompting measurement. In addition, the application of the communication terminal 2411 may output an alarm sound when the pulse wave of the test subject is not appropriately detected due to an inappropriate affixing position or the like. In this case, the communication terminal 2411 may transmit the alarm information to the terminal 2402 of the medical institution or the terminal of the pharmacist. If necessary, the communication terminal 2411 may provide guidance for attaching the sticker-type pulse wave sensor 2500 via a screen in cooperation with the video conference system. Thus, the application of the communication terminal 2411 outputs an appropriate instruction at an appropriate timing, so that accurate measurement can be performed.
The application of the communication terminal 2411 of the test subject includes a function for transmitting and receiving information between the communication terminal 2411 and the cloud server 2401, a function for controlling the sticker-type pulse wave sensor 2500, and the like.
When the application is launched for the first time, the application receives input of information of the test subject. Specifically, the application receives input of the test subject ID transmitted from a medical institution. Furthermore, the application may receive the input of the name of the test subject, the name of the medical institution where the test subject visited, the address of the test subject, and the telephone number of the communication terminal 2411 (for example, a smartphone) being used. In addition, the application may receive input of various types of information such as a password, age, gender, weight, presence or absence of an underlying disease, details of the underlying disease, physical condition, temperature, and the like. For example, it is important for the address of the test subject to know where the test subject is currently recuperating. Therefore, information from GPS may be processed by the application taking into consideration places where the test subject is outside of the home including places hotels where the test subject may recuperate. Further, a method of collecting model information of the communication terminal 2411 by way of an opt-in may be adopted.
The communication terminal 2411 and the sticker-type pulse wave sensor 2500 are connected by radio communication.
Thereafter, that is, after starting the measurement, the sticker-type pulse wave sensor 2500 transmits, to the communication terminal 2411, information (hereinafter referred to as measurement information) indicating the measurement result.
The communication terminal 2411 (an example of the communication device) transmits measurement information including information on a pulse wave of a test subject calculated by the sticker-type pulse wave sensor 2500 to the cloud server 2401 together with a sensor ID of the sticker-type pulse wave sensor 2500. The cloud server 2401 stores measurement information received together with the sensor ID in association with the test subject ID corresponding to the sensor ID.
The cloud server 2401 transmits the received measurement information (information on the pulse wave of the test subject) and the test subject ID (associated with the sensor ID transmitted together with the measurement information) to the terminal 2402 of the medical institution.
The terminal 2402 of the medical institution receives the test subject information and the measurement information from the cloud server 2401, and performs displaying determined based on the received measurement information as received test subject information indicated by the test subject ID. The physician of the medical institution diagnoses the test subject based on the measurement information displayed on the terminal. Thereafter, the terminal 2402 of the medical institution transmits the diagnosis result to the communication terminal 2411 of the test subject. The measurement information used for diagnosis is the same as that in the above-described embodiments, and the description thereof is omitted.
An application for implementing the diagnostic system is installed in a terminal 2402 of a medical institution. When the terminal 2402 receives the measurement information from the cloud server 2401, the terminal displays the measurement information together with an alarm sound to prompt the physician to perform a diagnosis.
Further, the terminal 2402 of the medical institution may receive a notice of completion indicating that the sticker-type pulse wave sensor 2500 is now worn by the test subject, notice of start of transmission of measurement information from the sticker-type pulse wave sensor 250, and the like, by the function of the installed application. Further, the terminal 2402 of the medical institution transmits a dataset including the biological information regarding the test subject to the cloud server 2401, so that the measurement information can be corrected as determined based on the biological information.
A terminal 2402 of a medical institution can receive measurement information including an analysis result from a cloud server 2401. In this case, the physician can make a diagnosis of the test subject based on a determination made taking into consideration the results of the analysis.
In the example illustrated in
The pharmacist removes the sensor ID and sends the sticker-type pulse wave sensor 2500 to the test subject. Thus, since only the pharmacist can know the sensor ID, falsification or the like using the sensor ID can be suppressed to improve safety. In addition, as with other medicine, the physician can also check for prescription errors as the same time.
The physician using the terminal 2402 of the medical institution determines whether or not the test subject is suspected to have COVID-19 or the like by the remote diagnosis. Although the flowchart illustrated in
When the physician or the like determines that continuous 24 hour measurement of the vitals of the test subject is necessary, a prescription containing both the address of the test subject to be measured and the test subject ID of the test subject is transmitted to the terminal of the pharmacist via the terminal 2402 of the medical institution (S3812).
