Biological Production of Multi-Carbon Compounds from Methane

Abstract
Multi-carbon compounds such as ethanol, n-butanol, sec-butanol, isobutanol, tert-butanol, fatty (or aliphatic long chain) alcohols, fatty acid methyl esters, 2,3-butanediol and the like, are important industrial commodity chemicals with a variety of applications. The present invention provides metabolically engineered host microorganisms which metabolize methane (CH4) as their sole carbon source to produce multi-carbon compounds for use in fuels (e.g., bio-fuel, bio-diesel) and bio-based chemicals. Furthermore, use of the metabolically engineered host microorganisms of the invention (which utilize methane as the sole carbon source) mitigate current industry practices and methods of producing multi-carbon compounds from petroleum or petroleum-derived feedstocks, and ameliorate much of the ongoing depletion of arable food source “farmland” currently being diverted to grow bio-fuel feedstocks, and as such, improve the environmental footprint of future bio-fuel, bio-diesel and bio-based chemical compositions.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (35016-001C4.xml; Size: 304,171 bytes; and Date of Creation: May 27, 2024) are herein incorporated by reference in its entirety.


BACKGROUND OF THE INVENTION
Field of the Invention

The present invention is generally related to the fields of molecular biology and methods of producing metabolically engineered microorganisms which utilize methane feedstocks for the biological production of bio-fuels and bio-chemicals such as 1-butanol, isobutanol, fatty alcohols, fatty acid esters, 2,3-butanediol and the like.


Background Art

Traditional fossil fuels (e.g., gasoline, diesel, kerosene and the like) and numerous chemicals (e.g., for use in pharmaceuticals, solvents, fertilizers, pesticides, plastics and the like) are derived (and refined from) non-renewable petroleum (oil) resources. Current estimates suggest that the world's supply of non-renewable petroleum will likely be exhausted somewhere between the years 2045 and 2065 (U.S. Department of the Interior, U.S. Geological Survey World Petroleum Assessment, 2000), with concomitant extensions or reductions of these estimates dependent on variables such as increased (or reduced) global demand, more efficient petroleum refining processes, more efficient use of energy and products derived from petroleum and the discovery of new petroleum sources/reserves.


Independent of any current or future methods contemplated to mitigate petroleum consumption, there is no debate that the world's supply of petroleum is a finite and a constantly diminishing (non-renewable) energy source. Thus, to meet the ever increasing global demands for energy consumption, renewable, biologically produced fuels (i.e., “bio-fuels” and “bio-diesel”) have become an area of intense research, capital investment and government intervention.


For example, the U.S. “Energy Policy Act” of 2005 (42 USC, Title XV “Ethanol and Motor Fuels”, § 1501-§ 1533; enacted into law Aug. 8, 2005), sets forth parameters and definitions of “renewable fuels”, and established the “minimum ethanol” volume to gasoline volume blending requirements (presently E10: 10% ethanol: 90% gasoline), with E15 (15% ethanol: 85% gasoline) enacted as law and being “phased-in” across the U.S. The Energy Policy Act defines “renewable fuel” as a “motor vehicle fuel produced from grain, starch, oil-seeds, vegetable, animal, or fish materials including fats, greases, and oils, sugarcane, sugar beets, sugar components, tobacco, potatoes, or other biomass; or a natural gas produced from a biogas source, including a landfill, sewage waste treatment plant, feedlot, or other place where decaying organic material is found; and is used to replace or reduce the quantity of fossil fuel present in a fuel mixture used to operate a motor vehicle. The term “renewable fuel” includes (a) cellulosic biomass ethanol and waste derived ethanol; and (b) biodiesel, and any blending components derived from renewable fuel”.


In addition to the current E10 ethanol/gasoline blends and ongoing adoption of E15 ethanol/gasoline blends, ethanol volumes of up to E85 (i.e., 85% ethanol: 15% gasoline) are also presently being utilized in “flex-fuel” vehicles (i.e., vehicles with engines and fuel systems capable of combusting and delivering, respectively, 85% ethanol blended gasoline) and it is estimated that the production of E85 fuel will only continue to increase as the supply (i.e., production) of “flex-fuel” vehicles increase. However, an inherent limitation of “ethanol” blended fuels (due to the decreased or lower “energy content” of ethanol relative to gasoline) is that increasing the percentage of ethanol blended into gasoline reduces the overall fuel economy of the vehicle (e.g., fuel economy of vehicles operating on E85 is about 25-30% less than vehicles operating on E10 gasoline blends). This limitation of ethanol's total energy content has further facilitated research and development of alternative bio-fuel blending additives (e.g., terpenoid hydrocarbons, n-butanol, isobutanol and the like) to replace bio-ethanol. Also predicated on the assumption of a finite, diminishing supply of non-renewable petroleum resources, research in the areas of biologically derived (hereinafter, “bio-based”) chemicals (e.g., for use in pharmaceuticals, solvents, fertilizers, pesticides, plastics and the like) are being pursued, wherein these “bio-based”chemicals are contemplated as a means for reducing or eliminating their equivalents traditionally derived from petroleum feed stocks.


A considerable topic of ongoing debate is whether the ethanol fuel provisions of the Energy Policy Act of 2005 (and similar policies of other countries) have reduced (or will reduce) dependence on foreign oil/petroleum sources and/or have mitigated (or will mitigate) greenhouse gas emissions (two perceived benefits of the Act). For example, bio-fuels such as ethanol were initially seen as a solution to energy and environmental problems (i.e., considered carbon neutral) because the carbon dioxide emitted when ethanol is combusted is equivalent to the carbon dioxide absorbed from the atmosphere when the ethanol feed stock crop is grown (e.g., corn ethanol, sugarcane ethanol, cellulosic ethanol from switchgrass, etc.).


A recent study by economists at Oregon State University (Jaeger & Egelkraut, 2011) suggests however, that once additional factors/consequences are considered, such as (a) the use of fossil fuels to produce bio-fuel feedstocks and transport bio-fuels, (b) the use of nitrogen fertilizers to grow bio-fuel feedstocks and (c) that growing bio-fuel feedstock crops often pushes food production onto previously unfarmed land (which typically requires clearing tress and heavy tilling of the land), the perceived environmental benefits of ethanol derived bio-fuels may be lost. Likewise, another recent study on the environmental impact of bio-fuel production concludes that high corn and soybean prices, prompted largely by the demand for bio-fuel feedstocks (and partly by government incentives to use them as fuels instead of food), are driving one of the most important land cover/land use change events in recent US history; the accelerated conversion of grassland to cropland in the US Corn Belt (Wright and Wimberly, 2013).


The shift from petroleum based diesel fuel as a (transportation) energy source (e.g., used in automobiles, trucks and other heavy equipment) to renewable bio-diesel fuels is another source of scientific and policy disagreement similar to the arguments set forth above with regard to ethanol bio-fuels. Bio-diesel is generally made from plant oils or animal fats (triacylglycerides) by transesterification with methanol or ethanol, resulting in fatty acid methyl esters and fatty acid ethyl esters. However, the limited supply of bioresources to obtain triacylglycerides has become a major bottleneck for bio-diesel production, the primary reason being that vegetable oil feedstocks are also food sources and their planting is geographically limited.


There is therefore a pressing need in the art for novel methods of producing bio-fuel, bio-diesel and bio-based chemical compositions which reduce the world's dependence/utilization of petroleum products, ameliorate ongoing depletion of arable food source “farmland” currently being diverted to grow bio-fuel feedstocks and generally improve the environmental footprint of future bio-fuel, bio-diesel and bio-based chemical compositions.


As mentioned previously above, ethanol is currently the most abundant bio-fuel produced, but due to certain limitations (e.g., low energy content, high water solubility, incompatibility/corrosive with many fuel systems), ethanol based bio-fuels may not be the best option to meet future energy demands. Butanol, in comparison, has several advantages over ethanol as a bio-fuel, such as its high blending compatibility with gasoline, its low solubility in water allow it to be stored and distributed using the existing petrochemical infrastructure, it has a much higher energy content than ethanol (thereby improving fuel economy) and has a lower vapor pressure than ethanol blends, which is important in reducing evaporative hydrocarbon emissions. Isobutanol has the same advantages as butanol, with the additional advantage of having a higher octane number due to its branched carbon chain, and it is also useful as a commodity chemical.


Various methods for producing renewable bio-fuel, bio-diesel and other bio-based chemicals are known and described in the art. For example, traditional fermentation and distillation methods for producing and extracting bio-ethanol from starch or sugar rich biomass (e.g., corn) and the hydrolysis, fermentation and distillation methods of producing bio-ethanol from ligno-cellulosic biomass are well known in the art (Rudolph et al., 2009; Kim et al, 2013; Philips et al., 2013). The production of bio-diesel via extraction and esterification of vegetable oils, used cooking oils and animal fats using alcohols is also well known in the art (Saka & Kusdiana, 2001).


In more recent efforts, researchers have started to look at alternative methods for producing bio-fuels, bio-diesel and bio-based chemicals. For example, methods for producing bio-fuels such as butanol and isobutanol in various microorganisms such as Escherichia coli (Atsumi et al., 2010), Clostridium acetobutylicum (Jang et al., 2012) and Saccharomyces cerevisiae (Avalos et al., 2013) have been described in the art. Furthermore, the complete biosynthetic pathway for isobutanol production has been engineered in yeast (see, U.S. Pat. Nos. 8,232,089; 7,993,889) and bacteria (see, U.S. Patent Publication No. 2011/0301388). Similarly, de novo biosynthesis of bio-diesel using genetically engineered E. coli has been described in the art (Xingye et al., 2011; Yangkai et al., 2011).


However, each of the methods set forth above (i.e., traditional biomass fermentation methods and engineered biological/microorganism methods) for producing bio-fuel, bio-diesel, bio-based chemicals and the like, are limited by the choice of feedstock (or substrate) used to produce the end product (e.g., bio-ethanol, bio-butanol, bio-diesel, etc.). For example, the growth substrates utilized by each of the microorganisms set forth above (i.e., E. coli, C. acetobutylicum and S. cerevisiae) are dependent, in one way or another, on substrate feedstocks derived from crop-based food sources (e.g., glucose (growth) substrates fed to microorganisms are derived from plant sources).


Thus, as set forth previously, there is an ongoing need in the art for novel methods of producing bio-fuel, bio-diesel and bio-based chemical compositions, which not only reduce dependence/utilization of petroleum products, but also ameliorate the ongoing depletion of arable food source “farmland” currently being diverted to grow bio-fuel feedstocks and generally improve the environmental footprint of future bio-fuel, bio-diesel and bio-based chemical compositions.


Methane (CH4) has great value as a chemical feedstock for the production of chemicals and food additives, due to its widespread availability, abundant supply and low price (Kidnay et al., 2011). Methane, in the form of natural gas, can be obtained from shale gas, oil drilling, municipal solid waste, biomass gasification/conversion, and methanogenic archaea. Wellhead natural gas varies in composition from about 40% to 95% methane, wherein the other components include ethane, propane, butane, pentane, and heavier hydrocarbons, along with hydrogen sulfide, carbon dioxide, helium and nitrogen. The proportion of methane in the gas feedstock can be increased by gas conditioning, which can produce natural gas consisting of 85-95% (v/v) methane (U.S. Pat. No. 4,982,023).


Current industrial methods for utilizing methane from natural gas include the Fischer-Tropsch process for converting methane into ethylene, steam-methane reforming from methane synthesis gas, as well as direct conversion from methane to methanol using inorganic catalysts (Veazey, 2012; Alayon et al., 2012; U.S. Pat. No. 4,982,023). Although the economics of syngas-to-liquids and methanol-to-gasoline from natural gas have become more favorable, these thermochemical methods for methane conversion still suffer from serious drawbacks (Arakawa et al., 2001). For example: (1) industrial plant construction requires high capital expenditure, (2) operating costs are high, (3) thermochemical conversion plants require elevated temperatures (150° C. to 300° C.) and high pressures (tens of atmospheres), which add to capital and operational costs, (4) the gas-to-liquids process is not always selective in producing liquid fuel and chemical products, further requiring expensive distillation costs and (5) the inorganic catalysts required for producing methanol and other products are susceptible to poisoning by contaminants in the process stream, and therefore the gas streams must be cleaned and the catalysts periodically replaced.


Certain embodiments of the present invention, as set forth below (see, “Detailed Description”), are directed to methods for biosynthetic production of multi-carbon compounds such as fuels (bio-fuels) and chemicals (bio-based) from methane. It is contemplated herein that the methods according to the present invention, using biological catalysts or biocatalysts (e.g., a genetically modified host microorganism) provide a number of economic advantages over current “industrial” methods for utilizing methane from natural gas. These advantages include (1) lower processing temperatures and pressures; (2) high selectivity for the reactions and (3) renewability, all of which lead to substantially lower capital and operational expenses.


A number of microorganisms, including bacteria and yeast, use single-carbon (C1) substrates as their sole source of carbon. These methylotrophs or C1-metabolizers can convert carbon compounds that do not contain carbon-carbon bonds, such as methane (CH4) or methanol (CH3OH) into biomass (Gellissen et al., 2005; Trotsenko & Murrell, 2008; Chistoserdova et al., 2009; Schrader et al., 2009; Chistoserdova, 2011). With regard to methane utilization, one particularly important group of bacteria known as the methanotrophs, the “obligate” members of which convert methane into methanol (CH3OH), formaldehyde (H2C═O), formic acid (HCOOH) and ultimately CO2 by sequential enzymatic oxidation (Hanson & Hanson, 1996; Trotsenko & Murrell, 2008; Rosenzweig & Ragsdale, 2011 (a); Rosenzweig & Ragsdale 2011 (b)). Certain “facultative” methanotrophs (e.g., from the genus Methylocella) can also be cultivated using methane, methanol or methylamines as growth substrates (Dunfield et al., 2003; Rosenzweig & Ragsdale, 2011 (a); Rosenzweig & Ragsdale 2011 (b); Semrau et al., 2011).


The initial step of methane oxidation to methanol in methanotrophs is carried out by the enzyme methane monooxygenase (MMO) (Hakemian & Rosensweig, 2007; Rosenzweig & Ragsdale, 2011 (b)). Methane monooxygenase (MMO) activity is expressed in two different forms: a particulate form (pMMO), which contains copper and is membrane-bound (Culpepper & Rosenzweig, 2012), and a soluble form (sMMO), which contains iron and is expressed when copper becomes limiting (Murrel et al., 2000; Hakemian & Rosenzweig, 2007; Tinberg & Lippard, 2007). The second step of converting methanol to formaldehyde is catalyzed by the enzyme methanol dehydrogenase (MDH), another membrane-bound enzyme (Anthony & Williams, 2003). From this point, the formaldehyde can be dissimilated into formate (by formaldehyde dehydrogenase) and carbon dioxide (by formate dehydrogenase). The dissimilation reactions generate reducing equivalents for the cell, but do not directly contribute to the production of biomass or other multi-carbon products, since the carbon is released as CO2. In some methanotrophs, however, carbon dioxide can be fixed through the serine pathway and/or the Calvin-Benson-Bassham cycle (see below), both of which depend on methane consumption to support growth (Stanley & Dalton, 1982; Chistoserdova et al., 2005). Among the oxidized C1 products that can be generated in the above described reactions, formaldehyde is the most important product (or imtermediate), as it serves as a metabolite that can be “fixed” into multi-carbon compounds via its introduction (or assimilation) into a central metabolism pathway of the host microorganism.


For example, the assimilation of the carbon in the formaldehyde formed can occur via various metabolic routes (Hanson & Hanson, 1996; Yurimoto et al., 2005; Yurimoto et al., 2009; Trotsenko & Murrell, 2008; Rosenzweig & Ragsdale, 2011 (a); Rosenzweig & Ragsdale, 2011 (b)). For example, the Type I methanotrophs, which are members of the Gammaproteobacteria, use the ribulose monophosphate (RuMP) pathway (see, Hanson & Hanson, 1996). The Type II methanotrophs, which are members of the Alphaproteobacteria, utilize the serine pathway (Hanson & Hanson, 1996). The bacterium Methylococcus capsulatus, strain Bath, however, uses elements of both these pathways, and is sometimes referred to as a “Type X” methanotroph (Hanson & Hanson, 1996; Chistoserdova et al., 2005). Methylococcus capsulatus (Bath), also expresses the enzymes needed to fix carbon dioxide via the Calvin-Benson-Bassham cycle (Chistoserdova et al., 2005).


Turnover of these pathways (i.e., Type I, Type II or Type X) ultimately supplies multi-carbon intermediates for other pathways of central metabolism. For example, the 3-phospho-glyceraldehyde generated by the RuMP cycle can be converted into pyruvate, and the 2-phospho-glycerate generated by the serine cycle can eventually be converted into phosphoenolpyruvate, oxaloacetate and acetyl-CoA, among other intermediates.


Substantial efforts have been expended over the past 40 years to exploit methanotrophs for chemical production and transformations on an industrial scale. However, to date there are still significant deficiencies and unmet needs in the art for improved host microorganisms which can utilize “non-traditional” carbon sources such as oxidized single-carbon compounds (e.g., methane, methanol or formaldehyde) and produce industrial, commercially relevant, multi-carbon compounds such as ethanol, n-butanol, sec-butanol, isobutanol, tert-butanol, fatty alcohols, fatty acid methyl esters, 2,3-butanediol and the like.


The present invention fulfills a need in the art for improved host microorganisms (which can utilize methane as a sole-carbon source in the production of multi-carbon compounds) for use in the biological production of bio-fuels and bio-based chemical compositions. The metabolically engineered host microorganisms and methods of producing the same, as set forth in the present invention, further address a long felt need in the art to reduce dependence/consumption of petroleum products and mitigate the depletion of farmland currently being diverted to grow bio-fuel and bio-based chemical feedstocks.


SUMMARY OF THE INVENTION

The present invention provides metabolically engineered host microorganisms which metabolize methane (CH4) as their sole carbon source to produce multi-carbon compounds for use in fuels (e.g., bio-fuel, bio-diesel) and bio-based chemicals. Furthermore, use of the metabolically engineered host microorganisms of the invention (which utilize methane as the sole carbon source) mitigate current industry practices and methods of producing multi-carbon compounds from petroleum or petroleum-derived feedstocks, and ameliorate much of the ongoing depletion of arable food source “farmland” currently being diverted to grow bio-fuel feedstocks, and as such, improve the environmental footprint of future bio-fuel, bio-diesel and bio-based chemical compositions.


Thus, in certain embodiments, the invention is directed to a method for producing isobutanol from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O); (b) introducing into the methanotroph host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in an isobutanol pathway; and (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to pyruvate by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes pyruvate to produce isobutanol. In certain embodiments, the one or more polynucleotide ORFs introduced in step (b) encode an isobutanol pathway polypeptide selected from an Enzyme Class (EC) comprising EC 2.2.1.6, EC 1.1.1.86, EC 4.2.1.9, EC 4.1.1.72 and EC 1.1.1.1. In other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode an isobutanol pathway polypeptide selected from the group consisting of acetolactate synthase (ALS), ketol-acid reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD), ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In yet other embodiments, the ALS polypeptide catalyzes the substrate to product conversion of pyruvate to acetolactate; the KARI polypeptide catalyzes the substrate to product conversion of acetolactate to 2,3-dihydroxyisovalerate; the DHAD polypeptide catalyzes the substrate to product conversion of 2,3-dihydroxyisovalerate to ketoisovalerate; the KDC polypeptide catalyzes the substrate to product conversion of ketoisovalerate to isobutryaldehyde and ADH polypeptide catalyzes the substrate to product conversion of isobutyraldehyde to isobutanol. In another embodiment, the ALS polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:2, the KARI polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:4, the DHAD polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:6, the KDC polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:8 and the ADH polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:10. In other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode the complete isobutanol pathway comprising an ALS polypeptide, a KARI polypeptide, a DHAD polypeptide, a KDC polypeptide and an ADH polypeptide. In other embodiments a method for producing isobutanol from a methane substrate further comprises the step of recovering the isobutanol produced.


In another embodiment, the invention is directed to a method for producing isobutanol from a methane substrate comprising the steps of (a) providing a non-methanotroph host microorganism which has been genetically engineered to express a methane monooxygenase (MMO), (b) introducing into the host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in an isobutanol pathway, and (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous methanol dehydrogenase (MDH) polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde and the formaldehyde produced is converted to pyruvate through an endogenous RuMP or serine pathway, wherein the host metabolizes pyruvate to produce isobutanol. In certain embodiments, the one or more polynucleotide ORFs introduced in step (b) encode an isobutanol pathway polypeptide selected from an Enzyme Class (EC) comprising EC 2.2.1.6, EC 1.1.1.86, EC 4.2.1.9, EC 4.1.1.72 and EC 1.1.1.1. In other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode an isobutanol pathway polypeptide selected from the group consisting of acetolactate synthase (ALS), ketol-acid reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD), ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In yet other embodiments, the ALS polypeptide catalyzes the substrate to product conversion of pyruvate to acetolactate; the KARI polypeptide catalyzes the substrate to product conversion of acetolactate to 2,3-dihydroxyisovalerate; the DHAD polypeptide catalyzes the substrate to product conversion of 2,3-dihydroxyisovalerate to ketoisovalerate; the KDC polypeptide catalyzes the substrate to product conversion of ketoisovalerate to isobutryaldehyde and ADH polypeptide catalyzes the substrate to product conversion of isobutyraldehyde to isobutanol. In certain other embodiments, the ALS polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 2, the KARI polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:4, the DHAD polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:6, the KDC polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 8 and the ADH polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:10. In another embodiment, the one or more polynucleotide ORFs introduced in step (b) encode the complete isobutanol pathway comprising an ALS polypeptide, a KARI polypeptide, a DHAD polypeptide, a KDC polypeptide and an ADH polypeptide. In other embodiments, the methane monooxygenase (MMO) is a soluble MMO of Enzyme Class EC 1.14.13.25 or a particulate MMO of Enzyme Class 1.14.18.3. In certain embodiments, the MMO comprises an amino acid sequence comprising at least 90% sequence homology to a particulate methane monooxygenase (pMMO) selected from the group consisting of SEQ ID NO:12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO:20 and SEQ ID NO:22 or at least 90% sequence homology to a soluble methane monooxygenase (sMMO) selected from the group consisting of SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO: 32 and SEQ ID NO:34. In other embodiments a method for producing isobutanol from a methane substrate further comprises the step of recovering the isobutanol produced.


In another embodiment, the invention is directed to a method for producing 1-butanol from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in a 1-butanol pathway, and (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to pyruvate by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes pyruvate to produce 1-butanol. In certain embodiments, the one or more polynucleotide ORFs introduced in step (b) encode a 1-butanol pathway polypeptide selected from an Enzyme Class (EC) comprising EC 4.3.1.19, EC 2.3.3.6, EC 4.2.1.33, EC 4.1.1.72, and EC 1.1.1.1. In yet other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode a 1-butanol pathway polypeptide selected from the group consisting of L-threonine ammonia lyase, 2-ethylmalate synthase, isopropylmalate isomerase, 3-isopropylmalate dehydratase, 3-isopropylmalate dehydrogenase, 2-ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In another embodiment, the L-threonine ammonia lyase catalyzes the substrate to product conversion of L-threonine to 2-oxybutanoate and ammonia; the 2-ethylmalate synthase catalyzes the substrate to product conversion of 2-oxybutanoate and acetyl-CoA to 2-ethylmalate; the isopropylmalate isomerase catalyzes the substrate to product conversion of 2-ethylmalate to 3-ethylmalate; the 3-isopropylmalate dehydrogenase catalyzes the substrate to product conversion of 3-ethylmalate to 2-ketovalerate, CO2 and NADH; the KDC catalyzes the substrate to product conversion of 2-ketovalerate to butryaldehyde and the ADH catalyzes the substrate to product conversion of butyraldehyde to 1-butanol. In another embodiment, the L-threonine ammonia lyase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:56, the 2-ethylmalate synthase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:58, the isopropylmalate isomerase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 60 and SEQ ID NO:62, a 3-isopropylmalate dehydrogenase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:64, the KDC comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:8 and the ADH comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 10. In certain other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode the complete 1-butanol pathway comprising L-threonine ammonia lyase, 2-ethylmalate synthase, isopropylmalate isomerase, 3-isopropylmalate dehydrogenase, 2-ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In other embodiments a method for producing 1-butanol from a methane substrate further comprises the step of recovering the 1-butanol produced.


In another embodiment, the invention is directed to a method for producing 1-butanol from a methane substrate comprising the steps of (a) providing a non-methanotroph host microorganism which has been genetically engineered to express a methane monooxygenase (MMO), (b) introducing into the host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in a 1-butanol pathway, and (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous methanol dehydrogenase (MDH) polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde and the formaldehyde produced is converted to pyruvate through an endogenous RuMP or serine pathway, wherein the host metabolizes pyruvate to produce 1-butanol. In certain embodiments, the one or more polynucleotide ORFs introduced in step (b) encode an 1-butanol pathway polypeptide selected from an Enzyme Class (EC) comprising EC 4.3.1.19, EC 2.3.3.6, EC 4.2.1.33, EC 1.1.1.85, EC 4.1.1.72, and EC 1.1.1.1. In another embodiment, the one or more polynucleotide ORFs introduced in step (b) encode a 1-butanol pathway polypeptide selected from the group consisting of L-threonine ammonia lyase, 2-ethylmalate synthase, isopropylmalate isomerase, 3-isopropylmalate dehydrogenase, 2-ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In yet other embodiments, the L-threonine ammonia lyase catalyzes the substrate to product conversion of L-threonine to 2-oxybutanoate and ammonia; the 2-ethylmalate synthase catalyzes the substrate to product conversion of 2-oxybutanoate and acetyl-CoA to 2-ethylmalate; the isopropylmalate isomerase catalyzes the substrate to product conversion of 2-ethylmalate to 3-ethylmalate; the 3-isopropylmalate dehydrogenase catalyzes the substrate to product conversion of 3-ethylmalate to 2-ketovalerate, CO2 and NADH; the KDC catalyzes the substrate to product conversion of 2-ketovalerate to butryaldehyde and the ADH catalyzes the substrate to product conversion of butyraldehyde to 1-butanol. In other embodiments, the L-threonine ammonia lyase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:56, the 2-ethylmalate synthase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 58, the isopropylmalate isomerase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:60 and SEQ ID NO:62, a 3-isopropylmalate dehydrogenase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:64, the KDC comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:8 and the ADH comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:10. In another embodiment, the methane monooxygenase (MMO) is a soluble MMO of Enzyme Class EC 1.14.13.25 or a particulate MMO of Enzyme Class 1.14.18.3. In certain other embodiments, the MMO comprises an amino acid sequence comprising at least 90% sequence homology to a particulate methane monooxygenase (pMMO) selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO:18, SEQ ID NO:20 and SEQ ID NO: 22 or at least 90% sequence homology to a soluble methane monooxygenase (sMMO) selected from the group consisting of SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32 and SEQ ID NO:34. In other embodiments a method for producing 1-butanol from a methane substrate further comprises the step of recovering the 1-butanol produced.


In certain other embodiments, the invention is directed to a method for producing fatty alcohols from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a fatty-acyl-CoA reductase (FAR), and (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes acetyl-CoA to produce a fatty alcohol. In one embodiment, the FAR polypeptide is further defined as a polypeptide from Enzyme Class EC 1.2.1.50. In another embodiment, the FAR polypeptide catalyzes the substrate to product conversion of fatty acetyl-CoA to a fatty alcohol. In yet other embodiments, the FAR polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:66. In other embodiments a method for producing fatty alcohols from a methane substrate further comprises the step of recovering the fatty alcohol produced.


In certain other embodiments, the invention is directed to a method for producing a fatty alcohol from a methane substrate comprising the steps of (a) providing a non-methanotroph host microorganism which has been genetically engineered to express a methane monooxygenase (MMO), (b) introducing into the host microorganism and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a fatty-acyl-CoA reductase (FAR), and (c) feeding the host microorganism of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous RuMP or serine pathway and the host metabolizes acetyl-CoA to produce a fatty alcohol. In certain embodiments, the FAR polypeptide catalyzes the substrate to product conversion of fatty acetyl-CoA to a fatty alcohol. In certain other embodiments, the FAR polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO: 66. In another embodiment, the methane monooxygenase (MMO) is a soluble MMO of Enzyme Class EC 1.14.13.25 or a particulate MMO of Enzyme Class 1.14.18.3. In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a particulate methane monooxygenase (pMMO) selected from the group consisting of SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20 and SEQ ID NO:22 or at least 90% sequence homology to a soluble methane monooxygenase (sMMO) selected from the group consisting of SEQ ID NO:24, SEQ ID NO: 26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32 and SEQ ID NO:34. In other embodiments a method for producing fatty alcohols from a methane substrate further comprises the step of recovering the fatty alcohol produced.


In another embodiment, the invention is directed to a method for producing a fatty acid ester from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a wax ester synthase (WES) and (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes fatty acyl-CoA and alcohols to produce a fatty acid ester. In certain embodiments, the WES polypeptide is further defined as a polypeptide from Enzyme Class EC 2.3.1.75. In another embodiment, the WES polypeptide catalyzes the substrate to product conversion of fatty acyl-CoA and alcohols to fatty acid esters. In other embodiments, the WES polypeptide comprises an amino acid sequence having at least 90% sequence homology to a WES polypeptide selected from SEQ ID NO:68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO:74, SEQ ID NO: 76 and SEQ ID NO: 78. In other embodiments a method for producing fatty acid esters from a methane substrate further comprises the step of recovering the fatty acid esters produced.


In another embodiment, the invention is directed to a method for producing a fatty acid ester from a methane substrate comprising the steps of (a) providing a non-methanotroph host microorganism which has been genetically engineered to express a methane monooxygenase (MMO), (b) introducing into the host microorganism and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a wax ester synthase (WES) and (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous MDH polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde, the formaldehyde produced is converted to acetyl-CoA through an endogenous RuMP or serine pathway and the host metabolizes fatty acyl-CoA and alcohols to produce a fatty acid ester. In certain embodiments, the WES polypeptide catalyzes the substrate to product conversion of fatty acyl-CoA and alcohols to fatty acid esters. In certain other embodiments, the WES polypeptide comprises an amino acid sequence having at least 90% sequence homology to a WES polypeptide selected from SEQ ID NO:68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO:74, SEQ ID NO: 76 and SEQ ID NO: 78. In another embodiment, the methane monooxygenase (MMO) is a soluble MMO of Enzyme Class EC 1.14.13.25 or a particulate MMO of Enzyme Class 1.14.18.3. In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a particulate methane monooxygenase (pMMO) selected from the group consisting of SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO:20 and SEQ ID NO:22 or at least 90% sequence homology to a soluble methane monooxygenase (sMMO) selected from the group consisting of SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32 and SEQ ID NO:34. In other embodiments a method for producing fatty acid esters from a methane substrate further comprises the step of recovering the fatty acid esters produced.


In certain other embodiments, the invention is directed to a method for producing 2,3-butanediol from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the host and expressing a polynucleotide ORF, under the control of suitable regulatory sequences, wherein the ORF encodes a (2R,3R)-2,3-butanediol dehydrogenase (BDH1), and (c) feeding the host microorganism of step (b) a methane substrate under suitable growth conditions, wherein host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to pyruvate by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes pyruvate to produce (R)-acetoin and the BDH1 catalyzes the substrate to product conversion of (R)-acetoin to 2,3-butanediol. In certain embodiments, the (2R,3R)-2,3-butanediol dehydrogenase (BDH1) has at least 90% sequence homology to a BDH1 polypeptide of SEQ ID NO:157. In other embodiments, the polynucleotide ORF comprises a nucleotide sequence of SEQ ID NO:156. In other embodiments a method for producing 2,3-butanediol from a methane substrate further comprises the step of recovering the 2,3-butanediol produced.


In certain embodiments, a methanotroph host microorganism of the invention is selected from genus consisting of Methylobacter, Methylomicrobium, Methylomonas, Methylocaldum, Methylococcus, Methylosoma, Methylosarcina, Methylothermus, Methylohalobius, Methylogaea, Methylovulum, Crenothrix, Clonothrix, Methylosphaera, Methylocapsa, Methylocella, Methylosinus, Methylocystis, and Methyloacidophilum. In other embodiments, the methanotroph host microorganism is selected from the phylum Verrucomicrobia. In another embodiment, the methanotroph host is Methylococcus capsulatus, strain Bath.


In certain other embodiments, a non-methanotroph host microorganism of the invention is a yeast microorganism or bacterial microorganism. In certain embodiments, the non-methanotroph yeast microorganism is selected from Saccharomyces cerevisiae, Hansenuela polymorpha, Pichia pastoris and Kluyveromyces lactis. In one particular embodiment, the yeast microorganism is Pichia pastoris.


In certain other embodiments, a non-methanotrophic bacterial microorganism of the invention is Pseudomonas putida, Cupriavidus metallidurans or Rhodobacter sphaeroides.


In other embodiments, recovering the isobutanol produced according to the methods of the invention is a process selected from distillation, liquid extraction, flash evaporation, membrane separation and phase separation.


In other embodiments, recovering the 1-butanol produced according to the methods of the invention is a process selected from distillation, liquid extraction, flash evaporation, membrane separation and phase separation.


In another embodiment, recovering the fatty alcohol produced according to the methods of the invention is a process selected from flash evaporation, membrane separation, centrifugation and phase separation.


In certain other embodiments, recovering the fatty acid ester produced according to the methods of the invention is a process selected from flash evaporation, membrane separation, centrifugation and phase separation.


In another embodiment, recovering the 2,3-butanediol produced according to the methods of the invention is a process selected from steam stripping, solvent extraction, aqueous two-phase extraction, reactive extraction and pervaporation.


In certain other embodiments, a methane substrate is provided as a dry natural gas, as a wet natural gas or as a biogas.


In other embodiments, the host microorganism is grown by a batch process, a fed-batch process or a continuous perfusion process.


In another embodiment, the fatty alcohol composition produced according to the methods of the invention comprises a carbon chain of about 5 to about 40 carbon atoms. In certain embodiments, the fatty alcohol comprises a carbon chain of 8 to 22 carbon atoms.


In another embodiment, the fatty acid ester composition produced according to the methods of the invention has a fatty acid moiety comprising a carbon chain of about 5 to about 40 carbon atoms. In one particular embodiment, the fatty acid moiety comprises a carbon chain of 8 to 22 carbon atoms.


In yet other embodiments, the fatty acid ester composition produced according to the methods of the invention has an alcohol moiety comprising a carbon chain of about 5 to about 40 carbon atoms. In one particular embodiment, the alcohol moiety comprises a chain of 8 to 22 carbon atoms.


In yet other embodiments, a non-methanotroph host microorganism of the invention is further engineered to express an exogenous methanol dehydrogenase (MDH). In certain embodiments, the MDH is a polypeptide from Enzyme Class 1.14.18.3. In other embodiments, the MDH comprises an amino acid sequence having at least 90% sequence homology to a MDH polypeptide selected from the group consisting of SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO: 48, SEQ ID NO:50, SEQ ID NO:52 and SEQ ID NO:54.


In other embodiments, the invention is directed to a substantially purified isobutanol composition produced according to the methods of the invention.


In another embodiment, the invention is directed to a substantially purified 1-butanol composition produced according to the methods of the invention.


In other embodiments, the invention is directed to a substantially purified fatty alcohol composition produced according to the methods of the invention.


In another embodiment, the invention is directed to a substantially purified fatty acid ester composition produced according to the methods of the invention.


In other embodiments, the invention is directed to a substantially purified 2,3-butanediol composition produced according to the methods of the invention.


In yet other embodiments, the invention is directed to an isobutanol producing methanotroph host microorganism manufactured according to the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in an isobutanol pathway, and (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to pyruvate by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes pyruvate to produce isobutanol.


In another embodiment, the invention is directed to an isobutanol producing non-methanotroph host microorganism manufactured according to the steps of (a) providing a non-methanotroph host microorganism which has been genetically engineered to express a methane monooxygenase (MMO), (b) introducing into the host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in an isobutanol pathway, and (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous methanol dehydrogenase (MDH) polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde and the formaldehyde produced is converted to pyruvate through an endogenous RuMP or serine pathway, wherein the host metabolizes pyruvate to produce isobutanol.


In yet other embodiments, the invention is directed to a 1-butanol producing methanotroph host microorganism manufactured according to the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in a 1-butanol pathway, and (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to pyruvate by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes pyruvate to produce 1-butanol.


In other embodiments, the invention is directed to a 1-butanol producing non-methanotroph host microorganism manufactured according to the steps of (a) providing a non-methanotroph host microorganism which has been genetically engineered to express a methane monooxygenase (MMO), (b) introducing into the host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in a 1-butanol pathway, and (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous methanol dehydrogenase (MDH) polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde and the formaldehyde produced is converted to pyruvate through an endogenous RuMP or serine pathway, wherein the host metabolizes pyruvate to produce 1-butanol.


In another embodiment, the invention is directed to a fatty alcohol producing methanotroph host microorganism manufactured according to the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a fatty-acyl-CoA reductase (FAR), and (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes acetyl-CoA to produce a fatty alcohol.


In other embodiments, the invention is directed to a fatty alcohol producing non-methanotroph host microorganism manufactured according to the steps of (a) providing a non-methanotroph host microorganism which has been genetically engineered to express a methane monooxygenase (MMO), (b) introducing into the host microorganism and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a fatty-acyl-CoA reductase (FAR), and (c) feeding the host microorganism of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous RuMP or serine pathway and the host metabolizes acetyl-CoA to produce a fatty alcohol.


In another embodiment, the invention is directed to a fatty acid ester producing methanotroph host microorganism manufactured according to the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a wax ester synthase (WES) and (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes fatty acyl-CoA and alcohols to produce a fatty acid ester.


In certain other embodiments, the invention is directed to a fatty acid ester producing non-methanotroph host microorganism manufactured according to the steps of (a) providing a non-methanotroph host microorganism which has been genetically engineered to express a methane monooxygenase (MMO), (b) introducing into the host microorganism and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a wax ester synthase (WES) and (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous MDH polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde, the formaldehyde produced is converted to acetyl-CoA through an endogenous RuMP or serine pathway and the host metabolizes fatty acyl-CoA and alcohols to produce a fatty acid ester.


In certain other embodiments, the invention is directed to a 2,3-butanediol producing methanotroph host microorganism manufactured according to the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the host and expressing a polynucleotide ORF, under the control of suitable regulatory sequences, wherein the ORF encodes a (2R,3R)-2,3-butanediol dehydrogenase (BDH1), and (c) feeding the host microorganism of step (b) a methane substrate under suitable growth conditions, wherein host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to pyruvate by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes pyruvate to produce (R)-acetoin and the BDH1 catalyzes the substrate to product conversion of (R)-acetoin to 2,3-butanediol.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments of the invention are illustrated in the drawings, in which:



FIG. 1 depicts five pathways for the biosynthetic production of n-butanol (1-butanol) and one pathway for the biosynthetic production of isobutanol.



FIG. 2 depicts a vector map of the broad host range expression plasmid pCM 132. The vector map shows the following components: (1) an origin of replication that is functional in E. coli (colE1); (2) an oriV/IncP origin of replication for the non-E. coli microbial host; (3) an oriT/IncP origin of transfer, which is needed for transferring a bacterial plasmid from a bacterial host such as E. coli to the recipient during bacterial conjugation; (4) a traJ gene, which codes for a transcriptional activator that initiates production of the proteins needed for conjugative transfer; (5) a trfA gene, the replication initiation protein gene of plasmid RK2 which binds to and activates oriV; (6) a lacZ (beta-galactosidase) gene for identifying plasmids with DNA inserts based on colony color using indolyl-galactoside-based substrates; and (7) a kanamycin resistance gene (kan). Genes of interest are inserted into the polylinker region that lies between the rrnB transcription terminator and the 5′-end of the lacZ gene.



FIG. 3 shows a schematic diagram of component DNA arrangements for cloning into an expression vector.



FIG. 4 shows the optimization of the 2-ketoisovalerate (2-KIV) concentration fed to various engineered host strains expressing the two-gene (isobutanol) pathway.



FIG. 5 shows the measured production of isobutanol in an M. capsulatus strain expressing plasmid pGMV145 (containing: promoter J23115, the gene for M. capsulatus (Bath) 2-ketoisovalerate decarboxylase (CapKDC) and the gene for S. cerevisiae alcohol dehydrogenase (ScADH6)), harvested at different time intervals after 2-KIV addition.



FIG. 6 is a comparison of isobutanol production after 2-KIV feeding in various engineered host strains expressing different combinations of two genes (i.e., isobutanol pathway genes) and with different promoters.



FIG. 7 compares production of isobutanol in the wild-type M. capsulatus str. Bath (no plasmid) and an engineered strain (pJS041) expressing the five-gene (isobutanol) pathway.



FIG. 8 is a gas chromatography (GC) analysis of fatty acid alcohol production by various engineered strains of M. capsulatus (Bath). The GC peak at about 5.2 minutes corresponds to a C16:0 fatty alcohol standard.



FIG. 9 shows an engineered pathway for 2,3-butanediol production from methane using a heterologously expressed BDH1 enzyme from Saccharomyces cerevisiae.





DETAILED DESCRIPTION OF THE INVENTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, the exemplary methods, devices and materials are described herein.


In certain embodiments, the present invention is directed to host microorganisms metabolically engineered to produce multi-carbon compounds. Multi-carbon compounds such as ethanol, n-butanol, sec-butanol, isobutanol, tert-butanol, fatty (or aliphatic long chain) alcohols, fatty acid methyl esters, 2,3-butanediol and the like, are important industrial commodity chemicals with a variety of applications, including, but not limited to their use in fuels (e.g., bio-fuel, bio-diesel) and bio-based chemicals. The present invention addresses a number of commercial, industrial and environmental needs in the art related to the production of multi-carbon compounds.


As set forth herein, the metabolically engineered host microorganisms of the present invention utilize methane (CH4) as their sole carbon source (i.e., the host microorganism does not require plant based feedstocks for growth and energy) and ameliorate much of the ongoing depletion of arable food source “farmland” currently being diverted to grow bio-fuel feedstocks, and as such, improve the environmental footprint of future bio-fuel, bio-diesel and bio-based chemical compositions. Furthermore, use of the metabolically engineered host microorganisms set forth in the present invention (which utilize methane as the sole carbon source) mitigate current industry practices and methods of producing multi-carbon compounds from petroleum or petroleum-derived feedstocks.


Thus, in certain embodiments of the invention, a host microorganism is genetically engineered to produce multi-carbon compounds. As is known in the art, methanotrophic organisms are able to metabolize methane as their primary source of carbon and energy, can grow aerobically or anaerobically, and require single-carbon compounds (e.g., methane, CH4; methanol, CH3OH and/or formaldehyde, H2C═O) to survive. In particular embodiments, a host microorganism of the invention is a methanotroph. As defined herein, a “methanotroph”, a “methanotrophic” or a “methanophile” host microorganism of the invention is a “prokaryotic microorganism which can metabolize methane as its primary source of carbon and energy”.


In other embodiments, the host microorganism of the invention is a non-methanotrophic microorganism genetically engineered to metabolize methane as its only source of carbon and energy. As defined herein, a “non-methanotroph” host microorganism of the invention is a host microorganism which “cannot metabolize (or utilize) methane as its sole carbon source”, until the “non-methanotroph” host microorganism has been genetically modified or engineered according to the methods of the present invention. As further defined herein, a “non-methanotroph” host microorganism of the invention includes any prokaryotic and eukaryotic microbial species which comprise a complete or partial “endogenous ribulose monophosphate (RuMP) pathway, a serine pathway or a mixed RuMP/serine pathway” (e.g., see RuMP, serine and mixed (Type X) pathways described below). In certain embodiments, a “non-methanotroph” host microorganism of the invention includes prokaryotic and eukaryotic microbial species from the Domains Archaea, Bacteria and Eucarya, wherein the Domain Eucarya includes yeast, filamentous fungi, protozoa, algae or higher Protista. The terms “microbial” and “microbes” are used interchangeably with the term “microorganism”.


As defined herein, the phrase “providing a methanotrophic host microorganism that metabolizes methane to methanol and metabolizes methanol to formaldehyde” refers to an “endogenous enzymatic activity encoded by one or more endogenous genes of the methanotroph host microorganism”. For example, an endogenous enzyme (or polypeptide) encoded by one or more endogenous genes of a methanotroph host microorganism include a methane monooxygenase (MMO) enzyme (which metabolizes (or converts) methane to methanol) and a methanol dehydrogenase (MDH) enzyme (which metabolizes (or converts) methanol to formaldehyde). Stated another way, the phrase “providing a methanotrophic host microorganism that metabolizes methane to methanol and metabolizes methanol to formaldehyde” does not require the introduction of exogenous (or heterologous) genes encoding single-carbon (C1) oxidizing enzymes (or polypeptides), as such enzymes and the activity thereof are inherent (endogenous) attributes of a methanotrophic host microorganism of the invention.


Furthermore, as is known in the art, a “methanotrophic host microorganism” of the invention comprises endogenous genes encoding at least a Type I methanotroph RuMP pathway and/or a Type II methanotroph serine pathway. In general, Type I methanotrophs (e.g., Methylomonas, Methylomicrobium, Methylobacter, Methylocaldum, Methylosphaera) assimilate formaldehyde produced (i.e., from the oxidation of methane to methanol and methanol to formaldehyde), using the ribulose monophosphate pathway (RuMP), whereas Type II methanotrophs (e.g., Methylocystis and Methylosinus) assimilate formaldehyde produced (i.e., from the oxidation of methane to methanol and methanol to formaldehyde), using the serine pathway. Lastly, the genus Methylococcus are known to comprise a combination of characteristics of both Type I methanotroph (RuMP) pathway and Type II methanotroph (serine) pathway.


The ribulose monophosphate pathway (RuMP) was originally identified in methanotrophic bacteria, as described above. However, more recent genome sequence analysis of various microorganisms have revealed that the key enzymes of the RuMP pathway (e.g., 3-hexulose-6-phosphate (HPS), 6-phsopho-3-hexuloisomerase (PHI)) are widely distributed (i.e., endogenous) among “non-methanotrophic” bacteria and archaeal genomes (Orita et al., 2006).


As defined herein, the phrases “recombinant host microorganism”, “genetically engineered host microorganism”, “engineered host microorganism” and “genetically modified host microorganism” may be used interchangeably and refer to host microorganisms that have been genetically modified to (a) express one or more exogenous polynucleotides, (b) over-express one or more endogenous and/or one or more exogenous polynucleotides, such as those included in a vector, or which have an alteration in expression of an endogenous gene or (c) knock-out or down-regulate an endogenous gene. In addition, certain genes may be physically removed from the genome (e.g., knock-outs) or they may be engineered to have reduced, altered or enhanced activity.