Then, the terminal 2403 of the pharmacist receives the prescription containing both the address of the test subject serving as the sending destination of the sticker-type pulse wave sensor 2500 and the test subject ID indicating the test subject who is the sending destination (S3821). The pharmacist has already received a sticker-type pulse wave sensor 2500 from a production facility.
Then, the terminal 2403 of the pharmacist transmits the test subject ID of the test subject in association with the sensor ID of the sticker-type pulse wave sensor 2500 to be sent to the test subject, and transmits the associated information to the cloud server 2401 (S3822), in accordance with the operation of the pharmacist.
The terminal 2402 of the medical institution sends the test subject ID to the communication terminal 2411 of the test subject in accordance with the operation of the physician or the like (S3813). Thereafter, the terminal 2402 of the medical institution transmits a test subject ID of the test subject and a dataset including biological data (for example, past examination results) of the test subject to the cloud server 2401, in accordance with the operation of the physician or the like (S3814).
The cloud server 2401 receives the test subject ID of the test subject and the sensor ID from the terminal 2403 of the pharmacist (S3831). Further, the cloud server 2401 receives the test subject ID of the test subject and the dataset from the terminal 2402 of the medical institution (S3832).
The cloud server 2401 registers the test subject ID of the test subject, the sensor ID, and the dataset in association with each other (S3833).
After transmitting the information to the cloud server 2401, the pharmacist removes the sensor ID printed on the package of the sticker-type pulse wave sensor 2500 (S3823). Thereafter, the pharmacist sends the sticker-type pulse wave sensor 2500 to the test subject (S3824).
After the remote diagnosis is performed, the communication terminal 2411 of the test subject receives the test subject ID (S3802). Thereafter, the communication terminal 2411 downloads and installs an application for performing 24 hour measurement, in accordance with the operation of the test subject (S3803). In order to download the application, an address of a site for downloading the application is provided by way of instruction from the physician or the like. For this instruction, sending means such as e-mail may be used. The test subject accesses the address by using the communication terminal 2411. This allows the application to be downloaded.
The communication terminal 2411 of the test subject receives the input of the test subject ID with respect to the installed application (S3804).
Thereafter, the test subject receives the sticker-type pulse wave sensor 2500 from the pharmacist (S3805). Thereafter, the test subject peels off the protective sheet 2303 from the sticker-type pulse wave sensor 2500. Thus, communication is established between the sticker-type pulse wave sensor 2500 and the communication terminal 2411. The communication terminal 2411 receives the sensor ID from the sticker-type pulse wave sensor 2500.
Then, the communication terminal 2411 of the test subject confirms the consistency between the test subject ID and the sensor ID with the cloud server 2401 (S3806 and S3834). The flowchart illustrated in
The communication terminal 2411 of the test subject acquires measurement information from the sticker-type pulse wave sensor 2500 (S3807). Thereafter, the communication terminal 2411 transmits the acquired measurement information to the cloud server 2401 (S3808). The processing in S3807 to S3808 is repeated for 24 hours.
Then, the cloud server 2401 receives, for a period of 24 hours, the measurement information from the communication terminal 2411 (S3835). The received measurement information is stored in a storage unit.
Thereafter, the cloud server 2401 performs analysis such as matching with respect to the stored measurement information (S3836). Specifically, the cloud server 2401 may model the test subject based on the input dataset of the test subject and correct the stored measurement information according to the model. Further, the cloud server 2401 may perform pattern-matching between time-series change model and the time-series changes by the measurement information. The cloud server 2401 may identify the classification corresponding to the test subject by pattern-matching. The time-series change model is a model is stored in advance and is for classifying the characteristics of the test subject. Further, in the present embodiment, as the characteristic of the test subject, a time-series change model in which the disease or the like of the test subject is classified may be prepared.
Then, the cloud server 2401 transmits measurement information including the analyzed information to the terminal 2402 of the medical institution (S3837).
The terminal 2402 of the medical institution receives measurement information including the analyzed information from the cloud server 2401 (S3815). The terminal 2402 of the medical institution displays the received measurement information or the like. Thus, the physician or the like can diagnose the test subject.
The terminal 2402 of the medical institution receives the input of the diagnosis result from the physician or the like (S3816).
Thereafter, the terminal 2402 of the medical institution transmits the diagnosis result from the physician or the like to the communication terminal 2411 (S3817).
The communication terminal 2411 of the test subject receives the diagnosis result from the terminal 2402 of the medical institution (S3809). Thus, the test subject can recognize the disease he or she has by referring to the diagnosis result.
In the remote diagnosis illustrated in
In the diagnostic system according to the present embodiment, an alarm function for the physician is provided. For example, if the test subject's condition deteriorates, the physician can immediately respond.
In the test subject, the measurement is started by the sticker-type pulse wave sensor 2500 that is worn (S3901). Then, the communication terminal 2411 of the test subject starts to transmit the measurement information acquired from the sticker-type pulse wave sensor 2500 to the cloud server 2401 (S3902).
When measurement of the test subject is started, as described above, measurement information such as the pulse waveform, oxygen saturation level, pulse rate, and blood pressure value of the test subject is transmitted to the cloud server 2401. Since waveform data such as pulse waveforms have a large amount of data, transmission may be performed in a thinned-out state, for example, by transmitting only waveform data for 10 seconds per minute. The other measurement information is transmitted at a frequency enabling a dynamic change in the state of the test subject, for example, once per second, to be recognized.
Accordingly, the cloud server 2401 (an example of the communication device) starts receiving the measurement information from the communication terminal 2411 of the test subject (S3911). Accordingly, the cloud server 2401 starts measuring the elapsed time.
The cloud server 2401 determines whether or not the elapsed time has exceeded a predetermined time (S3912). When it is determined that the elapsed time does not exceed the predetermined time (NO in S3912), the cloud server 2401 determines whether the oxygen saturation level included in the measurement information is lower than the threshold (S3913). Note that the predetermined time may a period of 24 hours or may be an examination time or the like determined by the physician.
In this embodiment, it is necessary for the physician or the like to set the alarm function to operate. For example, the physician sets an alarm function corresponding to the condition of the test subject from an online diagnosis or the like performed before starting the measurement. For example, the physician sets a threshold of oxygen saturation level for activating the alarm function. Specifically, in a case where the oxygen saturation level of the test subject in the initial state is 98%, the physician sets the terminal to operate an alarm sound when the oxygen saturation level falls below 95%.
Since oxygen saturation levels vary from individual to individual, the alarm function can be operated at a more appropriate timing by setting at the discretion of the physician. Also, for example, when the test subject has an underlying disease in the heart, it is desirable to prioritize the carrying out of treatment such as hospitalization or oxygen suction, as compared with a decrease in oxygen saturation which causes general pneumonia.
If the cloud server 2401 determines that the oxygen saturation level included in the measurement information is greater than or equal to the threshold value (NO in S3913), the cloud server 2401 performs processing again from S3912.
Conversely, if the cloud server 2401 determines that the oxygen saturation level included in the measurement information is lower than the threshold value (YES in S3913), the cloud server 2401 transmits a notification indicating the decrease to the terminal 2402 of the medical institution (S3914). The notification indicating the decrease according to the present embodiment is information indicating that the oxygen saturation of the test subject has decreased (an example of information regarding the oxygen saturation of the test subject).
The terminal 2402 (an example of the communication device) of the medical institution operates the alarm function (S3922) upon receiving the notification indicating the decrease (S3921). The terminal 2402 of the medical institution displays the received notification indicating the decrease on a display device (not illustrated) of the terminal as an alarm function and outputs a warning sound. Thus, the medical personnel can recognize that the oxygen saturation degree of the test subject has decreased.
A physician belonging to the medical institution performs remote diagnosis for the test subject from the terminal 2402 of the medical institution via the communication terminal 2411 of the test subject (S3923 and S3903). As a result, the communication terminal 2411 of the test subject ends the transmission of the measurement information of the test subject from the sticker-type pulse wave sensor 2500 in order to perform the necessary treatment on the test subject (S3904).
Conversely, if it is determined in S3912 that the elapsed time has exceeded the predetermined time (for example, 24 hours) (YES in 3912), the cloud server 2401 notifies the communication terminal 2411 of the test subject by way of the termination notification (S3915).
In accordance with the notification, the communication terminal 2411 of the test subject ends the transmission of the measurement information of the test subject from the sticker-type pulse wave sensor 2500 (S3904).