The terms “engineer”, “genetically engineer” or “genetically modify” refer to any manipulation of a microorganism that results in a detectable change in the microorganism, wherein the manipulation includes, but is not limited to, introducing non-native metabolic functionality via heterologous (exogenous) polynucleotides or removing native-functionality via polynucleotide deletions, mutations or knock-outs. The term “metabolically engineered” generally involves rational pathway design and assembly of biosynthetic genes (or ORFs), genes associated with operons, and control elements of such polynucleotides, for the production of a desired metabolite. “Metabolically engineered” may further include optimization of metabolic flux by regulation and optimization of transcription, translation, protein stability and protein functionality using genetic engineering and appropriate culture condition including the reduction of, disruption, or knocking out of, a competing metabolic pathway that competes with an intermediate leading to a desired pathway.


As defined herein, the term “introducing”, as used in phrases such as “introducing into the methanotroph host” or “introducing into the non-methanotroph host” at least one polynucleotide open reading frame (ORF) or a gene thereof or a vector thereof includes methods known in the art for introducing polynucleotides into a cell, including, but not limited to transformation (e.g., calcium chloride, electroporation), transduction, transfection, conjugation and the like.


The phrases “metabolically engineered microorganism” and “modified microorganism” are used interchangeably herein, and refer not only to the particular subject host cell, but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


The term “mutation” as used herein indicates any modification of a nucleic acid and/or polypeptide which results in an altered nucleic acid or polypeptide (i.e., relative to the wild-type nucleic acid or polypeptide sequence). Mutations include, for example, point mutations, substitutions, deletions, or insertions of single or multiple residues in a polynucleotide (or the encoded polypeptide), which includes alterations arising within a protein-encoding region of a gene as well as alterations in regions outside of a protein-encoding sequence, such as, but not limited to, regulatory or promoter sequences. A genetic alteration may be a mutation of any type. For instance, the mutation may constitute a point mutation, a frame-shift mutation, an insertion, or a deletion of part or all of a gene. In certain embodiments, a portion of a genetically modified microorganism's genome may be replaced with one or more heterologous (exogenous) polynucleotides. In some embodiments, the mutations are naturally-occurring. In other embodiments, the mutations are the results of artificial selection pressure. In still other embodiments, the mutations in the microorganism genome are the result of genetic engineering.


The term “expression” or “expressed” with respect to a gene sequence, an ORF sequence or polynucleotide sequence, refers to transcription of the gene, ORF or polynucleotide and, as appropriate, translation of the resulting mRNA transcript to a protein. Thus, as will be clear from the context, expression of a protein results from transcription and translation of the open reading frame sequence. The level of expression of a desired product in a host microorganism may be determined on the basis of either the amount of corresponding mRNA that is present in the host, or the amount of the desired product encoded by the selected sequence. For example, mRNA transcribed from a selected sequence can be quantitated by PCR or by northern hybridization (see Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989). Protein encoded by a selected sequence can be quantitated by various methods (e.g., by ELISA, by assaying for the biological activity of the protein, or by employing assays that are independent of such activity, such as western blotting or radioimmunoassay, using antibodies that are recognize and bind reacting the protein).


The term “endogenous”, as used herein with reference to polynucleotides (and the polypeptides encoded therein), indicates polynucleotides and polypeptides that are expressed in the organism in which they originated (i.e., they are innate to the organism). In contrast, the terms “heterologous” and “exogenous” are used interchangeably, and as defined herein with reference to polynucleotides (and the polypeptides encoded therein), indicates polynucleotides and polypeptides that are expressed in an organism other than the organism from which they (i.e., the polynucleotide or polypeptide sequences) originated or where derived.


The term “feedstock” is defined as a raw material or mixture of raw materials supplied to a microorganism, or fermentation process, from which other products can be made. For example, as set forth in the present invention, a methane carbon source or a methanol carbon source or a formaldehyde carbon source, either alone or in combination, are feedstocks for a microorganism that produces a bio-fuel or bio-based chemical in a fermentation process. However, in addition to a feedstock (e.g., a methane substrate) of the invention, the fermentation media contains suitable minerals, salts, cofactors, buffers and other components, known to those skilled in the art, suitable for the growth of the cultures and promotion of the enzymatic pathways necessary for multi-carbon compound production.


The term “substrate” refers to any substance or compound that is converted, or meant to be converted, into another compound by the action of an enzyme. The term includes not only a single compound, but also combinations of compounds, such as solutions, mixtures and other materials which contain at least one substrate, or derivatives thereof. Further, the term “substrate” encompasses not only compounds that provide a carbon source suitable for use as a starting material (e.g., methane), but also intermediate and end product metabolites used in a pathway associated with a metabolically engineered microorganism as described herein.


The term “fermentation” or “fermentation process” is defined as a process in which a host microorganism is cultivated in a culture medium containing raw materials, such as feedstock and nutrients, wherein the microorganism converts raw materials, such as a feedstock, into products.


The term “polynucleotide” is used herein interchangeably with the term “nucleic acid” and refers to an organic polymer composed of two or more monomers including nucleotides, nucleosides or analogs thereof, including but not limited to single stranded or double stranded, sense or antisense deoxyribonucleic acid (DNA) of any length and, where appropriate, single stranded or double stranded, sense or antisense ribonucleic acid (RNA) of any length, including siRNA. The term “nucleotide” refers to any of several compounds that consist of a ribose or deoxyribose sugar joined to a purine or a pyrimidine base and to a phosphate group, and that are the basic structural units of nucleic acids. The term “nucleoside” refers to a compound (as guanosine or adenosine) that consists of a purine or pyrimidine base combined with deoxyribose or ribose and is found especially in nucleic acids. The term “nucleotide analog” or “nucleoside analog” refers, respectively, to a nucleotide or nucleoside in which one or more individual atoms have been replaced with a different atom or with a different functional group. Accordingly, the term polynucleotide includes nucleic acids of any length, including DNA, RNA, ORFs, analogs and fragments thereof.


As defined herein, the term “open reading frame” (hereinafter, “ORF”) means a nucleic acid or nucleic acid sequence (whether naturally occurring, non-naturally occurring, or synthetic) comprising an uninterrupted reading frame consisting of (i) an initiation codon, (ii) a series of two (2) of more codons representing amino acids, and (iii) a termination codon, the ORF being read (or translated) in the 5′ to 3′ direction.


It is understood that the polynucleotides described herein include “genes” and that the nucleic acid molecules described herein include “vectors” or “plasmids”. Accordingly, the term “gene”, refers to a polynucleotide that codes for a particular sequence of amino acids, which comprise all or part of one or more proteins or enzymes, and may include regulatory (non-transcribed) DNA sequences, such as promoter sequences, which determine for example the conditions under which the gene is expressed. The transcribed region of the gene may include untranslated regions, including introns, 5′-untranslated region (UTR), and 3′-UTR, as well as the coding sequence.


The term “promoter” refers to a nucleic acid sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3′ to a promoter sequence. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic nucleic acid segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as “constitutive promoters”. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of different lengths may have identical promoter activity.


The term “operably linked” refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of effecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.


The term “codon-optimized” as it refers to genes or coding regions of nucleic acid molecules (or ORFs) for transformation of various hosts, refers to the alteration of codons in the gene or coding regions of the nucleic acid molecules to reflect the typical codon usage of the host organism without altering the polypeptide encoded by the DNA.


The term “operon” refers to two or more genes which are transcribed as a single transcriptional unit from a common promoter. In certain embodiments, the genes, polynucleotides or ORFs comprising the operon are contiguous genes. It is understood that transcription of an entire operon can be modified (i.e., increased, decreased, or eliminated) by modifying the common promoter. Alternatively, any gene, polynucleotide or ORF, or any combination thereof in an operon can be modified to alter the function or activity of the encoded polypeptide. The modification can result in an increase or a decrease in the activity or function of the encoded polypeptide. Further, the modification can impart new activities on the encoded polypeptide.


A “vector” is any means by which a nucleic acid can be propagated and/or transferred between organisms, cells, or cellular components. Vectors include viruses, bacteriophage, pro-viruses, plasmids, phagemids, transposons, and artificial chromosomes such as YACs (yeast artificial chromosomes), BACs (bacterial artificial chromosomes), and PLACs (plant artificial chromosomes), and the like, that are “episomes”, that is, that replicate autonomously or can integrate into a chromosome of a host microorganism. A vector can also be a naked RNA polynucleotide, a naked DNA polynucleotide, a polynucleotide composed of both DNA and RNA within the same strand, a poly-lysine-conjugated DNA or RNA, a peptide-conjugated DNA or RNA, a liposome-conjugated DNA, or the like, that are not episomal in nature, or it can be an organism which comprises one or more of the above polynucleotide constructs such as an agrobacterium or a bacterium.


The term “homolog”, as used with respect to an original enzyme, polypeptide, gene or polynucleotide (or ORF encoding the same) of a first family or species, refers to distinct enzymes, genes or polynucleotides of a second family or species, which are determined by functional, structural or genomic analyses to be an enzyme, gene or polynucleotide of the second family or species, which corresponds to the original enzyme or gene of the first family or species. Most often, “homologs” will have functional, structural or genomic similarities. Techniques are known by which homologs of an enzyme, gene or polynucleotide can readily be cloned using genetic probes and PCR. Identity of cloned sequences as “homologs” can be confirmed using functional assays and/or by genomic mapping of the genes.


A polypeptide (or protein or enzyme) has “homology” or is “homologous” to a second polypeptide if the nucleic acid sequence that encodes the polypeptide has a similar sequence to the nucleic acid sequence that encodes the second polypeptide. Alternatively, a polypeptide has homology to a second polypeptide if the two proteins have “similar” amino acid sequences. Thus, the terms “homologous proteins” or “homologous polypeptides” is defined to mean that the two polypeptides have similar amino acid sequences. In certain embodiments of the invention, polynucleotides and polypeptides homologous to one or more polynucleotides and/or polypeptides set forth in Table 1 may be readily identified using methods known in the art for sequence analysis and comparison.


A homologous polynucleotide or polypeptide sequence of the invention may also be determined or identified by BLAST analysis (Basic Local Alignment Search Tool) or similar bioinformatic tools, which compare a query nucleotide or polypeptide sequence to a database of known sequences. For example, a search analysis may be done using BLAST to determine sequence identity or similarity to previously published sequences, and if the sequence has not yet been published, can give relevant insight into the function of the DNA or protein sequence.


Bioconversion of Methane to Multi-Carbon Compounds

In general, the conversion of methane (CH4) to multi-carbon compounds such as isobutanol ((CH3)2CHCH2OH), 1-butanol or n-butanol (CH3CH2CH2CH2OH), ethanol (CH3CH2OH), fatty alcohols, fatty acid esters, 2,3-butanediol and the like, using a “methanotrophic host microorganism”, requires at least the following three steps, all of which are innate (or endogenous) with respect to methanotrophic organisms: (1) a methane (CH4) substrate is oxidized to methanol (CH3OH) via a methane monooxygenase (MMO) (e.g., particulate methane monooxygenase (pMMO) or soluble methane monooxygenase (sMMO)), (2) the methanol (CH3OH) is oxidized to formaldehyde (H2C═O) via methanol dehydrogenase (MDH) and (3) the formaldehyde (H2C═O) produced in step (2) above is assimilated into a central metabolism pathway (e.g., see type I (RuMP) and type II (serine) pathways described below).


In certain embodiments of the invention, a host microorganism is a methanotroph, which endogenously expresses a methane monooxygenase (MMO) enzyme and a methanol dehydrogenase (MDH) enzyme. In other embodiments of the invention, a host microorganism of the invention is a “non-methanotrophic” prokaryotic microorganism (e.g., a non-methanotrophic bacteria or archaea) or a eukaryotic microorganism (e.g., fungi and algae) engineered to utilize a methane substrate (as sole carbon source) for growth and energy. Thus, in certain embodiments of the invention, a “non-methanotrophic” microorganism is engineered to express (or over-express) an exogenous methane monooxygenase (MMO), an enzyme requisite to metabolize methane to methanol. The non-methanotroph host microorganisms of the invention comprise an endogenous dehydrogenase (MDH) enzyme, which converts methanol to formaldehyde. However, in certain embodiments, the “non-methanotroph” microorganism is further engineered to express an exogenous methanol dehydrogenase (MDH) enzyme, which converts methanol to formaldehyde. The expression of the exogenous MDH enzyme in a non-methanotroph host is not a strict requirement for the utilization of the methane substrate, but it is contemplated in certain embodiments, that the introduction and expression of an exogenous MDH in a non-methanotroph host thereof may facilitate, under certain growth conditions, the production of one or more multi-carbon compounds of the invention.


As mentioned briefly above with regard to methanotrophic host organisms, there are at least two known pathways (i.e., the ribulose monophosphate (RuMP) pathway and the serine pathway; Hanson & Hanson, 1996) for the assimilation of formaldehyde into central metabolism. In the Type I methanotroph RuMP pathway, formaldehyde combines with ribulose-5-phosphate to form hexulose-6-phosphate (catalyzed via hexulose-6-phosphate synthase), the hexulose-6-phosphate is then isomerized to fructose-6-phosphate (catalyzed via hexulose phosphate isomerase), which is an intermediate of a central metabolic pathway (i.e., glycolysis pathway). In the type II methanotroph serine pathway, formaldehyde reacts with tetrahydrofolate (THF) to form methylene-THF, the methylene-THF is then transferred to L-glycine to form L-serine, and finally the L-serine is transferred to glyoxylate to form hydroxypyruvate. The hydroxypyruvate formed is subsequently converted to 2-phosphoglycerate (catalyzed via hydroxypruvate reductase), which is an central metabolism intermediate of the glycolytic pathway.


Likewise, as mentioned briefly above, an endogenous pathway, which functions similarly (or analogous) to the ribulose monophosphate (RuMP) pathway in methanotrophs is also present in “non-methanotrophic” prokaryotes (Orita et al., 2006), wherein formaldehyde is fixed with ribulose 5-phosphate to form hexulose-6-phosphate (catalyzed via hexulose-6-phosphate synthase (HPS)) and then isomerized to fructose-6-phosphate (catalyzed via hexulose phosphate isomerase (PHI)), which is an intermediate of a central metabolic pathway. Thus, in certain preferred embodiments, a “non-methanotrophic” host microorganism of the invention comprises an endogenous RuMP pathway or an endogenous pathway analogous to the RuMP pathway. As defined herein, a pathway analogous to the RuMP pathway comprises at least a gene, polynucleotide or ORF encoding an enzyme having hexulose-6-phosphate synthase (HPS) activity from enzyme class EC 4.1.2.43 and at least a gene, polynucleotide or ORF encoding a an enzyme having hexulose phosphate isomerase (PHI) activity from enzyme class 5.3.1.27.


In other embodiments, wherein a “non-methanotrophic” host microorganism genome does not encode endogenous enzymes having HPS and PHI activity, the non-methanotroph host microorganism is genetically modified to express HPS and PHI enzymes. Thus, in certain embodiments, a gene, polynucleotide or ORF encoding a hexulose-6-phosphate synthase (HPS) is provided, wherein the gene, polynucleotide or ORF encodes a HPS polypeptide of enzyme class EC 4.1.2.43. In other embodiments, a gene, polynucleotide or ORF encoding a hexulose-6-phosphate synthase (HPS) is provided, wherein the gene, polynucleotide or ORF encodes a HPS polypeptide having at least 90% sequence homology to a M. capsulatus (Bath) HPS polypeptide of SEQ ID NO:173. In other embodiments, a gene, polynucleotide or ORF encoding a hexulose phosphate isomerase (PHI) is provided, wherein the gene, polynucleotide or ORF encodes a PHI polypeptide of enzyme class EC 5.3.1.27. In other embodiments, a gene, polynucleotide or ORF encoding a hexulose phosphate isomerase (PHI) is provided, wherein the gene, polynucleotide or ORF encodes a M. capsulatus (Bath) PHI polypeptide having at least 90% sequence homology to a PHI (also referred to as a sugar isomerase (SIS) domain) polypeptide of SEQ ID NO:175.


Once the formaldehyde has been assimilated into a central metabolic pathway of the methanotroph or non-methanotroph host organism (as described above), the fourth and final step for producing multi-carbon compounds from a methane substrate as described in steps (1)-(3) above, is the introduction of one or more nucleic acids into the host microorganism, wherein the one or more nucleic acids introduced encode one or more enzymes of a relevant multi-carbon compound pathway. Independent of the compound to be produced according to the present invention (e.g., isobutanol, 1-butanol, ethanol, fatty alcohols, fatty acid methyl esters, 2,3-butanediol and the like), any multi-carbon pathway introduced into a host microorganism must utilize a central metabolic molecule (e.g., pyruvate, acetyl-CoA, methionine and oxobutyrate) previously assimilated and introduced into the metabolic pathway through steps (1)-(3) described above. Stated another way, a salient feature of the present invention is the ability of the host microorganism to utilize methane (as a sole carbon source for growth and energy) and to produce multi-carbon compounds (via engineered metabolic pathways introduced therein), without the need for additional or supplemental carbon sources such as carbohydrates.


As defined herein, a relevant “multi-carbon compound pathway”, includes, but is not limited to, a 1-butanol pathway (which includes, but is not limited to, a fermentative 1-butanol pathway, a thiobutanoate pathway, a ketoacid pathway and a methylmalate pathway), an isobutanol pathway, a fatty alcohol pathway, a fatty acid methyl ester pathway and a 2,3-butanediol pathway. A “multi-carbon compound pathway” as further defined herein, may include one specific enzyme from the pathway, multiple enzymes from the pathway or all of the enzymes of the pathway. It will be understood by a person of skill in the art, that the selection of one or more specific pathway enzymes (and nucleic acids encoding the same) may be dependent on the host microorganism (e.g., certain methanotroph hosts or “non-methanotroph” hosts may endogenously encode and express one or more enzymes of a given pathway).


For example, FIG. 1 depicts five representative 1-butanol (i.e., n-butanol) pathways (pathways 1-5), wherein one or more nucleic acids encoding one or more enzymes of any of these pathways may be introduced into a methanotroph (or non-methanotroph) host microorganism and be expressed (or over-expressed) therein to yield 1-butanol. Similarly, FIG. 1 depicts an isobutanol pathway (pathway 6), wherein one or more nucleic acids encoding one or more enzymes of the isobutanol pathway may be introduced into a methanotroph (or non-methanotroph) host microorganism and expressed (or over expressed) therein to yield isobutanol. Further contemplated herein, is the introduction into a methanotroph (or non-methanotroph) host microorganism a combination of nucleic acids encoding one or more enzymes from a 1-butanol pathway and one or more enzymes from an isobutanol pathway.


As depicted in FIG. 1, at least five pathways are known to exist for converting one or more of these metabolic precursors into n-butanol (i.e., 1-butanol). The first synthesis pathway is the classical fermentative n-butanol pathway. Beginning with acetyl-CoA, this six step pathway requires three NADH and one NADHPH, but loses no carbon atoms to by-products formed. The second n-butanol synthesis pathway is the fermentative pathway, but using NADPH instead of NADH as the electron donor for the final conversion of butanal to n-butanol. The third potential n-butanol pathway is the thiobutanoate pathway, which begins with L-methionine, which is subsequently deaminated and then converted to n-butanol in two additional steps that involve loss of carbon dioxide (CO2) and a sulfur(S) atom by an unknown mechanism. The fourth n-butanol pathway is the ketoacid pathway, which starting from L-threonine, n-butanol is synthesized in four steps, involving both reduction of NAD+ and oxidation of NADH, while losing two CO2. The fifth n-butanol synthesis pathway is the methylmalate pathway, which begins by combining pyruvate with acetyl-CoA to form citramalate (methylmalate), a reaction known to be catalyzed by LeuA in many bacteria, followed by conversion to butanoyl-CoA, which is then converted to n-butanol using the final two reactions of the fermentative pathway. Likewise, as depicted in FIG. 1, at least one isobutanol pathway is known in the art for synthesizing isobutanol from pyruvate, wherein the five-step pathway loses two carbon atoms as CO2 per molecule of isobutanol synthesized.


Thus, in certain embodiments, the present invention is directed to a method for producing isobutanol from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O); (b) introducing into the methanotroph host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in an isobutanol pathway; (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to pyruvate by means of an endogenous RuMP pathway or a serine pathway and the host metabolizes pyruvate to produce isobutanol, and (d) optionally recovering the isobutanol produced.


In one particular embodiment, the one or more polynucleotide ORFs introduced in step (b) encode an isobutanol pathway polypeptide thereof selected from an Enzyme Class (EC) comprising EC 2.2.1.6, EC 1.1.1.86, EC 4.2.1.9, EC 4.1.1.72 and EC 1.1.1.1. In other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode an isobutanol pathway polypeptide selected from the group consisting of acetolactate synthase (ALS), ketol-acid reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD), ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In certain embodiments, the ALS polypeptide catalyzes the substrate to product conversion of pyruvate to acetolactate; the KARI polypeptide catalyzes the substrate to product conversion of acetolactate to 2,3-dihydroxyisovalerate; the DHAD polypeptide catalyzes the substrate to product conversion of 2,3-dihydroxyisovalerate to ketoisovalerate; the KDC polypeptide catalyzes the substrate to product conversion of ketoisovalerate to isobutryaldehyde and ADH polypeptide catalyzes the substrate to product conversion of isobutyraldehyde to isobutanol. In other embodiments, the ALS polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO:2, the KARI polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO:4, the DHAD polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO:6, the KDC polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO: 8 and the ADH polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO:10. In yet other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode the complete isobutanol pathway comprising an ALS polypeptide, a KARI polypeptide, a DHAD polypeptide, a KDC polypeptide and an ADH polypeptide. In certain embodiments, the ORFs encoding the complete isobutanol pathway are comprised in one operon, two operons or three operons, wherein each operon may comprise the same promoter or a different promoter, wherein the same or different promoters may be constitutive or inducible.


In certain embodiments, a methanotroph host microorganism is modified or genetically engineered to express one or more enzymes of a metabolic pathway capable of producing n-butanol, isobutanol, fatty (or aliphatic long chain) alcohols, fatty acid methyl esters and the like. In particular embodiments, a methanotroph of the invention is selected from genera consisting of Methylobacter, Methylomicrobium, Methylomonas, Methylocaldum, Methylococcus, Methylosoma, Methylosarcina, Methylothermus, Methylohalobius, Methylogaea, Methylovulum, Crenothrix, Clonothrix, Methylosphaera, Methylocapsa, Methylocella, Methylosinus, Methylocystis and Methyloacidophilum. In other embodiments, the methanotroph is from the phylum Verrucomicrobia. Previously published work has shown that several species within these taxa can be genetically transformed by introducing DNA constructs on plasmid vectors (Stafford et al., 2003), or by integrating them into the bacterial chromosome (Welander & Summons, 2012). Thus, a vector construct of the invention will typically comprise the pathway genes or polynucleotide ORFs, which are initially constructed and cloned into E. coli to generate sufficient quantities of the vector, and then the vectors are subsequently transformed into the host microorganism for expression.


In other embodiments, the invention is directed to a method for producing isobutanol from a methane substrate comprising the steps of (a) providing a “non-methanotroph” host microorganism which has been genetically engineered to express a methane monooxygenase (MMO) (and optionally a methanol dehydrogenase (MDH)) and wherein the non-methanotroph host comprises either an endogenous RuMP pathway or an endogenous serine pathway, (b) introducing into the host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in an isobutanol pathway; (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous MDH polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde, the formaldehyde produced is converted to pyruvate through an endogenous RuMP or serine pathway and the host metabolizes pyruvate to produce isobutanol, and (d) optionally recovering the isobutanol produced. Methods for heterologous expression of pMMO genes have been described in Gou et al. (2006). Methods for heterologous expression of sMMO genes have been described in Lloyd et al. (1999). Suitable microbial hosts for heterologous expression include microorganisms that have the ability to process methanol and formaldehyde, that have multiple heterotrophic growth modes, and/or that can assemble complex membranes and metalloprotein complexes. Such organisms include methylotrophic yeasts (e.g., Pichia pastoris) as well as bacteria such as Pseudomonas putida, Cupriavidus metallidurans and Rhodobacter sphaeroides.


In certain embodiments, the one or more polynucleotide ORFs introduced in step (b) above, encode an isobutanol pathway polypeptide selected from an Enzyme Class (EC) comprising EC 2.2.1.6, EC 1.1.1.86, EC 4.2.1.9, EC 4.1.1.72 and EC 1.1.1.1. In other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode an isobutanol pathway polypeptide selected from the group consisting of acetolactate synthase (ALS), ketol-acid reductoisomerase (KARI), dihydroxy-acid dehydratase (DHAD), ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In yet other embodiments, the ALS polypeptide catalyzes the substrate to product conversion of pyruvate to acetolactate; the KARI polypeptide catalyzes the substrate to product conversion of acetolactate to 2,3-dihydroxyisovalerate; the DHAD polypeptide catalyzes the substrate to product conversion of 2,3-dihydroxyisovalerate to ketoisovalerate; the KDC polypeptide catalyzes the substrate to product conversion of ketoisovalerate to isobutryaldehyde and ADH polypeptide catalyzes the substrate to product conversion of isobutyraldehyde to isobutanol.


In one particular embodiment, the ALS polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO:2, the KARI polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO:4, the DHAD polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO:6, the KDC polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO: 8 and the ADH polypeptide comprises an amino acid sequence comprising at least 90% sequence homology to SEQ ID NO:10. In certain other embodiments, the one or more polynucleotide ORFs introduced in step (b) encode the complete isobutanol pathway comprising an ALS polypeptide, a KARI polypeptide, a DHAD polypeptide, a KDC polypeptide and an ADH polypeptide. In another embodiment, the methane monooxygenase (MMO) is a soluble MMO of Enzyme Class EC 1.14.13.25 or a particulate MMO of Enzyme Class 1.14.18.3. In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a particulate methane monooxygenase (pMMO) of operon 1 comprising pmoC1 subunit 1 (SEQ ID NO:12), pmoA subunit 1 (SEQ ID NO:14), pmoB subunit 1 (SEQ ID NO: 16) or a pMMO of operon 2 comprising pmoC subunit 2 (SEQ ID NO:18), pmoA subunit 2 (SEQ ID NO:20), pmoB subunit 2 (SEQ ID NO:22). In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a soluble methane monooxygenase (sMMO) selected from mmoX (SEQ ID NO:24), mmoY (SEQ ID NO:26), mmoB (SEQ ID NO: 28), mmoZ (SEQ ID NO:30), mmoD (SEQ ID NO:32) or mmoC (SEQ ID NO:34).


In certain embodiments where an exogenous methanol dehydrogenase (MDH) is optionally provided and expressed in a host microorganism, the MDH is a polypeptide from Enzyme Class 1.14.18.3. In certain other embodiments, the MDH comprises an amino acid sequence comprising at least 90% sequence homology to mxaF (SEQ ID NO:36), mxaJ (SEQ ID NO:38), mxaG (SEQ ID NO:40), mxal (SEQ ID NO:42), mxaR (SEQ ID NO:44), mxaA (SEQ ID NO:46), mxaC (SEQ ID NO:48), mxaK (SEQ ID NO:50), mxaL (SEQ ID NO: 52) or mcaD (SEQ ID NO:54).


In other embodiments, the invention is directed to a method for producing 1-butanol from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in a 1-butanol pathway; (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to pyruvate by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes pyruvate to produce 1-butanol, and (d) optionally recovering the 1-butanol produced. In certain embodiments, the one or more polynucleotide ORFs introduced in step (b) encode a 1-butanol pathway polypeptide selected from an Enzyme Class (EC) comprising EC 4.3.1.19, EC 2.3.3.6, EC 4.2.1.33, EC 1.1.1.85, EC 4.1.1.72, and EC 1.1.1.1. In another embodiment, the one or more polynucleotide ORFs introduced in step (b) encode a 1-butanol pathway polypeptide selected from the group consisting of L-threonine ammonia-lyase, 2-ethylmalate synthase (or 2-isopropylmalate synthase), isopropylmalate isomerase (or 3-isopropylmalate dehydratase), 3-isopropylmalate dehydrogenase, 2-ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In certain other embodiments, L-threonine ammonia-lyase catalyzes the substrate to product conversion of L-threonine to 2-oxybutanoate (2-ketobutyrate) and ammonia; the 2-ethylmalate synthase catalyzes the substrate to product conversion of 2-oxybutanoate and acetyl-CoA to 2-ethylmalate; the isopropylmalate isomerase catalyzes the substrate to product conversion of 2-ethylmalate to 3-ethylmalate; the 3-isopropylmalate dehydrogenase catalyzes the substrate to product conversion of 3-ethylmalate to 2-ketovalerate, CO2 and NADH; the KDC catalyzes the substrate to product conversion of 2-ketovalerate to butryaldehyde and the ADH catalyzes the substrate to product conversion of butyraldehyde to 1-butanol.


In certain embodiments, a L-threonine ammonia-lyase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:56, a 2-ethylmalate synthase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:58, a isopropylmalate isomerase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:60 and SEQ ID NO:62, a 3-isopropylmalate dehydrogenase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:64, the KDC comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:8 and the ADH comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 10. In one particular embodiment, the one or more polynucleotide ORFs introduced in step (b) encode the complete 1-butanol pathway comprising an L-threonine ammonia-lyase, a 2-ethylmalate synthase, an isopropylmalate isomerase, a 3-isopropylmalate dehydrogenase, a KDC and an ADH.


In other embodiments, the invention is directed to a method for producing 1-butanol from a methane substrate comprising the steps of (a) providing a “non-methanotroph” host microorganism which has been genetically engineered to express a methane monooxygenase (MMO) (and optionally a methanol dehydrogenase (MDH)) and wherein the non-methanotroph host comprises either an endogenous RuMP pathway or an endogenous serine pathway, (b) introducing into the host and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a polypeptide that catalyzes a reaction in a 1-butanol pathway; (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous MDH polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde, the formaldehyde produced is converted to pyruvate through an endogenous RuMP or serine pathway and the host metabolizes pyruvate to produce 1-butanol, and (d) optionally recovering the 1-butanol produced.


In certain embodiments, the non-methanotroph host microorganism is genetically modified to express an exogenous methane monooxygenase (MMO). In one embodiment, the methane monooxygenase is a soluble MMO (sMMO) of Enzyme Class EC 1.14.13.25 or a particulate MMO (pMMO) of Enzyme Class 1.14.18.3. In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a particulate methane monooxygenase (pMMO) of operon 1 comprising pmoC1 subunit 1 (SEQ ID NO: 12), pmoA subunit 1 (SEQ ID NO:14), pmoB subunit 1 (SEQ ID NO: 16) or a pMMO of operon 2 comprising pmoC subunit 2 (SEQ ID NO: 18), pmoA subunit 2 (SEQ ID NO: 20), pmoB subunit 2 (SEQ ID NO:22). In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a soluble methane monooxygenase (sMMO) selected from mmoX (SEQ ID NO:24), mmoY (SEQ ID NO:26), mmoB (SEQ ID NO:28), mmoZ (SEQ ID NO:30), mmoD (SEQ ID NO:32) or mmoC (SEQ ID NO: 34).


In certain embodiments where an exogenous methanol dehydrogenase (MDH) is optionally provided and expressed in a host microorganism, the MDH is a polypeptide from Enzyme Class 1.14.18.3. In certain other embodiments, the MDH comprises an amino acid sequence comprising at least 90% sequence homology to mxaF (SEQ ID NO:36), mxaJ (SEQ ID NO:38), mxaG (SEQ ID NO:40), mxal (SEQ ID NO:42), mxaR (SEQ ID NO:44), mxaA (SEQ ID NO:46), mxaC (SEQ ID NO:48), mxaK (SEQ ID NO:50), mxaL (SEQ ID NO: 52) or mcaD (SEQ ID NO:54).


In one particular embodiment, the one or more polynucleotide ORFs introduced in step (b) encode a 1-butanol pathway polypeptide selected from an Enzyme Class (EC) comprising EC 4.3.1.19, EC 2.3.3.6, EC 4.2.1.33, EC 1.1.1.85, EC 4.1.1.72, and EC 1.1.1.1. In another embodiment, the one or more polynucleotide ORFs introduced in step (b) encode a 1-butanol pathway polypeptide selected from the group consisting of L-threonine ammonia-lyase, 2-ethylmalate synthase (or 2-isopropylmalate synthase), isopropylmalate isomerase (or 3-isopropylmalate dehydratase), 3-isopropylmalate dehydrogenase, 2-ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH). In certain other embodiments, L-threonine ammonia-lyase catalyzes the substrate to product conversion of L-threonine to 2-oxybutanoate (2-ketobutyrate) and ammonia; the 2-ethylmalate synthase catalyzes the substrate to product conversion of 2-oxybutanoate and acetyl-CoA to 2-ethylmalate; the isopropylmalate isomerase catalyzes the substrate to product conversion of 2-ethylmalate to 3-ethylmalate; the 3-isopropylmalate dehydrogenase catalyzes the substrate to product conversion of 3-ethylmalate to 2-ketovalerate, CO2 and NADH; the KDC catalyzes the substrate to product conversion of 2-ketovalerate to butryaldehyde and the ADH catalyzes the substrate to product conversion of butyraldehyde to 1-butanol.


In certain embodiments, a L-threonine ammonia-lyase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:56, a 2-ethylmalate synthase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:58, a isopropylmalate isomerase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:60 and SEQ ID NO:62, a 3-isopropylmalate dehydrogenase comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:64, the KDC comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:8 and the ADH comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:10. In one particular embodiment, the one or more polynucleotide ORFs introduced in step (b) encode the complete 1-butanol pathway comprising an L-threonine ammonia-lyase, a 2-ethylmalate synthase, an isopropylmalate isomerase, a 3-isopropylmalate dehydrogenase, a KDC and an ADH.


In certain other embodiments, the invention is directed to a method for producing fatty alcohols from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a fatty-acyl-CoA reductase (FAR); (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes acetyl-CoA to produce a fatty alcohol, and (d) recovering the fatty alcohol produced. In certain embodiments, the FAR polypeptide is further defined as a polypeptide from Enzyme Class EC 1.2.1.50. In yet other embodiments, the FAR polypeptide catalyzes the substrate to product conversion of fatty acetyl-CoA to a fatty alcohol. In another embodiment, a FAR polypeptide comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO:66.


In still other embodiments, the invention is directed to a method for producing a fatty alcohol from a methane substrate comprising the steps of (a) providing a “non-methanotroph” host microorganism which has been genetically engineered to express a methane monooxygenase (MMO) (and optionally a methanol dehydrogenase (MDH)) and wherein the non-methanotroph host comprises either an endogenous RuMP pathway or an endogenous serine pathway, (b) introducing into the host microorganism and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a fatty-acyl-CoA reductase (FAR), (c) feeding the host microorganism of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes acetyl-CoA to produce a fatty alcohol, and (d) optionally recovering the fatty alcohol produced.


In certain embodiments, the non-methanotroph host microorganism is genetically modified to express an exogenous methane monooxygenase (MMO). In one embodiment, the methane monooxygenase is a soluble MMO (sMMO) of Enzyme Class EC 1.14.13.25 or a particulate MMO (pMMO) of Enzyme Class 1.14.18.3. In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a particulate methane monooxygenase (pMMO) of operon 1 comprising pmoC1 subunit 1 (SEQ ID NO:12), pmoA subunit 1 (SEQ ID NO:14), pmoB subunit 1 (SEQ ID NO: 16) or a pMMO of operon 2 comprising pmoC subunit 2 (SEQ ID NO:18), pmoA subunit 2 (SEQ ID NO: 20), pmoB subunit 2 (SEQ ID NO:22). In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a soluble methane monooxygenase (sMMO) selected from mmoX (SEQ ID NO:24), mmoY (SEQ ID NO:26), mmoB (SEQ ID NO:28), mmoZ (SEQ ID NO:30), mmoD (SEQ ID NO:32) or mmoC (SEQ ID NO: 34).


In certain embodiments, where an exogenous methanol dehydrogenase (MDH) is optionally provided and expressed in a host microorganism, the MDH is a polypeptide from Enzyme Class 1.14.18.3. In certain other embodiments, the MDH comprises an amino acid sequence comprising at least 90% sequence homology to mxaF (SEQ ID NO:36), mxaJ (SEQ ID NO:38), mxaG (SEQ ID NO:40), mxal (SEQ ID NO:42), mxaR (SEQ ID NO:44), mxaA (SEQ ID NO:46), mxaC (SEQ ID NO:48), mxaK (SEQ ID NO:50), mxaL (SEQ ID NO: 52) or mcaD (SEQ ID NO:54).


In another embodiment, the invention is directed to a method for producing a fatty acid ester from a methane substrate comprising the steps of (a) providing a methanotrophic host microorganism that metabolizes methane (CH4) to methanol (CH3OH) and methanol to formaldehyde (H2C═O), (b) introducing into the methanotroph host and expressing a polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the polynucleotide ORF encodes a wax ester synthase (WES); (c) feeding the methanotroph host of step (b) a methane substrate under suitable growth conditions, wherein the host metabolizes methane to formaldehyde as set forth in step (a), wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous type I RuMP pathway or a type II serine pathway and the host metabolizes fatty-acyl-CoA and alcohols to produce a fatty acid ester, and (d) recovering the fatty acid ester produced. In one particular embodiment, the WES polypeptide is further defined as a polypeptide from Enzyme Class EC 2.3.1.75. In another embodiment, the WES polypeptide catalyzes the substrate to product conversion of a fatty acid to a fatty acid esters. In another embodiment, the WES polypeptide catalyzes the substrate to product conversion of fatty alcohol and acyl-CoA to fatty acid esters. In one particular embodiment, the WES polypeptide comprises an amino acid sequence having at least 90% sequence homology to a WES polypeptide selected from SEQ ID NO:68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76 and SEQ ID NO: 78.


In another embodiment, the invention is directed to a method for producing a fatty acid ester from a methane substrate comprising the steps of (a) providing a “non-methanotroph” host microorganism which has been genetically engineered to express a methane monooxygenase (MMO) (and optionally a methanol dehydrogenase (MDH)) and wherein the non-methanotroph host comprises either an endogenous RuMP pathway or an endogenous serine pathway, (b) introducing into the host microorganism and expressing at least one polynucleotide open reading frame (ORF), under the control of suitable regulatory sequences, wherein the at least one polynucleotide ORF encodes a wax ester synthase; (c) feeding the host of step (b) a methane substrate under suitable growth conditions, wherein the MMO polypeptide catalyzes the substrate to product conversion of methane to methanol, an endogenous MDH polypeptide catalyzes the substrate to product conversion of methanol to formaldehyde, wherein the formaldehyde is converted to acetyl-CoA by means of an endogenous RuMP or serine pathway and the host metabolizes fatty-acyl-CoA and alcohols to produce a fatty acid ester, and (d) recovering the fatty acid ester produced.


In one particular embodiment, the WES polypeptide is further defined as a polypeptide from Enzyme Class EC 2.3.1.75. In another embodiment, the WES polypeptide catalyzes the substrate to product conversion of a fatty acid to a fatty acid ester. In another embodiment, the WES polypeptide catalyzes the substrate to product conversion of fatty alcohol and acyl-CoA to fatty acid esters. In one particular embodiment, the WES polypeptide comprises an amino acid sequence having at least 90% sequence homology to a WES polypeptide selected from SEQ ID NO:68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76 and SEQ ID NO: 78.


In certain embodiments, the non-methanotroph host microorganism is genetically modified to express an exogenous methane monooxygenase (MMO). In one embodiment, the methane monooxygenase is a soluble MMO (sMMO) of Enzyme Class EC 1.14.13.25 or a particulate MMO (pMMO) of Enzyme Class 1.14.18.3. In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a particulate methane monooxygenase (pMMO) of operon 1 comprising pmoC1 subunit 1 (SEQ ID NO:12), pmoA subunit 1 (SEQ ID NO:14), pmoB subunit 1 (SEQ ID NO: 16) or a pMMO of operon 2 comprising pmoC subunit 2 (SEQ ID NO: 18), pmoA subunit 2 (SEQ ID NO: 20), pmoB subunit 2 (SEQ ID NO:22). In other embodiments, the MMO comprises an amino acid sequence having at least 90% sequence homology to a soluble methane monooxygenase (sMMO) selected from mmoX (SEQ ID NO:24), mmoY (SEQ ID NO:26), mmoB (SEQ ID NO:28), mmoZ (SEQ ID NO:30), mmoD (SEQ ID NO:32) or mmoC (SEQ ID NO: 34).


In certain embodiments, where an exogenous methanol dehydrogenase (MDH) is optionally provided and expressed in a host microorganism, the MDH is a polypeptide from Enzyme Class 1.14.18.3. In certain other embodiments, the MDH comprises an amino acid sequence comprising at least 90% sequence homology to mxaF (SEQ ID NO:36), mxaJ (SEQ ID NO:38), mxaG (SEQ ID NO:40), mxal (SEQ ID NO:42), mxaR (SEQ ID NO:44), mxaA (SEQ ID NO:46), mxaC (SEQ ID NO:48), mxaK (SEQ ID NO:50), mxaL (SEQ ID NO: 52) or mcaD (SEQ ID NO:54).


In certain other embodiments, the invention is directed to methods of producing 2,3-butanediol from a methane substrate. The compound 2,3-butanediol (a four-carbon diol) is an important intermediate for the chemical industry. At the commercial scale, 2,3-butanediol is mainly produced or generated from petroleum, where it serves as a precursor for the production of various commodity and specialty chemicals, such as the solvent methyl ethyl ketone (MEK), gamma-butyrolactone (GBL) and 1,3-butadiene. The biological production of 2,3-butanediol from methane requires engineering the native (or endogenous) metabolism of methanotrophs to take advantage of their endogenous production of (R)-acetoin (FIG. 9). The compound (R)-acetoin is produced in methanotrophs from two molecules of pyruvate, which are ultimately derived from methane. By introducing and expressing a single gene (SEQ ID NO:156) encoding a (2R,3R)-2,3-butanediol dehydrogenase (BDH1) from Saccharomyces cerevisiae in a suitable microbial expression host (such as M. capsulatus (Bath)), the (R)-acetoin is converted into 2,3-butanediol. Thus, in certain embodiments, a host microorganism of the invention is genetically modified to express an exogenous (2R,3R)-2,3-butanediol dehydrogenase (BDH1) having at least 90% sequence homology to a BDH1 polypeptide of SEQ ID NO:157.


General methods for gene synthesis and DNA cloning, as well as vector and plasmid construction, are well known in the art, and are described in a number of publications (Lipps, 2008; Peccoud, 2012; Ausubel et al., 2002). More specifically, techniques such as digestion and ligation-based cloning, as well as in vitro and in vivo recombination methods, can be used to assemble DNA fragments encoding a polypeptide that catalyzes a substrate to product conversion into a suitable vector. These methods include restriction digest cloning, sequence- and ligation-independent Cloning (SLIC) (Li & Elledge, 2012), Golden Gate cloning (Engler et al., 2009), Gibson assembly (Gibson et al., 2009), and the like (Merryman & Gibson, 2012; Wang et al., 2012). Some of these methods can be automated and miniaturized for high-throughput applications (Yehezkel et al., 2011; Ma et al., 2012).


In certain embodiments, the cloning procedures use in vitro homologous recombination, to insert DNA fragments into a vector (e.g., the In-Fusion kit from Clontech Laboratories, Inc. (Mountain View, CA)). For example, (1) the recipient vector is linearized by a restriction digest and purified; (2) PCR primers that are complementary to the fragment to be cloned and that are complementary (with 15-base pair extensions) to the ends of the linearized vector are used to amplify the insert, using high-fidelity polymerase; (3) the size of the PCR amplicon is verified by agarose gel electrophoresis; (4) the PCR product is purified by a spin-column; (5) the In-Fusion reaction is run according to the manufacturer's instructions; (6) competent E. coli cells are transformed with 2.5 μL of the reaction products; (7) positive transformants are selected from colonies grown on antibiotic selection medium and transferred to individual liquid cultures with the appropriate antibiotic; (8) the cells are harvested after overnight growth at 37° C. with 200 rpm shaking and (9) the plasmid DNA is extracted and analyzed for the correct insert.


The plasmid vector is chosen so that it will be capable of replicating in both an E. coli host (for cloning and amplification) and a methanotrophic or non-methanotrophic host microorganism (for metabolic pathway expression). The plasmid can be transferred from the E. coli donor cell to the recipient cell via bacterial conjugation. In addition, the vector contains a promoter sequence upstream of the one or more polynucleotide ORFs that are to be expressed. The promoter sequence can be included as part of the insert so that it can be adjusted and tested for each new construct. Broad-host-range (bhr) vectors for different gram-negative bacterial hosts have been described in the literature (Marx & Lidstrom, 2001). These vectors typically contain the following components: (1) an origin of replication that is functional in E. coli (colE1); (2) an oriV/IncP origin of replication for the non-E. coli host; (3) an oriT/IncP origin of transfer, which is needed for transferring a bacterial plasmid from a bacterial host such as E. coli to the recipient during bacterial conjugation; (4) a traJ′ gene, which codes for a transcriptional activator that initiates production of the proteins needed for conjugative transfer; and (5) a trfA, the replication initiation protein gene of plasmid RK2 which binds to a activates oriV.


In one embodiment, the conjugative bhr plasmid is based on pCM132 (GenBank Accession No. AF327720, SEQ ID NO:79) (Marx & Lidstrom, 2001), which has been engineered to contain a kanamycin resistance gene for plasmid selection and a lacZ (beta-galactosidase) gene for identifying plasmids with DNA inserts based on colony color using indolyl-galactoside-based substrates. Genes (or polynucleotide ORFs thereof) of interest can be inserted into the polylinker region that lies between the rrnB transcription terminator and the 5′-end of the lacZ gene (e.g., see, FIG. 2).


Typical gene cassettes for expressing an engineered metabolic pathway in a host microorganism such as a methanotroph are shown in FIG. 3. The cassette comprises one or more open reading frames (ORFs) which encode the enzymes of the introduced pathway, a promoter for directing transcription of the downstream ORF(s) within the operon, ribosome binding sites for directing translation of the mRNAs encoded by the individual ORF(s), and a transcriptional terminator sequence. Due to the modular nature of the various components of the expression cassette, one can create combinatorial permutations of these arrangements by substituting different components at one or more of the positions. One can also reverse the orientation of one or more of the ORFs to determine whether any of these alternate orientations improve the product yield.


In one embodiment, the plasmids generated as part of the present invention are based on the broad-host-range expression vector pCM132 (Marx & Lidstrom, 2001). In this embodiment, the use of the Clontech (catalog no. 639647) InFusion HD Cloning System kit is one example of how to construct plasmids, but is not meant to limit or exclude other methods that are known in the art, including Gibson assembly, yeast in vivo recombination, PCR Splicing by Overlap Extension, or any combination of these with standard molecular biology techniques.


In certain embodiments of the invention, the plasmids of interest are generated in a modular fashion such that various modules, including suitable regulatory sequences, can be easily assembled or replaced as needed and are amenable to scaled-up, high-throughput assembly. The plasmids are designed to consist of multiple linear modules: a vector backbone and one or more vector inserts. The 5′ and 3′ ends of individual modules have overlapping sequence homology to the ends of adjacent modules within the designed plasmid. The overlapping homology between the modules allows them to be assembled into a circular plasmid using the Clontech InFusion HD Cloning System kit or other assembly method known in the art. Primers were designed to introduce homologous ends to the PCR-amplified products to facilitate assembly.