In the present embodiment, the medical personnel including the physician can watch over the test subject 24 hours a day by, for example, keeping the terminal on hand while on duty, for example. In addition, since the terminal has an alarm function, the condition of the test subject can be confirmed even when the medical personnel is taking a nap or working at home. When an alarm indicating that the oxygen saturation level of the test subject decreased is transmitted, the condition of the test subject can be confirmed directly from the test subject by establishing a connection from terminal 2411 with the communication terminal of the test subject.
The cloud server 2401 according to the present embodiment can recognize that the measurement by the sticker-type pulse wave sensor 2500 is completed. Therefore, the cloud server 2401 notifies the production facility of the sensor ID of the sticker-type pulse wave sensor 2500 whose measurement is completed. Thus, the production facility can assign the sensor ID indicated by the notification to the sticker-type pulse wave sensor 2500 that is to be produced. That is, in the present embodiment, since the sensor ID can be recycled, even if the number of digits of the sensor ID is limited, a sensor ID to be assigned to the sticker-type pulse wave sensor 2500 is unlikely to be used up.
In the above-described embodiment, the case of the diagnostic system is mainly described. However, detection of the condition of the test subject is useful for applications other than diagnosis. Therefore, a case of a project support system (an example of a meeting support system) is described in the thirteenth embodiment.
Further, each of users A to F (test subjects) participating in the conference is provided with a different one of the communication terminals among the first communication terminal 4011 to a sixth communication terminal 4016.
The project management device 4001, the participant evaluation server 4002, the project evaluation server 4003, and the first communication terminal 4011 to the sixth communication terminal 4016 are connected by a public network 4050.
The sticker-type pulse wave sensors 2500 and 2900 are worn by the users A to F according to the present embodiment at the above-mentioned four locations. The users A to F serve as participants of the meeting. In this embodiment, the people participating in the meeting are the users A to F. In other words, all participants in the meeting are wearing the sticker-type pulse wave sensors 2500 and 2900. That is, in this embodiment, the participant performs measurements at four locations.
As a specific example, three sticker-type pulse wave sensors 2900 measure three regions of the temporal lobe, DLPFC, and DMPFC of a meeting participant (refer to, for example,
The first communication terminal 4011 to the sixth communication terminal 4016 can transmit the measurement information detected by the sticker-type pulse wave sensors 2500 and 2900 to the participant evaluation server 4002 or the like.
The participant evaluation server 4002 includes a reception control unit 4021, a correlation calculation unit 4022, an evaluation value calculation unit 4023, a transmission control unit 4024, an input processing unit 4025, and a storage unit 4026, and performs evaluation for each participant based on measurement information measured for each participant (for example, the users A to F) who participated in the meeting of the project.
The reception control unit 4021 receives information from an external communication device. For example, in a case where each participant participating in the meeting of this project wears the sticker-type pulse wave sensors 2500 and 2900, the reception control unit 4021 (an example of the acquisition unit) receives the measurement information (information regarding pulse waves) of the participant, which is acquired from the sticker-type pulse wave sensors 2500 and 2900 provided for each participant.
The correlation calculation unit 4022 calculates a correlation coefficient illustrating a correlative relationship in blood pressure change between meetings for each two-participant combination among a plurality of participants participating in the meetings.
An evaluation value calculation unit 4023 calculates and outputs an evaluation value illustrating the evaluation of the participant in the meetings for each participant based on the correlation coefficient calculated for each two-participant combination.
The transmission control unit 4024 transmits information to an external communication device. The input processing unit 4025 receives inputs of information through an input interface.
The storage unit 4026 is a non-volatile recording medium capable of reading and writing. The storage unit 4026 may include, for example, a hard disk drive (HDD) or a solid state drive (SSD).
The project evaluation server 4003 includes a reception control unit 4041, a calculation unit 4042, a generation unit 4043, a transmission control unit 4044, an input processing unit 4045, and a storage unit 4046, and evaluates the project based on the evaluation of each participant who participated in the meetings of the project. Specifically, the project evaluation server 4003 evaluates the project based on of the commitment levels of all participants.
The reception control unit 4041 receives information from an external communication device.
The calculation unit 4042 calculates an evaluation value (an example of the evaluation information) indicating the evaluation of the project for each meeting from the evaluation value of the participant calculated based on of the change in the blood pressure of the participant (an example of fluctuation of pulse wave) acquired during the meeting.
The generation unit 4043 generates and outputs advice for improvements illustrating project evaluation information in which the present project is evaluated, by comparing the present meeting with a past meeting or comparing the cumulative value of the evaluation value calculated for each meeting with the cumulative value of the evaluation value calculated for each meeting in the past project.
The transmission control unit 4044 transmits information to an external communication device. The input processing unit 4045 receives inputs of information through an input interface.
The storage unit 4046 is a non-volatile recording medium capable of reading and writing. The storage unit 4046 may include, for example, a hard disk drive (HDD) or a solid state drive (SSD).
The project management device 4001 includes a reception control unit 4031, a transmission control unit 4032, a save control unit 4033, and a storage unit 4034, and manages the evaluation of each participant and the evaluation of the project.
The reception control unit 4031 receives information from an external communication device. The transmission control unit 4032 transmits information to an external communication device. A save control unit 4033 saves information related to the project in the storage unit 4034.
The storage unit 4034 is non-volatile recording medium capable of reading and writing. The storage unit 4034 may include, for example, a hard disk drive (HDD) or a solid state drive (SSD).
In the meeting support system according to the present embodiment, an appropriate meeting participant by evaluation of each participant and evaluation of the project. In addition, the meeting support system can improve the probability of project success by setting appropriate meeting participants.
Each of the first communication terminal 4011, the second communication terminal 4012, and the third communication terminal 4013 acquires measurement information detected by the sticker-type pulse wave sensors 2500 and 2900 worn by each meeting participant (for example, users A to C) (S4101, 54111 and S4121). The measurement information is acquired during the meeting 4171. The acquisition of the measurement information is not limited to the first communication terminal 4011, the second communication terminal 4012, and the third communication terminal 4013, but is performed by all the communication terminals of the participants participating in the meeting.
Then, each of the first communication terminal 4011, the second communication terminal 4012, and the third communication terminal 4013 transmits measurement information indicating the measurement result to the participant evaluation server 4002 upon completion of the meeting (S4102, 54112, and S4122).
The reception control unit 4021 of the participant evaluation server 4002 receives measurement information indicating the measurement result of the communication terminal for each user (for example, the first communication terminal 4011, the second communication terminal 4012, and the third communication terminal 4013) (S4131), and the reception control unit 4021 saves the received measurement information in the storage unit 4026.
Then, the correlation calculation unit 4022 and the evaluation value calculation unit 4023 of the participant evaluation server 4002 calculate evaluation values for each participant participating in the meeting based on the saved measurement information (S4132). The information necessary for calculating the evaluation value may be received from an input interface (not illustrated) or the like. The correlation calculation unit 4022 and the evaluation value calculation unit 4023 may store the calculated evaluation values for each participant in the storage unit 4026. A specific method of calculating the evaluation value is described further below.
Thereafter, the transmission control unit 4024 of the participant evaluation server 4002 transmits the evaluation value for each participant to the project management device 4001 (S4133).
Then, the reception control unit 4031 of the project management device 4001 receives the evaluation value for each participant (S4141). The reception control unit 4031 stores the received evaluation value for each participant in the storage unit 4034.
Thereafter, the transmission control unit 4032 of the project management device 4001 transmits the evaluation value for each participant to the project evaluation server 4003 (S4142).
The reception control unit 4041 of the project evaluation server 4003 receives evaluation values for each participant (S4151).
The calculation unit 4042 of a project evaluation server 4003 calculates an evaluation value of the project based on the evaluation value of each participant (S4152). The specific calculation method of the evaluation value of the project is described further below. The evaluation value of the project calculated by the calculation unit 4042 may be stored in the storage unit 4046.
Then, the transmission control unit 4044 of the project evaluation server 4003 transmits the evaluation value of the project to the project management device 4001 (S4153).
The reception control unit 4031 of the project management device 4001 receives the evaluation value of the project (S4143).
The save control unit 4033 of the project management device 4001 saves both the evaluation value of the project and the evaluation value for each participant in the storage unit 4034 in association with the project name (S4144).
Further, the transmission control unit 4032 of the project management device 4001 instructs the communication terminals 4011 to 4013 of the participants to display the evaluation values (S4045).
As a result, each of the first communication terminal 4011, the second communication terminal 4012, and the third communication terminal 4013 displays the evaluation value of the project and the evaluation value for each participant (S4103, 54113, and S4123).
Next, a method of calculating evaluation values for each participant in the participant evaluation server 4002 indicated in S4132 is described.
First, the input processing unit 4025 inputs the number of participants participating in the project (S4201).