Vector backbones of the invention contain the components of the plasmid that will remain constant. In certain embodiments, the broad-host range vector pCM132 is modified to produce vector backbones for the plasmids (vectors) of the invention. The pCM132 vector, further described below in the Examples section, consists of the following components: trrnB terminator, kanamycin resistance gene, trfA, IncP oriT, IncP oriV, colE1 ori, and lacZ. This parental vector was modified to replace lacZ with a vector insert that contains promoter sequence(s) to produce plasmids pJSvec (SEQ ID NO: 80) and pMZT3 (SEQ ID NO: 81). In certain embodiments of the invention, vector backbones were PCR-amplified with the NEB Phusion master mix (M0531L) according to the manufacturer's instructions, unless specified otherwise.


The general rationale or procedure for selecting the appropriate ORFs for a given pathway was to examine a list of pathway-relevant genes as specified in the literature. Using this set of pathway-relevant genes as a target, BLAST searches were run, looking for genes in three groups: (1) similar genes found in microbial hosts that are phylogenetically close to the ones already listed in the literature, (2) similar genes found in microbes that are phylogenetically distant from the microbial host of the targeted gene, and (3) homologs that are similar to the target gene but that are found in the wild-type methanotroph or non-methanotroph organism that is to be used as the expression host. An example of the above strategy would be to target the kivD gene (encoding alpha-ketoisovalerate decarboxylase) from Lactococcus lactis: the first group would contain genes from species similar to L. lactis, including Lactococcus itself; the second group would be genes similar to kivD, but found in organisms phylogenetically distant from L. lactis; and finally the last group would include a kivD gene in a microbe of interest, specifically, Methylococcus capsulatus (Bath). Thus, in certain embodiments of the invention, the exemplary polynucleotide and polypeptide sequences set forth in Table 1 are used to identify similar or homologous polynucleotide, genes, ORFs and polypeptides found in microbial hosts that are (1) phylogenetically close to the ones already listed, (2) found in microbes that are phylogenetically distant from the microbial host of the targeted sequence, and (3) homologs that are similar to the target gene but that are found in the wild-type methanotroph or non-methanotroph organism that is to be used as the expression host.


For example, genes encoding similar proteins or polypeptides to those of the invention may isolated directly by using all or a portion of a nucleic acid (e.g., see Table 1, below) or a primer sequence (e.g., see Table 2, below) as DNA hybridization probes to screen libraries from any desired microorgansim using methodology well known to those skilled in the art. Specific oligonucleotide probes based upon these nucleic acid sequences can be designed and synthesized by methods known in the art (Sambrook et al., 1989; Ausubel et al., 1987). Moreover, the entire sequence can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primers, DNA labeling, nick translation, or end-labeling techniques, or RNA probes using available in vitro transcription systems. In addition, specific primers can be designed and used to amplify a part of or the full-length of the instant sequence. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full-length DNA fragments under conditions of appropriate stringency.


Alternatively a nucleic acid sequence of the invention may be employed as a hybridization reagent for the identification of homologs. The basic components of a nucleic acid hybridization test include a probe, a sample suspected of containing the gene or gene fragment of interest, and a specific hybridization method. Probes are typically single stranded nucleic acid sequences which are complementary to the nucleic acid sequences to be detected. Probes are “hybridizable” to the nucleic acid sequence to be detected. The probe length can vary from 5 bases to tens of thousands of bases, and will depend upon the specific test to be done. Typically a probe length of about 15 bases to about 30 bases is suitable. Only part of the probe molecule need be complementary to the nucleic acid sequence to be detected. In addition, the complementarity between the probe and the target sequence need not be perfect. base. Hybridization methods are well defined and know in the art.


An important component of these engineered operons is the promoter sequence. The promoter must be chosen based on its compatibility with the transcriptional machinery of the host organism, as well as its ability to tune the desired level of gene expression (e.g., high or low). For example, one may introduce the strong pmxaF or pmmoX promoters from a methanotroph to generate high expression levels in a methanotrophic or non-methanotroph host. Alternatively, one can introduce a promoter from the Anderson promoter collection, which is a library of constitutive sigma70 bacterial promoters (http://partsregistry.org/Promoters/Catalog/Anderson; Registry of Standard Biological Parts), such as J23100 (strong) or J23115 (weak), to modulate expression of different ORFs or combinations of ORFs. Inducible promoters, whose activity is controlled by the addition of exogenous small molecule activators, such as IPTG, arabinose or salicylate, can also be used to provide temporal control of gene expression. However, regardless of the choice of promoter, its effect on host expression must be empirically tested in vivo to be certain of its effectiveness for achieving the desired level of expression.


These different combinatorial permutations of the cassette can be synthesized, cloned and expressed in the target host organism (via chemical transformation, electroporation, or conjugation of the DNA) so that the production of a multi-carbon product can be compared. The best candidate or candidates can then be further engineered to provide additional improvements in product yield by repeating the design-build-test cycle.


In one embodiment, the host microorganism for expressing the plasmid is a methanotroph, and plasmid vector(s) containing the metabolic pathway expression cassettes are readily mobilized into these organisms via conjugation. Various methods for bacterial conjugation are known in the art, and one of the most widely used methods takes advantage of a strain of E. coli S17-1, which has an RP4 plasmid (with the RK2 tra genes for transfer of genetic material) inserted into the chromosome for mobilizing oriT (RP4)-carrying plasmids (Simon et al. 1983; Simon, 1984).


The transfer of plasmid containing RP4-mob from E. coli to methanotrophs, as further described in the Examples section, was based on the conjugation methods described previously (Martin & Murrell, 1995; Ali, 2006). A 10 ml overnight E. coli S17-1λ pir culture, containing RP4-mob plasmid, was collected on a 0.2 μm pore-size nitrocellulose filter (Millipore). The E. coli donor strain was washed twice with 50 ml NMS. A 50 ml methanotroph culture grown to mid exponential phase (A540 of 0.2-0.5) was also collected on the same filter and washed again with 50 mL NMS medium. The filter was placed on an NMS agar plate containing 0.02% (w/v) proteose peptone and incubated for 24 hours at 30° C. with methane except for M. capsulatus, which was incubated at 37° C. for 24 hours.


Following incubation, the cells were washed with 10 ml NMS and collected by centrifugation (7,000×g for 10 min) before re-suspending the cells in 1 ml NMS. Aliquots (50-100 μl) of the cells were spread onto NMS plates containing selective antibiotics and incubated at the appropriate temperature. Colonies typically formed on the plates after 8-12 days. (Note: the E. coli S17-1λ pir strain has chromosomally integrated conjugal transfer functions, thus allowing transfer of plasmid to occur by means of a bi-parental mating without a helper plasmid). Transconjugants can also be purified by serial cultivation in liquid medium containing the appropriate antibiotics for selection, followed by plating onto selective NMS agar plates to obtain single colonies.


In an alternative method for expressing metabolic pathway genes in a microbial host, the biosynthetic pathway genes are inserted directly into the chromosome. Methods for chromosomal modification include both non-targeted and targeted deletions and insertions. For example, non-targeted insertions can be achieved by using transposon mutagenesis to make insertion mutants or gene “knockouts” in vitro using the EZ-Tn5 <KAN-2> Insertion Kit (Epicentre). Briefly, the procedure is as follows, according to the manufacturer: Preparation: prepare 0.2 μg of recombinant DNA for the EZ-Tn5<KAN-2> insertion reaction. Day 1: perform the 2-hour in vitro EZ-Tn5<KAN-2> insertion reaction; transform competent recA-E. coli with 1 μl of the reaction mix and select for kanamycin-resistant transposon insertion clones on kanamycin plates overnight. Day 2: prepare DNA from kanamycin-resistant colonies, (and optionally map the EZ-Tn5<KAN-2> Transposon insertion sites and optionally (DNA) sequence chosen clones bi-directionally using the unlabeled forward and reverse transposon-specific primers supplied in the kit.


For targeted modifications, various methods have been developed based on RecA-dependent homologous recombination (Hamilton et al., 1989; Link et al., 1997; Posfai et al., 1999). However, using antibiotic resistance markers for deletion/insertion is limited by the number of different antibiotics that can be used in a given target organism. For this reason, markerless insertion methods have been developed. For example, Yu et al. (2008) describe a deletion procedure in which expression of the A-Red recombinase genes (gam, bet and exo) and the I-SceI endonuclease gene are controlled by tightly regulated promoters ParaB and PrhaB. Arabinose and rhamnose added to cultures to induce ParaB and PrhaB are used and depleted by the bacteria. Thus, by changing the carbon source in the medium from arabinose to rhamnose in bacteria that contain the pREDI plasmid, one can replace a targeted genomic region with a markerless deletion cassette and subsequently delete the selection markers that were introduced.


Sun et al. (2008) also describe methods for sequence-specific insertion or deletion of genes within a bacterial genome. This method permits multiple markerless insertions and scarless deletions in the targeted genome. In the Sun et al. method, a target gene can be deleted in two steps. In the first step, a linear DNA fragment is created that carries the cat (chloramphenicol resistance) gene and sacB (a levansucrase gene that confers sensitivity to sucrose). The fragment is flanked by long (500 bp) regions of DNA that are homologous to the regions that flank the targeted deletion site. The DNA fragment is electroporated into the host cell, which already contains plasmid pKD46, a vector containing the genes for λ Red recombination. Homologous recombination then directs the replacement of the targeted gene. Medium containing chloramphenicol is used to select for cells that contain the desired insertion or deletion. In the second step, a second DNA fragment that contains the desired deletion or insertion is electroporated into host cells that contain the pKD46 plasmid. By plating the resulting cells on medium containing sucrose, one can select for transformants in which the cat-sacB cassette has been replaced. These candidates are also screened for sensitivity to chloramphenicol, and the deletion can be confirmed by PCR and sequencing. By repeating the process, multiple deletions and/or insertions can be achieved. The pKD46 plasmid can then be removed by culturing the cells at 37 C. Thus, by using various genes encoding the isobutanol, butanol, fatty alcohol and fatty acid ester biosynthetic pathways, these pathways can be inserted into the genome of a methanotroph (or non-methanotroph), and unwanted genes (e.g., genes that encode for enzymes that produce competing products) can be removed.


U.S. Patent Publication No. 2006/0057726 describes using sacB gene and the pGP704 suicide vector to engineer markerless insertions into single carbon (C1) metabolizing bacteria. Yomantas et al. (2010) describes methods for markerless substitutions in the genome of the methylotrophic bacterium Methylophilus methylotrophus.


Several methanotroph strains were evaluated according to the present invention as potential hosts for pathway engineering. Of the well characterized methanotroph strains, Methylosinus trichosporium OB3b (NCIMB 11131) and Methylococcus capsulatus str. Bath (NCIMB 11853) were examined for their case of transformability (via conjugation), growth rate, and suitability for industrial fermentation. Both strains can be cultivated in liquid or agar containing Nitrate Mineral Salts (NMS) medium (Whittenbury et al., 1970; Bowman, 2000). Although both strains were found to transform with approximately equal efficiency, Methylococcus capsulatus (Bath) has the advantage of growing about twice as fast as M. trichosporium (ca. 24-30 to reach saturation in shake flask growth). In addition, the ability of M. capsulatus (Bath) to grow more readily at 45° C. is an advantage in industrial cultivation, since this relatively high temperature will impede the growth of other potentially contaminating microorganisms. Furthermore, the complete genome sequence of M. capsulatus (Bath) has been published (Ward et al., 2004), and as such, manipulation of its genome via genetic engineering is readily available to one of skill in the art. Thus, in certain embodiments, M. capsulatus (Bath) is used as a model organism for further development of genetically modified host microorganisms.


Following conjugation, positive methanotroph trans-conjugants were purified on NMS agar containing the appropriate antibiotic selection (e.g., 15 μg/ml kanamycin for selecting the plasmid and counter-selecting the untransformed methanotroph host cells, and 10 μg/ml for counter-selecting the E. coli donor cells). Alternatively, transconjugants can be purified by serial cultivation in liquid medium containing the appropriate antibiotics for selection, followed by plating onto selective NMS agar plates to obtain single colonies. Colonies were used to inoculate small (5-10 ml) starter cultures in liquid NMS medium containing, for example, 15 μg/ml kanamycin in 125-ml flasks. The flasks were stoppered with tight-fitting Suba Seals to create a closed atmosphere inside the flasks. A volume of gas corresponding to 20% of the total volume of the flask and composed of 95% methane and 5% carbon dioxide was injected via a sterile syringe and 23-gauge needle into each flask. Flasks were shaken at 200 rpm and 45° C. When these cultures achieved an optical density of A540>0.5 (after about 24 hours), a 1:100 dilution of these cells was used to inoculate 125 ml (or larger volume) cultures, and the same growth protocol was followed. Growth in shake flasks is most robust when the liquid volume is maintained at about 5-10% of the nominal volume of the flask so that good aeration of the liquid is achieved. These flasks were then used for the subsequent assays of product formation. In certain examples related to 2-KIV feeding experiments, only the ketoacid intermediate was added along with the methane and CO2 at the zero time point.


After approximately 72 hours of growth, the cultures were harvested for analysis by gas chromatography. The sealed flasks were first chilled for at least 1 hour on ice, to concentrate any volatile organic compounds from the vapor phase into the liquid phase. After opening the flasks, an aliquot of the culture was diluted 1:2 with ethyl acetate in a clean 50 ml tube to extract and concentrate the isobutanol, butanol, fatty alcohols or fatty acid esters. After vortexing or shaking (and centrifugation to separate the phases), a small volume of the organic layer (approximately 1 ml) was filtered through a 0.2 μm PTFE filter, and 1 μl of the purified extract was then injected into an Agilent 7890A GC equipped with a Leap Technologies (Carrboro, NC) CombiPAL autosampler for analysis. Appropriate purified standards were included to generate a standard curve and determine the concentration of the targeted product. Each measurement included a positive control and a negative control (e.g., a wild-type sample or other appropriate background control) with each sample set. Additional details of the methods used for the specific products are given in the Examples section. Strains with the highest levels of production were designated for further scale-up in 1-10 liter fermentors.


During the analysis of the engineered host strains, unexpectedly high levels of isobutanol and butanol consumption (up to 30 mM after 72 hours of growth) was observed even in wild-type cultures of M. capsulatus (Bath), and therefore it was important to find mutant strains that can produce these products at a rate that is greater than their inherent rate of consumption. In certain embodiments of the invention, the competing alcohol dehydrogenase and alcohol oxidase activities are identified, and reduced or eliminated by gene knockouts, as described above.


For initial fermentation scale-up in the 1-10 liter range, methods similar to those described in Theisen et al. (2005) and U.S. Pat. No. 4,594,324 can be used, with specific modifications for M. capsulatus (Bath). A fermentation system such as the Sartorius-Stedim Biostat A plus system (Goettingen, Germany) can be used, or other equivalent fermentation systems and methods for methanotroph fermentation (e.g., see Jiang et al., 2010). An Applikon ADI 1030 Bio Controller and ADI 1035 BioConsole (Applikon Biotechnology Inc., Foster City, CA) can also be used for the 10 liter vessel.


The starting inoculum is created by inoculating a large colony of M. capsulatus (Bath) containing the desired plasmid from a plate culture into 10 ml of sterile NMS medium containing kanamycin, as described above. After 24 to 48 hours, when the optical density (A540) of the culture is greater than 0.5, five starter flasks of NMS medium are inoculated at 1:100 dilution. The liquid volumes in these starter inocula can range in size from 20 ml each for a 1 liter fermentor to 200 ml each for a 10 liter fermentor (i.e., about a 10% inoculum).


After autoclaving the NMS medium in the fermentor vessel, the phosphate salts portion of the NMS medium and the kanamycin (both sterilized) are added to the vessel. The same inlet can be used to inject the starter cultures. Air is supplied as oil-free compressor air, and the methane carbon source is supplied from a pre-mixed tank (Airgas) containing 95% methane and 5% CO2. The air and methane are mixed to 15-20% methane using equipment that is rated intrinsically safe or explosion proof to eliminate the possibility of sparking or static electricity, which could lead to an explosion. The gas flow rate depends on the fermentor size and culture density, but a value of 0.75 liters per minute for 10 liters is typical. The gas mixture is fed into the fermentor, and the entire culture is mixed with an impeller rotating at approximately 200 rpm for agitation, the rate of which may be increased during growth. For maintenance of the culture pH at 6.8, 0.1 M HCl or 1 M NaOH is added as needed. The temperature is maintained at 45° C. by a thermostatic jacket. The effluent gas is fed through a water-jacketed condenser to reduce liquid loss at 45° C., and vented to a fume hood.


The fermentation is monitored (via pH and dissolved oxygen probes) and controlled using Sartorius BioPAT MFCS bioprocess control software (Sartorius Corp, Bohemia, NY). A dissolved oxygen concentration below 1% saturation with air (typically 0.2-0.3%) is desirable to avoid wasting methane. Periodically, small samples of the fermentation broth are removed by sterile transfer and used to measure the optical density of the culture. These samples can also be used to monitor product formation using the methods described above and in the Examples section. Purity of the culture can also be checked by plating a small sample onto R2A agar, which allows most organisms other than methanotrophs to grow. Cultures achieve an optical density (A540) of greater than 9 after about 48 hours. For M. capsulatus (Bath), 1 ml of culture with A540 equal to 1 corresponds to about 0.23-0.25 mg of dry weight of biomass. When the maximum cell density or product concentration is achieved, the culture can be harvested and analyzed.


For large-scale commercial fermentation, a system based on the fermentor design employed by Norferm (Norefem, AS; Stavanger, Norway) for production of single-cell protein can be used (Bothe et al., 2002; EP 1419234; U.S. Publication No. 2009/0263877). The largest system has a total volume of 300 m3 (300,000 liters) and an annual production capacity of 10,000 tons of biomass (van Laere et al., 2005). Publications such as EP 1419234, U.S. Publication No. 2009/0263877 and Villadsen (2012), and references therein, describe a loop reactor and bioprocess methods for culturing methanotrophs at the commercial scale. The advantage of this design is that nutrient gases such as methane and oxygen are supplied to the system in such a way that exposure of the cells to nutrient-depleted culture medium or to unduly high concentrations of nutrient gases is minimized.


However, when using “wet” natural gas as a nutrient feedstock, the problem of acetate and propionate toxicity (resulting from the oxidation of ethane and propane, respectively) may need to be addressed (Bothe et al., 2002; Eiteman & Altman, 2006). A genetic approach is to eliminate (knock-out) or knock-down the ethanol and propanol dehydrogenases and acetaldehyde/propionaldehyde dehydrogenases that convert the ethanol and propanol to the corresponding acids. Another approach is to introduce the genes for acetate assimilation from an organism that can use it as a carbon source, such as E. coli (Wolfe, 2005). For example, AMP-ACS (acetate: CoA ligase [AMP forming]; EC 6.2.1.1) catalyzes the conversion of acetate and ATP to an enzyme-bound acetyladenylate (acetyl-AMP) and pyrophosphate. In a subsequent step, it reacts the acetyl-AMP with CoASH (CoenzymeA-SH) to acetyl-CoA and free AMP. Similarly, AMP-ACS can activate and assimilate propionate (Wolfe, 2005). In this way, the two potentially harmful organic acids are converted into the useful intermediate, acetyl-CoA. These genes can be cloned and expressed in a methanotroph host by the methods described above.


Another aspect of the commercial production of multicarbon compounds from methane using the present invention involves recovering and purifying the desired product from the fermentation broth. The method to be used depends on the physico-chemical properties of the product and the nature and composition of the fermentation medium and cells. For example, U.S. Pat. No. 8,101,808 describes methods for recovering C3-C6 alcohols from fermentation broth using continuous flash evaporation and phase separation processing. Thus, the biologically produced multi-carbon compounds of the invention may be isolated from the fermentation medium using methods known in the art for Acetone-butanol-ethanol (ABE) fermentations For example, solids may be removed from the fermentation medium by centrifugation, filtration, decantation, wherein the multi-carbon compounds of the invention may be isolated from the fermentation medium using methods such as distillation, azeotropic distillation, liquid-liquid extraction, adsorption, gas stripping, membrane evaporation, or pervaporation.


In certain embodiments the invention, the fermentation process produces greater than about 7% (v/v) concentration of the desired multi-carbon product in the fermentation broth, and the product is separated from the rest of the medium using membrane separation technology to achieve about a 12% or greater concentration of the product, at which point relatively small molecules (such as isobutanol) can be further purified by phase separation in an integrated system (Hickey & Slater, 1990; Neel, 1995; Hägg, 1998; Liu et al., 2011). Continuous recovery of the product from the fermentation medium has the advantage of possibly reducing the toxicity effects of the multi-carbon products.


For longer-chain alcohols, such as fatty alcohols, U.S. Pat. No. 8,268,599 describes methods for separating these components from the aqueous phase of the fermentation by bi-phasic separation, whereby the immiscibility of the product compounds with the fermentation broth allows the organic phase to be collected and removed. This separation can also reduce the toxic effects of the product on the host microbial cells.


U.S. Publication No. 2007/0251141 describes methods for recovering fatty acid methyl esters (FAMEs) from a liquid suspension by adding urea and creating a phase separation whereby the saturated and unsaturated FAMEs can be recovered separately. Membrane separation methods can also be applied to purifying fatty acid ester products such as biodiesel (Saleh, 2011).


In certain embodiments, a methane substrate of the invention is provided or obtained from a natural gas source, wherein the natural gas is “wet” natural gas or “dry” natural gas. Natural gas is referred to as “dry” natural gas when it is almost pure methane, having had most of the other commonly associated hydrocarbons removed. When other hydrocarbons are present, the natural gas is referred to as “wet”. Wet natural gas typically comprises about 70-90% methane, about 0-20% ethane, propane and butane (combined total), about 0-8% CO2, about 0-5% N2, about 0-5% H2S and trace amounts of oxygen, helium, argon, neon and xenon. In certain other embodiments, a methane substrate of the invention is provided or obtained from methane emissions, or methane off-gases, which are generated by a variety of natural and human-influenced processes, including anaerobic decomposition in solid waste landfills, enteric fermentation in ruminant animals, organic solids decomposition in digesters and wastewater treatment operations, and methane leakage in fossil fuel recovery, transport, and processing systems.


Table 1 below, provides exemplary polynucleotide and polypeptide sequences for implementing various embodiments of the present invention. These sequences are not meant to limit or exclude the use of other polynucleotide sequences encoding polypeptides or enzymes useful for producing multi-carbon compounds according to the present invention. For example, one of skill in the art can search gene sequence databases (or genome databases) and/or protein sequence databases (e.g., via BLAST or other sequence search algorithms) to identify homologous polynucleotides encoding one or more enzyme activities based on the reference sequences set forth in Table 1. Alternatively, a homologous polynucleotide may be isolated directly by using all or a portion of a nucleic acid sequence set forth in Table 1 (or a primer sequence set forth below in Table 2) as DNA hybridization probes to screen libraries from any desired microorgansim and/or PCR amplify a desired polynucleotide sequence using methodology well known to those skilled in the art.









TABLE 1







Exemplary Nucleic Acid and Polypeptide Sequences Described in the Invention












Pathway or

Nucleic acid

Polypeptide



Reaction
Gene Name
SEQ
Enzyme Name
SEQ ID
Organism





isobutanol
MCA1837
SEQ ID NO: 1
ALS
SEQ ID NO: 2

M.
capsulatus, Bath



isobutanol
MCA2272
SEQ ID NO: 3
KARI
SEQ ID NO: 4

M.
capsulatus, Bath



isobutanol
MCA2082
SEQ ID NO: 5
DHAD
SEQ ID NO: 6

M.
capsulatus, Bath



isobutanol
MCA0996
SEQ ID NO: 7
KDC
SEQ ID NO: 8

M.
capsulatus, Bath



isobutanol
YMR318C
SEQ ID NO: 9
ADH
SEQ ID NO: 10

S.
cerevisiae



isobutanol
MtKDC
SEQ ID NO: 82
KDC
SEQ ID NO: 162

M.
trichosporium



isobutanol
MtADH
SEQ ID NO: 83
ADH
SEQ ID NO: 163

M.
trichosporium



isobutanol
McADH-2a
SEQ ID NO: 84
ADH
SEQ ID NO: 164

M.
capsulatus, Bath



isobutanol
McADH-2b
SEQ ID NO: 85
ADH
SEQ ID NO: 165

M.
capsulatus, Bath



Isobutanol
LlkivD
SEQ ID NO: 86
KDC
SEQ ID NO: 166

L.
lactis



Isobutanol
ScPDC6
SEQ ID NO: 87
KDC
SEQ ID NO: 167

S.
cerevisiae



Isobutanol
ScARO10
SEQ ID NO: 88
KDC
SEQ ID NO: 168

S.
cerevisiae



Isobutanol
ScADH2
SEQ ID NO: 89
ADH
SEQ ID NO: 169

S.
cerevisiae



Isobutanol
ScPDC1
SEQ ID NO: 90
KDC
SEQ ID NO: 170

S.
cerevisiae



isobutanol
CaPDC
SEQ ID NO: 91
KDC
SEQ ID NO: 171

C.
acetobutylicum



CH4 to CH3OH
MCA1798
SEQ ID NO: 11
pmoC subunit 1
SEQ ID NO: 12

M.
capsulatus, Bath



CH4 to CH3OH
MCA1797
SEQ ID NO: 13
pmoA subunit 1
SEQ ID NO: 14

M.
capsulatus, Bath



CH4 to CH3OH
MCA1796
SEQ ID NO: 15
pmoB subunit 1
SEQ ID NO: 16

M.
capsulatus, Bath



CH4 to CH3OH
MCA2855
SEQ ID NO: 17
pmoC subunit 2
SEQ ID NO: 18

M.
capsulatus, Bath



CH4 to CH3OH
MCA2854
SEQ ID NO: 19
pmoA subunit 2
SEQ ID NO: 20

M.
capsulatus, Bath



CH4 to CH3OH
MCA2853
SEQ ID NO: 21
pmoB subunit 2
SEQ ID NO: 22

M.
capsulatus, Bath



CH4 to CH3OH
MCA1194
SEQ ID NO: 23
mmoX
SEQ ID NO: 24

M.
capsulatus, Bath



CH4 to CH3OH
MCA1195
SEQ ID NO: 25
mmoY
SEQ ID NO: 26

M.
capsulatus, Bath



CH4 to CH3OH
MCA1196
SEQ ID NO: 27
mmoB
SEQ ID NO: 28

M.
capsulatus, Bath



CH4 to CH3OH
MCA1198
SEQ ID NO: 29
mmoZ
SEQ ID NO: 30

M.
capsulatus, Bath



CH4 to CH3OH
MCA1199
SEQ ID NO: 31
mmoD
SEQ ID NO: 32

M.
capsulatus, Bath



CH4 to CH3OH
MCA1200
SEQ ID NO: 33
mmoC
SEQ ID NO: 34

M.
capsulatus, Bath



CH3OH to H2CO
MCA0779
SEQ ID NO: 35
mxaF
SEQ ID NO: 36

M.
capsulatus, Bath



CH3OH to H2CO
MCA0780
SEQ ID NO: 37
mxaJ
SEQ ID NO: 38

M.
capsulatus, Bath



CH3OH to H2CO
MCA0781
SEQ ID NO: 39
mxaG
SEQ ID NO: 40

M.
capsulatus, Bath



CH3OH to H2CO
MCA0782
SEQ ID NO: 41
mxaI
SEQ ID NO: 42

M.
capsulatus, Bath



CH3OH to H2CO
MCA0783
SEQ ID NO: 43
mxaR
SEQ ID NO: 44

M.
capsulatus, Bath



CH3OH to H2CO
MCA0785
SEQ ID NO: 45
mxaA
SEQ ID NO: 46

M.
capsulatus, Bath



CH3OH to H2CO
MCA0786
SEQ ID NO: 47
mxaC
SEQ ID NO: 48

M.
capsulatus, Bath



CH3OH to H2CO
MCA0787
SEQ ID NO: 49
mxaK
SEQ ID NO: 50

M.
capsulatus, Bath



CH3OH to H2CO
MCA0788
SEQ ID NO: 51
mxaL
SEQ ID NO: 52

M.
capsulatus, Bath



CH3OH to H2CO
MCA0789
SEQ ID NO: 53
mxaD
SEQ ID NO: 54

M.
capsulatus, Bath



1-butanol
MCA0354
SEQ ID NO: 55
Threonine-
SEQ ID NO: 56

M.
capsulatus, Bath






ammonia-lyase




1-butanol
MCA2275
SEQ ID NO: 57
2-ethylmalate
SEQ ID NO: 58

M.
capsulatus, Bath






synthase




1-butanol
MCA2065
SEQ ID NO: 59
Isopropyl malate
SEQ ID NO: 60

M.
capsulatus, Bath






dehydratase,







large subunit




1-butanol
MCA2064
SEQ ID NO: 61
Isopropyl malate
SEQ ID NO: 62

M.
capsulatus, Bath






dehydratase,







small subunit




1-butanol
VIMSS17191
SEQ ID NO: 160
tdcB
SEQ ID NO: 161

E.
coli



1-butanol
MCA0996
SEQ ID NO: 7
KDC
SEQ ID NO: 8

M.
capsulatus, Bath



1-butanol
YMR318C
SEQ ID NO: 9
ADH
SEQ ID NO: 10

S.
cerevisiae



1-butanol
MtKDC
SEQ ID NO: 82
KDC
SEQ ID NO: 162

M.
trichosporium



1-butanol
MtADH
SEQ ID NO: 83
ADH
SEQ ID NO: 163

M.
trichosporium



1-butanol
McADH-2a
SEQ ID NO: 84
ADH
SEQ ID NO: 164

M.
capsulatus, Bath



1-butanol
McADH-2b
SEQ ID NO: 85
ADH
SEQ ID NO: 165

M.
capsulatus, Bath



1-butanol
LlkivD
SEQ ID NO: 86
KDC
SEQ ID NO: 166

L.
lactis



1-butanol
ScPDC6
SEQ ID NO: 87
KDC
SEQ ID NO: 167

S.
cerevisiae



1-butanol
ScARO10
SEQ ID NO: 88
KDC
SEQ ID NO: 168

S.
cerevisiae



1-butanol
ScADH2
SEQ ID NO: 89
ADH
SEQ ID NO: 169

S.
cerevisiae



1-butanol
ScPDC1
SEQ ID NO: 90
KDC
SEQ ID NO: 170

S.
cerevisiae



1-butanol
CaPDC
SEQ ID NO: 91
KDC
SEQ ID NO: 171

C.
acetobutylicum



Fatty alcohol
FAR
SEQ ID NO: 65
FAR
SEQ ID NO: 66

M.
algicola



Fatty acid ester
Ab-wax-dgaT
SEQ ID NO: 67
wax-dgaT
SEQ ID NO: 68

A.
baylyi



Fatty acid ester
Psyc_0223
SEQ ID NO: 69
PaWES
SEQ ID NO: 70

P.
arcticus



Fatty acid ester
ROP_02100
SEQ ID NO: 71
RoWES1
SEQ ID NO: 72

R.
opacus



Fatty acid ester
ROP_13050
SEQ ID NO: 73
RoWES2
SEQ ID NO: 74

R.
opacus



Fatty acid ester
ROP_54550
SEQ ID NO: 75
RoWES3
SEQ ID NO: 76

R.
opacus



Fatty acid ester
ROP_26950
SEQ ID NO: 77
RoWES4
SEQ ID NO: 78

R.
opacus



2,3-butanediol
YAL060W
SEQ ID NO: 156
Bdh1
SEQ ID NO: 157

S.
cerevisiae



RuMP
MCA3049
SEQ ID NO: 160
HPS
SEQ ID NO: 161

M.
capsulatus, Bath



RuMP
MCA3050
SEQ ID NO: 162
HPS/PHI
SEQ ID NO: 163

M.
capsulatus, Bath

















TABLE 2







Plasmid, Primer, Promoter and Gene Fragment


Sequences Described in the Invention










Name
Nucleic acid SEQ ID







pCM132
SEQ ID NO: 79



pJSvec
SEQ ID NO: 80



pMZT3
SEQ ID NO: 81



JPS00082
SEQ ID NO: 92



JPS00031
SEQ ID NO: 93



JPS00032
SEQ ID NO: 94



GMV257
SEQ ID NO: 95



JPS00118
SEQ ID NO: 96



JPS00119
SEQ ID NO: 97



ESG00087
SEQ ID NO: 98



GMV251
SEQ ID NO: 99



rnpB
SEQ ID NO: 100



JPS00161
SEQ ID NO: 101



JPS00162
SEQ ID NO: 102



JPS00163
SEQ ID NO: 103



JPS00164
SEQ ID NO: 104



JPS00172
SEQ ID NO: 105



JPS00173
SEQ ID NO: 106



JPS00174
SEQ ID NO: 107



JPS00176
SEQ ID NO: 108



JPS00177
SEQ ID NO: 109



JPS00157
SEQ ID NO: 110



JPS00178
SEQ ID NO: 111



Me-AM1 PmxaF
SEQ ID NO: 112



JPS00169
SEQ ID NO: 113



GMV00251
SEQ ID NO: 114



JPS00170
SEQ ID NO: 115



JPS00171
SEQ ID NO: 116



JPS00153
SEQ ID NO: 117



JPS00151
SEQ ID NO: 118



JPS00154
SEQ ID NO: 119



JPS00183
SEQ ID NO: 120



JPS00185
SEQ ID NO: 121



J23100
SEQ ID NO: 122



J23100 hybrid
SEQ ID NO: 123



J23115
SEQ ID NO: 124



GMV00233
SEQ ID NO: 125



GMV00235
SEQ ID NO: 126



GMV00433
SEQ ID NO: 127



GMV00434
SEQ ID NO: 128



GMV00435
SEQ ID NO: 129



GMV00436
SEQ ID NO: 130



GMV00437
SEQ ID NO: 131



GMV00438
SEQ ID NO: 132



GMV00439
SEQ ID NO: 133



GMV00440
SEQ ID NO: 134



GMV00441
SEQ ID NO: 135



GMV00442
SEQ ID NO: 136



ESG00084
SEQ ID NO: 137



ESG00088
SEQ ID NO: 138



pMZT37
SEQ ID NO: 139



MaFAR-g1
SEQ ID NO: 140



MaFAR-g2
SEQ ID NO: 141



MaFAR-g3
SEQ ID NO: 142



MaFAR-g4
SEQ ID NO: 143



GMV410
SEQ ID NO: 144



GMV411
SEQ ID NO: 145



GMV412
SEQ ID NO: 146



GMV413
SEQ ID NO: 147



GMV414
SEQ ID NO: 148



GMV415
SEQ ID NO: 149



GMV416
SEQ ID NO: 150



GMV417
SEQ ID NO: 151



GMV418
SEQ ID NO: 152



GMV419
SEQ ID NO: 153



GMV420
SEQ ID NO: 154



GMV421
SEQ ID NO: 155



GMV422
SEQ ID NO: 158



GMV423
SEQ ID NO: 159










EXAMPLES

The present invention is further defined in the following Examples. It should be understood that these examples, while indicating certain embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.


Example 1
Biosynthetic Production of Isobutanol from Methane

Initial experiments were performed to confirm and validate enzymatic activity of isobutanol pathway enzymes at the relatively high temperatures (i.e., 45° C.) requisite for growth of one preferred methanotroph host organism, Methylococcus capsulatus (Bath). Thus, in this example, the methanotroph M. capsulatus was engineered in the first series of experiments to overexpress two isobutanol pathway enzymes, ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH), prior to introducing the full complement of five isobutanol pathway enzymes (Atsumi et al., 2010) into M. capsulatus. Following the functional validation of KDC and ADH activity in M. capsulatus (set forth below), the complete five-gene isobutanol pathway was introduced into M. capsulatus, the results of which are set forth below.


Gene Selection, Synthesis and Cloning

For the two-gene (isobutanol) pathway experiments (and for the downstream section of the five-gene isobutanol pathway set forth below), ketoacid decarboxylase (KDC) and alcohol dehydrogenase (ADH) genes were amplified by colony PCR from Methylosinus trichosporium (strain: OB3b, National Collection of Industrial, Food and Marine Bacteria (NCIMB) Accession No: 11131) and Methylococcus capsulatus (Bath). The Methylosinus trichosporium gene, MtKDC, encoding KDC is set forth in SEQ ID NO: 82, Methylosinus trichosporium gene, MtADH, encoding ADH is set forth in SEQ ID NO: 83. The Methylococcus capsulatus (Bath) gene, McKDC, encoding KDC is set forth in SEQ ID NO:7, the Methylococcus capsulatus (Bath) genes, McADH-2a and McADH-2b, encoding two ADH2 homologs, are set forth in SEQ ID NO:84 and SEQ ID NO:85, respectively.


Other KDC and ADH genes such as L1KIVD: Lactococcus lactis KDC (SEQ ID NO: 86); ScPDC6: Saccharomyces cerevisiae PDC6 (SEQ ID NO:87); ScARO10: S. cerevisiae ARO10 (SEQ ID NO:88); ScADH2: S. cerevisiae ADH2 (SEQ ID NO:89); ScPDC1: S. cerevisiae PDC1 (SEQ ID NO:90); CaPDC: Clostridium acetobutylicum PDC (SEQ ID NO:91) were codon optimized for expression in M. capsulatus and de novo synthesized by GenScript (Piscataway, NJ). Various KDC and ADH combinations were cloned with a constitutive promoter (J23115) or inducible (Ptrc) promoter into plasmid pCM132 (Accession No. AF327720; SEQ ID NO:79) with the Clontech In-Fusion kit (Mountain View, CA). A gene for the ds-Red protein was used as a control. Plasmids were transformed into E. coli S17-1 for conjugation.


Vector Inserts

Vector inserts contain the DNA fragments that are to be carried in the plasmid. The vector inserts were designed as exchangeable parts to the vector backbone described above. In one embodiment of the 2-gene pathway example, the plasmids were designed to contain two inserts made up of Methylococcus capsulatus KDC (MCA0996; SEQ ID NO:7) and Saccharomyces cerevisiae ADH6 (YMR318C; SEQ ID NO:9) genes. Both genes were amplified from genomic DNA of their respective hosts, with the primers described above in Tables 2 and below in Table 3.









TABLE 3







Plasmid insert modules, templates and primers











Modules












Plasmid
PCR rxn:
Vector Backbone
Insert 1
Insert 2
Insert 3





pJS0025
template
pJSvec
MCA0996 (M.
YMR318C (S.







capsulatus DNA)


cerevisiae DNA)





primer 1
JPS0082
JPS0032
JPS00118




primer 2
JPS0031
GMV00257
JPS00119



pGMV145
template
pMZT3
MCA0996 (M.
YMR318C (S.







capsulatus DNA)


cerevisiae DNA)





primer 1
JPS0082
GMV00251
JPS00118




primer 2
ESG00087
GMV00257
JPS00119



pJS034
template
pGMV145
IDT gBlock







synthesized







rnpB DNA





primer 1
JPS00161
JPS00163





primer 2
JPS00162
JPS00164




pJS041
template
pJS034
MCA1837 (M.
MCA2272 (M.
MCA2082


pJS041n



capsulatus DNA)


capsulatus DNA)

(M.








capsulatus








DNA)



primer 1
JPS00162
JPS00173
JPS00176
JPS00157



primer 2
JPS00172
JPS00174
JPS00177
JPS00178


pJS048
template
pJS034
IDT gBlock







synthesized Me-AM1







PmxaF DNA





primer 1
JPS00169
JPS00170





primer 2
GMV251
JPS00171




pJS038
template
pGMV145
MCA1837 (M.








capsulatus DNA)






primer 1
JPS00153
JPS00151





primer 2
GMV251
JPS00154




pJS042
template
pJS048
pJS038




pJS042n
primer 1
JPS00162
JPS00173





primer 2
JPS00172
JPS00178




pJS050
template
pJS041n
pJS041n





primer 1
JPS00183
JPS00174





primer 2
JPS00176
JPS00185











The modular parts (i.e., vector backbone and vector inserts) were PCR amplified (as listed in Table 3) with NEB Phusion master mix (New England Biolabs; Ipswich, MA) according to the manufacturer's instructions and in vitro assembled with the Clontech InFusion HD Cloning System kit (Clontech; Mountain View, CA) according to the manufacturer's instructions to generate circular plasmid listed below.


The in vitro assembled plasmids (2 μl of the InFusion reaction) were transformed into chemically competent NEB Turbo E. coli cells, screened by colony PCR, purified, and subsequently sequence verified.


The plasmid pJSvec (SEQ ID NO:80) served as the template for the vector backbone with an inducible promoter and consisted of the pCM132 cloning vector (SEQ ID NO: 79), lacIq, and the IPTG-inducible pTrc promoter.


The plasmid pMZT3 (SEQ ID NO:81) served as the template for the vector backbone with a constitutive promoter and consisted of the pCM132 (SEQ ID NO:79) cloning vector and E. coli J23115 promoter (SEQ ID NO:124).


The plasmid pJS0025 was designed to express M. capsulatus KDC (MCA0996; SEQ ID NO:7) and S. cerevisiae ADH6 (YMR 318C; SEQ ID NO:9) from the inducible promoter.


The plasmid pGMV145 was designed to express M. capsulatus KDC (MCA0996; SEQ ID NO:7) and S. cerevisiae ADH6 (YMR 318C; SEQ ID NO:9) from the constitutive promoter.


The plasmid pJS034 introduced a second terminator sequence into pGMV145. The pGMV145 vector backbone was PCR amplified with primers JPS00161 (SEQ ID NO: 101)/JPS00162 (SEQ ID NO:102) and KOD mastermix. The insert contained DNA sequence for rnpB (SEQ ID NO:100) synthesized as a gBlock from Integrated DNA Technologies (Coralville, IA) and amplified with JPS00163 (SEQ ID NO:103)/JPS00164 (SEQ ID NO:104) primers.


Expression of the Full Five-Gene Pathway for Methane-to-Isobutanol Conversion

In order to synthesize isobutanol from methane (i.e., via pyruvate), without the need to exogenously supply a ketoacid intermediate, the pJS041 and pJS04In plasmids were designed to express all five isobutanol pathway genes: (1) M. capsulatus KDC (MCA0996; SEQ ID NO:7) and (2) S. cerevisiae ADH6 (YMR318C; SEQ ID NO:9) from the J23115 constitutive promoter (SEQ ID NO:124), and (3) M. capsulatus ilvK (MCA1837; SEQ ID NO: 1), (4) M. capsulatus ilvC (MCA2272; SEQ ID NO:3), and (5) M. capsulatus ilvD (MCA2082; SEQ ID NO:5) from the J23100 constitutive promoter (see, FIG. 3). Plasmid pJS041n contains the canonical J23100 promoter sequence (5′-TTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGC-3′; SEQ ID NO:122), and plasmid pJS041 contains a modified J23100 promoter sequence (5′-TTGACGGCTAGCTCAGCCCTTGGTACAATGCTAGC-3′; SEQ ID NO:123), which represents a hybrid fusion of the J23100 and J23115 (SEQ ID NO:124) promoters that arose during the process of cloning and generating the plasmid in E. coli (Table 3). This mutated construct was retained and tested to see whether the promoter mutations might impart improved production of isobutanol in the microbial expression host (e.g., M. capsulatus (Bath)).









TABLE 4





Sequence comparison between the “hybrid”


promoters  in plasmids pJS041 and pJS042 and


the canonical promoters J23115 and J23100


















J23115
TTTATAGCTAGCTCAGCC 



(SEQ ID NO: 124)
CTTGGTACAATGCTAGC






pJS041-hybrid
TTGACGGCTAGCTCAGCC 



(SEQ ID NO: 123) 
CTTGGTACAATGCTAGC






J23100
TTGACGGCTAGCTCAGTC 



(SEQ ID NO: 122)
CTAGGTACAGTGCTAGC









The pJS048 plasmid replaced the J23100 promoter with the MxaF promoter (SEQ ID NO: 112) from Methylobacterium extorquens AM-1 in pJS034.


The pJS050 plasmid was designed to express five genes: M. capsulatus KDC (MCA0996; SEQ ID NO:7) and S. cerevisiae ADH6 (YMR318C; SEQ ID NO:9) from the J23115 constitutive promoter and M. capsulatus ilvK (MCA1837; SEQ ID NO:1), M. capsulatus ilvC (MCA2272; SEQ ID NO:3), and M. capsulatus ilvD (MCA2082; SEQ ID NO: 5) from the J23115 constitutive promoter.


Conjugations

The method for conjugal transfer of RP4-mob-containing plasmids into M. trichosporium and M. capsulatus (Bath) was based on the method described previously (Martin & Murrell, 1995; Stafford et. al., 2003). Briefly, 10 ml of a 16 hour culture of E. coli S17-1 carrying the plasmid was collected on a sterile 47 mm, 0.2 μm pore-size, nitrocellulose filter (Millipore). The cells were washed with 50 ml NMS medium without antibiotic. A fresh 50 ml culture of the M. trichosporium or M. capsulatus (Bath) recipient grown to an optical density (A540) of 0.2-0.4 (mid-exponential phase of growth) was collected on the same filter as the E. coli S17-1 host cells. The cells were washed with 50 ml NMS and the filter was placed on an NMS agar plate supplemented with 0.02% (w/v) Proteose Peptone (Difco Laboratories, Detroit, MI) and incubated for 24 hours at 30° C. (for M. trichosporium) or 37° C. (M. capsulatus (Bath)) in the presence of 20-25% methane (CH4) (v/v) in air. After incubation, the cells from the conjugation plate were washed from the filter with 10 ml of NMS, pelleted by centrifugation at 7,000×g, and re-suspended in 1 ml of NMS. 150 μl aliquots were spread onto selective NMS plates containing 10 μg/ml nalidixic acid to select against E. coli and 15 μg/ml kanamycin for plasmid selection and incubated at 30° C. or 45° C. for M. trichosporium or M. capsulatus, respectively. The remaining cells were grown in NMS liquid containing 10 μg/ml nalidixic acid and 15 μg/ml kanamycin (Sigma, St. Louis, MO) as a secondary selection process. Cells grown in liquid selection were serially passaged three times, before spreading onto selective NMS plates for clone isolation.



M. capsulatus Growth Conditions


From a saturated starter culture, M. capsulatus (Bath) cells were diluted 1:100 into 10 ml of fresh NMS containing 15 μg/ml kanamycin in a 125-ml shake flask. For ketoacid feeding experiments, cultures were treated with 1 g/L 2-ketovalerate (CAS #1821 Feb. 9) or 8 g/L 2-ketoisovalerate (CAS #3715-19-5) with or without the inducer, 0.1 mM isopropylthiogalactoside (IPTG). The flasks were closed with Suba-seals, injected with 20-25% CH4 (v/v) in air, and incubated at 45° C. for 0-120 hours.


Extraction of Alcohols from the Growth Medium


1. Isobutanol production: The shake-flask samples were prepared for extraction by cooling them on ice for 1 hour, which ensures that the volatile organic compounds (VOC's) in the vapor phase were not lost to the atmosphere after the Suba-seal is opened.


2. If extracting from a 9-10 ml culture, all of the culture was transferred to a 50 ml tube. For samples with high isobutanol productions (e.g., pGMV 145), 10 ml of ethyl acetate was added for extraction. For samples with low isobutanol production, only 3 ml of ethyl acetate was used. Once ethyl acetate was added to the cultures, they were subjected to either vortexing (1-2 minutes) or shaking at room temperature (for 1 hour) for efficient extraction.


3. The tubes were then centrifuged at 4000 rpm for 20 minutes in an Eppendorf 5810 centrifuge equipped with an A-4-81 rotor.


4. One (1) ml of the organic layer was then filtered (0.2 μm PTFE membrane) and transferred to 2 ml glass Agilent gas chromatography vials for analysis.


GC-FID Analysis for Isobutanol

The extracted alcohol compounds were quantified with the Agilent 7890A gas chromatograph (GC) with flame ionization detector and PAL auto-sampler. An HP InnoWax capillary column (30 m, 0.32-mm internal diameter, 0.25-mm film thickness; Agilent Technologies, Santa Clara, CA) was used to separate the alcohols. The GC oven temperature was initially set at 35° C. for 1 minute and ramped at rate of 10° C./minute until 85° C. was reached and held for 1 minute. A second temperature ramp of 80° C./minute up to 240° C. was performed and held for 2 minutes. Hydrogen gas was the carrier gas used with 9.3 psi constant inlet pressure. The inlet and detector were maintained at 240° C. A 1 μl sample was injected in split injection mode with a 25:1 split ratio.


When the two-gene KDC/ADH pathway was expressed in M. capsulatus and the isobutanol production was measured (using exogenous 2-KIV feeding), the following results were observed. A concentration of 2-KIV greater than about 4 g/L had a toxic effect on growth, wherein a 2-KIV concentration of about 2 g/L yielded the best results (FIG. 4). Peak isobutanol production occurred about 48-72 hours after 2-KIV feeding (FIG. 5). E. coli promoters function in M. capsulatus, but not equally well. Constitutive promoters yielded better results than inducible promoters, but the optimal constitutive promoter will typically depend on the individual construct to be used. For example, J23115 was observed to work best for M. capsulatus KDC and M. capsulatus ADH (data not shown). Lastly, different host strains require slightly different concentrations of 2-KIV to maximize isobutanol production.


The best two-gene combination with a constitutive promoter (J23115; SEQ ID NO: 124) was M. capsulatus KDC and S. cerevisiae ADH6 (plasmid pGMV145), wherein harvesting after 48-72 hours produced the most isobutanol (FIG. 7). The vector construct using pGMV145, having constitutive promoter J23115, a CapKDC gene (MCA0996; SEQ ID NO: 7), and a ScADH6 gene (YMR318C; SEQ ID NO:9), produced the most isobutanol after 2-KIV feeding, which was about 3 mM (or about 0.22 g/L).


When the complete five-gene isobutanol pathway was introduced into a host strain, plasmid pJS041 yielded the highest levels of isobutanol production, with a measured titer of about 0.001 g/liter (FIG. 7), compared to no detectable production in the wild-type strain.


In certain embodiments, the production of isobutanol from methane substrate in a host strain (i.e., expressing the five-gene isobutanol pathway, e.g. via plasmid pJS041) is further optimized by genetic manipulations described above, as well as by cultivating the host strain in a fermentor culture with continuous CH4 perfusion, instead of batch addition of CH4 to the culture medium (as was done for the shake flasks experiments). In other embodiments, the production of increased isobutanol titers from methane in a host strain is further optimized via manipulations to the fermentation process (batch fed or perfusion), such as feeding additional media components as they are depleted (phosphate, nitrate, etc.) and maintaining the pH by continuously adding acid or base.


Example 2
Biosynthetic Production of 1-Butanol from Methane

A ketoacid pathway analogous to that described in Example 1, but designed to produce 1-butanol (n-butanol) is engineered in a single carbon (C1) metabolizing microbial host, such as M. capsulatus (Bath). In this example, L-threonine (which is ultimately generated from methane via phospoenolpyruvate) is first de-aminated to 2-ketobutyrate (2-oxobutanoate) by the action of threonine dehydratase (also referred to in the art as threonine ammonia-lyase (EC 4.3.1.19) encoded by the genes ilvA or tdcB) (Shen & Liao, 2008). The tdcB gene product has the biotechnological advantage that the enzyme is a catabolic enzyme, and is not feedback inhibited by L-valine or L-isoleucine (Guillouet et al., 1999).


In the second reaction step, the reaction catalyzed by leuA (encoding isopropylmalate synthase/2-ethylmalate synthase (EC 2.3.3.6)) combines 2-ketobutyrate, acetyl-CoA, and H2O to create (R)-2-ethylmalate. In the third reaction step, the gene product of leuC and leuD (encoding the two subunits of isopropylmalate isomerase) converts 2-ethylmalate into 3-ethylmalate. In the fourth reaction step, the gene product of leuB (encoding the enzyme 3-isopropylmalate dehydrogenase) converts 3-ethylmalate into 2-ketovalerate). At this stage, the same two enzymes used in the previous example, KDC (acting as a 2-ketovalerate decarboxylase) and ADH2 (alcohol dehydrogenase), are used to convert 2-ketovalerate into 1-butanol.


An alternate pathway (the citramalate pathway) from phosphoenolpyruvate and pyruvate to 2-ketobutyrate has also been described for making 1-butanol (Atsumi & Liao, 2008).


As described, above, the plasmids generated in this study are based on the broad-host-range pCM132 (Accession No. AF327720, SEQ ID NO:79) cloning vector described by Marx & Lidstrom (2001). In this embodiment, the use of the Clontech (catalog no. 639647) InFusion HD Cloning System kit is one example of how to construct plasmids, but is not meant to limit or exclude other methods that are known in the art.


Vector Backbones

Vector backbones contain the components of the plasmid that will remain constant. The broad-host range pCM132 vector was modified to produce vector backbones for the plasmids in this study. The pCM132 vector consisted of the following components: trrnB terminator, kanamycin resistance gene, trfA, IncP oriT, IncP oriV, colE1 ori, and lacZ. This parental vector was modified to replace lacZ with a vector insert that contains promoter sequence to produce plasmids pMZT3 (SEQ ID NO:81) and pMZT37 (SEQ ID NO: 139).


Vector Inserts

Vector inserts contain DNA to be added to a vector backbone. The inserts were designed as exchangeable (modular) parts to the vector and in this example consist of Methylococcus capsulatus KDC (MCA0996; SEQ ID NO:7), leuA (MCA2275; SEQ ID NO: 57), leuCDB (MCA2063; SEQ ID NO:63, MCA2064; SEQ ID NO:61 and MCA2065; SEQ ID NO:59), Saccharomyces cerevisiae ADH6 (YMR318C; SEQ ID NO:9), and M. capsulatus ilvA (MCA0354; SEQ ID NO:55) or E. coli tdcB (SEQ ID NO:160) genes. The genes were amplified from genomic DNA of their respective hosts with the primers described in Table 5.


The modular parts (vector backbone and vector insert) were PCR amplified as listed in Table 4 with NEB Phusion master mix according to the manufacturer's instructions and in vitro assembled with the Clontech InFusion HD Cloning System kit according to the manufacturer's instructions to generate circular plasmid. The in vitro assembled plasmids (2 μl of the InFusion reaction) were transformed into chemically competent NEB Turbo E. coli cells, screened for by colony PCR, purified, and subsequently sequence verified.


The pGMV145 plasmid was designed to express M. capsulatus KDC (MCA0996; SEQ ID NO:7) and S. cerevisiae ADH6 (YMR318C; SEQ ID NO:9) from the constitutive promoter.


The pJS034 plasmid introduced a second terminator sequence into pGMV145. The pGMV145 vector backbone was PCR amplified with primers JPS00161 (SEQ ID NO: 101)/JPS00162 (SEQ ID NO:102) and KOD mastermix. The insert was rnpB DNA synthesized as a gBlock from IDT and amplified with JPS00163 (SEQ ID NO: 103)/JPS00164 (SEQ ID NO:104) primers.


The pGMV165 plasmid was designed to express 3 genes: M. capsulatus ilvA (MCA0354; SEQ ID NO:55), M. capsulatus KDC (MCA0996; SEQ ID NO:7) and S. cerevisiae ADH6 (YMR318C; SEQ ID NO:9) from the J23115 (SEQ ID NO:124) constitutive promoter.


The pGMV166 plasmid was designed to express 3 genes: E. coli tdcB (SEQ ID NO: 160), M. capsulatus KDC (MCA0996; SEQ ID NO:7) and S. cerevisiae ADH6 (YMR318C; SEQ ID NO:9) from the J23115 (SEQ ID NO:124) constitutive promoter.


The pGMV167 plasmid was designed to express 7 genes: M. capsulatus ilvA (MCA0354; SEQ ID NO:55), M. capsulatus KDC (MCA0996; SEQ ID NO:7) and S. cerevisiae ADH6 (YMR318C; SEQ ID NO:9) from the J23115 (SEQ ID NO:124) constitutive promoter and M. capsulatus leuCDB (MCA2063; SEQ ID NO:63, MCA2064; SEQ ID NO:61 and MCA2065; SEQ ID NO:59) and M. capsulatus leuA (MCA2275; SEQ ID NO: 57) from second J23115 (SEQ ID NO:124) constitutive promoter.


The pGMV168 plasmid was designed to express 7 genes: E. coli tdcB (SEQ ID NO: 160), M. capsulatus KDC (MCA0996; SEQ ID NO:7) and S. cerevisiae ADH6 (YMR318C; SEQ ID NO:9) from the J23115 constitutive promoter and M. capsulatus leuCDB (MCA2063; SEQ ID NO:63, MCA2064; SEQ ID NO:61 and MCA2065; SEQ ID NO: 59) and leuA (MCA2275; SEQ ID NO:57) from a second J23115 constitutive promoter.


Host strains modified with these plasmids were grown on methane as described in the examples above, harvested, extracted, and analyzed for 1-butanol production.









TABLE 5







Insert Modules, Templates and Primers for 1-Butanol Production











Modules













PCR
Vector





Plasmid
rxn:
backbone
Insert 1
Insert 2
Insert 3





pGMV145
template
pMZT3
MCA0996 (M.
YMR318C (S.







capsulatus DNA)


cerevisiae DNA)





primer 1
JPS0082
GMV00251
JPS00118




primer 2
ESG00087
GMV00257
JPS00119



pJS034
template
pGMV145
IDT gBlock







synthesized rnpB







DNA





primer 1
JPS00161
JPS00163





primer 2
JPS00162
JPS00164




pGMV165
template
pJS034
pJS034
MCA0354 (M.








capsulatus DNA)





primer 1
GMV435
GMV433
GMV431




primer 2
ESG000087
GMV434
GMV432



pGMV166
template
pJS034
pJS034
tdcB (E.coli DNA)




primer 1
GMV435
GMV433
GMV436




primer 2
ESG000087
GMV434
GMV437



pGMV167
template
pGMV165
pGMV165
MCA2063-2065 (M.
MCA2275 (M.







capsulatus DNA)


capsulatus








DNA)



primer 1
JPS163
GMV235
GMV439
GMV441



primer 2
GMV233
GMV438
GMV440
GMV442


pGMV168
template
pGMV166
pGMV166
MCA2063-2065 (M.
MCA2275 (M.







capsulatus DNA)


capsulatus








DNA)



primer 1
JPS163
GMV235
GMV439
GMV441



primer 2
GMV233
GMV438
GMV440
GMV442









Example 3
Biosynthetic Production of Fatty Alcohols from Methane

Conversion of methane to diesel components requires engineering the native metabolism of methanotrophs. The two principal native pathways that can be engineered for increased production of diesel components are the fatty acid pathway and isoprenoid pathway. In the current example, the invention describes the use of the fatty acid pathway for synthesis of diesel (wax ester) components.


Fatty acids are an important source of energy and adenosine triphosphate (ATP) for many cellular organisms. Excess fatty acids, glucose, and other nutrients can be stored efficiently as fat. All cell membranes are built up of phospholipids, each of which contains fatty acids. Fatty acids are also used for protein modification. Fatty acid synthesis is the creation of fatty acids from acetyl-CoA and malonyl-CoA precursors through action of enzymes called fatty acid synthases. Fatty acid chain length and degree of saturation depends on the host microorganism. With regard to M. capsulatus (Bath), the primary fatty acids are C16 with saturated or mono unsaturated carbon chains.


The conversion of methane to diesel components requires the over-expression of specific heterologous (exogenous) enzymes within a methanotroph (or non-methanotroph) host microorganism, wherein the over-expression of specific heterologous (exogenous) enzymes can divert the flux from native fatty acid synthesis to compounds of interest. Key intermediates of the fatty acid pathway are the fatty acyl-ACP molecules. Thus, the over-expression of specific heterologous enzymes in a host microorganism divert the flux from acyl-ACP to diesel components such as fatty acids, fatty alcohols, fatty esters and derivatives thereof. Thus, in certain embodiments, a host microorganism has been engineered to over-express specific enzymes such as a fatty acyl ACP reductase (FAR), a fatty acyl CoA reductase (CAR) and wax ester synthases (WES) for diverting flux from native compounds to compounds of interest. Active expression of these enzymes results in the conversion of methane to diesel components via FARs, CARs and WES enzymes cloned and expressed in a host microorganism (e.g., M. capsulatus (Bath)).


A biosynthetic pathway analogous to that described in Example 1, but designed to produce fatty alcohols can be engineered in a (C1) metabolizing host microorganism, such as M. capsulatus. In this example, fatty acyl-CoA (which is ultimately generated from methane via pyruvate) is converted directly into fatty alcohols by the heterologous overexpression of a fatty-acyl-CoA reductase (FAR).


Construction of Methanotroph Plasmids for Fatty Alcohol Production

As described, above, the plasmids generated in this study are based on the broad-host-range pCM132 (Accession No. AF327720) cloning vector (SEQ ID NO:79) described by Marx & Lidstrom (2001). In this embodiment, the use of the Clontech (catalog no. 639647) InFusion HD Cloning System kit is one example of how to construct plasmids, but is not meant to limit or exclude other methods that are known in the art.


Vector Backbones

Vector backbones contain the components of the plasmid that will remain constant. The broad-host range pCM132 vector was modified to produce vector backbones for the plasmids in this study. The pCM132 vector consisted of the following components: trrnB terminator, kanamycin resistance gene, trfA, IncP oriT, IncP oriV, colE1 ori, and lacZ. This parental vector was modified to replace lacZ with a vector insert that contains promoter sequence to produce plasmids pMZT3 (SEQ ID NO:81) and pMZT37 (SEQ ID NO: 139).


Vector Inserts

Vector inserts contain DNA to be added to the vector backbone. The inserts were designed as exchangeable (modular) parts to the vector and in this embodiment consist of the following components. In this example, the plasmids were designed to contain one insert: Marinobacter algicola fatty acid reductase (MaFAR; SEQ ID NO:65), also known as a fatty acyl-CoA reductase. The MaFAR gene was codon optimized and synthesized as a series of 4 gBlocks from Integrated DNA Technologies (Coralville, IA). The synthesized DNA was designed to include pivot regions to allow proper assembly by InFusion.


Assembly of the Constructs

The modular parts (vector backbone and vector insert) were PCR amplified as listed in Table 4 with NEB Phusion master mix according to the manufacturer's instructions and in vitro assembled with the Clontech InFusion HD Cloning System kit according to the manufacturer's instructions to generate circular plasmid. The in vitro assembled plasmids (2 μl of the InFusion reaction) were transformed into chemically competent NEB Turbo E. coli cells, screened for by colony PCR, purified, and subsequently sequence verified.


Plasmid pMZT3 (SEQ ID NO:81) served as the template for the vector backbone with a constitutive promoter and consisted of the pCM132 cloning vector, E. coli J23115 promoter. The vector backbone was PCR amplified from the pMZT3 template with primers ESG00084 (SEQ ID NO:137)/ESG00087 (SEQ ID NO:98).


Plasmid pMZT37 (SEQ ID NO:139) served as the template for the vector backbone with a constitutive promoter and consisted of the pCM132 cloning vector, E. coli J23100 promoter. The vector backbone was PCR amplified from the pMZT3 template with primers ESG00084 (SEQ ID NO:137)/ESG00088 (SEQ ID NO:138).


The pGMV147 plasmid was designed to express M. algicola FAR gene (SEQ ID NO: 65) from the J23115 constitutive promoter (SEQ ID NO:124). The modules of this plasmid included the PCR amplified pMZT3 vector backbone and four synthesized DNA gene fragments from IDT (MaFAR-g1; SEQ ID NO:140, MaFAR-g2; SEQ ID NO:141, MaFAR-g3; SEQ ID NO:142 and MaFAR-g4; SEQ ID NO:143).


The pGMV148 plasmid was designed to express M. algicola FAR gene (SEQ ID NO: 65) from the J23110 constitutive promoter (SEQ ID NO:122). The modules of this plasmid included the PCR amplified pMZT37 vector backbone and four synthesized DNA gene fragments from IDT (MaFAR-g1; SEQ ID NO:140, MaFAR-g2; SEQ ID NO:141, MaFAR-g3; SEQ ID NO:142 and MaFAR-g4; SEQ ID NO:143).


Gas chromatography results after various host strains were grown on methane in shake flasks, extracted, and analyzed as described above, are set forth in FIG. 8. The results indicate that the host strain containing plasmid pGMV148 produced C16:0 alcohol (a fatty alcohol) when grown on methane. The host strain containing plasmid pGMV147 produced only a trace amount of fatty alcohol.









TABLE 6







Insert Modules, Templates and Primers for Fatty Alcohol Production











Modules













Plasmid
PCR rxn:
Vector backbone
Insert 1
Insert 2
Insert 3
Insert 4





pGMV147
template
pMZT3
MaFAR-g1
MaFAR-g2
MaFAR-g3
MaFAR-g4



primer 1
ESG00084







primer 2
ESG00087






pGMV148
template
pMZT37
MaFAR-g1
MaFAR-g2
MaFAR-g3
MaFAR-g4



primer 1
ESG00084







primer 2
ESG00088













Example 4
Biosynthetic Production of Fatty Acid Methyl Esters from Methane
Construction of Methanotroph Plasmids for Fatty Acid Ester (Wax Ester) Production

The plasmids generated in this example are based on the broad-host-range pCM132 (Accession no. AF327720, SEQ ID NO: 79) cloning vector described by Marx & Lidstrom (2001). In this embodiment, the use of the Clontech (catalogue no. 639647) InFusion HD Cloning System kit is one example of how to construct plasmids, but is not meant to limit or exclude other methods that are known in the art.


Vector Backbones

Vector backbones contain the components of the plasmid that will remain constant. The broad-host range pCM132 vector was modified to produce vector backbones for the plasmids in this study. The pCM132 vector consisted of the following components: trrnB terminator, kanamycin resistance gene, trfA, IncP oriT, IncP oriV, colE1 ori, and lacZ. This parental vector was modified to replace lacZ with a vector insert that contains promoter sequence to produce plasmids and pMZT3 and pMZT37.


Vector Inserts

Vector inserts contain DNA to be added to a vector backbone. The inserts were designed as exchangeable (modular) parts to the vector and in this embodiment consist of a wax ester synthase (WES) derived from Acinetobacter sp. ADP1 (SEQ ID NO:67), Psychrobacter arcticum 273-4 (SEQ ID NO:69) or Rhodococcus opcaus B4 (SEQ ID NO: 71, SEQ ID NO:73, SEQ ID NO:75 or SEQ ID NO:77). The WES genes were codon-optimized and synthesized by GenScript.


Assembly of the Constructs

The modular parts (vector backbone and vector insert) were PCR amplified as listed in Table 7 with NEB Phusion master mix according to the manufacturer's instructions and in vitro assembled with the Clontech InFusion HD Cloning System kit according to the manufacturer's instructions to generate circular plasmid. The in vitro assembled plasmids (2 μl of the InFusion reaction) were transformed into chemically competent NEB Turbo E. coli cells, screened for by colony PCR, purified, and subsequently sequence verified.


Plasmid pMZT3 (SEQ ID NO:81) served as the template for the vector backbone with a constitutive promoter and consisted of the pCM132 cloning vector, E. coli J23115 promoter. The vector backbone was PCR amplified from the pMZT3 template with primers ESG00084 (SEQ ID NO:137)/ESG00087 (SEQ ID NO:98).


Plasmid pMZT37 (SEQ ID NO:139) served as the template for the vector backbone with a constitutive promoter and consisted of the pCM132 cloning vector, E. coli J23100 promoter. The vector backbone was PCR amplified from the pMZT3 template with primers ESG00084 (SEQ ID NO:137)/ESG00088 (SEQ ID NO:138).


The pGMV153 plasmid was designed to express Acinetobacter sp. ADP1 WES gene (wax-dgaT; SEQ ID NO:67) from the J23115 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV154 plasmid was designed to express Psychrobacter arcticum 273-4 WES gene (Psyc_0223; SEQ ID NO:69) from the J23115 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV155 plasmid was designed to express Rhodococcus opcaus B4 WES gene (ROP_02100; SEQ ID NO:71) from the J23115 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV156 plasmid was designed to express Rhodococcus opcaus B4 WES gene (ROP_13050; SEQ ID NO:73) from the J23115 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV157 plasmid was designed to express Rhodococcus opcaus B4 WS gene (ROP_26950; SEQ ID NO:77) from the J23115 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV158 plasmid was designed to express Rhodococcus opcaus B4 WES gene (ROP_54550; SEQ ID NO:75) from the J23115 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV159 plasmid was designed to express Acinetobacter sp. ADP1 WES gene (wax-dgaT; SEQ ID NO:67) from the J23100 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV160 plasmid was designed to express Psychrobacter arcticum 273-4 WES gene (Psyc_0223; SEQ ID NO:69) from the J23100 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV161 plasmid was designed to express Rhodococcus opcaus B4 WES gene (ROP_02100; SEQ ID NO:71) from the J23100 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV162 plasmid was designed to express Rhodococcus opcaus B4 WES gene (ROP_13050; SEQ ID NO:73) from the J23100 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV163 plasmid was designed to express Rhodococcus opcaus B4 WES gene (ROP_26950; SEQ ID NO:77) from the J23100 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


The pGMV164 plasmid was designed to express Rhodococcus opcaus B4 WES gene (ROP_54550; SEQ ID NO:75) from the J23100 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the codon-optimized synthesized gene.


Strains modified with these plasmids are grown on methane as described in the examples above, harvested, extracted, and analyzed for fatty acid ester production.









TABLE 7







Insert Modules, Templates and Primers for Fatty Acid Ester Production











Modules












Vector



Plasmid
PCR rxn:
backbone
Insert






template
pMZT3
pUC57-AbWS (WS-dgaT)


pGMV153
primer 1
ESG00084
GMV410



primer 2
ESG00087
GMV416


pGMV154
template
pMZT3
pUC57-PaWS (Psyc_0223)



primer 1
ESG00084
GMV411



primer 2
ESG00087
GMV417



template
pMZT3
pUC57-RoWS (ROP_02100)


pGMV155
primer 1
ESG00084
GMV412



primer 2
ESG00087
GMV418


pGMV156
template
pMZT3
pUC57-RoWS (ROP_13050)



primer 1
ESG00084
GMV413



primer 2
ESG00087
GMV419



template
pMZT3
pUC57-RoWS (ROP_26950)


pGMV157
primer 1
ESG00084
GMV414



primer 2
ESG00087
GMV420


pGMV158
template
pMZT3
pUC57-RoWS (ROP_54550)



primer 1
ESG00084
GMV415



primer 2
ESG00087
GMV421



template
pMZT37
pUC57-AbWS (WS-dgaT)


pGMV159
primer 1
ESG00084
GMV410



primer 2
ESG00088
GMV416


pGMV160
template
pMZT37
pUC57-PaWS (Psyc_0223)



primer 1
ESG00084
GMV411



primer 2
ESG00088
GMV417



template
pMZT37
pUC57-RoWS (ROP_02100)


pGMV161
primer 1
ESG00084
GMV412



primer 2
ESG00088
GMV418


pGMV162
template
pMZT37
pUC57-RoWS (ROP_13050)



primer 1
ESG00084
GMV413



primer 2
ESG00088
GMV419



template
pMZT37
pUC57-RoWS (ROP_26950)


pGMV163
primer 1
ESG00084
GMV414



primer 2
ESG00088
GMV420


pGMV164
template
pMZT37
pUC57-RoWS (ROP_54550)



primer 1
ESG00084
GMV415



primer 2
ESG00088
GMV421









Example 5
Biosynthetic Production of 2,3-Butanediol from Methane

The four-carbon (C4) diol 2,3-butanediol is an important intermediate for the chemical industry. At the commercial scale, it is mostly generated from petroleum. It serves as a precursor for the production of various commodity and specialty chemicals, such as the solvent methyl ethyl ketone (MEK), gamma-butyrolactone (GBL), and 1,3-butadiene. The potential production of these downstream commercial products amounts to about 32 million tons per year, with a value of about $43 billion (Köpke et al., 2011).


Biological production of 2,3-butanediol from methane requires engineering the native (or endogenous) metabolism of methanotrophs to take advantage of their endogenous production of (R)-acetoin (FIG. 9). (R)-acetoin is produced in methanotrophs from two molecules of pyruvate, which are ultimately derived from methane. By introducing and expressing the gene (SEQ ID NO: 156) encoding (2R,3R)-2,3-butanediol dehydrogenase (BDH1) from Saccharomyces cerevisiae in a suitable microbial expression host (such as M. capsulatus (Bath)), (R)-acetoin is converted into 2,3-butanediol.


Construction of Methanotroph Plasmids for 2,3-Butanediol Production

As described, above, the plasmids generated in this study are based on the broad-host-range pCM132 (Accession no. AF327720, SEQ ID NO: 79) cloning vector described by Marx & Lidstrom (2001). In this embodiment, the use of the Clontech (catalogue 639647) InFusion HD Cloning System kit is one example of how to construct plasmids, but is not meant to limit or exclude other methods that are known in the art. Sequences for the ORF and PCR primers are presented below in Table 1.


Vector Backbones

Vector backbones contain the components of the plasmid that will remain constant. The broad-host range pCM132 vector was modified to produce vector backbones for the plasmids in this example. The pCM132 vector consists of the following components: trrnB terminator, kanamycin resistance gene, trfA, IncP oriT, IncP oriV, colE1 ori, and lacZ. This parental vector has been modified to replace lacZ with a vector insert that contains promoter sequence to produce plasmid pMZT3, which was used for this example.


Vector Inserts

Vector inserts contain DNA to be added to the vector backbone. The inserts were designed as exchangeable (modular) parts to the vector, and in this embodiment consists of the components listed in Table 1 and Table 8. In this example, the plasmids were designed to contain one insert: Saccharomyces cerevisiae (R,R)-butanediol dehydrogenase (Standard name: Bdh1p (EC 1.1.1.4); SEQ ID NO:156; Systematic gene name: YAL060W).


The BDH1 gene (SEQ ID NO:156) was codon optimized and synthesized by Integrated DNA Technologies (Coralville, IA).


Assembly of the Constructs

The modular parts (vector backbone and vector insert) were PCR amplified as listed in Table 8 with NEB Phusion master mix according to the manufacturer's instructions and in vitro assembled with the Clontech InFusion HD Cloning System kit according to the manufacturer's instructions to generate circular plasmid. The in vitro assembled plasmids (2 μl of the InFusion reaction) were transformed into chemically competent NEB Turbo E. coli cells, screened for by colony PCR, purified, and subsequently sequence verified.


Plasmid pMZT3 served as the template for the vector backbone with a constitutive promoter and consisted of the pCM132 cloning vector, E. coli J23115 promoter. The vector backbone was PCR amplified from the pMZT3 template with primers ESG00084 (SEQ ID NO: 137)/ESG00087 (SEQ ID NO:98).


The pGMV111 plasmid was designed to express the S. cerevisiae BDH1 gene (SEQ ID NO: 156) from the J23115 constitutive promoter. The modules of this plasmid included the PCR amplified pMZT3 vector backbone and the ScBDH1 insert amplified from the shuttle vector pUC57-ScBDH1 template using primers GMV268 (SEQ ID NO: 158)/GMV271 (SEQ ID NO:159). The plasmid was conjugated from E. coli donor strain S17-1 into the M. capsulatus (Bath) recipient as described above Example 1. The transconjugant strain was purified by repeated rounds of antibiotic selection using kanamycin and naladixic acid to remove the parent cells, as described in Example 1 above.


Cells expressing the pGMV111 plasmid were cultivated in liquid NMS medium in sealed shake flasks in the presence of 20% methane at 45° C. as described above in Example 1, for about 72 hours with 200 rpm shaking. For UPLC analysis, proteins and other debris were separated from the 2,3-butanediol in the growth medium using 2% (wt/vol.) 5-sulfosalicylic acid and centrifugation as described in Köpke et al. (2011). Extracted samples can be analyzed using a BioRad (Hercules, CA) Fast Acid column on a Waters (Milford, MA) Acquity H-class UPLC equipped with a #2414 Refractive Index Detector. Other conditions are as follows: the mobile phase is 5 mM H2SO4, the flow rate is 0.4 ml/min, the column is maintained at 40 C, and the product is detected at 410 nm.


Methods for the processing of biologically produced 1,3-propanediol and 2,3-butanediol are further described by Xiu & Zeng, 2008.


For GC analysis, the 2,3-butanediol can be extracted from the culture medium with ethyl acetate, as described in Xiao et al., (2012). The extracted sample is analyzed on an Agilent (Santa Clara, CA) 7890A GC equipped with a Leap Technologies CombiPAL autosampler and a flame ionization detector. Either an Agilent HP-INNOWax or HP-5 MS GC column can be used to separate the components according to the method of Xiao et al. (2012). Alternatively, the samples can be analyzed on a Waters Acquity H-Class UPLC equipped with a Waters 2414 Refractive Index detector using a method similar to that of Köpke et al. (2011). A BioRad (Hercules, CA) Fast Acid Column operated at 40° C. with a flow rate of 0.4 ml/minute and a 5 mM H2SO4 mobile phase can be used to perform the separation. Samples for either GC or UPLC can be quantitated against a series of known concentrations of purified (D-(−)-, L-(+)-, and meso-)2,3-butanediol standards (Sigma, St. Louis, MO).


At the industrial fermentation scale, the 2,3-butanediol product can be extracted from the fermentation medium using one of the following methods: steam stripping, solvent extraction, aqueous two-phase extraction, reactive extraction, and pervaporation. These methods are described in Xiu & Zeng (2008).













TABLE 8











Modules














Vector




Plasmid
PCR reaction:
backbone
Insert







pGMV111
template
pMZT3
pUC57-






ScBDH1




primer 1
ESG00084
GMV268




primer 2
ESG00087
GMV271










Following is a list of citations for application.

  • U.S. Pat. No. 4,594,324
  • U.S. Pat. No. 4,982,023
  • U.S. Pat. No. 6,576,449
  • U.S. Pat. No. 6,660,507
  • U.S. Pat. No. 6,767,744
  • U.S. Pat. No. 6,818,424
  • U.S. Pat. No. 6,969,595
  • U.S. Pat. No. 7,026,464
  • U.S. Pat. No. 7,851,188
  • U.S. Pat. No. 7,910,342
  • U.S. Pat. No. 7,943,362
  • U.S. Pat. No. 7,977,084
  • U.S. Pat. No. 7,993,889
  • U.S. Pat. No. 8,017,375
  • U.S. Pat. No. 8,030,021
  • U.S. Pat. No. 8,101,808
  • U.S. Pat. No. 8,158,404
  • U.S. Pat. No. 8,232,089
  • U.S. Pat. No. 8,263,373
  • U.S. Pat. No. 8,268,599
  • U.S. Pat. No. 8,283,143
  • U.S. Pat. No. 8,349,587
  • U.S. Publication No. 2006/0057726
  • U.S. Publication No. 2007/0251141
  • U.S. Publication No. 2009/0263877
  • U.S. Publication No. 2010/0274033
  • U.S. Publication No. 2011/0301388
  • U.S. Publication No. 2012/0009640
  • European Patent No. EP 1419234
  • European Patent No. EP 1328639
  • European Patent No. EP 1416808
  • European Patent No. EP 1625204
  • European Patent No. EP 1694854
  • European Patent No. EP 2464722
  • European Patent No. EP 306466
  • European Patent No. EP 418187
  • PCT Publication No. WO 2001/60974
  • Alayon et al., “Catalytic Conversion of Methane to Methanol Using Cu-Zeolites”, Chimia, 66:668-674, 2012.
  • Ali, H., “Development of Genetic Tools in Methanotrophs and the Molecular Regulation of Methane Monooxygenase”, Ph.D. Thesis, Univ. of Warwick, Coventry, U. K., 2006.
  • Anthony, C. and Williams, P., “The structure and mechanism of methanol dehydrogenase”, Biochim. Biophys. Acta., 1647:18-23, 2003.
  • Arakawa et al., “Catalysis research of relevance to carbon management: progress, challenges, and opportunities”, Chem. Rev., 101:953-996, 2001.
  • Atsumi, S. et al., “Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes”, Appl. Microbiol. Biotechnology, 85:651-657, 2010.
  • Ausubel et al., “Current Protocols in Molecular Biology”, pub. by Greene Publishing Assoc. and Wiley-Interscience, 1987.
  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds., Short Protocols in Molecular Biology, Fifth Edition. Wiley, 2002.
  • Avalos et al., “Compartmentalization of Metabolic Pathways in Yeast Mitochondria Improves the Production of Branched-Chain Alcohols”, Nature Biotechnology, Advanced Online Publication, Feb. 17, 2013, pages 1-7, doi: 10.1038/nbt.2509.
  • Bothe et al., “Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process”, Appl. Microbiol. Biotechnol., 59:33-39, 2002.
  • Bothe, H., Jensen, K. M., Mergel, A., Larsen, J., Jorgensen, C., Bothe, H. and Jorgensen, L., “Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process”, Appl. Microbiol. Biotechnol. 59:33-39, 2002.
  • Bowman, J., “The methanotrophs—the families Methylococcaceae and Methylocystaceae”, In: The Prokaryotes (Dworkin, M., ed.). Springer Verlag, New York, 2000 (http://link.springer-ny.com/link/service/books/10125).
  • Chistoserdova et al., “A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea”, Genome Biol., 6:208, 2005.
  • Chistoserdova et al., “The Expanding World of Methylotrophic Metabolism”, Annu. Rev. Microbiol., 63:477-499, 2009.
  • Chistoserdova, L., “Modularity of methylotrophy, revisited”, Environ. Microbiol., 13:2603-2622, 2011.
  • Culpepper, M. A. and Rosenzweig, A. C., “Architecture and active site of particulate methane monooxygenase”, Crit. Rev. Biochem. Mol. Biol., 47:483-492, 2012.
  • Dunfield et al., “Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia”, Nature 450:879-882, 2007.
  • Dunfield et al., “Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol” Int. J. Syst. Evol. Microbiol., 53:1231-1239, 2003.
  • Eiteman, M. A. and Altman, E., “Overcoming acetate in Escherichia coli recombinant protein fermentations”, Trends Biotechnol. 24:53-536, 2006.
  • Engler et al., “Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes”, PLOS One 4: e5553, 2009.
  • Gellissen et al., “New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison”, FEMS Yeast Res., 5:1079-1096, 2005.
  • Gibson et al., “Enzymatic assembly of DNA molecules up to several hundred kilobases”, Nature Methods 6:343-345, 2009.
  • Gou et al., “Functional expression of the particulate methane mono-oxygenase gene in recombinant Rhodococcus erythropolis”, FEMS Microbiol. Lett. 263:136-141, 2006.
  • Guillouet et al., “Expression of the Escherichia coli Catabolic Threonine Dehydratase in Corynebacterium glutamicum and Its Effect on Isoleucine Production”, Appl. Environ. Microbiol. 65:3100-3107, 1999.
  • Hägg, M. B., “Membranes in Chemical Processing—A Review of Applications and Novel Developments, Separation and Purification Methods”, Separ. Purif. Meth. 27:51-168, 1998.
  • Hakemian A. S. and Rosenzweig, A. C, “The biochemistry of methane oxidation”, Annu. Rev. Biochem. 76:223-241, 2007.
  • Hamilton, C. M., Aldea, M., Washburn, B. K., Babitzke, P. & Kushner, S. R., “New method for generating deletions and gene replacements in E. coli”, J. Bacteriol. 171:4617-4622, 1989. Hanson, R. S. and Hanson, T. E., “Methanotrophic bacteria”, Microbiol. Rev., 60:439-471, 1996.
  • Hickey, P. J. and Slater, C. S., “The selective recovery of alcohols from fermentation broths by pervaporation”, Separ. Purif. Meth. 19:93-115, 1990.
  • Jaeger, W. K. and Egelkraut, T. M., “Biofuel Economics in a Setting of Multiple Objectives and Unintended Consequences”, Renewable and Sustainable Energy Reviews, 15 (9): 4320, 2011. Jang, Y. S. et al., “Enhanced Butanol Production Obtained by Reinforcing the Direct Butanol-Forming Route in Clostridium acetobutylicum”, mBio, 3 (5): 1-9, 2012.
  • Jiang, H., Chen, Y., Jiang, P., Zhang, C., Smith, T. J., Xing, X.-H. and Murrell, J. C., “Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering”, Biochem. Eng. J. 49:277-288, 2010.
  • Kidnay et al., “Fundamentals of Natural Gas Processing”, Second Edition, 2011 (Dekker Mechanical Engineering). CRC Press, Boca Raton.
  • Kim, S., Baek, S. H. and Hahn, J. S., “Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase”, Microb Cell Fact., 12 (1): 14, 2013.
  • Kopke et. al., “2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas”, Appl. Environ. Microbiol., 77:5467-5475, 2011.
  • Li, M. Z. and Elledge, S. J., “SLIC: a method for sequence- and ligation-independent cloning”, Methods Mol. Biol. 852:51-59, 2012.
  • Link, A. J., Phillips, D. and Church, G. M., “Methods for generating precise deletions and insertions in the genome wild-type Escherichia coli: applications to open reading frame characterization”, J. Bacteriol. 179:6228-6237, 1997.
  • Lipps, G., ed. “Plasmids: Current Research and Future Trends”, Caister Academic Press, Norfolk, England, U. K., 2008.
  • Liu, G., Hou D., Wei, W., Xiangli, F. and Jin, W., “Pervaporation separation of butanol-water mixtures using polydimethylsiloxane/ceramic composite membrane’, Chin. J. Chem. Eng. 19:40-44, 2011.
  • Lloyd et al., “Heterologous expression of soluble methane monooxygenase genes in methanotrophs containing only particulate methane monooxygenase”, Arch. Microbiol. 171:364-370, 1999.
  • Ma et al., “DNA synthesis, assembly and applications in synthetic biology”, Curr. Opin. Chem. Biol. 16:1-8, 2012.
  • Martin, H. and Murrell, J. C., “Methane monooxygenase mutants of Methylosinus trichosporium constructed by marker-exchange mutagenesis”, FEMS Microbiol. Lett. 127:243-248, 1995.
  • Marx, C. J. & Lidstrom, M. E., “Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria”, Microbiology 147:2065-2075, 2001.
  • Merryman, C. and Gibson, D. G., “Methods and applications for assembling large DNA constructs”, Metabol. Eng. 14:196-204, 2012.
  • Murrel et al., “Molecular biology and regulation of methane monooxygenase”, Arch. Microbiol., 173:325-332, 2000.
  • Neel, J., “Pervaporation” In: Membrane Science and Technology, 1995 (Noble, R. D. & Stern, S. A., eds.) Elsevier Science, Amsterdam, The Netherlands.
  • Orita et al., “The Ribulose Monophosphate Pathway Substitutes for the Missing Pentose Phosphate Pathway in the Archaeon Thermococcus kodakaraensis”, J. Bacteriology, 188 (13): 4698-4704, 2006.
  • Peccoud, J., ed. “Gene Synthesis: Methods and Protocols” (Methods in Molecular Biology, Vol. 852). Humana Press, New York, 2012.
  • Phillips, R. B., Jameel, H, and Chang, H. M., “Integration of pulp and paper technology with bioethanol production”, Biotechnol Biofuels, 6 (1): 13, 2013.
  • Posfai, G., Kolisnychenko, V., Bereczki, Z. and Blattner, F. R., “Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome”, Nucleic Acids Res. 27:4409-4415, 1999.
  • Rosenzweig, A. C. and Ragsdale, S. W. “Methods in Methane Metabolism”, Part B: Methanotrophy. Methods Enzymol., 495:1-309, 2011 (b).
  • Rosenzweig, A. C. and Ragsdale, S. W., “Methods in Methane Metabolism”, Part A. Methods Enzymol., 494:1-373, 2011 (a).
  • Rudolf, A., Karhumaa, K. and Hahn-Hagerdal, B., “Ethanol Production from Traditional and Emerging Raw Materials”, Yeast Biotechnology: Diversity and Applications, Chapter 23, pages 489-513, 2009.
  • Saka, S. and Kusdiana, D., “Biodiesel fuel from rapeseed oil as prepared in supercritical methanol”, Fuel, 80:225, 2001.
  • Saleh, J., “A Membrane Separation Process for Biodiesel Purification’, Ph.D. Thesis, 2011, University of Ottawa, Canada.
  • Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989.
  • Sambrook, J., Fritsch, E. F. and Maniatis, T., “Molecular Cloning: A Laboratory Manual”; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989.
  • Schrader et al., “Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria”, Trends Biotechnol., 27:107-115, 2009.
  • Semrau et al., “Facultative methanotrophy: false leads, true results, and suggestions for future research”, FEMS Microbiol. Lett., 323:1-12, 2011.
  • Shen, C. R. and Liao, J. C., “Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways”, Metab. Eng. 10:312-320, 2008.
  • Silhavy, et al., “Experiments with Gene Fusions”, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1984,
  • Simon R. “High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-mob transposons”, Mol. Gen. Genet. 196:413-420, 1984.
  • Simon, R., Priefer, U. and Puhler, A. “A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria”, Nature Biotechnology 1:784-791, 1983.
  • Stafford et al., “rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b”, Microbiol. 149:1771-1784, 2003.
  • Stanley, S. H. and Dalton, H., “Role of ribulose-1,5-biphosphate carboxylase/oxygenase in Methylococcus capsulatus”, J. Gen. Microbiol., 128:2927-2935, 1982.
  • Sun, W., Wang, S. and Curtis III, R., “Highly efficient method for introducing successive multiple scarless gene deletions and markerless gene insertions into the Yersinia pestis chromosome”, Appl. Environ. Microbiol. 74:4241-4245, 2008.
  • Theisen et al., “Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2”, Mol. Microbiol. 58:682-692, 2005.
  • Tinberg, C. E. and Lippard, S. J., “Dioxygen activation in soluble methane monooxygenase”, Acc. Chem. Res., 44:280-288, 2007.
  • Trotsenko, Y. A. and Murrell, J. C., “Metabolic Aspects of Aerobic Obligate Methanotrophy”, Adv. Appl. Microbiol., 63:183-229, 2008.
  • U.S. Department of the Interior, U.S. Geological Survey World Petroleum Assessment, 2000, U.S. Geological Survey Digital Data Series-DDS-60 (URL: http://pubs. usgs.gov/dds/dds-060/)
  • van Laere, V., van Batenburg, O. & Huizing, H. J., “InnoFisk1: Feasibility study into a new concept for sustainable aquaculture on board of a ship”, Innovation Network Rural Areas and Agricultural Systems, 2005.
  • Veazey, M. W., “GTL Tech Converts Methane to Ethylene without Fischer Tropsch”, Rigzone. Apr. 10, 2012 (http://www.rigzone.com/news/article.asp?a_id=116784)
  • Wang et al., “Available methods for assembling expression cassettes for synthetic biology”, Appl. Microbiol. Biotechnol. 93:1853-1863, 2012.
  • Ward, N., Larsen, Ø., Sakwa, J., et al., PLOS Biol. 2: e303, 2004.
  • Welander, P. V. and Summons, R. E., “Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production”, Proc. Natl. Acad. Sci., 109:12905-12910, 2012.
  • Whittenbury, R., Phillips, K. C. and Wilkinson, J. F., “Enrichment, isolation and some properties of methane-utilizing bacteria”, J. Gen. Microbiol. 61:205-218, 1970.
  • Wolfe, A. J., “The acetate switch”, Microbiol. Mol. Biol. Rev. 69:12-50, 2005.
  • Wright, C. K. and Wimberly, M. C., “Recent Land Use Change in the Western Corn Belt Threatens Grasslands and Wetlands”, Proceedings of the National Academy of Sciences—Early Edition, February 19, pg. 1-6, 2013; DOI: 10.1073/pnas.1215404110.
  • Xiao et al., “Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain”, Biotechnol. for Biofuels 5:88, 2012.
  • Xingye et al., “In vitro Reconstitution and Steady-State analysis of the Fatty Acid Synthase from Escherichia coli”, Proceedings of the National Academy of Sciences, 10 (8): 18643-18648, 2011.
  • Xiu, Z.-L. and Zeng, A.-P., “Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol”, Appl. Microbiol. Biotechnol. 78:917-926, 2008.
  • Yangkai et al., “De novo Biosynthesis of Biodiesel by Escherichia coli in Optimized Fed-Batch Cultivation”, PLOS ONE, 6 (5): 1-7, 2011.
  • Yehezkel et al., “Computer-aided high-throughput cloning of bacteria in liquid medium”, Biotechniques 50:124-127, 2011.
  • Yomantas, Y. A., Tokmakova, I. L., Gorshkova, N. V., Abalakina, E. G., Kazakova, S. M., Gak, E. R. and Mashko, S. V., “Aromatic amino acid auxotrophs constructed by recombinant marker exchange in Methylophilus methylotrophus AS1 cells expressing the aroP-encoded transporter of Escherichia coli”, Appl. Environ. Microbiol. 76:75-83, 2010.
  • Yu, B. J., Kang, K. H., Lee, J. H., Sung, B. H., Kim, M. S. and Kim, S. C., “Rapid and efficient construction of markerless deletions in the Escherichia coli genome”, Nucleic Acids Res. 36: e84, 2008.
  • Yurimoto, H., Katoh, N. and Sakai, Y., “Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism”, Chem Rec., 5:367-375, 2005.
  • Yurimoto, H., Katoh, N. and Sakai, Y., “Genomic organization and biochemistry of the ribulose monophosphate pathway and its application in biotechnology”, Appl Microbiol Biotechnol., 84:407-416, 2009.