Next, the input processing unit 4025 performs input processing of information (for example, the name of the participant) for identifying each participant participating in the project (S4202).
Further, the input processing unit 4025 performs input processing on information (for example, the name of the part) of the part to be measured for the participant participating in the project (S4203).
Then, the input processing unit 4025 performs processing for associating a participant and the part to be measured with each piece of measurement information (S4204).
The correlation calculation unit 4022 calculates a correlation coefficient (an example of correlation information) of a change in blood pressure (an example of a fluctuation in the pulse wave) at a freely-selected part during a meeting for each combination of two participants freely selected from among a plurality of participants participating in the meeting (S4205).
In the example illustrated in
That is, in the present embodiment, when there is a correlative relationship between variations in blood pressure caused by the speech of two participants, it is assumed that they have similar feelings about the meeting, and the correlation of feelings about the meeting is estimated. In recent years, there has been a tendency to use a correlative relationship of brain activity as an evaluation function to visualize the minds of test subjects (Ryuta Kawashima, “Making Breakthroughs in ‘Empathic Brains’ for Measuring Communication Quality”, Nikkei Electronics, Inc., Nikkei B P, Jan. 21, 2013, pp. 35 to 37). Cerebral blood flow and blood pressure appear to have a highly correlative relationship in the autonomic nervous system. Therefore, in the present embodiment, a correlative relationship in feelings regarding a meeting between two participants is derived from a correlative relationship of variations in blood pressure.
When the blood pressure combinations are plotted as proportional in
Referring back to
Thereby, a correlation coefficient is calculated the for two-participant combinations for a freely-selected part. Table 9 illustrates the correlative relationship for each two-participant combination for a freely-selected part (e.g., left temple).
Conversely, if it is determined that the correlation coefficients of all the combinations of the two participants have been calculated for the freely-selected part (YES in S4206), the correlation calculation unit 4022 then determines whether the correlation coefficients have been calculated for all the parts (S4207). If it is determined that the correlation coefficients have not been calculated for all the sites (NO in S4207), the processing returns to S4205, and the correlation calculation unit 4022 calculates the correlation coefficients between the two participants for the not-yet calculated parts.
Conversely, if it is determined that correlation coefficients have been calculated for all the parts (YES in S4207), the correlation calculation unit 4022 integrates the correlative relationship calculated for each part and calculates the correlative relationship between the two participants for all the two-participant combinations (S4208).
Thereafter, an evaluation value calculation unit 4023 calculates, on a per-participant basis, the average values of the participants as evaluation information illustrating the evaluations of the participants in the meeting based on the correlation coefficient calculated for each two-participant combination (S4209).
The evaluation value calculation unit 4023 (an example of output unit) displays the calculated evaluation value for each participant on a display device (not illustrated) (S4210).
Then, the evaluation value calculation unit 4023 stores the calculated evaluation value for each participant in the storage unit 4026 (S4211).
In the present embodiment, according to the above-described processing procedure, an evaluation value of the participant with respect to the meeting can be calculated for each participant participating in the meeting. The host of the next meeting can make the next meeting more beneficial by referring to the evaluation value at the next meeting. That is, at the next meeting, by changing the participants such that those participating have high correlative relationships, those participating can share their feelings and the like about the purpose of the meeting. This makes the meeting more beneficial.
Next, the calculation method of the evaluation value of the project in the project evaluation server 4003 indicated in S4152 is described.
First, the input processing unit 4045 acquires the number of participants in the project (S4701). The number of participants may be acquired from the project management device 4001 or may be input via an input interface.
Further, the input processing unit 4045 acquires information (for example, name of participant) for identifying a participant of the project, and does so for each participant in the project (S4702). The information for identifying the participants may be acquired from the project management device 4001, for example, or may be input via the input interface. Thus, when the advice for improvements is output, information for identifying the participant (name of participant) can be displayed.
Thereafter, the calculation unit 4042 calculates the average of the evaluation values of each participant received in S4152 of
Referring back to
The generation unit 4043 compares the current meeting with the evaluation values of the past meeting of the same project (S4705). The generation unit 4043 can recognize whether or not the evaluation value has increased by comparing with the evaluation values of past meetings as illustrated in
Further, the generation unit 4043 compares the cumulative value of the evaluation value of the meeting of the current project with the cumulative value of the evaluation values of the past projects (S4706).