Sequence Listing



















1
Sequence Listing Information




1-1
File Name
35016-001C3.xml



1-2
DTD Version
V1_3



1-3
Software Name
WIPO Sequence



1-4
Software Version
2.3.0



1-5
Production Date
2024 May 24



1-6
Original free text language 





code




1-7
Non English free text 





language code







2
General Information




2-1
Current application: 
US




IP Office




2-2
Current application: 





Application number




2-3
Current application: 





Filing date




2-4
Current application: 
35016-001C3




Applicant file reference




2-5
Earliest priority 
US




application: IP Office




2-6
Earliest priority 
61/782,830




application:





Application number




2-7
Earliest priority 
2013 Mar. 14




application:





Filing date




2-8en
Applicant name
Coleman, William J



2-8
Applicant name: Name Latin




2-9
Inventor name




2-9
Inventor name: Name Latin




2-10en
Invention title
Biological Production of Multi-





Carbon Compounds From Methane



2-11
Sequence Total Quantity
175






3-1
Sequences




3-1-1
Sequence Number [ID]
1



3-1-2
Molecule Type
DNA



3-1-3
Length
1662





source 1 . . . 1662



3-1-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-1-5
Residues




atgcgtgaaa cgatacctcc ccgcaccggc gccgacctgc tggtcgactc cctccaggcg
   60



ctgggcgtcg aatacgtctt cggcgtgccc ggcggcgcga tactcccgat cctgaacgtg
  120 



ctggccgacc gcggcccgcg cttcatcgtt tgccgggacg aaaccggcgc cgccttcatg
  180 



gcccagtcct ggggccggat caccggccgg cccggcgtgg tgctcaccac ctccggcccc
  240



ggcctcatca acgccgtctg tggcgtcgct accgccacag aggaccgcga cccgctggtc
  300



gtcatcaccg gccaggtgcc gcgggccgtg caattcaagc agagccacat gaacctggat
  360



tcggtcggcc tgttcgcgcc gatcaccaaa tggagcgtcg aggtcgagga accgaatact
  420



gtatcggaaa tcctggtcaa cgccttccgc accgcgcaga cgccgtgcgc cggagccgtc
  480



cacgtctcgg taccgaacga catgctcacc gcgccggtca ccgcgcaggc cctggcgccg
  540



gccgaacccg ccgtctgggg aacggccccg gccgccgtcg tcgaacgcgc ggcgtccctg
  600



ctgaacgatg ccaaagcccc ggccatcctg ctcggattgc gggccagcac acctggagcg
  660



gcggcggcgg tccggcgttt cctggagcgg catccgctgc cggtggcgat gaccttcgaa
  720



gccgccggca ccctgtcccg cgatctggtc gatcagttcg tcggccgggt cggctacgtg
  780



ctcaaccagc cgggcgacga ggtgctgcgc caagccgatc tggtactcac gatcggctac
  840



gacccgatcg aatacgaacc ttccgcctgg atctcaccgc agtcgcaggc gatccacctg
  900



gatgccctgc ccgccgccgt cgaccgggcc taccaccctg ccgccgaact ggtcggcgac
  960



atcgccgcca acctggccgc gctcggcagc ctgctccgaa tcgaggatcg agccggacgc
 1020



cccgccgtcg ccgcggcgcg gcggcgtctg ctggaggagc aagcccgcgg cgcagcactg
 1080



accggtatgc cgatccaccc cttgcgcttc attcacgacc ttcgggccac gctggacgac
 1140



gaggcgacgg tgacctgcga cgtcggcgcc cacgagatct ggatggcccg ctacttcttc
 1200



tgctacgccc cgcgtcacct gctgttcagc atgggccacc agaccatggg cgtcgccctg
 1260



ccctgggcca tcggcgcggc cctggcccgg cccggcaaga aagtggtttc ggtatccggc
 1320



gacggctcct tcctcatgac ctgcatggaa ctggaaaccg cggtgcgcct caaactgccg
 1380



atcgtgcaca tcgtctggaa agacggcggc tacaacctga tccacagcct gcagatgcgc
 1440



gactatgggc gcagcttcgg cgccgagttc ggccccaccg acttcgtcaa actggcggag
 1500



gccttcggcg cgatcgggta ccggatcgag tccgcggacg ggatcgtccc tgtgctgaac
 1560



cgggcgctcg cggccgacgc gccggtgctg atcgaagtgc ccatcgacta cagcgacaac
 1620



gtccacctgg tcgaggcgat cgacgcctcg gcgcagcact ga
 1662













3-2
Sequences




3-2-1 
Sequence Number [ID]
2



3-2-2
Molecule Type
AA



3-2-3
Length
553





source 1 . . . 553



3-2-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifer Value











3-2-5
Residues




MRETIPPRTG ADLLVDSLQA LGVEYVFGVP GGAILPILNV LADRGPRFIV CRDETGAAFM
   60



AQSWGRITGR PGVVLTTSGP GLINAVCGVA TATEDRDPLV VITGQVPRAV QFKQSHMNLD
  120



SVGLFAPITK WSVEVEEPNT VSEILVNAFR TAQTPCAGAV HVSVPNDMLT APVTAQALAP
  180



AEPAVWGTAP AAVVERAASL LNDAKAPAIL LGLRASTPGA AAAVRRFLER HPLPVAMTFE
  240



AAGTLSRDLV DQFVGRVGYV LNQPGDEVLR QADLVLTIGY DPIEYEPSAW ISPQSQAIHL
  300



DALPAAVDRA YHPAAELVGD IAANLAALGS LLRIEDRAGR PAVAAARRRL LEEQARGAAL
  360



TGMPIHPLRF IHDLRATLDD EATVTCDVGA HEIWMARYFF CYAPRHLLFS MGHQTMGVAL
  420



PWAIGAALAR PGKKVVSVSG DGSFLMTCME LETAVRLKLP IVHIVWKDGG YNLIHSLQMR
  480



DYGRSFGAEF GPTDFVKLAE AFGAIGYRIE SADGIVPVLN RALAADAPVL IEVPIDYSDN
  540



VHLVEAIDAS AQH
  553













3-3 
Sequences




3-3-1
Sequence Number [ID]
3



3-3-2
Molecule Type
DNA



3-3-3
Length
1017





source 1 . . . 1017



3-3-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifer Value











3-3-5
Residues




atgcagattt actacgacaa agacgccgac ctttccatca tccagggaaa gaaggttgcc
   60



atcatcggct acggctcgca gggccacgcc cacgccaaca acctcaagga ttccggagtg
  120



caggtcgtgg tggggctgcg tccgggttcg gcttccgcca agaaggccga gaacgccggc
  180



ctcgcggtcg cctcggtcga ggatgcggtc aaacaggcgg acgtcatcat gatcctggcg
  240



ccggacgagc atcaggcccg cctctacaat gaacagatcg cgccgaacat caagcagggc
  300



gccgccctcg ccttcgccca cggcttcaac atccacttcg agcagatcac cccgcgcgcc
  360



gacctcgacg tgatcatgat cgcgcccaag ggtcccggcc atctggtacg ttccacctac
  420



acccagggcg gcggcgtgcc ctcgctgatc gccgtgtacc agaatgccag cgggcgcgcc
  480



aaggaactcg cgctgtccta tgcttcggcc aatggcggcg gtcgggctgg tatcatcgag
  540



accaccttcc gcgaagagac cgaaaccgat ctgttcggcg aacaggccgt cctgtgtggc
  600



ggcgccaccg cactggtgca ggcgggtttc gagacgctgg tcgaagccgg ttatgcgccc
  660



gagatggcct atttcgagtg tctgcacgaa ctcaagctga tcgtcgacct gatgtacgaa
  720



ggcggcatcg ccaacatgcg ttattcgatc tccaatacgg cagagtacgg cgacctgacc
  780



cgtggtccgc gcatcgtcac cgagcagacc aagcaggaaa tgaagaaaat cctgcgcgag
  840



atccagaccg gcgaattcgc ccgtgagttc attttggaaa accaggccgg agccgccacc
  900



ctgaaagcga aacgccgtct cggccgagag catctcatcg agagcgtggg cgccaggctg
  960



cgcgacatga tgccgtggat caaggccaac cgcattgtgg acacgagcaa gaactga
 1017













3-4
Sequences




3-4-1
Sequence Number [ID]
4



3-4-2
Molecule Type
AA



3-4-3
Length
338





source 1 . . . 338



3-4-4-1
Features Location/
mol_type =  protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-4-5
Residues