In other words, by referring to the changes in the evaluation values of past project meetings, it is possible to infer how the evaluation values will change due to changes in participants. In addition, the evaluation after the evaluation of the project by the external evaluator or the project leader is input to the past project. That is, information indicating whether the project was successful or not is included. Therefore, by comparing with past projects, it is possible to infer whether the current project is proceeding appropriately or not. Furthermore, the participants may be narrowed down by taking into account the difference in the change in the participants and the change in the evaluation value between successful projects and unsuccessful projects. This can improve the probability of success of the project.
In this way, the generation unit 4043 can recognize what kind of participant narrowing has resulted in an increase in the evaluation value by referring to a past project in a situation close to the present meeting. For example, the generation unit 4043 extracts a past project having an evaluation value close to the current evaluation value. The participant change (participant changes, such as matching the number of successful projects with subsequent participants, or following the successful projects with subsequent evaluation values) of the present project is specified based on the change in the participants of the successful project among the extracted past projects. Then, the generation unit 4043 generates advice for improvements for presenting the specified participant change.
Then, the generation unit 4043 generates advice for improvements based on past meetings and past projects, and outputs the generated advice for improvements (an example of project evaluation information) (S4707).
Referring back to
Conversely, if the input processing unit 4045 determines that the change of the participant is not received (NO in S4708), the input processing unit 4045 determines whether or not the current project is completed (S4709).
If the input processing unit 4045 determines that the current project has not been completed (NO in S4709), and if the evaluation value for each participant of the next meeting is received, the processing starts at S4703.
When the input processing unit 4045 determines that the current project is finished (NO in S4709), the result of the current project is analyzed and recorded in the storage unit 4046 (S4710). At this time, the input processing unit 4045 may input the evaluation of the current project from the outside and record the evaluation of the current project in the storage unit 4046.
In the present embodiment, when evaluating the meeting of the project by performing the above-described processing, the evaluation value of the meeting is derived from the measurement information of all the participants participating in the meeting. This allows for an appropriate evaluation of the meeting. Further, by changing the participants of the next meeting or the like based on the evaluation value of each participant, the meeting can be more beneficial, and the probability of success of the project can be improved.
In the meeting according to the present embodiment, a sub-project for solving problems of the project may be established within the project. In this case, the project management device 4001 may manage the sub-project as information belonging to the project. Further, the project evaluation server 4003 may manage the evaluation value of the meeting performed in the sub-project separately from the evaluation value performed in the project.
In this embodiment, the project management device 4001 manages information related to a new sub-project. In this case, the project management device 4001 may set agenda items relating to the sub-project.
The members of the sub-project may be selected by any technique. For example, the project evaluation server 4003 may select a participant recommended by the advice for improvements illustrated in the message field 5003 as a member of the sub-project. In the present embodiment, the member selection method is not limited to such a method. For example, the project evaluation server 4003 may select the participants recommended in the advice for improvements as candidates for the members, taking into consideration a score based on an emotional change extracted from the participant during the meeting or a score of an action (for example, speech) exhibited during the meeting.
In the present embodiment, by performing the above-described processing, the participants and the like can be changed so as to make the project meeting more beneficial. This increases the probability of success for the project.
In the above-described embodiment, a disposable pulse wave sensor and a disposable sphygmomanometer have been described. However, the above-described embodiment is not limited to a disposable pulse wave sensor and a disposable sphygmomanometer, and is applicable to a biological measurement device for measuring a test subject (medical examination examinee).
In the system (for example, a diagnostic system or a meeting system) described in the above embodiment, an example in which a test subject or a meeting participant affixes a disposable sticker-type pulse wave sensor has been described. However, the above-described embodiment illustrates an example of a biological measurement device worn by a test subject or a meeting participant, and is not limited to the technique of wearing the biological measurement device described above. In particular, when a meeting participant wears a biological measurement device, a wearable device may be worn instead of affixing the sticker-type pulse wave sensor every time a meeting is held. The shape of the wearable device may be any shape, such as a band that can be worn on the upper arm by a meeting participant or a cap that can be worn on the head by a meeting participant.
The present invention is not limited to these embodiments, and various modifications and substitutions can be made without departing from the spirit of the present invention.
One aspect of the present disclosure is as follows.
<1>
<8>
Patent Document
Number | Date | Country | Kind |
---|---|---|---|
2021-126082 | Jul 2021 | JP | national |
2022-089891 | Jun 2022 | JP | national |