MQIYYDKDAD LSIIQGKKVA IIGYGSQGHA HANNLKDSGV QVVVGLRPGS ASAKKAENAG
   60



LAVASVEDAV KQADVIMILA PDEHQARLYN EQIAPNIKQG AALAFAHGFN IHFEQITPRA
  120



DLDVIMIAPK GPGHLVRSTY TQGGGVPSLI AVYQNASGRA KELALSYASA NGGGRAGIIE
  180



TTFREETETD LFGEQAVLCG GATALVQAGF ETLVEAGYAP EMAYFECLHE LKLIVDLMYE
  240



GGIANMRYSI SNTAEYGDLT RGPRIVTEQT KQEMKKILRE IQTGEFAREF ILENQAGAAT
  300



LKAKRRLGRE HLIESVGARL RDMMPWIKAN RIVDTSKN
  338













3-5
Sequences




3-5-1
Sequence Number [ID]
5



3-5-2
Molecule Type
DNA



3-5-3
Length
1689





source 1 . . . 1689



3-5-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-5-5
Residues




atgaccgaca agcacccccg tccccattcg tcccaggtcg tcgacggcat ggagcgcgcc
   60



ccgagccgcg cgatgctgca cgccgtcggc ttcgccgatg ccgacttcgc caaaccgcag
  120



atcggcatcg cttccacctg ggcgatggtg acgccgtgca acatgcacat caacaagctc
  180



gccgaggacg cagcacgcgg cgtcgacggc ggcggcggca aggcagtgat cttcaacacc
  240



atcaccattt ccgacggcat ctcgatgggc accgaaggaa tgaaatactc cctcgtgtcg
  300



cgggaagtca tcgccgactc gatcgaaacc gtggtggcct gtcagggtta tgacggcgtg
  360



gtcgccatcg gcggctgcga caagaacatg cccggctgcc tgatcgccct cgcccgcctc
  420



aaccgtccgg cggtgttcgt ctatggcggc accatcctgc cgggctgcca cgacggcaag
  480



aagctggacg tggtgtcggt gttcgaagcg gtcggcgccc gcgccaacca ccgcatcgac
  540



gatgccgaac tgcacgccat cgaatccaat gccatccccg gtccgggctc ctgcggtggc
  600



atgtataccg ccaacaccat ggcctccgcc atcgaggcat tagggatgag cctgccgggc
  660



agttcggccc aggtggccat ttcccgcgcc aaggaactgg attgcgagcg ggccggcgcg
  720



caggtcctca agctcctgga cctggggctc aaaccccgcg acatcatgac caagaaggcg
  780



ttcgagaacg ccatcacggt ggtgatcgcc ctgggcggct ccaccaacgc cgtgctgcac
  840



ctcctggcca tggccaacgc ctgcggcgtc gacctgaagc tcgacgattt cacccgcatc
  900



gggcgcaaag tgccgatgct ggcggatctg aaacccagcg gcagatactc catggccgaa
  960



ctggtggaaa tcggcggcat ccagccgctg atgaagacct tgctggacgc gggactcctg
 1020



cacggcgact gcatgaccgt aaccggcaag accctggaag aaaacctggc cgacgcgccc
 1080



gactacccgg ccggacaaga catgatccgg tcgctggaca accccatcaa aaaggacagc
 1140



catctggtga tcctcaaggg caacctggcg ccggaaggcg cggtcgccaa gatcaccggc
 1200



aaggaaggac tgagcttcac cggcaccgcc cgcgtattcg actgcgagga agcggcgctc
 1260



acggccatcc tcgacggcac gatcgtgaaa ggcgacgtca tcgtcatccg ctatgaaggc
 1320



cccaagggcg gccccggcat gcgcgagatg ctctcgccga cctcggcggt catgggcaag
 1380



ggattgggca aggaggtcgc cctcatcacc gacggccgct tttccggcgg cacccacggc
 1440



ttcgtggtcg gccacatcac gccggaagcc tacaccggcg gccccctggc gatcgtccgg
 1500



gacggcgata ccatcaccat cgacgccgag acccgcgaat tgagcctgca cgtcaccgac
 1560



gatgaaatcg gccggcgcct ggcgcagtgg actcaaccgg cgccgcgcta caccaagggc
 1620



gtgctggcca aatacgccag gttggtgagc ccggcctcgg aaggcgccgt caccgacgac
 1680



ggcctctga
 1689













3-6
Sequences




3-6-1
Sequence Number [ID]
6



3-6-2
Molecule Type
AA



3-6-3
Length
562





source 1 . . . 562



3-6-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-6-5
Residues




MTDKHPRPHS SQVVDGMERA PSRAMLHAVG FADADFAKPQ IGIASTWAMV TPCNMHINKL
   60



AEDAARGVDG GGGKAVIFNT ITISDGISMG TEGMKYSLVS REVIADSIET VVACQGYDGV
  120



VAIGGCDKNM PGCLIALARL NRPAVFVYGG TILPGCHDGK KLDVVSVFEA VGARANHRID
  180



DAELHAIESN AIPGPGSCGG MYTANTMASA IEALGMSLPG SSAQVAISRA KELDCERAGA
  240



QVLKLLDLGL KPRDIMTKKA FENAITVVIA LGGSTNAVLH LLAMANACGV DLKLDDFTRI
  300



GRKVPMLADL KPSGRYSMAE LVEIGGIQPL MKTLLDAGLL HGDCMTVTGK TLEENLADAP
  360



DYPAGQDMIR SLDNPIKKDS HLVILKGNLA PEGAVAKITG KEGLSFTGTA RVFDCEEAAL
  420



TAILDGTIVK GDVIVIRYEG PKGGPGMREM LSPTSAVMGK GLGKEVALIT DGRFSGGTHG
  480



FVVGHITPEA YTGGPLAIVR DGDTITIDAE TRELSLHVTD DEIGRRLAQW TQPAPRYTKG
  540



VLAKYARLVS PASEGAVTDD GL
  562













3-7
Sequences




3-7-1
Sequence Number [ID]
7



3-7-2
Molecule Type
DNA



3-7-3
Length
1650





source 1 . . . 1650



3-7-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-7-5
Residues




atgggcacgg ttgagcctgg cgctatcgga caacatctgc tcgcctgcct ttaccaggcg
   60



ggcgtcgggc acatcttcgg cgttcccggc gattacgtgc tgggcttcta tgatctgatg
  120



gccaaaggtc ccgtccggca tatcgggacc acgcgggagg acaccgccgc cttcgccgcc
  180



gacggctatg cccgctgccg gggcatgggc gcgctggcgg tgacttacgg ggtcggtgcg
  240



ctcaacaccg tcaacgccgt cgccggcgcc tatgcggaat cctcgccggt ggtggtcatc
  300



agcggtgcgc cgggggtgcg cgagcaaagg gaagacccgt tgatccacca ccgcttcggg
  360



ccgttccggt tccagcgcga gatattcgaa cggatcacct gcgccgccgt ggtgctggac
  420



gatccggtga tcgccttccg gcaggtggag cgtgcgctcg cggccgcccg tcagcactgc
  480



aagccggtgt acatcgagat tcccgccgac cgggtgatgg cgccgggata tccgattcca
  540



caggaaaccc cggaaacgcc ttccagcgac gattcggccc tggcggaggc ggtcgccgag
  600



gccgcggagc tcctgggccg tgcggtgtcg ccggtgatcc ttgcaggcgt cgagttgcac
  660



cggcgagggc tccaggacgc cctcgtcggc ctcgtcgagc aggcgcgcct gccggtggcg
  720



gcgaccttga ccggcaagtc ggtgttcgcc gagcgccatc ccgcctatct gggggtgtac
  780



gagggtgcga tgagcacgga aaacgcgcgc tacatggtcg agcagtccga cctcctgctg
  840



atgctcgggg tcacgctgaa cgatgtcgac acgggcatct acacggcgcg tctcgatccg
  900



cagcgcatcg tccgcgcagc ccagaacgag gtcgtgattc gccatcaccg ctatccccgc
  960



gtcctgctcg cggacttcgt cacggccctg gcgcggtccg tcaaggcccg gggcgaggcg
 1020



tttccgatgc cggcggggcc ggaaccgtgg gactttcccg cgccggaccg gccgatgacg
 1080



atcgcccggc tggtggagcg gctcgaccgc gcgctgacct ccgacatgat cgtagtgtgc
 1140



gacgtcggcg actgcctgtt cgcagccacc gacctgcgcg tgcacgagcg cagcgaattc
 1200



ctggcgtccg ccttctatac ctcgatgggg ttcgcggtgc ccgccgccct cggggcccag
 1260



atcgcccgtc cggaccaccg ggcgctgatc ctggtcggcg acggtgcctt ccagatgacc
 1320



ggaacggagc tgtcgaccca tgcccgtctc ggcctggcgc ccatcgtggt ggtgctcgac
 1380



aatcgcggtt acagcaccga gcgcttcatc ctcgacggag ccttcaacga catcgccgac
 1440



tggcgcttcc accggctggg cgaggtgttc ggccccctac agggctacga cgcgcccgac
 1500



gaagcggcgt tcgaaaacgc gctcagcgaa gcgctggtca accgaaacat gccgagcctc
 1560



atcaacgtcc gtctttcccc cggcgatgcc tcgatagcca tgaagcgtct cgccgggcat
 1620



ctgcagtgcc gggtcaaggg cgagggctga
 1650













3-8
Sequences




3-8-1
Sequence Number [ID]
8



3-8-2
Molecule Type
AA



3-8-3
Length
549



3-8-4-1

source 1 . . . 549




Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-8-5
Residues




MGTVEPGAIG QHLLACLYQA GVGHIFGVPG DYVLGFYDLM AKGPVRHIGT TREDTAAFAA
   60



DGYARCRGMG ALAVTYGVGA LNTVNAVAGA YAESSPVVVI SGAPGVREQR EDPLIHHRFG
  120



PFRFQREIFE RITCAAVVLD DPVIAFRQVE RALAAARQHC KPVYIEIPAD RVMAPGYPIP
  180



QETPETPSSD DSALAEAVAE AAELLGRAVS PVILAGVELH RRGLQDALVG LVEQARLPVA
  240



ATLTGKSVFA ERHPAYLGVY EGAMSTENAR YMVEQSDLLL MLGVTLNDVD TGIYTARLDP
  300



QRIVRAAQNE VVIRHHRYPR VLLADFVTAL ARSVKARGEA FPMPAGPEPW DFPAPDRPMT
  360



IARLVERLDR ALTSDMIVVC DVGDCLFAAT DLRVHERSEF LASAFYTSMG FAVPAALGAQ
  420



IARPDHRALI LVGDGAFQMT GTELSTHARL GLAPIVVVLD NRGYSTERFI LDGAFNDIAD
  480



WRFHRLGEVF GPLQGYDAPD EAAFENALSE ALVNRNMPSL INVRLSPGDA SIAMKRLAGH
  540



LQCRVKGEG
  549













3-9
Sequences




3-9-1
Sequence Number [ID]
9



3-9-2
Molecule Type
DNA



3-9-3
Length
1083



3-9-4-1

source 1 . . . 1083




Features Location/
mol_type = other DNA




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-9-5
Residues




atgtcttatc ctgagaaatt tgaaggtatc gctattcaat cacacgaaga ttggaaaaac
   60



ccaaagaaga caaagtatga cccaaaacca ttttacgatc atgacattga cattaagatc
  120



gaagcatgtg gtgtctgcgg tagtgatatt cattgtgcag ctggtcattg gggcaatatg
  180



aagatgccgc tagtcgttgg tcatgaaatc gttggtaaag ttgtcaagct agggcccaag
  240



tcaaacagtg ggttgaaagt cggtcaacgt gttggtgtag gtgctcaagt cttttcatgc
  300



ttggaatgtg accgttgtaa gaatgataat gaaccatact gcaccaagtt tgttaccaca
  360



tacagtcagc cttatgaaga cggctatgtg tcgcagggtg gctatgcaaa ctacgtcaga
  420



gttcatgaac attttgtggt gcctatccca gagaatattc catcacattt ggctgctcca
  480



ctattatgtg gtggtttgac tgtgtactct ccattggttc gtaacggttg cggtccaggt
  540



aaaaaagttg gtatagttgg tcttggtggt atcggcagta tgggtacatt gatttccaaa
  600



gccatggggg cagagacgta tgttatttct cgttcttcga gaaaaagaga agatgcaatg
  660



aagatgggcg ccgatcacta cattgctaca ttagaagaag gtgattgggg tgaaaagtac
  720



tttgacacct tcgacctgat tgtagtctgt gcttcctccc ttaccgacat tgacttcaac
  780



attatgccaa aggctatgaa ggttggtggt agaattgtct caatctctat accagaacaa
  840



cacgaaatgt tatcgctaaa gccatatggc ttaaaggctg tctccatttc ttacagtgct
  900



ttaggttcca tcaaagaatt gaaccaactc ttgaaattag tctctgaaaa agatatcaaa
  960



atttgggtgg aaacattacc tgttggtgaa gccggcgtcc atgaagcctt cgaaaggatg
 1020



gaaaagggtg acgttagata tagatttacc ttagtcggct acgacaaaga attttcagac
 1080



tag
 1083













3-10
Sequences




3-10-1
Sequence Number [ID]
10



3-10-2
Molecule Type
AA



3-10-3
Length
360





source 1 . . . 360



3-10-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-10-5
Residues




MSYPEKFEGI AIQSHEDWKN PKKTKYDPKP FYDHDIDIKI EACGVCGSDI HCAAGHWGNM
   60



KMPLVVGHEI VGKVVKLGPK SNSGLKVGQR VGVGAQVFSC LECDRCKNDN EPYCTKFVTT
  120



YSQPYEDGYV SQGGYANYVR VHEHFVVPIP ENIPSHLAAP LLCGGLTVYS PLVRNGCGPG
  180



KKVGIVGLGG IGSMGTLISK AMGAETYVIS RSSRKREDAM KMGADHYIAT LEEGDWGEKY
  240



FDTFDLIVVC ASSLTDIDFN IMPKAMKVGG RIVSISIPEQ HEMLSLKPYG LKAVSISYSA
  300



LGSIKELNQL LKLVSEKDIK IWVETLPVGE AGVHEAFERM EKGDVRYRFT LVGYDKEFSD
  360













3-11
Sequences




3-11-1
Sequence Number [ID]
11



3-11-2
Molecule Type
DNA



3-11-3
Length
783





source 1 . . . 783



3-11-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-11-5
Residues




atggcagcaa caaccattgg tggtgcagct gcggcggaag cgccgctgct ggacaagaag
   60



tggctcacgt tcgcactggc gatttacacc gtgttctacc tgtgggtgcg gtggtacgaa
  120



ggtgtctatg gctggtccgc cggactggac tcgttcgcgc cggagttcga gacctactgg
  180



atgaatttcc tgtacaccga gatcgtcctg gagatcgtga cggcttcgat cctgtggggc
  240



tatctctgga agacccgcga ccgcaacctg gccgcgctga ccccgcgtga agagctgcgc
  300



cgcaacttca cccacctggt gtggctggtg gcctacgcct gggccatcta ctggggcgca
  360



tcctacttca ccgagcagga cggcacctgg catcagacga tcgtgcgcga caccgacttc
  420



acgccgtcgc acatcatcga gttctatctg agctacccga tctacatcat caccggtttt
  480



gcggcgttca tctacgccaa gacgcgtctg ccgttcttcg cgaagggcat ctcgctgccg
  540



tacctggtgc tggtggtggg tccgttcatg attctgccga acgtgggtct gaacgaatgg
  600



ggccacacct tctggttcat ggaagagctg ttcgtggcgc cgctgcacta cggcttcgtg
  660



atcttcggct ggctggcact ggccgtcatg ggcaccctga cccagacctt ctacagcttc
  720



gctcagggcg ggctggggca gtcgctctgt gaagccgtgg acgaaggctt gatcgcgaaa
  780



taa
  783













3-12
Sequences




3-12-1
Sequence Number [ID]
12



3-12-2
Molecule Type
AA



3-12-3
Length
260





source 1 . . . 260



3-12-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-12-5
Residues




MAATTIGGAA AAEAPLLDKK WLTFALAIYT VFYLWVRWYE GVYGWSAGLD SFAPEFETYW
   60



MNFLYTEIVL EIVTASILWG YLWKTRDRNL AALTPREELR RNFTHLVWLV AYAWAIYWGA
  120



SYFTEQDGTW HQTIVRDTDF TPSHIIEFYL SYPIYIITGF AAFIYAKTRL PFFAKGISLP
  180



YLVLVVGPFM ILPNVGLNEW GHTFWFMEEL FVAPLHYGFV IFGWLALAVM GTLTQTFYSF
  240



AQGGLGQSLC EAVDEGLIAK
  260













3-13
Sequences




3-13-1
Sequence Number [ID]
13



3-13-2
Molecule Type
DNA



3-13-3
Length
744





source 1 . . . 744



3-13-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-13-5
Residues




atgagtgctg cgcaatctgc ggttcgttcg cacgccgaag cggtccaggt atcccggacc
   60



atcgactgga tggcgttgtt cgtggtgttt ttcgtgatcg tgggctcgta ccacattcat
  120



gccatgctca ccatgggtga ctgggacttc tggtcggact ggaaagaccg tcgactgtgg
  180



gtcacggtga ccccgatcgt actggtcacc ttcccggcgg ccgtacaatc ctacctgtgg
  240



gagcggtatc gtctgccctg gggagccacc gtgtgcgtcc tgggtctgct gctgggcgag
  300



tggatcaacc gttatttcaa cttctggggc tggacctact tcccgatcaa cttcgtgttc
  360



cctgcctcgc tggtgccggg cgccatcatc ctggacaccg tgctgatgct gtcgggcagc
  420



tacctgttca ccgcgatcgt cggtgcgatg ggctggggtc tgatcttcta cccgggcaac
  480



tggccgatca tcgcgccgct gcacgtgccg gtggaataca acggcatgct gatgtcgatc
  540



gccgacatcc agggttacaa ctatgtgcgt acgggtacgc ctgagtacat ccgcatggta
  600



gagaagggca ccctgcgtac cttcggtaag gacgtggcgc cggtatcggc attcttctcc
  660



gcgttcatgt cgatcctgat ctacttcatg tggcacttca tcggtcgctg gttctccaac
  720



gaacggttcc tgcagagcac ctga
  744













3-14
Sequences




3-14-1
Sequence Numer  [ID]
14



3-14-2
Molecule Type      
AA



3-14-3    
Length
247





source 1 . . . 247



3-14-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-14-5
Residues




MSAAQSAVRS HAEAVQVSRT IDWMALFVVF FVIVGSYHIH AMLTMGDWDF WSDWKDRRLW  
   60



VTVTPIVLVT FPAAVQSYLW ERYRLPWGAT VCVLGLLLGE WINRYFNFWG WTYFPINFVF                 
  120



PASLVPGAII LDTVLMLSGS YLFTAIVGAM GWGLIFYPGN WPIIAPLHVP VEYNGMLMSI
  180



ADIQGYNYVR TGTPEYIRMV EKGTLRTFGK DVAPVSAFFS AFMSILIYFM WHFIGRWFSN           
  240



ERFLQST
  247













3-15
Sequences




3-15-1 
Sequence Numer  [ID]
15



3-15-2
Molecule Type
DNA



3-15-3
Length
1245





source 1 . . . 1245



3-15-4-1 
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-15-5
Residues




atgaaaacaa taaaggaccg gattgcaaaa tggtctgcaa tcggactgct gtccgccgtg
   60



gcagcgaccg ccttctatgc gccgagcgcc agcgcccacg gtgagaaatc gcaggccgcg
  120



ttcatgcgta tgcgtaccat ccactggtac gacctgagct ggtcgaaaga gaaagtcaag
  180



atcaacgaga ccgtggaaat caaaggcaag ttccacgtgt tcgaaggctg gccggaaacg
  240



gtcgacgaac cggatgtggc gttcctgaac gtcggcatgc cgggtccggt gttcatccgc
  300



aaggaatcgt acatcggcgg tcagctggtg ccgcgttccg tacgtctgga aatcggcaag
  360



acctatgact tccgggttgt cctcaaagcc cgtcgtccgg gtgactggca cgttcacacc
  420



atgatgaacg tccagggcgg tggaccgatc atcggtcccg gcaaatggat caccgtggaa
  480



ggctccatga gtgaattccg caaccccgtc accaccctga ccggtcagac ggtggacctg
  540



gagaactaca acgaaggcaa cacctatttc tggcacgcct tctggttcgc catcggagtt
  600



gcctggatcg gctactggtc gcgtcgaccg atcttcatcc cccgtctgct gatggtggat
  660



gccggtcgtg cggatgaact ggtgtccgcc accgaccgca aggtggcgat gggcttcctg
  720



gccgccacca tcctgatcgt ggtcatggcc atgtccagcg ccaacagcaa gtacccgatc
  780



accatcccgc tgcaggccgg caccatgcgt ggcatgaagc cgctggaact gccggcgccg
  840



acggtatcgg tgaaagtgga agacgccacc taccgggtac cgggccgcgc catgcggatg
  900



aagctgacca tcaccaacca cggcaacagc ccgatccggc tgggtgagtt ctacaccgcc
  960



tcggtgcgtt tcctggattc cgacgtgtac aaggacacca ccggctatcc ggaagacctg
 1020



ctggccgaag acggcctgag cgtcagcgac aacagcccgc tggctccggg tgagacgcgc
 1080



acggtcgacg tgacggcgtc cgacgcggcg tgggaagtgt accgtctgtc cgacatcatc
 1140



tacgatccgg acagccgttt cgccggtctg ctgttcttct tcgacgccac tggcaaccgc
 1200



caggtcgtcc agatcgacgc accgctgatc ccgtcgttca tgtaa
 1245













3-16
Sequences




3-16-1
Sequence Number [ID]
16



3-16-2
Molecule Type
AA



3-16-3
Length
414





source 1 . . . 414



3-16-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-16-5
Residues




MKTIKDRIAK WSAIGLLSAV AATAFYAPSA SAHGEKSQAA FMRMRTIHWY DLSWSKEKVK
   60



INETVEIKGK FHVFEGWPET VDEPDVAFLN VGMPGPVFIR KESYIGGQLV PRSVRLEIGK
  120



TYDFRVVLKA RRPGDWHVHT MMNVQGGGPI IGPGKWITVE GSMSEFRNPV TTLTGQTVDL
  180



ENYNEGNTYF WHAFWFAIGV AWIGYWSRRP IFIPRLLMVD AGRADELVSA TDRKVAMGFL
  240



AATILIVVMA MSSANSKYPI TIPLQAGTMR GMKPLELPAP TVSVKVEDAT YRVPGRAMRM
  300



KLTITNHGNS PIRLGEFYTA SVRFLDSDVY KDTTGYPEDL LAEDGLSVSD NSPLAPGETR
  360



TVDVTASDAA WEVYRLSDII YDPDSRFAGL LFFFDATGNR QVVQIDAPLI PSFM
  414













3-17
Sequences




3-17-1
Sequence Number [ID]
17



3-17-2
Molecule Type
DNA



3-17-3
Length
783





source 1 . . . 783



3-17-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-17-5
Residues




atggcagcaa caaccattgg tggtgcagct gcggcggaag cgccgctgct ggacaagaag
   60



tggctcacgt tcgcactggc gatttacacc gtgttctacc tgtgggtgcg gtggtacgaa
  120



ggtgtctatg gctggtccgc cggactggac tcgttcgcgc cggagttcga gacctactgg
  180



atgaatttcc tgtacaccga gatcgtcctg gagatcgtga cggcttcgat cctgtggggc
  240



tatctctgga agacccgcga ccgcaacctg gccgcgctga ccccgcgtga agagctgcgc
  300



cgcaacttca cccacctggt gtggctggtg gcctacgcct gggccatcta ctggggcgca
  360



tcctacttca ccgagcagga cggcacctgg catcagacga tcgtgcgcga caccgacttc
  420



acgccgtcgc acatcatcga gttctatctg agctacccga tctacatcat caccggtttt
  480



gcggcgttca tctacgccaa gacgcgtctg ccgttcttcg cgaagggcat ctcgctgccg
  540



tacctggtgc tggtggtggg tccgttcatg attctgccga acgtgggtct gaacgaatgg
  600



ggccacacct tctggttcat ggaagagctg ttcgtggcgc cgctgcacta cggcttcgtg
  660



atcttcggct ggctggcact ggccgtcatg ggcaccctga cccagacctt ctacagcttc
  720



gctcagggcg ggctggggca gtcgctctgt gaagccgtgg acgaaggctt gatcgcgaaa
  780



taa
  783













3-18
Sequences




3-18-1
Sequence Number [ID]
18



3-18-2
Molecule Type
AA



3-18-3
Length
260





source 1 . . . 260



3-18-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-18-5
Residues




MAATTIGGAA AAEAPLLDKK WLTFALAIYT VFYLWVRWYE GVYGWSAGLD SFAPEFETYW
   60



MNFLYTEIVL EIVTASILWG YLWKTRDRNL AALTPREELR RNFTHLVWLV AYAWAIYWGA
  120



SYFTEQDGTW HQTIVRDTDF TPSHIIEFYL SYPIYIITGF AAFIYAKTRL PFFAKGISLP
  180



YLVLVVGPFM ILPNVGLNEW GHTFWFMEEL FVAPLHYGFV IFGWLALAVM GTLTQTFYSF
  240



AQGGLGQSLC EAVDEGLIAK
  260













3-19
Sequences




3-19-1
Sequence Number [ID]
19



3-19-2
Molecule Type
DNA



3-19-3
Length
744





source 1 . . . 744



3-19-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-19-5
Residues




atgagtgctg cgcaatctgc ggttcgttcg cacgccgaag cggtccaggt atcccggacc
   60



atcgactgga tggcgttgtt cgtggtgttt ttcgtgatcg tgggctcgta ccacattcac
  120



gccatgctca ccatgggtga ctgggacttc tggtcggact ggaaagaccg tcgactgtgg
  180



gtcacggtga ccccgatcgt actggtcacc ttcccggcgg ccgtacaatc ctacctgtgg
  240



gagcggtatc gtctgccctg gggagccacc gtgtgcgtcc tgggtctgct gctgggcgag
  300



tggatcaacc gttatttcaa cttctggggc tggacctact tcccgatcaa cttcgtgttc
  360



cctgcctcgc tggtgccggg cgccatcatc ctggacaccg tgctgatgct gtcgggcagc
  420



tacctgttca ccgcgatcgt cggtgcgatg ggctggggtc tgatcttcta cccgggcaac
  480



tggccgatca tcgcgccgct gcacgtgccg gtggaataca acggcatgct gatgtcgatc
  540



gccgacatcc agggttacaa ctatgtgcgt acgggtacgc ctgagtacat ccgcatggta
  600



gagaagggca ccctgcgtac cttcggtaag gacgtggcgc cggtatcggc attcttctcc
  660



gcgttcatgt cgatcctgat ctacttcatg tggcacttca tcggtcgctg gttctccaac
  720



gaacggttcc tgcagagcac ctga
  744













3-20 
Sequences




3-20-1
Sequence Number [ID]
20



3-20-2
Molecule Type
AA



3-20-3
Length
247





source 1 . . . 247



3-20-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-20-5
Residues




MSAAQSAVRS HAEAVQVSRT IDWMALFVVF FVIVGSYHIH AMLTMGDWDF WSDWKDRRLW
   60



VTVTPIVLVT FPAAVQSYLW ERYRLPWGAT VCVLGLLLGE WINRYFNFWG WTYFPINFVE
  120



PASLVPGAII LDTVLMLSGS YLFTAIVGAM GWGLIFYPGN WPIIAPLHVP VEYNGMLMSI
  180



ADIQGYNYVR TGTPEYIRMV EKGTLRTFGK DVAPVSAFFS AFMSILIYFM WHFIGRWFSN
  240



ERFLQST
  247













3-21
Sequences




3-21-1
Sequence Number [ID]
21



3-21-2
Molecule Type
DNA



3-21-3
Length
1245





source 1 . . . 1245



3-21-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-21-5
Residues




atgaaaacaa taaaggaccg gattgcaaaa tggtctgcaa tcggactgct gtccgccgtg
   60



gcagcgaccg ccttctatgc gccgagcgcc agcgcccacg gtgagaaatc gcaggccgcg
  120



ttcatgcgta tgcgtaccat ccactggtac gacctgagct ggtcgaaaga gaaagtcaag
  180



atcaacgaga ccgtggaaat caaaggcaag ttccacgtgt tcgaaggctg gccggaaacg
  240



gtcgacgaac cggatgtggc gttcctgaac gtcggcatgc cgggtccggt gttcatccgc
  300



aaggaatcgt acatcggcgg tcagctggtg ccgcgttccg tacgtctgga aatcggcaag
  360



acctatgact tccgggttgt cctcaaagcc cgtcgtccgg gtgactggca cgttcacacc
  420



atgatgaacg tccagggcgg tggaccgatc atcggtcccg gcaaatggat caccgtggaa
  480



ggctccatga gtgaattccg caaccccgtc accaccctga ccggtcagac ggtggacctg
  540



gagaactaca acgaaggcaa cacctatttc tggcacgcct tctggttcgc catcggagtt
  600



gcctggatcg gctactggtc gcgtcgaccg atcttcatcc cccgtctgct gatggtggat
  660



gccggtcgtg cggacgaact ggtgtccgcc accgaccgca aggtggcgat gggcttcctg
  720



gccgccacca tcctgatcgt ggtcatggcc atgtccagcg ccaacagcaa gtacccgatc
  780



accatcccgc tgcaggccgg caccatgcgt ggcatgaagc cgctggaact gccggcgccg
  840



acggtatcgg tgaaagtgga agacgccacc taccgggtac cgggccgcgc catgcggatg
  900



aagctgacca tcaccaacca cggcaacagc ccgatccggc tgggtgagtt ctacaccgcc
  960



tcggtgcgtt tcctggattc cgacgtgtac aaggacacca ccggctatcc ggaagacctg
 1020



ctggccgaag acggcctgag cgtcagcgac aacagcccgc tggctccggg tgagacccgc
 1080



acggtcgacg tgacggcgtc cgacgcggcg tgggaagtgt accgtctgtc cgacatcatc
 1140



tacgatccgg acagccgttt cgccggtctg ctgttcttct tcgacgccac tggcaaccgc
 1200



caggtcgtcc agatcgacgc accgctgatc ccgtcgttca tgtaa
 1245













3-22
Sequences




3-22-1
Sequence Number [ID]
22



3-22-2
Molecule Type
AA



3-22-3
Length
414





source 1 . . . 414



3-22-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-22-5    
Residues




MKTIKDRIAK WSAIGLLSAV AATAFYAPSA SAHGEKSQAA FMRMRTIHWY DLSWSKEKVK
   60



INETVEIKGK FHVFEGWPET VDEPDVAFLN VGMPGPVFIR KESYIGGQLV PRSVRLEIGK
  120



TYDFRVVLKA RRPGDWHVHT MMNVQGGGPI IGPGKWITVE GSMSEFRNPV TTLTGQTVDL
  180



ENYNEGNTYF WHAFWFAIGV AWIGYWSRRP IFIPRLLMVD AGRADELVSA TDRKVAMGFL
  240



AATILIVVMA MSSANSKYPI TIPLQAGTMR GMKPLELPAP TVSVKVEDAT YRVPGRAMRM
  300



KLTITNHGNS PIRLGEFYTA SVRFLDSDVY KDTTGYPEDL LAEDGLSVSD NSPLAPGETR
  360



TVDVTASDAA WEVYRLSDII YDPDSRFAGL LFFFDATGNR QVVQIDAPLI PSFM
  414













3-23
Sequences




3-23-1
Sequence Number [ID]
23



3-23-2
Molecule Type
DNA



3-23-3
Length
1584





source 1 . . . 1584



3-23-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-23-5
Residues




atggcactta gcaccgcaac caaggccgcg acggacgcgc tggctgccaa tcgggcaccc
   60



accagcgtga atgcacagga agtgcaccgt tggctccaga gcttcaactg ggatttcaag
  120



aacaaccgga ccaagtacgc caccaagtac aagatggcga acgagaccaa ggaacagttc
  180



aagctgatcg ccaaggaata tgcgcgcatg gaggcagtca aggacgaaag gcagttcggt
  240



agcctgcagg atgcgctgac ccgcctcaac gccggtgttc gcgttcatcc gaagtggaac
  300



gagaccatga aagtggtttc gaacttcctg gaagtgggcg aatacaacgc catcgccgct
  360



accgggatgc tgtgggattc cgcccaggcg gcggaacaga agaacggcta tctggcccag
  420



gtgttggatg aaatccgcca cacccaccag tgtgcctacg tcaactacta cttcgcgaag
  480



aacggccagg acccggccgg tcacaacgat gctcgccgca cccgtaccat cggtccgctg
  540



tggaagggca tgaagcgcgt gttttccgac ggcttcattt ccggcgacgc cgtggaatgc
  600



tccctcaacc tgcagctggt gggtgaggcc tgcttcacca atccgctgat cgtcgcagtg
  660



accgaatggg ctgccgccaa cggcgatgaa atcaccccga cggtgttcct gtcgatcgag
  720



accgacgaac tgcgccacat ggccaacggt taccagaccg tcgtttccat cgccaacgat
  780



ccggcttccg ccaagtatct caacacggac ctgaacaacg ccttctggac ccagcagaag
  840



tacttcacgc cggtgttggg catgctgttc gagtatggct ccaagttcaa ggtcgagccg
  900



tgggtcaaga cgtggaaccg ctgggtgtac gaggactggg gcggcatctg gatcggccgt
  960



ctgggcaagt acggggtgga gtcgccgcgc agcctcaagg acgccaagca ggacgcttac
 1020



tgggctcacc acgacctgta tctgctggct tatgcgctgt ggccgaccgg cttcttccgt
 1080



ctggcgctgc cggatcagga agaaatggag tggttcgagg ccaactaccc cggctggtac
 1140



gaccactacg gcaagatcta cgaggaatgg cgcgcccgcg gttgcgagga tccgtcctcg
 1200



ggcttcatcc cgctgatgtg gttcatcgaa aacaaccatc ccatctacat cgatcgcgtg
 1260



tcgcaagtgc cgttctgccc gagcttggcc aagggcgcca gcaccctgcg cgtgcacgag
 1320



tacaacggcc agatgcacac cttcagcgac cagtggggcg agcgcatgtg gctggccgag
 1380



ccggagcgct acgagtgcca gaacatcttc gaacagtacg aaggacgcga actgtcggaa
 1440



gtgatcgccg aactgcacgg gctgcgcagt gatggcaaga ccctgatcgc ccagccgcat
 1500



gtccgtggcg acaagctgtg gacgttggac gatatcaaac gcctgaactg cgtcttcaag
 1560



aacccggtga aggcattcaa ttga
 1584













3-24
Sequences




3-24-1
Sequence Number [ID]
24



3-24-2
Molecule Type
AA



3-24-3
Length
527





source 1 . . . 527



3-24-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-24-5 
Residues




MALSTATKAA TDALAANRAP TSVNAQEVHR WLQSFNWDFK NNRTKYATKY KMANETKEQF
   60



KLIAKEYARM EAVKDERQFG SLQDALTRLN AGVRVHPKWN ETMKVVSNFL EVGEYNAIAA
  120



TGMLWDSAQA AEQKNGYLAQ VLDEIRHTHQ CAYVNYYFAK NGQDPAGHND ARRTRTIGPL
  180



WKGMKRVFSD GFISGDAVEC SLNLQLVGEA CFTNPLIVAV TEWAAANGDE ITPTVFLSIE
  240



TDELRHMANG YQTVVSIAND PASAKYLNTD LNNAFWTQQK YFTPVLGMLF EYGSKFKVEP
  300



WVKTWNRWVY EDWGGIWIGR LGKYGVESPR SLKDAKQDAY WAHHDLYLLA YALWPTGFFR
  360



LALPDQEEME WFEANYPGWY DHYGKIYEEW RARGCEDPSS GFIPLMWFIE NNHPIYIDRV
  420



SQVPFCPSLA KGASTLRVHE YNGQMHTFSD QWGERMWLAE PERYECQNIF EQYEGRELSE
  480



VIAELHGLRS DGKTLIAQPH VRGDKLWTLD DIKRLNCVFK NPVKAFN
  527













3-25
Sequences




3-25-1
Sequence Number [ID]
25



3-25-2
Molecule Type
DNA



3-25-3
Length
1170





source 1 . . . 1170



3-25-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-25-5
Residues




atgagcatgt taggagaaag acgccgcggt ctgaccgatc cggaaatggc ggccgtcatt
   60



ttgaaggcgc ttcctgaagc tccgctggac ggcaacaaca agatgggtta tttcgtcacc
  120



ccccgctgga aacgcttgac ggaatatgaa gccctgaccg tttatgcgca gcccaacgcc
  180



gactggatcg ccggcggcct ggactggggc gactggaccc agaaattcca cggcggccgc
  240



ccttcctggg gcaacgagac cacggagctg cgcaccgtcg actggttcaa gcaccgtgac
  300



ccgctccgcc gttggcatgc gccgtacgtc aaggacaagg ccgaggaatg gcgctacacc
  360



gaccgcttcc tgcagggtta ctccgccgac ggtcagatcc gggcgatgaa cccgacctgg
  420



cgggacgagt tcatcaaccg gtattggggc gccttcctgt tcaacgaata cggattgttc
  480



aacgctcatt cgcagggcgc ccgggaggcg ctgtcggacg taacccgcgt cagcctggct
  540



ttctggggct tcgacaagat cgacatcgcc cagatgatcc aactcgaacg gggtttcctc
  600



gccaagatcg tacccggttt cgacgagtcc acagcggtgc cgaaggccga atggacgaac
  660



ggggaggtct acaagagcgc ccgtctggcc gtggaagggc tgtggcagga ggtgttcgac
  720



tggaacgaga gcgctttctc ggtgcacgcc gtctatgacg cgctgttcgg tcagttcgtc
  780



cgccgcgagt tctttcagcg gctggctccc cgcttcggcg acaatctgac gccattcttc
  840



atcaaccagg cccagacata cttccagatc gccaagcagg gcgtacagga tctgtattac
  900



aactgtctgg gtgacgatcc ggagttcagc gattacaacc gtaccgtgat gcgcaactgg
  960



accggcaagt ggctggagcc cacgatcgcc gctctgcgcg acttcatggg gctgtttgcg
 1020



aagctgccgg cgggcaccac tgacaaggaa gaaatcaccg cgtccctgta ccgggtggtc
 1080



gacgactgga tcgaggacta cgccagcagg atcgacttca aggcggaccg cgatcagatc
 1140



gttaaagcgg ttctggcagg attgaaataa
 1170













3-26
Sequences




3-26-1
Sequence Number [ID]
26



3-26-2
Molecule Type
AA



3-26-3
Length
389





source 1 . . . 389



3-26-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-26-5
Residues




MSMLGERRRG LTDPEMAAVI LKALPEAPLD GNNKMGYFVT PRWKRLTEYE ALTVYAQPNA
   60



DWIAGGLDWG DWTQKFHGGR PSWGNETTEL RTVDWFKHRD PLRRWHAPYV KDKAEEWRYT
  120



DRFLQGYSAD GQIRAMNPTW RDEFINRYWG AFLFNEYGLF NAHSQGAREA LSDVTRVSLA
  180



FWGFDKIDIA QMIQLERGFL AKIVPGFDES TAVPKAEWTN GEVYKSARLA VEGLWQEVFD
  240



WNESAFSVHA VYDALFGQFV RREFFQRLAP RFGDNLTPFF INQAQTYFQI AKQGVQDLYY
  300



NCLGDDPEFS DYNRTVMRNW TGKWLEPTIA ALRDFMGLFA KLPAGTTDKE EITASLYRVV
  360



DDWIEDYASR IDFKADRDQI VKAVLAGLK
  389













3-27
Sequences




3-27-1
Sequence Number [ID]
27



3-27-2
Molecule Type
DNA



3-27-3
Length
426





source 1 . . . 426



3-27-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value












Residues



3-27-5
atgagcgtaa acagcaacgc atacgacgcc ggcatcatgg gcctgaaagg caaggacttc
   60



gccgatcagt tctttgccga cgaaaaccaa gtggtccatg aaagcgacac ggtcgttctg
  120



gtcctcaaga agtcggacga gatcaatacc tttatcgagg agatccttct gacggactac
  180



aagaagaacg tcaatccgac ggtaaacgtg gaagaccgcg cgggttactg gtggatcaag
  240



gccaacggca agatcgaggt cgattgcgac gagatttccg agctgttggg gcggcagttc
  300



aacgtctacg acttcctcgt cgacgtttcc tccaccatcg gccgggccta taccctgggc
  360



aacaagttca ccattaccag tgagctgatg ggcctggacc gcaagctcga agactatcac
  420



gcttaa
  426













3-28
Sequences




3-28-1
Sequence Number [ID]
28



3-28-2
Molecule Type
AA



3-28-3
Length
138





source 1 . . . 138



3-28-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-28-5
Residues




MSVNSNAYDA GIMGLKGKDF ADQFFADENQ VVHESDTVVL VLKKSDEINT FIEEILLTDY
   60



KKNVNPTVNV EDRAGYWWIK ANGKIEVDCD EISELLGRQF NVYDFLVDVS STIGRAYTLG
  120



NKFTITSELM GLDRKLED
  138













3-29
Sequences




3-29-1
Sequence Number [ID]
29



3-29-2
Molecule Type
DNA



3-29-3
Length
513





source 1 . . . 513



3-29-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-29-5
Residues




atggcgaaac tgggtataca cagcaacgac acccgcgacg cctgggtgaa caagatcgcg
   60



cagctcaaca ccctggaaaa agcggccgag atgctgaagc agttccggat ggaccacacc
  120



acgccgttcc gcaacagcta cgaactggac aacgactacc tctggatcga ggccaagctc
  180



gaagagaagg tcgccgtcct caaggcacgc gccttcaacg aggtggactt ccgtcataag
  240



accgctttcg gcgaggatgc caagtccgtt ctggacggca ccgtcgcgaa gatgaacgcg
  300



gccaaggaca agtgggaggc ggagaagatc catatcggtt tccgccaggc ctacaagccg
  360



ccgatcatgc cggtgaacta tttcctggac ggcgagcgtc agttggggac ccggctgatg
  420



gaactgcgca acctcaacta ctacgacacg ccgctggaag aactgcgcaa acagcgcggt
  480



gtgcgggtgg tgcatctgca gtcgccgcac tga
  513













3-30
Sequences




3-30-1
Sequence Number [ID]
30



3-30-2
Molecule Type
AA



3-30-3
Length
170





source 1 .. 170



3-30-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-30-5
Residues




MAKLGIHSND TRDAWVNKIA QLNTLEKAAE MLKQFRMDHT TPFRNSYELD NDYLWIEAKL
   60



EEKVAVLKAR AFNEVDFRHK TAFGEDAKSV LDGTVAKMNA AKDKWEAEKI HIGFRQAYKP
  120



PIMPVNYFLD GERQLGTRLM ELRNLNYYDT PLEELRKQRG VRVVHLQSPH
  170













3-31
Sequences




3-31-1
Sequence Number [ID]
31



3-31-2
Molecule Type
DNA



3-31-3
Length
312





source 1 . . . 312



3-31-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-31-5
Residues




atggtcgaat cggcatttca gccattttcg ggcgacgcag acgaatggtt cgaggaacca
   60



cggccccagg ccggtttctt cccttccgcg gactggcatc tgctcaaacg ggacgagacc
  120



tacgcagcct atgccaagga tctcgatttc atgtggcggt gggtcatcgt ccgggaagaa
  180



aggatcgtcc aggagggttg ctcgatcagc ctggagtcgt cgatccgcgc cgtgacgcac
  240



gtactgaatt attttggtat gaccgaacaa cgcgccccgg cagaggaccg gaccggcgga
  300



gttcaacatt ga
  312













3-32
Sequences




3-32-1
Sequence Number [ID]
32



3-32-2
Molecule Type
AA



3-32-3
Length
103





source 1 . . . 103



3-32-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-32-5
Residues




MVESAFQPFS GDADEWFEEP RPQAGFFPSA DWHLLKRDET YAAYAKDLDF MWRWVIVREE
   60



RIVQEGCSIS LESSIRAVTH VLNYFGMTEQ RAPAEDRTGG VQH
  103













3-33
Sequences




3-33-1
Sequence Number [ID]
33



3-33-2
Molecule Type
DNA



3-33-3
Length
1047





source 1 . . . 1047



3-33-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-33-5
Residues




atgcagcgag ttcacactat cacggcggtg acggaggatg gcgaatcgct ccgcttcgaa
   60



tgccgttcgg acgaggacgt catcaccgcc gccctgcgcc agaacatctt tctgatgtcg
  120



tcctgccggg agggcggctg tgcgacctgc aaggccttgt gcagcgaagg ggactacgac
  180



ctcaagggct gcagcgttca ggcgctgccg ccggaagagg aggaggaagg gttggtgttg
  240



ttgtgccgga cctacccgaa gaccgacctg gaaatcgaac tgccctatac ccattgccgc
  300



atcagttttg gtgaggtcgg cagtttcgag gcggaggtcg tcggcctcaa ctgggtttcg
  360



agcaacaccg tccagtttct tttgcagaag cggcccgacg agtgcggcaa ccgtggcgtg
  420



aaattcgaac ccggtcagtt catggacctg accatccccg gcaccgatgt ctcccgctcc
  480



tactcgccgg cgaaccttcc taatcccgaa ggccgcctgg agttcctgat ccgcgtgtta
  540



ccggagggac ggttttcgga ctacctgcgc aatgacgcgc gtgtcggaca ggtcctctcg
  600



gtcaaagggc cactgggcgt gttcggtctc aaggagcggg gcatggcgcc gcgctatttc
  660



gtggccggcg gcaccgggtt ggcgccggtg gtctcgatgg tgcggcagat gcaggagtgg
  720



accgcgccga acgagacccg catctatttc ggtgtgaaca ccgagccgga attgttctac
  780



atcgacgagc tcaaatccct ggaacgatcg atgcgcaatc tcaccgtgaa ggcctgtgtc
  840



tggcacccga gcggggactg ggaaggcgag cagggctcgc ccatcgatgc gttgcgggaa
  900



gacctggagt cctccgacgc caacccggac atttatttgt gcggtccgcc gggcatgatc
  960



gatgccgcct gcgagctggt acgcagccgc ggtatccccg gcgaacaggt cttcttcgaa
 1020



aaattcctgc cgtccggggc ggcctga
 1047













3-34
Sequences




3-34-1
Sequence Number [ID]
34



3-34-2
Molecule Type
AA



3-34-3
Length
348





source 1 . . . 348



3-34-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-34-5
Residues




MQRVHTITAV TEDGESLRFE CRSDEDVITA ALRQNIFLMS SCREGGCATC KALCSEGDYD
   60



LKGCSVQALP PEEEEEGLVL LCRTYPKTDL EIELPYTHCR ISFGEVGSFE AEVVGLNWVS
  120



SNTVQFLLQK RPDECGNRGV KFEPGQFMDL TIPGTDVSRS YSPANLPNPE GRLEFLIRVL
  180



PEGRFSDYLR NDARVGQVLS VKGPLGVFGL KERGMAPRYF VAGGTGLAPV VSMVRQMQEW
  240



TAPNETRIYF GVNTEPELFY IDELKSLERS MRNLTVKACV WHPSGDWEGE QGSPIDALRE
  300



DLESSDANPD IYLCGPPGMI DAACELVRSR GIPGEQVFFE KFLPSGAA
  348













3-35
Sequences




3-35-1
Sequence Number [ID]
35



3-35-2
Molecule Type
DNA



3-35-3
Length
1806





source 1 . . . 1806



3-35-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-35-5
Residues




atgcaaattt gcaaactggc aagtggctgc ggcgggtcga tgctggcgat ggccgccgtg
   60



ctagccgcgc aatccacgca cgccaattcg gagctggacc ggctgtcgaa ggacgaccgg
  120



aactgggtca tgcagaccaa ggactacagc gccacccact tcagccggct gacggaaatc
  180



aatagccaca acgtcaagaa cctgaaggtg gcctggaccc tgtccaccgg cacgttgcat
  240



ggccacgaag gtgcgccgtt ggtggtggac ggcatcatgt acatccacac gccgttcccc
  300



aacaacgtct atgcagtcga cctgaacgac acccgcaaga tgctgtggca gtacaagccc
  360



aagcagaatc cggcggcccg cgcggtggct tgctgcgacg tggtcaaccg cggtctggcc
  420



tacgtgccgg ccggcgagca cggtccggcg aagatcttcc tcaaccagct tgacggccac
  480



atcgtcgcac tcaacgccaa gaccggcgaa gagatatgga agatggaaaa ttccgacatc
  540



gccatgggct ccaccctcac cggcgcgcct ttcgtggtga aggacaaggt actggtaggt
  600



tcggccgggg ccgagctggg cgtgcgtggc tacgtcacgg cctataacat caaggacggc
  660



aagcaggagt ggcgggccta tgccaccggt cccgacgaag acttgttgct ggacaaggac
  720



ttcaacaagg acaacccgca ttacggtcag ttcggcctgg ggctctcaac ctgggagggt
  780



gatgcctgga agatcggcgg cggcaccaat tggggctggt atgcctatga tcccaagttg
  840



gacatgatct actacggttc cggcaatccg gcaccctgga acgagaccat gcggcccggc
  900



gacaacaaat ggaccatgac catctggggc cgcgacgccg acaccggccg cgccaagttc
  960



ggctaccaga agacgccgca cgacgagtgg gattacgccg gtgtcaacta catgggtctg
 1020



tccgaacagg aagtggacgg caagctgacg ccgctgctga cccatcccga ccgcaacggt
 1080



ctggtgtata cgctgaaccg ggaaaccggc gccctggtca atgccttcaa gatcgatgac
 1140



accgtcaact gggtgaaaaa ggtcgatctg aagaccggcc tgccgatccg cgatccggag
 1200



tacagcaccc gcatggacca caatgccaaa ggcatctgtc cctcggccat gggctatcac
 1260



aaccagggca tcgagtccta cgatccggac aagaagctgt tcttcatggg cgtgaaccac
 1320



atctgcatgg actgggagcc gttcatgctg ccctaccgcg ccggccagtt ctttgtgggg
 1380



gcgaccctca acatgtatcc gggacccaag gggatgctgg gtcaggtcaa ggcgatgaac
 1440



gcggtcaccg gcaagatgga atgggaagtg ccggagaagt ttgcggtctg gggtggcacc
 1500



ttggcgaccg ccggcgacct cgtgttctac ggtaccctcg acggcttcat caaggcccgc
 1560



gacacccgta ccggcgagct gaagtggcag ttccagttgc cctccggcgt gatcggccat
 1620



cccatcacct atcagcacaa cggcaagcaa tacattgcca tctactccgg cgtcggcggc
 1680



tggccaggag tagggctggt attcgacctg aaggacccga ccgcaggtct gggagctgtg
 1740



ggtgcgttca gggaactggc gcattacacc cagatgggtg gatcggtgtt cgtgttctcg
 1800



ctttga
 1806













3-36
Sequences




3-36-1
Sequence Number [ID]
36



3-36-2
Molecule Type
AA



3-36-3
Length
601





source 1 . . . 601



3-36-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-36-5
Residues




MQICKLASGC GGSMLAMAAV LAAQSTHANS ELDRLSKDDR NWVMQTKDYS ATHFSRLTEI
   60



NSHNVKNLKV AWTLSTGTLH GHEGAPLVVD GIMYIHTPFP NNVYAVDLND TRKMLWQYKP
  120



KQNPAARAVA CCDVVNRGLA YVPAGEHGPA KIFLNQLDGH IVALNAKTGE EIWKMENSDI
  180



AMGSTLTGAP FVVKDKVLVG SAGAELGVRG YVTAYNIKDG KQEWRAYATG PDEDLLLDKD
  240



FNKDNPHYGQ FGLGLSTWEG DAWKIGGGTN WGWYAYDPKL DMIYYGSGNP APWNETMRPG
  300



DNKWTMTIWG RDADTGRAKF GYQKTPHDEW DYAGVNYMGL SEQEVDGKLT PLLTHPDRNG
  360



LVYTLNRETG ALVNAFKIDD TVNWVKKVDL KTGLPIRDPE YSTRMDHNAK GICPSAMGYH
  420



NQGIESYDPD KKLFFMGVNH ICMDWEPFML PYRAGQFFVG ATLNMYPGPK GMLGQVKAMN
  480



AVTGKMEWEV PEKFAVWGGT LATAGDLVFY GTLDGFIKAR DTRTGELKWQ FQLPSGVIGH
  540



PITYQHNGKQ YIAIYSGVGG WPGVGLVFDL KDPTAGLGAV GAFRELAHYT QMGGSVFVFS
  600



L
  601













3-37
Sequences




3-37-1
Sequence Number [ID]
37



3-37-2
Molecule Type
DNA



3-37-3
Length
573





source 1 . . . 573



3-37-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-37-5
Residues




atgctcacca gcagtcctta ttaccggtcc ggctacgtat tcgtctaccg caaggacacg
   60



ggactgagca tccaagattg gaacagcgcg gcactgaaga ccgtgaagcg gatcgcattc
  120



atgccggata ccccggctga gacgatgatc cgcaccatcg gccgctacaa cgacatgttc
  180



aactacatgc actctctggt cggtttcaag tcgcggcgta accagtacgt gcgctacgac
  240



ccggccaagc tggtggcgga agtcgccgac ggcaacgcgg aagtcgcggt gttgtggggg
  300



ccggcggcgg cgcgctatgt cagaggggcg gggctggcca tgaccgtcat ccccgacgac
  360



aaccggcggt ccgacggcga gaaagtgccc caccactatt cgacttccgt cggcgtgcgc
  420



aagggcgagg aggccctgct caagcagatc gaccaggttc tggcccgctt cggcaaggaa
  480



gtgaatgcgg tgctggaggc ggaaggcatt ccgctgttgc ccatggatga aaaaccggcc
  540



aggacggctt cccatgatcg aaggaaaggc tag
  573













3-38
Sequences




3-38-1
Sequence Number [ID]
38



3-38-2
Molecule Type
AA



3-38-3
Length
190





source 1 . . . 190



3-38-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-38-5
Residues




MLTSSPYYRS GYVFVYRKDT GLSIQDWNSA ALKTVKRIAF MPDTPAETMI RTIGRYNDMF
   60



NYMHSLVGFK SRRNQYVRYD PAKLVAEVAD GNAEVAVLWG PAAARYVRGA GLAMTVIPDD
  120



NRRSDGEKVP HHYSTSVGVR KGEEALLKQI DQVLARFGKE VNAVLEAEGI PLLPMDEKPA
  180



RTASHDRRKG
  190













3-39
Sequences




3-39-1
Sequence Number [ID]
39



3-39-2
Molecule Type
DNA



3-39-3
Length
480





source 1 . . . 480



3-39-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-39-5
Residues




atgaagctga agaatgcgag gttcgacgtg gctggcatgt gtgtcgccgg gttgttggcg
   60



ctgcccgcgc aggccgacat taccctgcgg catgccgtca ccggcgagac gctggagttg
  120



tcctacgcca aggcgggcgg cgacacgcaa gccgtcaagc agttcctgca gaccggcaag
  180



aacccttaca acggcaacaa ggaggtagtg gaacagggac atagtctgta tctgtcagcc
  240



tgttccggct gccacggcca tgaggccgaa ggcaagctcg gtccgggatt ggcggacgac
  300



tattggacct atccccgcgc ggccaccgac gtcggtttgt tcgaaatcct gttcggcggc
  360



gcgcagggca tgatggggcc gcagtacgtc aacctcaaca atgacgaaat gctcaagatc
  420



atggcctgga tccgcagcct ttaccggggc gatccagcca aggccgaatg gctgaaatga
  480













3-40
Sequences




3-40-1
Sequence Number [ID]
40



3-40-2
Molecule Type
AA



3-40-3
Length
159





source 1 . . . 159



3-40-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-40-5
Residues




MKLKNARFDV AGMCVAGLLA LPAQADITLR HAVTGETLEL SYAKAGGDTQ AVKQFLQTGK
   60



NPYNGNKEVV EQGHSLYLSA CSGCHGHEAE GKLGPGLADD YWTYPRAATD VGLFEILFGG
  120



AQGMMGPQYV NLNNDEMLKI MAWIRSLYRG DPAKAEWLK
  159













3-41
Sequences




3-41-1
Sequence Number [ID]
41



3-41-2
Molecule Type
DNA



3-41-3
Length
285





source 1 . . . 285



3-41-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-41-5
Residues




atgatgcaga aaacgagttt cgtcgcggcc gccatggccg tttcgttcgc ggcgggtgtc
   60



caggcctatg acggtaccca ctgcaaggcg cccggaaact gctgggagcc caagcccggt
  120



tatccggaca aggtcgccgg cagcaagtac gaccccaagc atgacccgaa cgagctcaac
  180



aagcaggcgg agtcgatcaa ggcgatggaa gcccgcaacc agaagcgcgt ggagaactac
  240



gccaagaccg gcaagttcgt ctacaaggtc gaagacatca aatga
  285













3-42
Sequences




3-42-1
Sequence Number [ID]
42



3-42-2
Molecule Type
AA



3-42-3
Length
94





source 1 . . . 94



3-42-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-42-5
Residues




MMQKTSFVAA AMAVSFAAGV QAYDGTHCKA PGNCWEPKPG YPDKVAGSKY DPKHDPNELN
   60



KQAESIKAME ARNQKRVENY AKTGKFVYKV EDIK
   94













3-43
Sequences




3-43-1
Sequence Number [ID]
43



3-43-2
Molecule Type
DNA



3-43-3
Length
1020





source 1 . . . 1020



3-43-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-43-5
Residues




atgaatctag acacccccct tgccgacggc ctggaacgcg ccaaacgctt cgaacagggg
   60



ctgcagcaag tcgtgctcgg gcaggagcgc ccgatccgcc tgctgaccct ggccgtgttc
  120



gcccgcggtc atgcgctgct cgaaggcggc gtcggcgtcg ggaagaccac cttgctccgt
  180



gcggtggcgc gcggcatcgg cggcgattac gagcggatcg agggcaccat cgacctgatg
  240



ccgaacgatc tggtctatta cacctacctg gacgagcaag gtaggccggg cgtcgcgccg
  300



gggcctttgc tcaagcacgg ggagcagctt tccatttttt tcttcaacga gatcaaccgc
  360



gcccggcccc aggtgcattc cctcctgcta cgggtcatgg ccgagcgcag cgtgtcggct
  420



ttcaaccgcg agtaccggtt tccgtacctg caggtgttcg ccgaccgcaa ccgggtggaa
  480



aaggaggaga ctttcgaatt gcccgcggcg gcgcgcgacc gcttcatgct cgaaatcgcc
  540



atcgagccgc cggccgatcc tgcgcatatc gaccaaatcc tgttcgaccc gcgtttctac
  600



gatcccgacc ggctggtcgc gtccgcgccg gccgatacgc tctcgttccg tgaactcaac
  660



ggcattgccg aagccctgca aggcggcatc cacgtcagcg cccgtctcag atcctatgtc
  720



caggatctgt ggcgcgcgac ccggcggccg gaggatttcg gcatcgctct ccacgaggcg
  780



gattccggcg acatgatcga ggccggttcc agtccccgcg gcatgagcta cttggtccgg
  840



ctggcgcggg tgcaggcgtg gctcagtggc cgggaccggg tcgagccgga ggacgttcaa
  900



tacgtgttcg ctccggcggt cggccaccgc atcttcctca agccggtcta cgaataccgc
  960



cgcgccgagc tgatcccgga gctggtcggc aagctgatcc gccggatcgc ggcgccatga
 1020













3-44
Sequences




3-44-1
Sequence Number [ID]
44



3-44-2
Molecule Type
AA



3-44-3
Length
339





source 1 . . . 339



3-44-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-44-5
Residues




MNLDTPLADG LERAKRFEQG LQQVVLGQER PIRLLTLAVF ARGHALLEGG VGVGKTTLLR
   60



AVARGIGGDY ERIEGTIDLM PNDLVYYTYL DEQGRPGVAP GPLLKHGEQL SIFFFNEINR
  120



ARPQVHSLLL RVMAERSVSA FNREYRFPYL QVFADRNRVE KEETFELPAA ARDRFMLEIA
  180



IEPPADPAHI DQILFDPRFY DPDRLVASAP ADTLSFRELN GIAEALQGGI HVSARLRSYV
  240



QDLWRATRRP EDFGIALHEA DSGDMIEAGS SPRGMSYLVR LARVQAWLSG RDRVEPEDVQ
  300



YVFAPAVGHR IFLKPVYEYR RAELIPELVG KLIRRIAAP
  339













3-45
Sequences




3-45-1
Sequence Number [ID]
45



3-45-2
Molecule Type
DNA



3-45-3
Length
873





source 1 . . . 873



3-45-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-45-5
Residues




gtggtttggt ctctcctgcc ggtcgcggcc ttggtatcgg ttccacttca tggcgccact
   60



tcgctctcgt tcgacacgcc ccgcgccttc ggctacgtca tcggtgatct catccgccac
  120



gaggttcggg tcgaaaccga tgcggggcag ggaatagagg ctgcgtccct gcccaaggaa
  180



ggctggatca accgctggct gctgctgcgg cgggtcgaag tccgccgcga gggcaggcac
  240



cggatactga cgctggaata ccagactttc tacgccccgt tggaagtgaa gaacctcacg
  300



attcccggct tcgagctgca actggccggt tcgggcgaac ggttggcggt cccggactgg
  360



actttcacca ccgcgccgat ccgggagctg tcggtgctgc gcgccgaagg cccgtcgatg
  420



cgtccggacg ccgcaccggc gccgctgccg actctcggcc ccgccgccgc gagcgtcggt
  480



tccggcctcg cagccacggg cgcgctggcc tggtgggcct atctgagcgc ctggctgccg
  540



ttcgtgtcgc gcggccgtca tttcgccgag gcccgccggg tgctgcggga tctgcgcggc
  600



ctgggagaca gccgggaggc attgcgcaga ggtttttcct gtctgcacca ggctttcaat
  660



cggacttcgg gtgagccgct gttcatcgaa gggctggacg agttcttccg gagccatccg
  720



gcctacgatc tcttgcggga cgagatccag gacttcttcc tggcctcgta tgaagtcttt
  780



ttcggagagg gcgcaccggc gccgtcgttc gacctggcgc gcatggaggc gttggcccgt
  840



tcgtgccagc ttgccgaaag gaggcggcca tga
  873













3-46
Sequences




3-46-1
Sequence Number [ID]
46



3-46-2
Molecule Type
AA



3-46-3
Length
290





source 1 . . . 290



3-46-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-46-5
Residues




VVWSLLPVAA LVSVPLHGAT SLSFDTPRAF GYVIGDLIRH EVRVETDAGQ GIEAASLPKE
   60



GWINRWLLLR RVEVRREGRH RILTLEYQTF YAPLEVKNLT IPGFELQLAG SGERLAVPDW
  120



TFTTAPIREL SVLRAEGPSM RPDAAPAPLP TLGPAAASVG SGLAATGALA WWAYLSAWLP
  180



FVSRGRHFAE ARRVLRDLRG LGDSREALRR GFSCLHQAFN RTSGEPLFIE GLDEFFRSHP
  240



AYDLLRDEIQ DFFLASYEVF FGEGAPAPSF DLARMEALAR SCQLAERRRP
  290













3-47
Sequences




3-47-1
Sequence Number [ID]
47



3-47-2
Molecule Type
DNA



3-47-3
Length
984





source 1  . .. 984



3-47-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-47-5
Residues




atgaccgatt gggcgctgga cacgccgtac ttgctgtggg gcctgccgct ggcgctgctt
   60



ccgttgtggc ggttgccgct gcgccctgcc ccgtgttcct ggcatgcatt gttgcccgcc
  120



gatactgcgt cgcgggccgt cgacctgagt ctgcgcctcg ccggtgccgg cgccatcctg
  180



gcgctgctgc tgggcagtgc cggtctgcat cggcgcgagt acaccgtcga acgcaccggc
  240



tacggcgccc acatggtgct gctgctggac cgcagccgca gcatggatga cagcttcgca
  300



gggcgtactc ccacgggcgg cgaggaatcc aagtccgccg cggcggagcg cctcctgagc
  360



ggtttcgtct cgagcggacg caacgatctg gtcggggtcg ccgccttcag cacctccccg
  420



ttgttcgtgc tgccgctgac cgacaacaag gctgcggtgc tggcggcggt ccacgccatg
  480



aagctgccgg gtctggcgca gacgcatgtg agcaaggggc tggcgatggc gctttcgtat
  540



ttcggcgacg attcgaccgc gggttcgcgt atcgtcctgc tggtgtccga cggtgccgcc
  600



gaggtggacc cggacagcga gctgaagctg cgccgctggt tcaaggagaa gggcgtacgg
  660



ctgtactgga tattcctgcg caccgcgggc agccacggta tcttcgaaac tccggacaac
  720



ccggaggaag acaacgccca ggcgcggccc gagcgctatc tgcatctgtt tttcaacagt
  780



ctgggcatcc cctaccgcgc ctacgaggcg gaagacgccg acgccctcaa gcgcgccatc
  840



gccgacgtcg accgcgagga gcagcggccg ctgcgctatg ccgagcgggt gccgcggcgg
  900



gatctgcaag ccttttgtta tctggcggcg gcgctggctc tggcctggct ggtcgccgcg
  960



aagggcatgg aggtggcgcg atga
  984













3-48
Sequences




3-48-1
Sequence Number [ID]
48



3-48-2
Molecule Type
AA



3-48-3
Length
327





source 1 . . . 327



3-48-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-48-5
Residues




MTDWALDTPY LLWGLPLALL PLWRLPLRPA PCSWHALLPA DTASRAVDLS LRLAGAGAIL
   60



ALLLGSAGLH RREYTVERTG YGAHMVLLLD RSRSMDDSFA GRTPTGGEES KSAAAERLLS
  120



GFVSSGRNDL VGVAAFSTSP LFVLPLTDNK AAVLAAVHAM KLPGLAQTHV SKGLAMALSY
  180



FGDDSTAGSR IVLLVSDGAA EVDPDSELKL RRWFKEKGVR LYWIFLRTAG SHGIFETPDN
  240



PEEDNAQARP ERYLHLFFNS LGIPYRAYEA EDADALKRAI ADVDREEQRP LRYAERVPRR
  300



DLQAFCYLAA ALALAWLVAA KGMEVAR
  327













3-49
Sequences




3-49-1
Sequence Number [ID]
49



3-49-2
Molecule Type
DNA



3-49-3
Length
519





source 1 . . . 519



3-49-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-49-5
Residues




atgctggcct tgtcggcgtt gctggagctc aggcaatggc ggaaggccgc ggcggccaat
   60



gccgatatcg ccgagctgct gggggggcac gacatcgccc cggaacggct ggcggcggca
  120



tcgccccaag tcctgttggc gcgggccgtg tatttcgtgc ggcacgagcg ctacggcgac
  180



gcgctggagc tgctgaacct gctggagacc cggggcgatg gcgccttccg cgccgacgtg
  240



tattacaacc agggcaatct gcagcttgcc caggctctgg accgcgtcga aaaatcggaa
  300



atggaccagg cccgggtctt cgccgaactg gccaaggaag cctaccggcg tgccttgtcg
  360



ctggcacccg gccactggga cgccaaatac aacctggaag tggccatgcg cctcatgccc
  420



gaaatggacc gggtcagccc tgccgatgac gaggcgcccg cggctgaatc caaacggctg
  480



tggacaggtt tgcccggact cccgcgaggc ctgccttga
  519













3-50
Sequences




3-50-1
Sequence Number [ID]
50



3-50-2
Molecule Type
AA



3-50-3
Length
172





source 1 . . . 172



3-50-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-50-5
Residues




MLALSALLEL RQWRKAAAAN ADIAELLGGH DIAPERLAAA SPQVLLARAV YFVRHERYGD
   60



ALELLNLLET RGDGAFRADV YYNQGNLQLA QALDRVEKSE MDQARVFAEL AKEAYRRALS
  120



LAPGHWDAKY NLEVAMRLMP EMDRVSPADD EAPAAESKRL WTGLPGLPRG LP
  172













3-51
Sequences




3-51-1
Sequence Number [ID]
51



3-51-2
Molecule Type
DNA



3-51-3
Length
972





source 1 . . . 972



3-51-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-51-5
Residues




ttgagcatct ggcggcagcg cgttgccgat ccggtttttg ccggcctgat tgtagccctc
   60



cttctggcgg tagccgcctg tttcccgctc cggctggtgc tggagcggct ggtgttcagc
  120



cacatcgtcg tcgtcgacat cacccgcagc atgaacgtcg aggactaccg gcgaggcgcg
  180



cgcgccgtgt cgcggctgga attcgtcagg cagagcctga tcggcgccgt ggccgacctg
  240



ccctgcggct ccgctgtggg ggtgggcgtt ttcaccgaac gcgagccggc gctactgttc
  300



gagccgatcg aaacctgcgc cggcttttcc gccatcagcg ccgccatcga acagctcgac
  360



tggcgcatgg cctgggctgc cgacagtctg atcgccgcag gtctgcacaa caccctggat
  420



ttgctggggc gcggcgatgc ggacgtgatt ttcgtcaccg acggccatga ggcgccgcca
  480



ctcaatcccc gctactgccc ggacttcagc gacctcagag gcaaggtccg ggggctgatc
  540



gtcggagtgg gaggactgag cctctcgccc atccccaagt acgacgagtc ggggcggcgt
  600



tcgggcgttt atggcgagga cgaagtcccg cagcgctcga gcttcggcct gtcggagctg
  660



ccgcccgagc agatcgaggg ctaccacgcc cgcaacgctc ccttcggcag cgagagagcc
  720



gggggcacgg aacatctgtc ccagctcaag gaaggatatt tgcgccagct cgccgaagcc
  780



gccggcctgg gctaccaccg cctggaatcg cccgaaggac tgggccgcgc tctcacggca
  840



ccggccttgg cgcggcgcca gcggatcgcc acagacgtcc gctggattcc cgccgccctg
  900



gcgctcgccg tactgatggc ggtgtatctg cgggtgctgc tgccgcgtcc tggattttca
  960



acctcaaact ga
  972













3-52
Sequences




3-52-1
Sequence Number [ID]
52



3-52-2
Molecule Type
AA



3-52-3
Length
323





source 1 . . . 323



3-52-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-52-5
Residues




LSIWRQRVAD PVFAGLIVAL LLAVAACFPL RLVLERLVFS HIVVVDITRS MNVEDYRRGA
   60



RAVSRLEFVR QSLIGAVADL PCGSAVGVGV FTEREPALLF EPIETCAGFS AISAAIEQLD
  120



WRMAWAADSL IAAGLHNTLD LLGRGDADVI FVTDGHEAPP LNPRYCPDFS DLRGKVRGLI
  180



VGVGGLSLSP IPKYDESGRR SGVYGEDEVP QRSSFGLSEL PPEQIEGYHA RNAPFGSERA
  240



GGTEHLSQLK EGYLRQLAEA AGLGYHRLES PEGLGRALTA PALARRQRIA TDVRWIPAAL
  300



ALAVLMAVYL RVLLPRPGFS TSN
  323













3-53
Sequences




3-53-1
Sequence Number [ID]
53



3-53-2
Molecule Type
DNA



3-53-3
Length
525





source 1 . . . 525



3-53-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-53-5
Residues




atgaaaccga tgctcatcct gaccgcgttg ctgttcgcct ccgtttcgtt ggcgcacgga
   60



cccacccccc aaaaggtcgt cgagaccgtg gagatcgcgg ctcccgtgga ccgggtctgg
  120



aacgccgtga aggatttcgg tgccatcgcg cagtggaatc ccgctctggc caagagcgaa
  180



agcaccggcg gcaacaccac cggcgagaag cgcatcctcc attttcccaa cggcgagcag
  240



ctcaccgagg aactcgatgc ctacgacccg gcagcccacg aatacaccta ccggctgggc
  300



aaggacaacg tcaaggcgct gccggccagt tcctactccg ccgtgctcaa ggtcaaggcc
  360



accgagacgg gcagccagat cgaatggaag agtcggctct atcgcggcga taccggaaac
  420



ttcccgccgg acgagctgaa cgacgaggcc gccgttgcgg cgatgcagag gtttttccgc
  480



gccgggctgg acaatctcaa gaaaagtctt gggcccctcg aatga
  525













3-54
Sequences




3-54-1
Sequence Number [ID]
54



3-54-2
Molecule Type
AA



3-54-3
Length
174





source 1 . . . 174



3-54-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-54-5
Residues




MKPMLILTAL LFASVSLAHG PTPQKVVETV EIAAPVDRVW NAVKDFGAIA QWNPALAKSE
   60



STGGNTTGEK RILHFPNGEQ LTEELDAYDP AAHEYTYRLG KDNVKALPAS SYSAVLKVKA
  120



TETGSQIEWK SRLYRGDTGN FPPDELNDEA AVAAMQRFFR AGLDNLKKSL GPLE
  174










3-55
Sequences




3-55-1
Sequence Number [ID]
55



3-55-2
Molecule Type
DNA



3-55-3
Length
1530





source 1 . . . 1530



3-55-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value














3-55-5
Residues




atgctgcaaa aatacataga gaagattctg cgcgcccgtg tctacgacgt tgcccaggag
   60



accccgctgg acccggcgcc cggcctgtcg cggcggctgg acaacacggt gctgatcaag
  120



cgcgaggacc tgcagccggt gttctcgttc aagctgcgcg gcgcctacaa caagatcgcc
  180



tcgctcacac ccgaggcgcg cgcggccggc gtgatcgcgg cctccgccgg caaccacgcc
  240



cagggcgtgg cactggcggc gcagcggctg ggcatccgcg ccgtgatcgt gatgccttgc
  300



accaccccgc atatcaaggt cgatgcggtg cgcaaccgag gcggtgaggt cgtactgcat
  360



ggcgacgcct atgacgaagc ctacgaacat gcgctggaac tggcccgcga ccagtgcctg
  420



accttcgtcc acccctacga cgatccggaa gtcatcgccg ggcaaggcac catcggcatg
  480



gaaatcctgc gccagcacca ggacgccatc cacgccatct tcgtgcctgt gggcggcggc
  540



ggattgatcg ccggcatcgc cgcctacgtc aagttcgtgc gcccggacat ccgcgtcatc
  600



ggcgtggaac cagtggactc cgactgcctg caccgggcgc tgaaagccaa gcggcgggtg
  660



atcctgaagc aggtgggcct gttcgccgac ggcgtcgcgg tgaagcaggt cggcaaggaa
  720



ccgttccatc tcgcccacca gtgggtggac gaggtcgtga ccgtcgacac cgacgaaatc
  780



tgcgccgcca tcaaggacat cttcgacgac acccgctcca tcgccgagcc ggcgggcgcg
  840



ctgggcatcg ccgggctcaa gaaatacgtg gccgaaacag gaatcaagaa cgcgtgcctg
  900



gtggcgatcg aaagcggcgc caacatcaac ttcgaccggc tgcgccacgt cgctgagcgc
  960



gccgagatcg gcgaaaagcg cgaactgctg ctggcagtga cgatccccga gcggcccggc
 1020



agcttcctcg aattctgccg ggtgctgggc cgccgcaaca tcaccgaatt caactaccgc
 1080



ttcttcgacg aaaaggccgc ccaggtgttc gtcggcctcc cggtggcgag cggcgcgatc
 1140



gaccgcgaaa gcctggtccg cgaattcgaa cgccagggtt tcggcgtgct cgacctgacc
 1200



ggcaacgaac tcgccatcga acacatccgc tacatggtcg gcggccacgc gccgaaactg
 1260



ctggacgaac aggtctacag cttcgaattc cccgagcgac ccggcgcgct gctgcgcttc
 1320



ctgtccatca tgggcgggcg ctggaacatc agcctgttcc attaccgcaa ccacggcgcc
 1380



gccttcggcc gggtactgat gggcatccag gtgccgaaac cggaacgcaa ggccttccgg
 1440



gaattcctcg aagccatcgg ctacgccttc aaggaggaaa cccaaaatcc cgcctaccgg
 1500



ctgttcgcgg ggggcagcga gcgggggtga
 1530













3-56
Sequences




3-56-1
Sequence Number [ID]
56



3-56-2
Molecule Type
AA



3-56-3
Length
509





source 1 . . . 509



3-56-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-56-5
Residues




MLQKYIEKIL RARVYDVAQE TPLDPAPGLS RRLDNTVLIK REDLQPVFSF KLRGAYNKIA
   60



SLTPEARAAG VIAASAGNHA QGVALAAQRL GIRAVIVMPC TTPHIKVDAV RNRGGEVVLH 
  120



GDAYDEAYEH ALELARDQCL TFVHPYDDPE VIAGQGTIGM EILRQHQDAI HAIFVPVGGG
  180



GLIAGIAAYV KFVRPDIRVI GVEPVDSDCL HRALKAKRRV ILKQVGLFAD GVAVKQVGKE
  240



PFHLAHQWVD EVVTVDTDEI CAAIKDIFDD TRSIAEPAGA LGIAGLKKYV AETGIKNACL
  300



VAIESGANIN FDRLRHVAER AEIGEKRELL LAVTIPERPG SFLEFCRVLG RRNITEFNYR
  360



FFDEKAAQVF VGLPVASGAI DRESLVREFE RQGFGVLDLT GNELAIEHIR YMVGGHAPKL
  420



LDEQVYSFEF PERPGALLRF LSIMGGRWNI SLFHYRNHGA AFGRVLMGIQ VPKPERKAFR
  480



EFLEAIGYAF KEETQNPAYR LFAGGSERG
  509













3-57
Sequences




3-57-1
Sequence Number [ID]
57



3-57-2
Molecule Type
DNA



3-57-3
Length
1545





source 1 . . . 545



3-57-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-57-5
Residues




atgcacgaca gactgatcat tttcgacacg accttgcgcg acggagagca gagccccggc
   60



gcgtccatga cccgcgatga aaaggtccgc atcgcccggg cgctggagcg tctgaaggtc
  120



gacgtcatcg aggcgggctt tcccgccgcc agccccggcg atttcgaggc cgtccaggcc
  180



gtggcccgga ccatcaagga cagcagggtc tgcggcctgg cccgcgccct cgaccgcgac
  240



atcgaccgcg ccggcgaagc cctcaaggac gcccagcgcg cccgcatcca caccttcatc
  300



gccacctcgc ccatccacat gcggcacaag ctgcagatgt cgcccgacca ggtggtggaa
  360



tacgcggtca aggccgtcaa gcgggcccgc cagtacaccg acgacgtgga attctcgccc
  420



gaggacgccg gacgctccga ggaggatttc ctctgccgca tcctggaagc cgtgatcgat
  480



gcgggggcga ccacgctgaa catccccgac accgtcggct acgccttccc ggaacagttc
  540



gggcacatga tcggccggct gatcgagcgg attccgaact ccgacaaggc cgtgttctcg
  600



gttcactgcc acaacgacct gggactggcg gtcgccaatt cgctggccgc cgtgctgcac
  660



ggcgcgcgcc aggtggaatg caccatcaac gggctgggcg agcgggccgg caacgccgcg
  720



ctggaagaga tcgtcatggc ggtgcgcacc cgtaaagaca tcttcccctg ccacaccgac
  780



atcgagacac gggaaatcgt ggcctgctcc aaactggtct ccagcatcac cggtttcccg
  840



atccagccca acaaggccat cgtcggcgcc aacgccttcg cccacgagtc gggcatccac
  900



caggacggtg tgctcaagag ccgggaaacc tacgagatca tgagcgccga ggacgtgggg
  960



tggagcacca accgcatggt gctgggcaaa cattccggcc gcaacgcgtt ccgtacccgg
 1020



atgcaggaac tcggcatcga gttcgcctcg gaagaggaac tgaactcggt gttccagcgc
 1080



ttcaaggtgc tggccgacaa gaagcacgag atcttcgacg aggacctcca ggccctcatc
 1140



accgaagccg gcgcagaagc cgaagacgaa cgggtcaagc tggtcgcgct gcgggtctgc
 1200



tcggaaacgg gcgagattcc ccacgcccag gtcaccatca aggtggacaa cgaggaacgc
 1260



accggcacat cgagcggcgg cggcgccgtg gacgccagcc tcaaggccat cgaatcgctg
 1320



ctgcacacgg acaccgcgct gacgctgtac tcggtcaaca acatcaccag cggcaccgac
 1380



gcccagggcg aggtcaccgt gcggctcgag aaaggcgggc gcatcgtcaa cggccagggc
 1440



gccgataccg acatcgtgat cgcctcggcc aaggcctacg tcaacgccgt gaacaagctg
 1500



ctggcgccca tccagcgcac ccacccgcaa gtcggggatg tgtga
 1545













3-58
Sequences




3-58-1
Sequences Number [ID]
58



3-58-2
Molecule Type
AA



3-58-3
Length
514





source 1 . . . 514



3-58-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-58-5
Residues




MHDRLIIFDT TLRDGEQSPG ASMTRDEKVR IARALERLKV DVIEAGFPAA SPGDFEAVQA
   60



VARTIKDSRV CGLARALDRD IDRAGEALKD AQRARIHTFI ATSPIHMRHK LQMSPDQVVE
  120



YAVKAVKRAR QYTDDVEFSP EDAGRSEEDF LCRILEAVID AGATTLNIPD TVGYAFPEQF
  180



GHMIGRLIER IPNSDKAVFS VHCHNDLGLA VANSLAAVLH GARQVECTIN GLGERAGNAA 
  240



LEEIVMAVRT RKDIFPCHTD IETREIVACS KLVSSITGFP IQPNKAIVGA NAFAHESGIH  
  300



QDGVLKSRET YEIMSAEDVG WSTNRMVLGK HSGRNAFRTR MQELGIEFAS EEELNSVFQR
  360



FKVLADKKHE IFDEDLQALI TEAGAEAEDE RVKLVALRVC SETGEIPHAQ VTIKVDNEER
  420



TGTSSGGGAV DASLKAIESL LHTDTALTLY SVNNITSGTD AQGEVTVRLE KGGRIVNGQG
  480



ADTDIVIASA KAYVNAVNKL LAPIQRTHPQ VGDV
  514













3-59
Sequences




3-59-1
Sequences Number [ID]
59



3-59-2
Molecule Type
DNA



3-59-3
Length
1413





source 1 . . . 413



3-59-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-59-5
Residues




atgagcggaa aaacccttta cgacaagctg tgggacgacc acgtcgtgca tgtcgatgcg
   60



gacggatcgt gcctgatcta catcgatcgt catctaatcc acgaggtgac ctcgcctcag
  120



gcattcgaag ggctgcggat ggcggggcgt gtaccctggc gggtggatgc caatcttgcg
  180



gtggccgacc acaacgtccc caccgccgac cgcgacaggg gtatcgccga tccggtgtcg
  240



cgcctgcagg tggaaaccct ggacaagaac tgcgccgatt tcggcatcac cgaattcgcg
  300



atggacgacg tgcgccaggg tatcgtgcat gtgatcgggc ccgagcaggg cgcgaccctg
  360



ccgggcatga ccatcgtttg cggcgattcg catacttcga ctcacggtgc tttcggggcg
  420



ctcgccttcg ggatcggcac ttccgaggtc gagcacgtac tggccacgca atgcctggtg
  480



cagcgcaagg cgaagaacat gctggtccgc gtccagggca agctggcgcc gggcgtgacg
  540



gcgaaagatc tggtactggc ggtcatcggc cgtatcggaa ccgccggcgg caccggctac
  600



accatcgaat tcgctggcga agccattcgc ggcctgtcga tggaaggccg gatgacggtc
  660



tgcaacatgg cgatcgaggc gggcgcacgt gccggcctgg tggcggtgga cgaagtcacg
  720



ctcgactatc tcgagggccg cccgttcgct ccggcgggcg cgttgtggga gcgggcggtc
  780



gaggcatgga aagacctgca cagcgatccg gatgcggtat tcgacaaggt cgtcgagatc
  840



gatgccgcca gcatcaagcc gcaggtgacc tggggaactt cgccggaaca ggtcgtgccg
  900



gtggatgccg aggtgcccga cccggccacg gaagccgatc ccgtgcggcg ggaaagcatg
  960



gagcgggcgc tgcagtacat ggatctcctg ccgggcacgc caatcggcgc gatccgggtc
 1020



gatcgggtgt tcatcggctc ctgcaccaat gccaggatcg aggatctgcg cgccgcggcg
 1080



gaagtcgtcc gggggcacaa gcgcgctgcc agcgtgaagc aggcactggt ggtgcccggc
 1140



tcgggtttgg tcaagcggca ggcggagcag gaggggctgg acaaggtgtt cctcgaggcc
 1200



ggtttcgaat ggcgcgaccc gggttgttcc atgtgtctgg cgatgaacgc cgaccgcctg
 1260



gaacccggcg agcgttgcgc ctcgacctcc aaccggaatt ttgaggggcg ccagggctat
 1320



ggcgggcgta cccatctggt gagtccggcc atggcggctg cggcggccat tcacgggcat
 1380



ttcgtcgaca tcaccgaagg agggcgcgca tga
 1413













3-60
Sequences




3-60-1
Sequences Number [ID]
60



3-60-2
Molecule Type
AA



3-60-3
Length
470





source 1 . . . 470



3-60-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-60-5
Residues




MSGKTLYDKL WDDHVVHVDA DGSCLIYIDR HLIHEVTSPQ AFEGLRMAGR VPWRVDANLA
   60



VADHNVPTAD RDRGIADPVS RLQVETLDKN CADFGITEFA MDDVRQGIVH VIGPEGGATL
  120



PGMTIVCGDS HTSTHGAFGA LAFGIGTSEV EHVLATQCLV QRKAKNMLVR VQGKIAPGVT
  180



AKDLVLAVIG RIGTAGGTGY TIEFAGEAIR GLSMEGRMTV CNMAIEAGAR AGLVAVDEVT
  240



LDYLEGRPFA PAGALWERAV EAWKDLHSDP DAVFDKVVEI DAASIKPQVT WGTSPEQVVP
  300



VDAEVPDPAT EADPVRRESM ERALQYMDLL PGTPIGAIRV DRVFIGSCTN ARIEDLRAAA
  360



EVVRGHKRAA SVKQALVVPG SGLVKRQAEQ EGLDKVFLEA GFEWRDPGCS MCLAMNADRL
  420



EPGERCASTS NRNFEGRQGY GGRTHLVSPA MAAAAAIHGH FVDIEGGRA
  470













3-61 
Sequences




3-61-1
Sequences Number [ID]
61



3-61-2
Molecule Type
DNA



3-61-3
Length
639





source 1 . . . 639



3-61-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-61-5    
Residues




atgaagcctt tcaagaaatt cacttcgcga gtcgtgccgt tggaccgcgc caatgtcgac
   60



accgacgcca tcattcccaa gcagttcctg aagtccatcc gccgcagcgg gttcggtccc
  120



tatctgttcg acgagtggcg ttacctggac cgtggcgagc ccgacatgga ttgcagccac
  180



cgtccgctca acccggagtt cgtgctcaac ctgccctgtt acgccggcgc caggatattg
  240



ctggcccgca agaacttcgg ctgtggctcc tcgcgcgagc atgcgccctg ggcgctggag
  300



gattacggct tccgcgccat catcgcgccg agtttcgccg atatcttcta caacaactgc
  360



ttcaagaacg gcatcctgcc catcgtgctc gacgaggcca cggtcgaccg gctgtttagc
  420



gaggccgggc ccggcttcga gctcaccgtc gacctggagt cgcagaccgt ggcgacgccg
  480



ttcggcgaga ccttccattt cgacgtggat gcctcccgca agcatcgtct gctgaacggc
  540



ctggacgaca tcggtctgac ccttcagcat gccgatgcca tccgcgccta cgaagccgcc
  600



cgcaggaagt ccgcaccctg gctgtttgcc gtcccttga
  639













3-62
Sequences




3-62-1
Sequences Number [ID]
62



3-62-2
Molecule Type
AA



3-62-3
Length
212





source 1 . . . 212



3-62-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-62-5
Residues




MKPFKKFTSR VVPLDRANVD TDAIIPKQFL KSIRRSGFGP YLFDEWRYLD RGEPDMDCSH
   60



RPLNPEFVLN LPCYAGARIL LARKNFGCGS SREHAPWALE DYGFRAIIAP SFADIFYNNC
  120



FKNGILPIVL DEATVDRLFS EAGPGFELTV DLESQTVATP FGETFHFDVD ASRKHRLLNG
  180



LDDIGLTLQH ADAIRAYEAA RRKSAPWLFA VP
  212













3-63
Sequences




3-63-1
Sequence Number [ID]
63



3-63-2
Molecule Type
DNA



3-63-3
Length
1083





source 1 . . . 1083



3-63-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-63-5
Residues




atgactatca aaatcgctgt cttgcccggt gacggcatcg gtcccgaaat cgtcgccgag
   60



gccctgaagg ttctggactg cctgcggtcc gacttcggcc tcgcggtcga aaccgaacac
  120



gccctgatcg gcggcgcagc ctatgatgcg cacggcacgc cgttccccaa ggaaaccctg
  180



gagctgtgcc gggctgccga ttcgatcctg cttggagcgg tcggcggtcc caaatgggag
  240



ccgttggatt attcgctgcg gcccgagcgg gggctcctgg gcttgcgttc ggagctggaa
  300



ctgttttcca acctgcgccc ggcggtgctc taccctcagc tggtgtcggc ttcgaccctc
  360



aagcccgagg tggtcgccgg cctcgacatc atgatcgtgc gggagctgac cggcggcata
  420



tatttcggca agccgcgcgg tcgtcgcatc aacgaggacg gagagcggga gggctacaac
  480



accctggtat acagcgaatc ggaaatccgc cgcatagccc atagcgcgtt ccagatcgcc
  540



cggaagcgta acaggcgcct gtgcagcatc gacaaggcca atgtgctgga atgcacggaa
  600



ctgtggcgcg aggtggtgat cgaggtcggc aaggactatc ccgacgtggc gctgagccac
  660



atgtacgtgg acaacgccgc gatgcagctg gtccgtaacc cgaagcagtt cgacgtgatg
  720



ctgaccgaca acatgttcgg cgacatcctg tccgactgtg ccgccatgct gaccggctcg
  780



atcggcatgc tgccttcggc ttccctcgcc gagagcggca aggggatgta cgagcccatc
  840



cacggttcgg ccccggatat cgccggccgc ggcatcgcca acccgatcgc caccatcctg
  900



tcgctggcca tgatgttgcg ctacagcttc gatgacgcgg tctcggcaga gcggatcggg
  960



aaggcggtgc agacggcgct ggatcagggt ttccgcacgg cggacatcgc ctcggaaggc
 1020



accgtcgagg tcggtaccgc tgcgatgggc gatgccatcg tcgccgcctt gcgcgccgtc
 1080



tga
 1083













3-64
Sequences




3-64-1
Sequence Number [ID]
64



3-64-2
Molecule Type
AA



3-64-3
Length
360





source 1 . . . 360



3-64-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-64-5
Residues




MTIKIAVLPG DGIGPEIVAE ALKVLDCLRS DFGLAVETEH ALIGGAAYDA HGTPFPKETL
   60



ELCRAADSIL LGAVGGPKWE PLDYSLRPER GLLGLRSELE LFSNLRPAVL YPQLVSASTL
  120



KPEVVAGLDI MIVRELTGGI YFGKPRGRRI NEDGEREGYN TLVYSESEIR RIAHSAFQIA
  180



RKRNRRLCSI DKANVLECTE LWREVVIEVG KDYPDVALSH MYVDNAAMQL VRNPKQFDVM
  240



LTDNMFGDIL SDCAAMLTGS IGMLPSASLA ESGKGMYEPI HGSAPDIAGR GIANPIATIL
  300



SLAMMLRYSF DDAVSAERIG KAVQTALDQG FRTADIASEG TVEVGTAAMG DAIVAALRAV
  360













3-65
Sequences




3-65-1
Sequence Number [ID]
65



3-65-2
Molecule Type
DNA



3-65-3
Length
1477





source 1 . . . 1477



3-65-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Marinobacter algicola




NonEnglishQualifier Value











3-65-5
Residues




atggcgaccc agcagcagca gaacggcgcc tcggcgagcg gcgtcctgga acagttgcgc
   60



gggaagcatg tcctgataac cggtaccacc ggtttccttg gcaaggtagt cctggaaaag
  120



ctgatccgca cagtcccgga catcggcggc atccacctcc tgatccgggg caacaagagg
  180



catccggccg cccgtgaacg gttcttgaac gagatcgcca gcagttcggt cttcgagcgt
  240



ctgcgccacg acgacaacga ggccttcgaa accttcctgg aagaaagggt gcactgtata
  300



accggagagg tcaccgagag tcgtttcggc cttaccccgg agcgcttccg cgcgctggcg
  360



ggtcaggtgg acgccttcat caattcggcc gcctccgtca acttccgcga ggaactggac
  420



aaggcgctga agatcaatac gctgtgcctg gagaatgtcg cggcccttgc tgaactcaac
  480



agtgcgatgg cggtcatcca ggtttcgacc tgctacgtta acggcaagaa tagcgggcag
  540



atcaccgaat cggtcatcaa gcccgcgggg gagtccatcc cgcgtagcac cgatgggtac
  600



tatgaaatcg aagaattggt gcacctgctg caggacaaaa tcagcgatgt gaaggcccga
  660



tactccggga aggttctgga aaaaaaattg gtggacctag gcatccggga agccaataac
  720



tacgggtgga gcgatacata taccttcacc aagtggctgg gcgaacagct cctcatgaag
  780



gccctgagcg gcagatcgct gaccatcgtg cggccgtcga tcatcgagtc ggcattggaa
  840



gagcccagcc cggggtggat tgaaggcgtc aaggtcgccg atgccatcat actggcctac
  900



gcgagggaga aggtatcgct ctttcctggc aagcggagcg gcatcatcga cgtcatccca
  960



gtggatctgg tggccaattc gatcattctg tccctggcgg aggcgctctc cggttcgggc
 1020



cagcggcgta tctatcagtg ctgcagcggc ggctcgaacc ccatctccct cgggaagttc
 1080



atcgactatc tgatggcgga ggcgaagacc aactacgcgg cctacgatca gctgttctac
 1140



cgccgcccca ccaagccgtt cgtggccgtc aaccgcaaac tcttcgacgt cgtcgtgggc
 1200



ggcatgcggg tcccgctctc gatcgcgggc aaagccatgc gcctggcggg acaaaaccgc
 1260



gaactgaagg tcctgaagaa tctggatacg acccggtccc tggccaccat tttcgggttc
 1320



tacaccgctc cggactacat ctttcgcaat gacagcctga tggccctggc ctcgcgcatg
 1380



ggcgagctgg accgcgtgtt gttccccgtt gacgcccgtc agatcgactg gcagctgtat
 1440



ctgtgcaaaa tccacctcgg cgggctgaat cggtacg
 1477













3-66
Sequences




3-66-1
Sequence Number [ID]
66



3-66-2
Molecule Type
AA



3-66-3
Length
55





source 1 . . . 511



3-66-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Marinobacter algicola




NonEnglishQualifier Value











3-66-5
Residues




MATQQQQNGA SASGVLEQLR GKHVLITGTT GFLGKVVLEK LIRTVPDIGG IHLLIRGNKR
   60



HPAARERFLN EIASSSVFER LRHDDNEAFE TFLEERVHCI TGEVTESRFG LTPERFRALA
  120



GQVDAFINSA ASVNFREELD KALKINTLCL ENVAALAELN SAMAVIQVST CYVNGKNSGQ
  180



ITESVIKPAG ESIPRSTDGY YEIEELVHLL QDKISDVKAR YSGKVLEKKL VDLGIREANN
  240



YGWSDTYTFT KWLGEQLLMK ALSGRSLTIV RPSIIESALE EPSPGWIEGV KVADAIILAY
  300



AREKVSLFPG KRSGIIDVIP VDLVANSIIL SLAEALSGSG QRRIYQCCSG GSNPISLGKF
  360



IDYLMAEAKT NYAAYDQLFY RRPTKPFVAV NRKLFDVVVG GMRVPLSIAG KAMRLAGQNR
  420



ELKVLKNLDT TRSLATIFGF YTAPDYIFRN DSLMALASRM GELDRVLFPV DARQIDWQLY
  480



LCKIHLGGLN RYALKERKLY SLRAADTRKK A
  511













3-67
Sequences




3-67-1
Sequence Number [ID]
67



3-67-2
Molecule Type
DNA



3-67-3
Length
1377





source 1 . . . 1377



3-67-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Acinetobacter baylyi




NonEnglishQualifier Value











3-67-5
Residues




atgcgccccc tgcaccccat cgacttcatc ttcctgagcc tggaaaagcg gcagcagccc
   60



atgcacgtcg gcggcctgtt cctgttccag atcccggaca acgcccccga caccttcatc
  120



caggacctgg tcaacgacat ccgcatctcc aagagcatcc cggtgccgcc cttcaacaac
  180



aagctgaacg gcctgttctg ggacgaagac gaggagttcg acctggacca ccatttccgg
  240



cacatcgccc tgccgcatcc cggccgcatc cgggaactgc tgatctacat ctcccaggag
  300



cacagcaccc tgctggaccg cgcgaagccg ctgtggacct gcaacatcat cgaaggcatc
  360



gagggcaacc ggttcgccat gtatttcaag atccaccatg cgatggtcga cggcgtggcc
  420



ggcatgcgcc tgatcgaaaa gtcgctgtcc catgacgtca ccgagaagag catcgtcccg
  480



ccctggtgcg tggaaggcaa gcgggcgaag cgcctgcggg agccgaagac cggcaagatc
  540



aagaagatca tgtcgggcat caagtcccag ctgcaggcca cccccaccgt catccaggaa
  600



ctgtcgcaga ccgtgttcaa ggacatcggc cgcaacccgg accacgtcag ctcgttccag
  660



gccccctgct ccatcctgaa ccagcgggtg tccagctcgc gccggttcgc cgcgcagtcg
  720



ttcgacctgg accgcttccg gaacatcgcg aagtccctga acgtcaccat caacgacgtc
  780



gtgctggccg tgtgcagcgg cgccctgcgc gcgtacctga tgagccacaa ctcgctgccg
  840



tccaagcccc tgatcgcgat ggtcccggcg tcgatccgca acgacgacag cgacgtgtcg
  900



aaccggatca ccatgatcct ggccaacctg gcgacccata aggacgaccc gctgcagcgc
  960



ctggagatca tccgccggag cgtccagaac tcgaagcagc gcttcaagcg gatgacctcc
 1020



gaccagatcc tgaactacag cgcggtcgtg tatggcccgg ccggcctgaa catcatcagc
 1080



ggcatgatgc ccaagcgcca ggccttcaac ctggtcatct cgaacgtgcc gggcccgcgc
 1140



gagccgctgt actggaacgg cgccaagctg gacgcgctgt atcccgcctc catcgtcctg
 1200



gacggccagg ccctgaacat caccatgacc agctacctgg acaagctgga ggtcggcctg
 1260



atcgcgtgcc gcaacgccct gccgcggatg cagaacctgc tgacccatct ggaggaagag
 1320



atccagctgt tcgaaggcgt gatcgcgaag caggaggaca tcaagaccgc caactga
 1377













3-68
Sequences




3-68-1
Sequence Number [ID]
68



3-68-2
Molecule Type
AA



3-68-3
Length
458





source 1 . . . 458



3-68-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Acinetobacter baylyi




NonEnglishQualifier Value





NonEnglishQualifier Value
NonEnglishQualifier Value










3-68-5
Residues




MRPLHPIDFI FLSLEKRQQP MHVGGLFLFQ IPDNAPDTFI QDLVNDIRIS KSIPVPPFNN
   60



KLNGLFWDED EEFDLDHHFR HIALPHPGRI RELLIYISQE HSTLLDRAKP LWTCNIIEGI
  120



EGNRFAMYFK IHHAMVDGVA GMRLIEKSLS HDVTEKSIVP PWCVEGKRAK RLREPKTGKI
  180



KKIMSGIKSQ LQATPTVIQE LSQTVEKDIG RNPDHVSSFQ APCSILNQRV SSSRRFAAQS
  240



FDLDRFRNIA KSLNVTINDV VLAVCSGALR AYLMSHNSLP SKPLIAMVPA SIRNDDSDVS
  300



NRITMILANL ATHKDDPLQR LEIIRRSVQN SKQRFKRMTS DQILNYSAVV YGPAGLNIIS
  360



GMMPKRQAFN LVISNVPGPR EPLYWNGAKL DALYPASIVL DGQALNITMT SYLDKLEVGL
  420



IACRNALPRM QNLLTHLEEE IQLFEGVIAK QEDIKTAN
  458













3-69
Sequences




3-69-1
Sequence Number [ID]
69



3-69-2
Molecule Type
DNA



3-69-3
Length
1428





source 1 . . . 1428



3-69-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Psychrobacter articus




NonEnglishQualifier Value











3-69-5
Residues




atgcgcctgc tgaccgccgt cgaccagctg ttcctgctgc tggagtcccg caagcacccg
   60



atgcacgtgg gcggcctgtt cctgttcgaa ctgccggaga acgccgacat ctcgttcgtc
  120



caccagctgg tgaagcagat gcaggactcc gacgtcccgc ccaccttccc cttcaaccag
  180



gtgctggaac acatgatgtt ctggaaggag gacaagaact tcgacgtcga acaccatctg
  240



caccatgtgg ccctgccgaa gcccgcgcgc gtccgggagc tgctgatgta cgtgtcccgc
  300



gaacacggcc ggctgctgga ccgcgcgatg ccgctgtggg aatgccatgt catcgagggc
  360



atccagccgg aaaccgaggg cagccccgag cggttcgccc tgtatttcaa gatccaccat
  420



tcgctggtcg acggcatcgc cgcgatgcgc ctggtgaaga agagcctgtc gcagtcgccg
  480



aacgaacccg tgaccctgcc gatctggagc ctgatggccc accatcggaa ccagatcgac
  540



gcgatcttcc ccaaggagcg gagcgccctg cgcatcctga aggaacaggt ctcgaccatc
  600



aagccggtgt tcaccgagct gctgaacaac ttcaagaact acaacgacga ctcgtatgtc
  660



tccaccttcg acgcgccccg cagcatcctg aaccgccgga tcagcgcctc gcgccggatc
  720



gccgcgcagt cgtacgacat caagcggttc aacgacatcg ccgaacgcat caacatctcc
  780



aagaacgacg tcgtgctggc cgtgtgcagc ggcgcgatcc gccgctacct gatcagcatg
  840



gacgcgctgc cgagcaagcc cctgatcgcc ttcgtcccga tgtcgctgcg caccgacgac
  900



tccatcgcgg gcaaccagct gtcgttcgtg ctggccaacc tgggcaccca cctggacgac
  960



cccctgtccc ggatcaagct gatccatcgc tccatgaaca acagcaagcg ccggttccgc
 1020



cggatgaacc aggcccaggt catcaactac agcatcgtgt cgtatgcctg ggagggcatc
 1080



aacctggcga ccgacctgtt cccgaagaag caggccttca acctgatcat ctcgaacgtg
 1140



ccgggcagcg agaagcccct gtactggaac ggcgcgcgcc tggaaagcct gtatccggcc
 1200



tcgatcgtgt tcaacggcca ggccatgaac atcaccctgg cgtcctacct ggacaagatg
 1260



gagttcggca tcaccgcctg cagcaaggcg ctgccgcacg tccaggacat gctgatgctg
 1320



atcgaggaag agctgcagct gctggagtcc gtcagcaagg aactggagtt caacggcatc
 1380



accgtgaagg acaagtcgga aaagaagctg aagaagctgg ccccgtga
 1428













3-70
Sequences




3-70-1
Sequence Number [ID]
70



3-70-2
Molecule Type
AA



3-70-3
Length
475





source 1 . . . 475



3-70-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Psychrobacter articus




NonEnglishQualifier Value











3-70-5
Residues




MRLLTAVDQL FLLLESRKHP MHVGGLFLFE LPENADISFV HQLVKQMQDS DVPPTFPFNQ
   60



VLEHMMFWKE DKNFDVEHHL HHVALPKPAR VRELLMYVSR EHGRLLDRAM PLWECHVIEG
  120



IQPETEGSPE RFALYFKIHH SLVDGIAAMR LVKKSLSQSP NEPVTLPIWS LMAHHRNQID
  180



AIFPKERSAL RILKEQVSTI KPVFTELLNN FKNYNDDSYV STFDAPRSIL NRRISASRRI
  240



AAQSYDIKRF NDIAERINIS KNDVVLAVCS GAIRRYLISM DALPSKPLIA FVPMSLRTDD
  300



SIAGNQLSFV LANLGTHLDD PLSRIKLIHR SMNNSKRRFR RMNQAQVINY SIVSYAWEGI
  360



NLATDLFPKK QAFNLIISNV PGSEKPLYWN GARLESLYPA SIVFNGQAMN ITLASYLDKM
  420



EFGITACSKA LPHVQDMLML IEEELQLLES VSKELEFNGI TVKDKSEKKL KKLAP
  475













3-71
Sequences




3-71-1
Sequence Number [ID]
71



3-71-2
Molecule Type
DNA



3-71-3
Length
1386





source 1  . .. 1386



3-71-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Rhodococcus opacus




NonEnglishQualifier Value











3-71-5
Residues




atgtccgtga tgtccccgac cgaggcgatg ttcgtcctgt tcgagacccc gagccacccg
   60



atgcacatgg gcgcgctgga gctgttcgag ccgccgcgcg agtcgggccc ggaccacgcc
  120



cgcctgatgt tcgaggcgct gatctcccag gaaggcgcca gcgacacctt ccgccggcgc
  180



gccgtccggc cgctgcgcgg cgcgtcgtac ccctggtggt ccgtcgacga ccgggtggac
  240



ctgggctatc acgtccgcca taccgccgtg ccgggccggg gccgcatgga ggacctgctg
  300



tcgctggtgt cccagatgca cggcatgccc ctggacccgc agcaccccat gtgggagatc
  360



catgtcatcg aaggcctggc cgacggccgc accgcggtgt tcagcaagat ccatctgtcg
  420



ctgatggacg gcccggccgg cctgcggctg ctgcaccatg cgctgagcac cgacccggac
  480



gcccgcgact gccccgcgcc gtggaccccc ggcgtcagcg gcacctcgcg gcgcgaatcg
  540



gccctgccgg tcgccgcggt gcgggcgggc gtgcgcgccg cgacctccat cgtcggcgtg
  600



ctgcccgccc tggcgaaggt cgcctacgac ggcgtgcggg accagcacct gaccctgccg
  660



ctgcagagcc cgcccaccat gctgaacgtc cccgtgggcc gggcccgcaa gctggccgcg
  720



cggagctggc cgatccggcg cctggtctcg gtggccgcgg ccgcgcgcac caccatcaac
  780



gccgtcgtgc tggcgatgtg ctcgggcgcc ctgcgccact acctggtcga gcagtatgcc
  840



ctgccggaag cgcccctgac cgccatgctg cccgtgccgc tggacctggg cggcaccatg
  900



atcggcccgc gtggccgcga ccacggcgtc ggcgcgatgg tcgtgggcct ggcgaccgac
  960



gaggccgacc ccgccgcgcg gctggcccgc atcagcgagt cggtcgaaca caccaaccgc
 1020



gtgttcggcg cgctgtccca tacccagttc caggtcatgt ccgccctggc gatcagcccg
 1080



atcctgctgg aacccgtccg gcgcttcgtg gacgacaccc cgcccccgtt caacgtgatg
 1140



atctcgtaca tgccgggtcc gtcccggccg cgctattgga acggcgcgcg gctggacgcc
 1200



gtctaccccg cgccgaccgt gctgggcggc caggccctga gcatcaccct gacctcccgc
 1260



agcggccagc tggacgtcgg cgtcgtgggc gaccggcagg ccgtgccgca cctgcagcgc
 1320



atcatcaccc atctggagac ctccctgacc gacctggaaa acgccgtggc cgcgagcggc
 1380



acctga
 1386













3-72
Sequences




3-72-1
Sequence Number [ID]
72



3-72-2
Molecule Type
AA



3-72-3
Length
461





source 1 . . . 461



3-72-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Rhodococcus opacus




NonEnglishQualifier Value











3-72-5
Residues




MSVMSPTEAM FVLFETPSHP MHMGALELFE PPRESGPDHA RLMFEALISQ EGASDTFRRR
   60



AVRPLRGASY PWWSVDDRVD LGYHVRHTAV PGRGRMEDLL SLVSQMHGMP LDPQHPMWEI
  120



HVIEGLADGR TAVFSKIHLS LMDGPAGLRL LHHALSTDPD ARDCPAPWTP GVSGTSRRES
  180



ALPVAAVRAG VRAATSIVGV LPALAKVAYD GVRDQHLTLP LQSPPTMLNV PVGRARKLAA
  240



RSWPIRRLVS VAAAARTTIN AVVLAMCSGA LRHYLVEQYA LPEAPLTAML PVPLDLGGTM
  300



IGPRGRDHGV GAMVVGLATD EADPAARLAR ISESVEHTNR VFGALSHTQF QVMSALAISP
  360



ILLEPVRRFV DDTPPPFNVM ISYMPGPSRP RYWNGARLDA VYPAPTVLGG QALSITLTSR
  420



SGQLDVGVVG DRQAVPHLQR IITHLETSLT DLENAVAASG T
  461













3-73
Sequences




3-73-1
Sequence Number [ID]
73



3-73-2
Molecule Type
DNA



3-73-3
Length
1356





source 1 . . . 1356



3-73-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Rhodococcus opacus




NonEnglishQualifier Value











3-73-5
Residues




atgccggtca ccgactccat cttcctgctg ggcgaaagcc gcgagcaccc gatgcacgtg
   60



ggctccctgg aactgttcac ccccccggac gacgccggcc cggactacgt caagtcgatg
  120



cacgagaccc tgctgaagca taccgacgtg gaccccacct tccgcaagaa gccggcgggc
  180



cccgtcggct cgctgggcaa cgtgtggtgg gccgacgagt ccgacgtcga cctggaatac
  240



cacgtgcgcc atagcgcgct gccggccccc tatcgcgtcc gggaactgct gaccctgacc
  300



tcgcggctgc acggcaccct gctggaccgc catcggccgc tgtgggagat gtacctgatc
  360



gaaggcctga gcgacggccg cttcgccatc tataccaagc tgcaccatag cctgatggac
  420



ggcgtctcgg gcctgcgcct gctgatgcgg accctgtcga ccgacccgga cgtgcgcgac
  480



gccccgcccc cgtggaacct gccgcggccc gccgcggcca acggcgcggc cccggacctg
  540



tggtcggtcg tgaacggcgt ccgccggacc gtcggcgacg tggccggcct ggcgcccgcc
  600



tccctgcgca tcgcgcggac cgcgatgggc cagcacgaca tgcgcttccc gtacgaggcg
  660



ccccggacca tgctgaacgt gccgatcggc ggcgcccgcc ggttcgcggc ccagtcctgg
  720



cccctggaac gcgtccatgc cgtgcggaag gcggccggcg tcagcgtgaa cgacgtcgtg
  780



atggccatgt gcgcgggcgc cctgcgcggc tatctggagg aacagaacgc gctgccggac
  840



gagcccctga tcgcgatggt cccggtgtcc ctgcgggacg aacagcaggc ggacgccggc
  900



ggcaacgccg tcggcgtgac cctgtgcaac ctggcgaccg acgtcgacga ccccgccgag
  960



cgcctgaccg cgatcagcgc ctcgatgtcc cagggcaagg aactgttcgg cagcctgacc
 1020



tcgatgcagg cgctggcctg gtcggcggtg aacatgtccc cgatcgccct gaccccggtc
 1080



cccggcttcg tgcggttcac ccccccgccc ttcaacgtca tcatcagcaa cgtgccgggc
 1140



ccccgcaaga ccatgtactg gaacggctcc cggctggacg gcatctatcc gaccagcgtc
 1200



gtgctggacg gccaggccct gaacatcacc ctgaccacca acggcggcaa cctggacttc
 1260



ggcgtcatcg gctgccgccg gtccgtgccg agcctgcagc gcatcctgtt ctacctggaa
 1320



gcggccctgg gcgagctgga agcggccctg ctgtga
 1356













3-74
Sequences




3-74-1
Sequence Number [ID]
74



3-74-2
Molecule Type
AA



3-74-3
Length
451





source 1 . . . 451



3-74-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Rhodococcus opacus




NonEnglishQualifier Value











3-74-5
Residues




MPVTDSIFLL GESREHPMHV GSLELFTPPD DAGPDYVKSM HETLLKHTDV DPTFRKKPAG
   60



PVGSLGNVWW ADESDVDLEY HVRHSALPAP YRVRELLTLT SRLHGTLLDR HRPLWEMYLI
  120



EGLSDGRFAI YTKLHHSLMD GVSGLRLLMR TLSTDPDVRD APPPWNLPRP AAANGAAPDL
  180



WSVVNGVRRT VGDVAGLAPA SLRIARTAMG QHDMRFPYEA PRTMLNVPIG GARRFAAQSW
  240



PLERVHAVRK AAGVSVNDVV MAMCAGALRG YLEEQNALPD EPLIAMVPVS LRDEQQADAG
  300



GNAVGVTLCN LATDVDDPAE RLTAISASMS QGKELFGSLT SMQALAWSAV NMSPIALTPV
  360



PGFVRFTPPP FNVIISNVPG PRKTMYWNGS RLDGIYPTSV VLDGQALNIT LTTNGGNLDF
  420



GVIGCRRSVP SLQRILFYLE AALGELEAAL L
  451













3-75
Sequences
75



3-75-1
Sequence Number [ID]
DNA



3-75-2
Molecule Type
1395



3-75-3
Length
source 1 .. 1395



3-75-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Rhodococcus opacus




NonEnglishQualifier Value











3-75-5
Residues




atgcccctgc cgatgtcccc cctggactcc atgttcctgc tgggcgaaag ccgcgagcac
   60



ccgatgcacg tgggcggcgt cgaaatcttc cagctgcccg agggcgccga cacctacgac
  120



atgcgggcga tgctggaccg cgccctggcg gacggcgacg gcatcgtcac cccgcggctg
  180



gccaagcgcg cgcgccggtc gttcagctcg ctgggccagt ggtcctggga aaccgtggac
  240



gacatcgacc tgggccacca tatccggcac gacgccctgc cggcccctgg cggcgaggcc
  300



gaactgatgg cgctgtgctc gcgcctgcac ggctccctgc tggaccgcag ccggccgctg
  360



tgggagatgc atctgatcga aggcctgagc gacggccgct tcgccgtcta taccaagatc
  420



caccatgccg tcgcggacgg cgtgaccgcc atgaagatgc tgcggaacgc gctgagcgag
  480



aactcggacg accgcgacgt gccggccccc tggcagccgc gtggcccgcg gccccagcgc
  540



accccctcca gcaagggctt ctccctgagc ggcctggccg gctcgaccct gcggaccgcg
  600



cgcgagaccg tcggcgaagt ggccggcctg gtcccggccc tggcgggcac cgtgagccgg
  660



gccttccgcg accagggcgg cccgctggcc ctgtcggcgc cgaagacccc cttcaacgtc
  720



cccatcaccg gcgcccgcca gttcgccgcg cagtcgtggc cgctggaacg cctgcggctg
  780



gtggccaagc tgtcggactc caccatcaac gacgtcgtgc tggccatgtc gtccggcgcg
  840



ctgcggtcct acctggagga ccagaacgcc ctgccggcgg accccctgat cgcgatggtc
  900



ccggtgtccc tgaagagcca gcgcgaagcc gcgaccggca acaacatcgg cgtcctgatg
  960



tgcaacctgg gcacccacct gcgggagccg gccgaccgcc tggaaaccat ccggaccagc
 1020



atgcgcgagg gcaaggaagc ctatggctcg atgaccgcga cccagatcct ggccatgtcc
 1080



gcgctgggcg ccgcgccgat cggcgccagc atgctgttcg gccataactc gcgcgtccgg
 1140



ccgcccttca acctgatcat ctccaacgtg ccgggcccca gctcgccgct gtactggaac
 1200



ggcgcccgcc tggacgcgat ctatccgctg agcgtccccg tggacggcca gggcctgaac
 1260



atcacctgca cctcgaacga cgacatcatc tccttcggcg tcaccggctg ccggtccgcc
 1320



gtgccggacc tgaagagcat ccccgcgcgc ctgggccatg agctgcgggc cctggaacgc
 1380



gcggtgggca tctga
 1395













3-76
Sequences




3-76-1
Sequence Number [ID]
76



3-76-2
Molecule Type
AA



3-76-3
Length
464





source 1 . . . 464



3-76-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Rhodococcus opacus




NonEnglishQualifier Value











3-76-5
Residues




MPLPMSPLDS MFLLGESREH PMHVGGVEIF QLPEGADTYD MRAMLDRALA DGDGIVTPRL
   60



AKRARRSFSS LGQWSWETVD DIDLGHHIRH DALPAPGGEA ELMALCSRLH GSLLDRSRPL
  120



WEMHLIEGLS DGRFAVYTKI HHAVADGVTA MKMLRNALSE NSDDRDVPAP WQPRGPRPQR
  180



TPSSKGFSLS GLAGSTLRTA RETVGEVAGL VPALAGTVSR AFRDQGGPLA LSAPKTPFNV
  240



PITGARQFAA QSWPLERLRL VAKLSDSTIN DVVLAMSSGA LRSYLEDQNA LPADPLIAMV
  300



PVSLKSQREA ATGNNIGVLM CNLGTHLREP ADRLETIRTS MREGKEAYGS MTATQILAMS
  360



ALGAAPIGAS MLFGHNSRVR PPFNLIISNV PGPSSPLYWN GARLDAIYPL SVPVDGQGLN
  420



ITCTSNDDII SFGVTGCRSA VPDLKSIPAR LGHELRALER AVGI
  464













3-77
Sequences




3-77-1
Sequence Number [ID]
77



3-77-2
Molecule Type
DNA



3-77-3
Length
1407





source 1 . . . 1407



3-77-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Rhodococcus opacus




NonEnglishQualifier Value











3-77-5
Residues




atggccccga ccgactccct gttcctgctg ggcgaatccc gcgagcaccc gatgcacgtg
   60



ggcggcctgg cggtcttcac cccggcggag ggcagctcgg ccgcggacgt ccgcgccatg
  120



ttcgacgccg cgctggtcgg cgaccgggtg gccgcgccgt tccgcaagcg ggcccgccgg
  180



agcgtgacct cgctgggcca gtggggctgg gacaccctgc gcgacgacga ggtcgacctg
  240



gaacaccatg tgcgccggga cgccctgccg cagccgggtg gcatggcgga actgatgacc
  300



ctggtctccc gcctgcatgg caccctgctg gaccgcagcc ggccgctgtg ggagatgcac
  360



ctgatcgaag gcctggccga cggccggtac gcggtgtata ccaagatcca ccatgccctg
  420



gcggacggcg ccagcgcgat gcgcctgctg cgggactcga tgtccgagga cccgcatcgc
  480



cggaacatgc cgaccccctg gcagccgcgc aaccccctgt cggccgtccc ggacgccggc
  540



gtcgcggtga cccccggccc cggcagcgcc ctgcccgcga tggcctggga cgccgcgcgc
  600



tccgccgcgg gcgaagtcgc cggcctgctg ccggccgcgc tgggcaccgt ggaccgggcc
  660



ctgcacggca agggcggcgc cctgtccctg accgcgccgc ataccctgtt caacgtcccc
  720



atcagcggcg cccgccacgt ggccgcgcgg tcgttcccga tcgagcgcat ccggctgctg
  780



gccaagcatg ccgacgcgac catcaacgac atcgtgctga ccatgtgcgc cggcaccctg
  840



cgcgcgtacc tgcacacccg cgacgccctg ccggacaacc ccctgatcgc gatggtcccg
  900



gtgagcctgc gcgcccccga aaccggcacc ggcgaccgcg cccctggcgg caaccgggtc
  960



ggcgtgctga tgtgcaacct ggccacccac ctgccggacc ccgcgcatcg cctggagacc
 1020



gtccggaact gcatgaacga aggcaaggcc gcgctgcagg ccatgtcgcc ggcgcaggtc
 1080



ctggccatgt ccgcgctggg cgccgcgccg ctgggcgtgg agatgttcct gggccgccgg
 1140



ggccccctgc gcccgccctt caacgtcgtg atgtcgaacg tggcgggccc gcgcaccccc
 1200



ctgtactgga acggcgcccg gctggaatcc ctgtatccgc tgagcatccc caccaccggc
 1260



caggccctga acatcacctg cacctccagc gacgaccaga tcgtcttcgg cctgaccggc
 1320



tgccgccgga ccgtgccgga cctgcacccc atgctggacc agctggacgc ggagctggac
 1380



ctgctggaaa ccgcggtcgg cctgtga
 1407













3-78
Sequences




3-78-1
Sequence Number [ID]
78



3-78-2
Molecule Type
AA



3-78-3
Length
468





source 1 . . . 468



3-78-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Rhodococcus opacus




NonEnglishQualifier Value











3-78-5 
Residues




MAPTDSLFLL GESREHPMHV GGLAVFTPAE GSSAADVRAM FDAALVGDRV AAPFRKRARR
   60



SVTSLGQWGW DTLRDDEVDL EHHVRRDALP QPGGMAELMT LVSRLHGTLL DRSRPLWEMH     
  120



LIEGLADGRY AVYTKIHHAL ADGASAMRLL RDSMSEDPHR RNMPTPWQPR NPLSAVPDAG 
  180



VAVTPGPGSA LPAMAWDAAR SAAGEVAGLL PAALGTVDRA LHGKGGALSL TAPHTLFNVP  
  240



ISGARHVAAR SFPIERIRLL AKHADATIND IVLTMCAGTL RAYLHTRDAL PDNPLIAMVP
  300



VSLRAPETGT GDRAPGGNRV GVLMCNLATH LPDPAHRLET VRNCMNEGKA ALQAMSPAQV 
  360



LAMSALGAAP LGVEMFLGRR GPLRPPFNVV ISNVAGPRTP LYWNGARLES LYPLSIPTTG
  420



QALNITCTSS DDQIVFGLTG CRRTVPDLHP MLDQLDAELD LLETAVGL
  468













3-79 
Sequences




3-79-1
Sequence Number [ID]
79



3-79-2
Molecule Type
DNA



3-79-3
Length
11299





misc_feature 1 . . . 11299



3-79-4-1
Features Location/
note = pCM132




Qualifiers





NonEnglishQualifier Value






source 1  . .. 11299



3-79-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-79-5
Residues




gaccctttcc gacgctcacc gggctggttg ccctcgccgc tgggctggcg gccgtctatg
   60



gccctgcaaa cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc
  120



gttgtggata cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca 
  180



cttgaggggc cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc
  240



cggcgacgtg gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt
  300



tcccacagat gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg
  360



gcgcgactac tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca 
  420



gatgaggggc gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt
  480



gcaagggttt ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac
  540



caatatttat aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc
  600



cgaagggggg tgccccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc
  660



ccccaggggc tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agccaagctg
  720



accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg
  780



tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat
  840



cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc
  900



tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat
  960 



actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt
 1020



tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc
 1080



cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt
 1140



gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac
 1200



tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt
 1260



gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct
 1320



gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga
 1380



ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac
 1440



acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg
 1500



agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt
 1560



cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc
 1620



tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg
 1680



gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc
 1740



ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc
 1800



ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag
 1860



cgaggaagcg gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca 
 1920



ttaatgcagc tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat
 1980



taatgtgagt tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg
 2040



tatgttgtgt ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga
 2100



ttacgccaag cttgcatgcc tgcaggtcga ctctagagga tcaattcggc ttccaccgga
 2160



attagcttga aatagtacat aatggatttc cttacgcgaa atacgggcag acatggcctg
 2220



cccggttatt attatttttg acaccagacc aactggtaat ggtagcgacc ggcgctcagc
 2280



tgtaattccg ccgatactga cgggctccag gagtcgtcgc caccaatccc catatggaaa
 2340



ccgtcgatat tcagccatgt gccttcttcc gcgtgcagca gatggcgatg gctggtttcc
 2400



atcagttgct gttgactgta gcggctgatg ttgaactgga agtcgccgcg ccactggtgt
 2460



gggccataat tcaattcgcg cgtcccgcag cgcagaccgt tttcgctcgg gaagacgtac
 2520



ggggtataca tgtctgacaa tggcagatcc cagcggtcaa aacaggcggc agtaaggcgg
 2580



tcgggatagt tttcttgcgg ccctaatccg agccagttta cccgctctgc tacctgcgcc
 2640



agctggcagt tcaggccaat ccgcgccgga tgcggtgtat cgctcgccac ttcaacatca
 2700



acggtaatcg ccatttgacc actaccatca atccggtagg ttttccggct gataaataag
 2760



gttttcccct gatgctgcca cgcgtgagcg gtcgtaatca gcaccgcatc agcaagtgta
 2820



tctgccgtgc actgcaacaa cgctgcttcg gcctggtaat ggcccgccgc cttccagcgt
 2880



tcgacccagg cgttagggtc aatgcgggtc gcttcactta cgccaatgtc gttatccagc
 2940



ggtgcacggg tgaactgatc gcgcagcggc gtcagcagtt gttttttatc gccaatccac
 3000



atctgtgaaa gaaagcctga ctggcggtta aattgccaac gcttattacc cagctcgatg
 3060



caaaaatcca tttcgctggt ggtcagatgc gggatggcgt gggacgcggc ggggagcgtc
 3120



acactgaggt tttccgccag acgccactgc tgccaggcgc tgatgtgccc ggcttctgac
 3180



catgcggtcg cgttcggttg cactacgcgt actgtgagcc agagttgccc ggcgctctcc
 3240



ggctgcggta gttcaggcag ttcaatcaac tgtttacctt gtggagcgac atccagaggc
 3300



acttcaccgc ttgccagcgg cttaccatcc agcgccacca tccagtgcag gagctcgtta
 3360



tcgctatgac ggaacaggta ttcgctggtc acttcgatgg tttgcccgga taaacggaac
 3420



tggaaaaact gctgctggtg ttttgcttcc gtcagcgctg gatgcggcgt gcggtcggca
 3480



aagaccagac cgttcataca gaactggcga tcgttcggcg tatcgccaaa atcaccgccg
 3540



taagccgacc acgggttgcc gttttcatca tatttaatca gcgactgatc cacccagtcc
 3600



cagacgaagc cgccctgtaa acggggatac tgacgaaacg cctgccagta tttagcgaaa
 3660



ccgccaagac tgttacccat cgcgtgggcg tattcgcaaa ggatcagcgg gcgcgtctct
 3720



ccaggtagcg aaagccattt tttgatggac catttcggca cagccgggaa gggctggtct
 3780



tcatccacgc gcgcgtacat cgggcaaata atatcggtgg ccgtggtgtc ggctccgccg
 3840



ccttcatact gcaccgggcg ggaaggatcg acagatttga tccagcgata cagcgcgtcg
 3900



tgattagcgc cgtggcctga ttcattcccc agcgaccaga tgatcacact cgggtgatta 
 3960



cgatcgcgct gcaccattcg cgttacgcgt tcgctcatcg ccggtagcca gcgcggatca
 4020



tcggtcagac gattcattgg caccatgccg tgggtttcaa tattggcttc atccaccaca
 4080



tacaggccgt agcggtcgca cagcgtgtac cacagcggat ggttcggata atgcgaacag
 4140



cgcacggcgt taaagttgtt ctgcttcatc agcaggatat cctgcaccat cgtctgctca
 4200



tccatgacct gaccatgcag aggatgatgc tcgtgacggt taacgcctcg aatcagcaac
 4260



ggcttgccgt tcagcagcag cagaccattt tcaatccgca cctcgcggaa accgacatcg
 4320



caggcttctg cttcaatcag cgtgccgtcg gcggtgtgca gttcaaccac cgcacgatag
 4380



agattcggga tttcggcgct ccacagtttc gggttttcga cgttcagacg tagtgtgacg 
 4440



cgatcggcat aaccaccacg ctcatcgata atttcaccgc cgaaaggcgc ggtgccgctg
 4500



gcgacctgcg tttcaccctg ccataaagaa actgttaccc gtaggtagtc acgcaactcg
 4560



ccgcacatct gaacttcagc ctccagtaca gcgcggctga aatcatcatt aaagcgagtg
 4620



gcaacatgga aatcgctgat ttgtgtagtc ggtttatgca gcaacgagac gtcacggaaa
 4680



atgccgctca tccgccacat atcctgatct tccagataac tgccgtcact ccaacgcagc
 4740



accatcaccg cgaggcggtt ttctccggcg cgtaaaaatg cgctcaggtc aaattcagac 
 4800



ggcaaacgac tgtcctggcc gtaaccgacc cagcgcccgt tgcaccacag atgaaacgcc
 4860



gagttaacgc catcaaaaat aattcgcgtc tggccttcct gtagccagct ttcatcaaca
 4920



ttaaatgtga gcgagtaaca acccgtcgga ttctccgtgg gaacaaacgg cggattgacc
 4980



gtaatgggat aggttacgtt ggtgtagatg ggcgcatcgt aaccgtgcat ctgccagttt
 5040



gaggggacga cgacagtatc ggcctcagga agatcgcact ccagccagct ttccggcacc
 5100



gcttctggtg ccggaaacca ggcaaagcgc cattcgccat tcaggctgcg caactgttgg
 5160



gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct
 5220



gcaaggcgat taagttgggt aacgccaggg ttttcccggt cgacccgtaa tcttacgtca
 5280



gtaacttcca cagtagttca ccaccttttc cctatagatc ttccgtgcag tttaagccga
 5340



attgatcccc gggtaccgag ctcgaatcta gaattccctg ctttcctgat gcaaaaacga
 5400



ggctagttta ccgtatctgt ggggggatgg cttgtagata tgacgacagg aagagtttgt
 5460



agaaacgcaa aaaggccatc cgtcaggatg gccttctgct taatttgatg cctggcagtt
 5520



tatggcgggc gtcctgcccg ccaccctccg ggccgttgct tcgcaacgtt caaatccgct
 5580



cccggcggat ttgtcctact caggagagcg ttcaccgaca aacaacagat aaaacgaaag
 5640



gcccagtctt tcgactgagc ctttcgtttt atttgatgcc tggcagttcc ctactctcgc
 5700



atggggagac cccacactac catcggcgct acggcgtttc acttctgagt tcggcatggg
 5760



gtcaggtggg accaccgcgc tactgccgcc aggcaaattc tgttttatca gaccgcttct
 5820



gcgttctgat ttaatctgta tcaggctgaa aaattcactg gccgtcgttt tacaacgtcg
 5880



tgactgggaa aaccctggcg ttacccaact taatcgcctt gcagcacatc cccctttcgc
 5940



cagctggcgt aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgcgcagcct
 6000



gaatggcgaa tggcgcctga tgcggtattt tctccttacg catctgtgcg gtatttcaca
 6060



ccgcatatgg tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagccccg
 6120



acacccgcca acacccgctg acgcgccctg acgggcttgt ctgctcccgg catccgctta
 6180



cagacaagct gtgaccgtct ccgggagctg catgtgtcag aggttttcac cgtcatcacc
 6240



gaaacgcgcg agacgaaagg gcctcgtgat acgcctattt ttataggtta atgtcatgat
 6300



aataatggtt tcttagcacc ctttctcggt ccttcaacgt tcctgacaac gagcctcctt
 6360



ttcgccaatc catcgacaat caccgcgagt ccctgctcga acgctgcgtc cggaccggct
 6420



tcgtcgaagg cgtctatcgc ggcccgcaac agcggcgaga gcggagcctg ttcaacggtg
 6480



ccgccgcgct cgccggcatc gctgtcgccg gcctgctcct caagcacggc cccaacagtg
 6540



aagtagctga ttgtcatcag cgcattgacg gcgtccccgg ccgaaaaacc cgcctcgcag
 6600



aggaagcgaa gctgcgcgtc ggccgtttcc atctgcggtg cgcccggtcg cgtgccggca
 6660



tggatgcgcg cgccatcgcg gtaggcgagc agcgcctgcc tgaagctgcg ggcattcccg
 6720



atcagaaatg agcgccagtc gtcgtcggct ctcggcaccg aatgcgtatg attctccgcc
 6780



agcatggctt cggccagtgc gtcgagcagc gcccgcttgt tcctgaagtg ccagtaaagc
 6840



gccggctgct gaacccccaa ccgttccgcc agtttgcgtg tcgtcagacc gtctacgccg
 6900



acctcgttca acaggtccag ggcggcacgg atcactgtat tcggctgcaa ctttgtcatg
 6960



attgacactt tatcactgat aaacataata tgtccaccaa cttatcagtg ataaagaatc
 7020



cgcgcgttca atcggaccag cggaggctgg tccggaggcc agacgtgaaa cccaacatac
 7080



ccctgatcgt aattctgagc actgtcgcgc tcgacgctgt cggcatcggc ctgattatgc
 7140



cggtgctgcc gggcctcctg cgcgatctgg ttcactcgaa cgacgtcacc gcccactatg
 7200



gcattctgct ggcgctgtat gcgttggtgc aatttgcctg cgcacctgtg ctgggcgcgc
 7260



tgtcggatcg tttcgggcgg cggccaatct tgctcgtctc gctggccggc gccactgtcg
 7320



actacgccat catggcgaca gcgcctttcc tttgggttct ctatatcggg cggatcgtgg
 7380



ccggcatcac cggggcgact ggggcggtag ccggcgctta tattgccgat gacctgcagg
 7440



gggggggggg cgctgaggtc tgcctcgtga agaaggtgtt gctgactcat accaggcctg
 7500



aatcgcccca tcatccagcc agaaagtgag ggagccacgg ttgatgagag ctttgttgta
 7560



ggtggaccag ttggtgattt tgaacttttg ctttgccacg gaacggtctg cgttgtcggg
 7620



aagatgcgtg atctgatcct tcaactcagc aaaagttcga tttattcaac aaagccgccg
 7680



tcccgtcaag tcagcgtaat gctctgccag tgttacaacc aattaaccaa ttctgattag
 7740



aaaaactcat cgagcatcaa atgaaactgc aatttattca tatcaggatt atcaatacca
 7800



tatttttgaa aaagccgttt ctgtaatgaa ggagaaaact caccgaggca gttccatagg
 7860



atggcaagat cctggtatcg gtctgcgatt ccgactcgtc caacatcaat acaacctatt
 7920



aatttcccct cgtcaaaaat aaggttatca agtgagaaat caccatgagt gacgactgaa
 7980



tccggtgaga atggcaaaag cttatgcatt tctttccaga cttgttcaac aggccagcca
 8040



ttacgctcgt catcaaaatc actcgcatca accaaaccgt tattcattcg tgattgcgcc
 8100



tgagcgagac gaaatacgcg atcgctgtta aaaggacaat tacaaacagg aatcgaatgc
 8160



aaccggcgca ggaacactgc cagcgcatca acaatatttt cacctgaatc aggatattct
 8220



tctaatacct ggaatgctgt tttcccgggg atcgcagtgg tgagtaacca tgcatcatca
 8280



ggagtacgga taaaatgctt gatggtcgga agaggcataa attccgtcag ccagtttagt
 8340



ctgaccatct catctgtaac atcattggca acgctacctt tgccatgttt cagaaacaac
 8400



tctggcgcat cgggcttccc atacaatcga tagattgtcg cacctgattg cccgacatta
 8460 



tcgcgagccc atttataccc atataaatca gcatccatgt tggaatttaa tcgcggcctc
 8520



gagcaagacg tttcccgttg aatatggctc ataacacccc ttgtattact gtttatgtaa
 8580



gcagacagtt ttattgttca tgatgatata tttttatctt gtgcaatgta acatcagaga
 8640



ttttgagaca caacgtggct ttcccccccc cccctgcagg tccgacacgg ggatggatgg
 8700



cgttcccgat catggtcctg cttgcttcgg gtggcatcgg aatgccggcg ctgcaagcaa
 8760



tgttgtccag gcaggtggat gaggaacgtc aggggcagct gcaaggctca ctggcggcgc
 8820



tcaccagcct gacctcgatc gtcggacccc tcctcttcac ggcgatctat gcggcttcta
 8880



taacaacgtg gaacgggtgg gcatggattg caggcgctgc cctctacttg ctctgcctgc
 8940



cggcgctgcg tcgcgggctt tggagcggcg cagggcaacg agccgatcgc tgatcgtgga
 9000



aacgataggc ctatgccatg cgggtcaagg cgacttccgg caagctatac gcgccctaga
 9060



attgtcaatt ttaatcctct gtttatcggc agttcgtaga gcgcgccgtg cgtcccgagc
 9120



gatactgagc gaagcaagtg cgtcgagcag tgcccgcttg ttcctgaaat gccagtaaag
 9180



cgctggctgc tgaaccccca gccggaactg accccacaag gccctagcgt ttgcaatgca
 9240



ccaggtcatc attgacccag gcgtgttcca ccaggccgct gcctcgcaac tcttcgcagg
 9300



cttcgccgac ctgctcgcgc cacttcttca cgcgggtgga atccgatccg cacatgaggc
 9360



ggaaggtttc cagcttgagc gggtacggct cccggtgcga gctgaaatag tcgaacatcc
 9420



gtcgggccgt cggcgacagc ttgcggtact tctcccatat gaatttcgtg tagtggtcgc
 9480



cagcaaacag cacgacgatt tcctcgtcga tcaggacctg gcaacgggac gttttcttgc
 9540



cacggtccag gacgcggaag cggtgcagca gcgacaccga ttccaggtgc ccaacgcggt
 9600



cggacgtgaa gcccatcgcc gtcgcctgta ggcgcgacag gcattcctcg gccttcgtgt
 9660



aataccggcc attgatcgac cagcccaggt cctggcaaag ctcgtagaac gtgaaggtga
 9720



tcggctcgcc gataggggtg cgcttcgcgt actccaacac ctgctgccac accagttcgt
 9780



catcgtcggc ccgcagctcg acgccggtgt aggtgatctt cacgtccttg ttgacgtgga
 9840



aaatgacctt gttttgcagc gcctcgcgcg ggattttctt gttgcgcgtg gtgaacaggg
 9900



cagagcgggc cgtgtcgttt ggcatcgctc gcatcgtgtc cggccacggc gcaatatcga
 9960



acaaggaaag ctgcatttcc ttgatctgct gcttcgtgtg tttcagcaac gcggcctgct
10020



tggcctcgct gacctgtttt gccaggtcct cgccggcggt ttttcgcttc ttggtcgtca
10080



tagttcctcg cgtgtcgatg gtcatcgact tcgccaaacc tgccgcctcc tgttcgagac
10140



gacgcgaacg ctccacggcg gccgatggcg cgggcagggc agggggagcc agttgcacgc
10200



tgtcgcgctc gatcttggcc gtagcttgct ggaccatcga gccgacggac tggaaggttt
10260



cgcggggcgc acgcatgacg gtgcggcttg cgatggtttc ggcatcctcg gcggaaaacc
10320



ccgcgtcgat cagttcttgc ctgtatgcct tccggtcaaa cgtccgattc attcaccctc
10380



cttgcgggat tgccccgact cacgccgggg caatgtgccc ttattcctga tttgacccgc
10440



ctggtgcctt ggtgtccaga taatccacct tatcggcaat gaagtcggtc ccgtagaccg
10500



tctggccgtc cttctcgtac ttggtattcc gaatcttgcc ctgcacgatt accagctccg
10560



cgaagtcgct cttcttgatg gagcgcatgg ggacgtgctt ggcaatcacg cgcacccccc
10620



ggccgtttta gcggctaaaa aagtcatggc tctgccctcg ggcggaccac gcccatcatg
10680



accttgccaa gctcgtcctg cttctcttcg atcttcgcca gcagggcgag gatcgtggca
10740



tcaccgaacc gcgccgtgcg cgggtcgtcg gtgagccaga gtttcagcag gccgcccagg
10800



cggcccaggt cgccattgat gcgggccagc tcgcggacgt gctcatagtc cacgacgccc
10860



gtgattttgt agccctggcc gacggccagc aggtaggcct acaggctcat gccggccgcc
10920



gccgcctttt cctcaatcgc tcttcgttcg tctggaaggc agtacacctt gataggtggg
10980



ctgcccttcc tggttggctt ggtttcatca gccatccgct tgccctcatc tgttacgccg
11040



gcggtagccg gccagcctcg cagagcagga ttcccgttga gcaccgccag gtgcgaataa
11100



gggacagtga agaaggaaca cccgctcgcg ggtgggccta cttcacctat cctgcccggc
11160



tgacgccgtt ggatacacca aggaaagtct acacgaaccc tttggcaaaa tcctgtatat
11220



cgtgcgaaaa aggatggata taccgaaaaa atcgctataa tgaccccgaa gcagggttat
11280



gcagcggaaa agatccgtc
11299













3-80
Sequences




3-80-1
Sequence Number [ID]
80



3-80-2
Molecule Type
DNA



3-80-3
Length
7341



3-80-4-1
Features Location/
misc_feature 1 . . . 7341




Qualifiers
note = pJSvec




NonEnglishQualifier Value






source 1 . . . 7341



3-80-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-80-5
Residues




gaccctttcc gacgctcacc gggctggttg ccctcgccgc tgggctggcg gccgtctatg
   60



gccctgcaaa cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc
  120



gttgtggata cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca
  180



cttgaggggc cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc
  240



cggcgacgtg gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt
  300



tcccacagat gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg 
  360



gcgcgactac tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca
  420



gatgaggggc gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt
  480



gcaagggttt ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac
  540



caatatttat aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc
  600



cgaagggggg tgccccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc
  660



ccccaggggc tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agccaagctg
  720



accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg
  780



tgagcgtggg tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat
  840



cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc
  900



tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat
  960



actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt
 1020



tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag ctgcagaccc
 1080



cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt
 1140



gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac
 1200



tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt
 1260



gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct
 1320



gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga
 1380



ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac
 1440



acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg
 1500



agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt
 1560



cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc
 1620



tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg
 1680



gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc
 1740



ttttgctcac atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc
 1800



ctttgagtga gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag
 1860



cgaggaagcg gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca
 1920



ttaatgcagc tggcaggaag cggcgatggc ggagctgaat tacattccca accgcgtggc
 1980



acaacaactg gcgggcaaac agtcgttgct gattggcgtt gccacctcca gtctggccct
 2040



gcacgcgccg tcgcaaattg tcgcggcgat taaatctcgc gccgatcaac tgggtgccag
 2100



cgtggtggtg tcgatggtag aacgaagcgg cgtcgaagcc tgtaaagcgg cggtgcacaa
 2160



tcttctcgcg caacgcgtca gtgggctgat cattaactat ccgctggatg accaggatgc
 2220



cattgctgtg gaagctgcct gcactaatgt tccggcgtta tttcttgatg tctctgacca
 2280



gacacccatc aacagtatta ttttctccca tgaagacggt acgcgactgg gcgtggagca
 2340



tctggtcgca ttgggtcacc agcaaatcgc gctgttagcg ggcccattaa gttctgtctc
 2400



ggcgcgtctg cgtctggctg gctggcataa atatctcact cgcaatcaaa ttcagccgat
 2460



agcggaacgg gaaggcgact ggagtgccat gtccggtttt caacaaacca tgcaaatgct
 2520



gaatgagggc atcgttccca ctgcgatgct ggttgccaac gatcagatgg cgctgggcgc
 2580



aatgcgcgcc attaccgagt ccgggctgcg cgttggtgcg gatatctcgg tagtgggata 
 2640



cgacgatacc gaagacagct catgttatat cccgccgtca accaccatca aacaggattt
 2700



tcgcctgctg gggcaaacca gcgtggaccg cttgctgcaa ctctctcagg gccaggcggt
 2760



gaagggcaat cagctgttgc ccgtctcact ggtgaaaaga aaaaccaccc tggcgcccaa
 2820



tacgcaaacc gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacaggt
 2880



ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtgagttag cgcgaattga
 2940



tctggtttga cagcttatca tcgactgcac ggtgcaccaa tgcttctggc gtcaggcagc
 3000



catcggaagc tgtggtatgg ctgtgcaggt ctgaaatcac tgcataattc gtgtcgctca 
 3060



aggcgcactc ccgttctgga taatgttttt tgcgccgaca tcataacggt tctggcaaat
 3120



attctgaaat gagctgttga caattaatca tccggctcgt ataatgtgtg gaattgtgag
 3180



cggataacaa tttcacacag gaaacagcgc cgctgagaaa aagcgaagcg gcactgctct
 3240



ttaacaattt atcagacaat ctgtgtgggc actcgaccgg aattatcgat taactttatt
 3300



attaaaaatt aaagaggtat atattaatgt atcgattaaa taaggaggaa taaacccaga 
 3360



acgcagaagc ggtctgataa aacagaattt gcctggcggc agtagcgcgg tggtcccacc
 3420



tgaccccatg ccgaactcag aagtgaaacg ccgtagcgcc gatggtagtg tggggtctcc
 3480



ccatgcgaga gtagggaact gccaggcatc aaataaaacg aaaggctcag tcgaaagact
 3540



gggcctttcg ttttatctgt tgtttgtcgg tgaacgctct cctgagtagg acaaatcttg
 3600



taggtggacc agttggtgat tttgaacttt tgctttgcca cggaacggtc tgcgttgtcg
 3660



ggaagatgcg tgatctgatc cttcaactca gcaaaagttc gatttattca acaaagccgc
 3720



cgtcccgtca agtcagcgta atgctctgcc agtgttacaa ccaattaacc aattctgatt
 3780



agaaaaactc atcgagcatc aaatgaaact gcaatttatt catatcagga ttatcaatac
 3840



catatttttg aaaaagccgt ttctgtaatg aaggagaaaa ctcaccgagg cagttccata
 3900



ggatggcaag atcctggtat cggtctgcga ttccgactcg tccaacatca atacaaccta
 3960



ttaatttccc ctcgtcaaaa ataaggttat caagtgagaa atcaccatga gtgacgactg
 4020



aatccggtga gaatggcaaa agcttatgca tttctttcca gacttgttca acaggccagc
 4080



cattacgctc gtcatcaaaa tcactcgcat caaccaaacc gttattcatt cgtgattgcg
 4140



cctgagcgag acgaaatacg cgatcgctgt taaaaggaca attacaaaca ggaatcgaat
 4200



gcaaccggcg caggaacact gccagcgcat caacaatatt ttcacctgaa tcaggatatt
 4260



cttctaatac ctggaatgct gttttcccgg ggatcgcagt ggtgagtaac catgcatcat
 4320



caggagtacg gataaaatgc ttgatggtcg gaagaggcat aaattccgtc agccagttta
 4380



gtctgaccat ctcatctgta acatcattgg caacgctacc tttgccatgt ttcagaaaca
 4440



actctggcgc atcgggcttc ccatacaatc gatagattgt cgcacctgat tgcccgacat
 4500



tatcgcgagc ccatttatac ccatataaat cagcatccat gttggaattt aatcgcggcc 
 4560



tcgagcaaga cgtttcccgt tgaatatggc tcataacacc ccttgtatta ctgtttatgt
 4620



aagcagacag ttttattgtt catgatgata tatttttatc ttgtgcaatg taacatcaga
 4680



gattttgaga cacaacgtgg ctttcccccc cccccctgca ggtccgacac ggggatggat
 4740



ggcgttcccg atcatggtcc tgcttgcttc gggtggcatc ggaatgccgg cgctgcaagc
 4800



aatgttgtcc aggcaggtgg atgaggaacg tcaggggcag ctgcaaggct cactggcggc
 4860



gctcaccagc ctgacctcga tcgtcggacc cctcctcttc acggcgatct atgcggcttc
 4920



tataacaacg tggaacgggt gggcatggat tgcaggcgct gccctctact tgctctgcct
 4980



gccggcgctg cgtcgcgggc tttggagcgg cgcagggcaa cgagccgatc gctgatcgtg
 5040



gaaacgatag gcctatgcca tgcgggtcaa ggcgacttcc ggcaagctat acgcgcccta
 5100



gaattgtcaa ttttaatcct ctgtttatcg gcagttcgta gagcgcgccg tgcgtcccga
 5160



gcgatactga gcgaagcaag tgcgtcgagc agtgcccgct tgttcctgaa atgccagtaa
 5220



agcgctggct gctgaacccc cagccggaac tgaccccaca aggccctagc gtttgcaatg
 5280



caccaggtca tcattgaccc aggcgtgttc caccaggccg ctgcctcgca actcttcgca
 5340



ggcttcgccg acctgctcgc gccacttctt cacgcgggtg gaatccgatc cgcacatgag
 5400



gcggaaggtt tccagcttga gcgggtacgg ctcccggtgc gagctgaaat agtcgaacat
 5460



ccgtcgggcc gtcggcgaca gcttgcggta cttctcccat atgaatttcg tgtagtggtc
 5520



gccagcaaac agcacgacga tttcctcgtc gatcaggacc tggcaacggg acgttttctt 
 5580



gccacggtcc aggacgcgga agcggtgcag cagcgacacc gattccaggt gcccaacgcg
 5640



gtcggacgtg aagcccatcg ccgtcgcctg taggcgcgac agccattcct cggccttcgt
 5700



gtaataccgg ccattgatcg accagcccag gtcctggcaa agctcgtaga acgtgaaggt
 5760



gatcggctcg ccgatagggg tgcgcttcgc gtactccaac acctgctgcc acaccagttc
 5820



gtcatcgtcg gcccgcagct cgacgccggt gtaggtgatc ttcacgtcct tgttgacgtg
 5880



gaaaatgacc ttgttttgca gcgcctcgcg cgggattttc ttgttgcgcg tggtgaacag
 5940



ggcagagcgg gccgtgtcgt ttggcatcgc tcgcatcgtg tccggccacg gcgcaatatc
 6000



gaacaaggaa agctgcattt ccttgatctg ctgcttcgtg tgtttcagca acgcggcctg
 6060



cttggcctcg ctgacctgtt ttgccaggtc ctcgccggcg gtttttcgct tcttggtcgt
 6120



catagttcct cgcgtgtcga tggtcatcga cttcgccaaa cctgccgcct cctgttcgag
 6180



acgacgcgaa cgctccacgg cggccgatgg cgcgggcagg gcagggggag ccagttgcac
 6240



gctgtcgcgc tcgatcttgg ccgtagcttg ctggaccatc tcggcatcct acgtgaaggt
 6300



ttcgcggggc gcacgcatga cggtgcggct tgcgatggtt aacgtccgat cggcggaaaa
 6360



ccccgcgtcg atcagttctt gcctgtatgc cttccggtca ccttattcct tcattcaccc
 6420



tccttgcggg attgccccga ctcacgccgg ggcaatgtgc atgaagtcgg gatttgaccc
 6480



gcctggtgcc ttggtgtcca gataatccac cttatcggca ccctgcacga tcccgtagac
 6540



cgtctggccg tccttctcgt acttggtatt ccgaatcttg ttggcaatca ataccagctc
 6600



cgcgaagtcg ctcttcttga tggagcgcat ggggacgtgc cgggcggacc cgcgcacccc
 6660



ccggccgttt tagcggctaa aaaagtcatg gctctgccct cagcagggcg acgcccatca
 6720



tgaccttgcc aagctcgtcc tgcttctctt cgatcttcgc gagtttcagc aggatcgtgg
 6780



catcaccgaa ccgcgccgtg cgcgggtcgt cggtgagcca gtgctcatgc aggccgccca
 6840



ggcggcccag gtcgccattg atgcgggcca gctcgcggac gtgctcatag tccacgacgc
 6900



ccgtgatttt gtagccctgg ccgacggcca gcaggtaggc ctacaggctc atgccggccg
 6960



ccgccgcctt ttcctcaatc gctcttcgtt cgtctggaag gcagtacacc ttgataggtg
 7020



ggctgccctt cctggttggc ttggtttcat cagccatccg cttgccctca tctgttacgc
 7080



cggcggtagc cggccagcct cgcagagcag gattcccgtt gagcaccgcc aggtgcgaat
 7140



aagggacagt gaagaaggaa cacccgctcg cgggtgggcc tacttcacct atcctgcccg
 7200



gctgacgccg ttggatacac caaggaaagt ctacacgaac cctttggcaa aatcctgtat
 7260



atcgtgcgaa aaaggatgga tataccgaaa aaatcgctat aatgaccccg aagcagggtt
 7320



atgcagcgga aaagatccgt c
 7341













3-81      
Sequences




3-81-1  
Sequence Number [ID]
81



3-81-2 
Molecule Type   
DNA



3-81-3
Length
10705



3-81-4-1
Feature Location/
misc_feature 1 . . . 10705




Qualifiers
note = pMZT3




NonEnglishQualifier Value






source 1 . . . 10705



3-81-4-2
Feature Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-81-5 
Residues




tcaccctgtc gggcaatgcc gaggcattct ggcagcagcg ccccctggcc tgtagtggat
   60



tacgtgccgg tctgttccat cctaccaccg gctattcact gccgctggcg gttgccgtgg
  120



ccgaccgcct gagcgcactt gatgtcttta cgtcggcctc aattcaccag gctattaggc
  180



attttgcccg cgagcgctgg cagcagcagc gctttttccg catgctgaat cgcatgctgt
  240



ttttagccgg acccgccgat tcacgctggc gggttatgca gcgtttttat ggtttacctg
  300



aagatttaat tgcccgtttt tatgcgggaa aactcacgct gaccgatcgg ctacgtattc 
  360



tgagcggcaa gccgcctgtt ccggtattag cagcattgca agccattatg acgactcatc 
  420



gttaagagac agaacgaagt gtgaccagaa cgcagaagcg gtctgataaa acagaatttg
  480



cctggcggca gtagcgcggt ggtcccacct gaccccatgc cgaactcaga agtgaaacgc 
  540



cgtagcgccg atggtagtgt ggggtctccc catgcgagag tagggaactg ccaggcatca  
  600



aataaaacga aaggctcagt cgaaagactg ggcctttcgt tttatctgtt gtttgtcggt
  660



gaacgctctc ctgagtagga caaatcttgt aggtggacca gttggtgatt ttgaactttt
  720



gctttgccac ggaacggtct gcgttgtcgg gaagatgcgt gatctgatcc ttcaactcag
  780



caaaagttcg atttattcaa caaagccgcc gtcccgtcaa gtcagcgtaa tgctctgcca
  840



gtgttacaac caattaacca attctgatta gaaaaactca tcgagcatca aatgaaactg
  900



caatttattc atatcaggat tatcaatacc atatttttga aaaagccgtt tctgtaatga  
  960



aggagaaaac tcaccgaggc agttccatag gatggcaaga tcctggtatc ggtctgcgat 
 1020



tccgactcgt ccaacatcaa tacaacctat taatttcccc tcgtcaaaaa taaggttatc
 1080



aagtgagaaa tcaccatgag tgacgactga atccggtgag aatggcaaaa gcttatgcat
 1140



ttctttccag acttgttcaa caggccagcc attacgctcg tcatcaaaat cactcgcatc
 1200



aaccaaaccg ttattcattc gtgattgcgc ctgagcgaga cgaaatacgc gatcgctgtt
 1260 



aaaaggacaa ttacaaacag gaatcgaatg caaccggcgc aggaacactg ccagcgcatc 
 1320 



aacaatattt tcacctgaat caggatattc ttctaatacc tggaatgctg ttttcccggg
 1380



gatcgcagtg gtgagtaacc atgcatcatc aggagtacgg ataaaatgct tgatggtcgg
 1440



aagaggcata aattccgtca gccagtttag tctgaccatc tcatctgtaa catcattggc
 1500



aacgctacct ttgccatgtt tcagaaacaa ctctggcgca tcgggcttcc catacaatcg
 1560



atagattgtc gcacctgatt gcccgacatt atcgcgagcc catttatacc catataaatc
 1620



agcatccatg ttggaattta atcgcggcct cgagcaagac gtttcccgtt gaatatggct
 1680 



cataacaccc cttgtattac tgtttatgta agcagacagt tttattgttc atgatgatat 
 1740



atttttatct tgtgcaatgt aacatcagag attttgagac acaacgtggc tttccccccc
 1800 



ccccctgcag gtccgacacg gggatggatg gcgttcccga tcatggtcct gcttgcttcg
 1860



ggtggcatcg gaatgccggc gctgcaagca atgttgtcca ggcaggtgga tgaggaacgt
 1920



caggggcagc tgcaaggctc actggcggcg ctcaccagcc tgacctcgat cgtcggaccc 
 1980



ctcctcttca cggcgatcta tgcggcttct ataacaacgt ggaacgggtg ggcatggatt
 2040



gcaggcgctg ccctctactt gctctgcctg ccggcgctgc gtcgcgggct ttggagcggc
 2100



gcagggcaac gagccgatcg ctgatcgtgg aaacgatagg cctatgccat gcgggtcaag
 2160



gcgacttccg gcaagctata cgcgccctag aattgtcaat tttaatcctc tgtttatcgg
 2220



cagttcgtag agcgcgccgt gcgtcccgag cgatactgag cgaagcaagt gcgtcgagca
 2280



gtgcccgctt gttcctgaaa tgccagtaaa gcgctggctg ctgaaccccc agccggaact
 2340



gaccccacaa ggccctagcg tttgcaatgc accaggtcat cattgaccca ggcgtgttcc
 2400



accaggccgc tgcctcgcaa ctcttcgcag gcttcgccga cctgctcgcg ccacttcttc
 2460



acgcgggtgg aatccgatcc gcacatgagg cggaaggttt ccagcttgag cgggtacggc 
 2520



tcccggtgcg agctgaaata gtcgaacatc cgtcgggccg tcggcgacag cttgcggtac
 2580



ttctcccata tgaatttcgt gtagtggtcg ccagcaaaca gcacgacgat ttcctcgtcg 
 2640



atcaggacct ggcaacggga cgttttcttg ccacggtcca ggacgcggaa gcggtgcagc 
 2700



agcgacaccg attccaggtg cccaacgcgg tcggacgtga agcccatcgc cgtcgcctgt
 2760



aggcgcgaca ggcattcctc ggccttcgtg taataccggc cattgatcga ccagcccagg
 2820



tcctggcaaa gctcgtagaa cgtgaaggtg atcggctcgc cgataggggt gcgcttcgcg
 2880



tactccaaca cctgctgcca caccagttcg tcatcgtcgg cccgcagctc gacgccggtg
 2940



taggtgatct tcacgtcctt gttgacgtgg aaaatgacct tgttttgcag cgcctcgcgc
 3000



gggattttct tgttgcgcgt ggtgaacagg gcagagcggg ccgtgtcgtt tggcatcgct
 3060



cgcatcgtgt ccggccacgg cgcaatatcg aacaaggaaa gctgcatttc cttgatctgc
 3120



tgcttcgtgt gtttcagcaa cgcggcctgc ttggcctcgc tgacctgttt tgccaggtcc
 3180



tcgccggcgg tttttcgctt cttggtcgtc atagttcctc gcgtgtcgat ggtcatcgac
 3240



ttcgccaaac ctgccgcctc ctgttcgaga cgacgcgaac gctccacggc ggccgatggc
 3300



gcgggcaggg cagggggagc cagttgcacg ctgtcgcgct cgatcttggc cgtagcttgc
 3360



tggaccatcg agccgacgga ctggaaggtt tcgcggggcg cacgcatgac ggtgcggctt
 3420



gcgatggttt cggcatcctc ggcggaaaac cccgcgtcga tcagttcttg cctgtatgcc
 3480



ttccggtcaa acgtccgatt cattcaccct ccttgcggga ttgccccgac tcacgccggg 
 3540



gcaatgtgcc cttattcctg atttgacccg cctggtgcct tggtgtccag ataatccacc
 3600



ttatcggcaa tgaagtcggt cccgtagacc gtctggccgt ccttctcgta cttggtattc
 3660



cgaatcttgc cctgcacgaa taccagctcc gcgaagtcgc tcttcttgat ggagcgcatg
 3720



gggacgtgct tggcaatcac gcgcaccccc cggccgtttt agcggctaaa aaagtcatgg
 3780



ctctgccctc gggcggacca cgcccatcat gaccttgcca agctcgtcct gcttctcttc
 3840



gatcttcgcc agcagggcga ggatcgtggc atcaccgaac cgcgccgtgc gcgggtcgtc
 3900



ggtgagccag agtttcagca ggccgcccag gcggcccagg tcgccattga tgcgggccag
 3960



ctcgcggacg tgctcatagt ccacgacgcc cgtgattttg tagccctggc cgacggccag
 4020 



caggtaggcc tacaggctca tgccggccgc cgccgccttt tcctcaatcg ctcttcgttc
 4080



gtctggaagg cagtacacct tgataggtgg gctgcccttc ctggttggct tggtttcatc
 4140



agccatccgc ttgccctcat ctgttacgcc ggcggtagcc ggccagcctc gcagagcagg
 4200



attcccgttg agcaccgcca ggtgcgaata agggacagtg aagaaggaac acccgctcgc
 4260



gggtgggcct acttcaccta tcctgcccgg ctgacgccgt tggatacacc aaggaaagtc
 4320



tacacgaacc ctttggcaaa atcctgtata tcgtgcgaaa aaggatggat ataccgaaaa
 4380



aatcgctata atgaccccga agcagggtta tgcagcggaa aagatccgtc gaccctttcc
 4440



gacgctcacc gggctggttg ccctcgccgc tgggctggcg gccgtctatg gccctgcaaa
 4500



cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata
 4560



cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc
 4620



cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg
 4680



gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt tcccacagat
 4740



gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac
 4800



tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 
 4860



gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt
 4920



ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat
 4980



aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg
 5040



tgccccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc
 5100



tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agccaagctg accacttctg
 5160



cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg tgagcgtggg
 5220



tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat cgtagttatc
 5280



tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt
 5340



gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt
 5400



gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc
 5460



atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag
 5520



atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa
 5580



aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg
 5640



aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt gtagccgtag
 5700



ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg
 5760



ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga
 5820



tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc
 5880



ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc
 5940



acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga
 6000 



gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt  
 6060



cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg
 6120



aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac 
 6180



atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga
 6240



gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg
 6300



gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc
 6360



tggcagccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc
 6420



tgcgatgcag atccggaaca taatggtgca gggcgctgac tttatagcta gctcagccct
 6480



tggtacaatg ctagcgagca accaacactt aaagaggaga aaatgtatcc gtttataagg
 6540



acagcccgaa tgacggtctg cgcaaaaaaa cacgttcatc tcactcgcga tgctgcggag
 6600



cagttactgg ctgatattga tcgacgcctt gatcagttat tgcccgtgga gggagaacgg
 6660



gatgttgtgg gtgccgcgat gcgtgaaggt gcgctggcac cgggaaaacg tattcgcccc 
 6720



atgttgctgt tgctgaccgc ccgcgatctg ggttgcgctg tcagccatga cggattactg
 6780



gatttggcct gtgcggtgga aatggtccac gcggcttcgc tgatccttga cgatatgccc
 6840



tgcatggacg atgcgaagct gcggcgcgga cgccctacca ttcattctca ttacggagag
 6900



catgtggcaa tactggcggc ggttgccttg ctgagtaaag cctttggcgt aattgccgat
 6960



gcagatggcc tcacgccgct ggcaaaaaat cgggcggttt ctgaactgtc aaacgccatc
 7020



ggcatgcaag gattggttca gggtcagttc aaggatctgt ctgaagggga taagccgcgc
 7080



agcgctgaag ctattttgat gacgaatcac tttaaaacca gcagcgtgtt ttgtgcctcc
 7140



atgcagatgg cctcgattgt tgcgaatgcc tccagcgaag cgcgtgattg cctgcatcgt
 7200



ttttcacttg atcttggtca ggcatttcaa ctgctggacg atttgaccga tggcatgacc
 7260



gacaccggta aggatagcaa tcaggacgcc ggtaaatcga cgctggtcaa tctgttaggc
 7320



cctagggcgg ttgaagaacg tctgagacaa catcttcatc ttgccagtga gcatctctct
 7380



gcggcctgcc aacacgggca cgccactcaa cattttattc aggcctggtt tgacaaaaaa
 7440



ctcgctgccg tcagttaaag gtctctagac aggatgtgtc acacaggaaa ccatgaaacc
 7500



aactacggta attggtgcag gcttcggtgg cctggcactg gcaattcgtc tacaggctgc
 7560



ggggatcccc gtcttactgc ttgaacaacg tgataaaccc ggcggtcggg cttatgtcta
 7620



cgaggatcag gggtttacct ttgatgcagg cccgacggtt atcaccgatc ccagtgccat
 7680



tgaagaactg tttgcactgg caggaaaaca gttaaaagag tatgtcgaac tgctgccggt 
 7740



tacgccgttt taccgcctgt gttgggagtc agggaaggtc tttaattacg ataacgatca
 7800



aacccggctc gaagcgcaga ttcagcagtt taatccccgc gatgtcgaag gttatcgtca
 7860



gtttctggac tattcacgcg cggtgtttaa agaaggctat ctgaagctcg gtactgtccc
 7920



ttttttatcg ttcagagaca tgcttcgcgc cgcacctcaa ctggcgaaac tgcaggcatg
 7980



gagaagcgtt tacagtaagg ttgccagtta catcgaagat gaacatctgc gccaggcgtt
 8040



ttctttccac tcgctgttgg tgggcggcaa tcccttcgcc acctcatcca tttatacgtt
 8100



gatacacgcg ctggagcgtg agtggggcgt ctggtttccg cgtggcggca ccggcgcatt
 8160



agttcagggg atgataaagc tgtttcagga tctgggtggt gaagtcgtgt taaacgccag
 8220



agtcagccat atggaaacga caggaaacaa gattgaagcc gtgcatttag aggacggtcg
 8280



caggttcctg acgcaagccg tcgcgtcaaa tgcagatgtg gttcatacct atcgcgacct
 8340



gttaagccag caccctgccg cggttaagca gtccaacaaa ctgcagacta agcgtatgag
 8400



taactctctg tttgtgctct attttggttt gaatcaccat catgatcagc tcgcgcatca 
 8460



cacggtttgt ttcggcccgc gttaccgcga actgattgac gagattttta atcatgatgg
 8520



cctcgcagaa gacttctcac tttatctgca cgcgccctgt gtcacggatt cgtcactggc
 8580



gcctgaaggt tgcggcagtt actatgtgtt ggcgccggtg ccgcatttag gcaccgcgaa
 8640



cctcgactgg acggttgagg ggccaaaact acgcgaccgt atttttgagt accttgagca
 8700



gcattacatg cctggcttac ggagtcagct ggtcacgcac cagatgttta cgccgtttga 
 8760



ttttcgcgac cagcttaatg cctatcaggg ctcagccttt tctgtggagc ccgttcttac
 8820



ccagagcgcc tggtttcggc cgcataaccg cgataaaacc attactaatc tctacctggt
 8880



cggcgcaggc acgcatcccg gcgcaggcat tcctggcgtc atcggctcgg caaaagcgac
 8940



agcaggtttg atgctggagg atctgattta agtgatcgtt gagtggtgaa cttaaagagg
 9000



agaaaatgaa taatccgtcg ttactcaatc atgcggtcga aacgatggca gttggctcga 
 9060



aaagttttgc gacagcctca aagttatttg atgcaaaaac ccggcgcagc gtactgatgc
 9120



tctacgcctg gtgccgccat tgtgacgatg ttattgacga ccagacgctg ggcttccagg
 9180



cccggcagcc tgccttacaa acgcccgaac aacgtctgat gcaacttgag atgaaaacgc
 9240



gccaggccta tgcaggatcg cagatgcacg aaccggcgtt tgcggctttt caggaagtgg
 9300



ctatggctca tgatatcgcc ccggcttacg cgtttgatca tctggaaggc ttcgccatgg
 9360



atgtacgcga agcgcaatac agccaactgg acgatacgct gcgctattgc tatcacgttg
 9420



caggcgttgt cggcttgatg atggcgcaaa tcaggggcgt acgggataac gccacgctgg 
 9480



accgcgcctg tgaccttggg ctggcatttc agttgaccaa tattgctcgc gataggtggg
 9540



acgatgcgca tgcgggccgc tgttatctgc cggcaagctg gctggagcat gaaggtctga
 9600



acaaagagaa ttatgcggca cctgaaaacc gtcaggcgct gagccgtatc gcccgtcgtt
 9660



tggtgcagga agcagaacct tactatttgt ctgccacagc gggcctggct gggttgcccc
 9720



tgcgttcggc ctgggcaatc gctacggcga agcaggttta ccggaaaata ggtgtcaaag
 9780



ttgaacaggc cggtcagcaa gcctgggatc agcggcagtc aacgaccacg cccgaaaaat
 9840



taacgctgct gctggccgcc tctggtcagg cccttacttc ccggatgcgg gctcatcctc
 9900



cccgccctgc gcatctctgg cagcgcccgc tctaatcacg tagcaagctg acagtttaaa
 9960



gaggagaaaa tgggagcggc tatgcaaccg cattatgatc tgattctcgt gggggctgga
10020



ctcgcgaatg gccttatcgc cctgcgtctt cagcagcagc aacctgatat gcgtattttg
10080



cttatcgacg ccgcacccca ggcgggcggg aatcatacgt ggtcatttca ccacgatgat
10140



ttgactgaga gccaacatcg ttggatagct tcgctggtgg ttcatcactg gcccgactat
10200



caggtacgct ttcccacacg ccgtcgtaag ctgaacagcg gctacttctg tattacttct
10260



cagcgtttcg ctgaggtttt acagcgacag tttggcccgc acttgtggat ggataccgcg
10320



gtcgcagagg ttaatgcgga atctgttcgg ttgaaaaagg gtcaggttat cggtgcccgc
10380



gcggtgattg acgggcgggg ttatgcggca aactcagcac tgagcgtggg cttccaggcg
10440



tttattggcc aggaatggcg attgagccac ccgcatggtt tatcgtctcc cattatcatg
10500



gatgccacgg tcgatcagca aaatggttat cgcttcgtgt acagcctgcc gctctcgccg
10560



accagattgt taattgaaga cacgcactat atcgataatg cgacattaga tcctgaacgc
10620



gcgcggcaaa atatttgcga ctatgccgcg caacagggtt ggcagcttca gacattgctg
10680



cgtgaagaac agggcgcctt accca 
10705













3-82      
Sequences




3-82-1
Sequence Number [ID]
82



3-82-2
Molecular Type
DNA



3-82-3
Length
1773





source 1 . . . 173



3-82-4-1  
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylosinus trichosporum




NonEnglishQualifier Value











3-82-5   
Residues




atggccagaa aaatgaccgg agcggaaatg gtcgtcgaag ccctgaagga tcagggcgtc
   60



gagattatct tcggctatcc cggcggcgcc gtgcttccga tctatgacgc gctcttccac
  120



caggagaagg tgcagcacat tctcgtgcgc cacgagcagg gcgccgccca tgcggccgag
  180



ggctatgcgc gctcctccgg caaggtcggc gtgctgctgg tcacctccgg acccggcgcc
  240



accaacacca tcaccggcct caccgatgcg ctgatggact ccattcccgt ggtctgcatc 
  300



accggccagg tgccgacgca tctcatcggc tcggacgcct ttcaagagtg cgatacggtc
  360



ggcatcaccc gtcactgcac caagcataat tatctggtga agagcgtcga cgatctgccg
  420



cgcattctgc acgaggcctt ctatgtcgcc tcgagcgggc ggccgggccc tgtggtcatc 
  480



gacatcccca aggatgtgca attcgccagc ggaacctata ccggcccgcg caacgtccat
  540



cacaagacct atcagcccaa gctcgagggc gacacggagt ctatccgccg cgccgtgaag
  600



atgatggccg ccgccaagcg gccgatcttc tacaccggcg gcggcgtcat caattccggt
  660



cccgcggcct cgacgctgct gcgcgagctg gtgtcgctga ccggctttcc gatcacctcg
  720



accttgatgg gcctcggcgc ctatccgggc tccggcccca attggctcgg catgctcggc
  780



atgcacggca ccttcgaggc caataatgcg atgcatgatt gcgatctgat gatcgccgtc 
  840



ggcgcgcgtt tcgacgatcg catcaccgga cggctcgacg ccttctcgcc cggctcgaag
  900



aagatccaca tcgatatcga tcgctcctcg atcaataaga atgtgaagat cgatctgccg
  960



atcgtcggcg actgcggcca tgtgctggag agtctggtgc gcgtctggcg ctccgaggcg
 1020



atgcacgccg agaagcagcc gctcgacggc tggtggaaga cgatcgacca ttggcgcgag
 1080



cgcaagtcgc tcgccttccg caattcggac aaggtgatca agccgcaata cgccgtgcag
 1140



cggctctatg cgctcaccaa ggatcgcgat ccctacatca cgacggaagt cggccagcat
 1200



cagatgtggg ccgcgcagca ttatcatttc gacgagccca atcgctggat gacttccggc
 1260



gggctcggca ccatgggcta tggtctgccg gcggcgatcg gagcgcagct cgcgcatccg
 1320



aaatcgctgg tcgtcgacat cgccggcgag gcctcgatcc tgatgaacat tcaggagatg
 1380



tcgacggcga tccaatatcg gctgccggtg aaggtgttca tcctcaacaa tgaatatatg
 1440



ggcatggtgc gccagtggca ggagctgctg cacggcgggc gctactcgca ctcctattcg
 1500



gaggcgctgc ccgatttcgt gaagctcgcc gaagccttcg ggggcaaggg catccgctgc 
 1560



tcggacccgg cggagctcga tagcgcgatt ctcgagatga tcgactatga cgggccggtg
 1620



atcttcgatt gtctcgtcga gaaaaacgag aattgcttcc cgatgatccc gtcgggcaag
 1680



gcgcataacg acatgctgct cgccgatctc ggcgacgacg ccggcgtcga gctcggctcg 
 1740



atcatcgacg agaagggcaa gatgctggtg tga
 1773













3-83      
Sequences




3-83-1
Sequence Number [ID]
83



3-83-2
Molecular Type
DNA



3-83-3
Length
1056





source 1 . . . 1056



3-83-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylosinus trichosporum




NonEnglishQualifier Value











3-83-5
Residues




atgtccacca aagcctatgc cgttgcgtcc gccgaggcgc tcttcggccc gctcgcgatc
   60



gagcgccgcg cgctcgggcc cgaggatgta gagatcgaca tcctctattg cggcgtctgc
  120



cattccgatc tgcacacggc gcgcagtgaa tggccgggca cgcgctaccc atgcgtcccg
  180



ggccacgaga ttgtcggccg cgtcaccgct gtcggcgcga aggtgacgaa attttcggtc
  240



ggcgatctcg ccgccgtcgg ctgcatggtc gacagctgcc ggcgatgctt gtcctgcgac
  300



gacgggctcg aacaatattg cgagcacggt ttcaccgcca cctataacgg cccgatctac
  360



ggctcgggcg agaacacctt tggcggctat tcggagaaaa tcgtcgtcga cgcgcatttc
  420



gtgctggcga tccaccattc tgagacgcag cttgccggag tcgcgccgct gctctgcgcc
  480



ggcatcacca cttggtcgcc gctcaagcat tggggtgtcg gcccgggaaa atcggtcggc
  540



atcgtcggca tcggcgggct cggccatatg ggggtcaagc tcgcccatgc gctcggcgcc
  600



catgtcgtcg ccttcaccac ctcgccgtca aagcgcgacg cggccctcgc gctcggcgcc
  660



gacgaggtcg tcgtctccac agatcctgcc gctatggcgg cgcgggcggg aagcctcgac
  720



ttcattctcg atacggtcgc cgtcgcccat gacctcgacg cttatgtgaa tctgttgaag
  780



cgcgatggcg ctctggtgct cgtcggcgtg ccggcgacgc cgcatccctc gccatcggcg
  840



ggcgggttga tcttcaagcg gcgccaggtc gccggctcgc tgatcggcgg cgtaaaggag
  900



acgcaggaga tgctcgactt ctgcgccgag cgcggcattg tcgcggacat agagacgatc
  960



gccatgcagc agatcgagac cgcctatgcg cgcatgctga agaatgatgt gaaataccgc
 1020



ttcgtcatcg acatggcgac gctgaaggcg gcgtga
 1056













3-84
Sequences




3-84-1
Sequence Number [ID]
84



3-84-2
Molecular Type
DNA



3-84-3
Length
1029





source 1 . . . 1029



3-84-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-84-5
Residues




atgaaagctt gggtgatcga ccgaatcggc ccgctggact cgtcgcgaac tctgctacgc
   60



gccaccgacc tcccggtgcc ggagcccggc cctggcgaaa tcctgctgca ggtggcggtt
  120



tgcggcgtct gccacaccga aatcgacgag atcgagggcc gcaccgcgcc gccgcgcctg
  180



ccggtcgtgc ccggacacca agcggtcggt cggatcgcgg ctctcggctc cggcgtggcg 
  240



gaattcgctt tgggcgaccg cgtcggcgtg gcctggatct tttctgcctg cggagaatgc
  300



gaattctgcc ggtcgggacg ggagaacctc tgtttcgcat tctgtgccac cgggcgcgat
  360



gtcgacggcg gctacgccca gtacatgacc gtcccggcgg cctttgcttt ccgcattccg
  420



gagggattca ccgatgccga agcggcgccg cttctgtgcg ccggcgccat cggttaccgt
  480



tcgctcaatc tcagcgggct gaaaaacggc cagccgctgg ggctcaccgg gttcggggct 
  540



tccgcccatc tggtgctgat gatggcccgg taccggtttc ccgattcgga agtctatgtc
  600



tttgcgcgtc atcccgagga gcgcgcgttc gcgcctcagc tgggcgcggt ctgggccggc
  660



gacaccgcgg acattgctcc cgccccgctg gccgccatca tcgacacgac gccggcgtgg
  720



aagccggtgg tcgcagcgct cgccaacctc gctcccggtg gccggctggt cgttaatgcg
  780



atccgcaagg cgccggacga tcgcgcctgt ctcgccgaac tcgactatgc ccggcacttg
  840



tggatggaac gggaaatcaa gtcggtcgcc aacgtggcgc gcgatgacgt ggccgggttc
  900



ctggcgctgg cggcggaaat gggcatccgt cccgagacgg aggagtaccc gttcgaggat
  960



gccgaccggg cgctgctcga cctcaagcaa cgccggattc gcggggcgaa ggtgttgcgg
 1020



gtgacttga
 1029













3-85
Sequences




3-85-1
Sequence Number [ID]
85



3-85-2
Molecular Type
DNA



3-85-3
Length
1068





source 1 . . . 1068



3-85-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-85-5
Residues




atgcctacag ccaaagccta tgccgctttt tccgcagact cggcgctggc gccgttcgtc
   60



ctgcagcggc gcgacccact gccccaggac atccgcatcg gaatcctgta ctgcggtgtc
  120



tgccattccg acctgcacca ggcacgcaat gagtggaatg cgaccacata tccttgtgtg
  180



ccaggccatg agatcgtcgg caaggtcctt gaagtcggcc gcagcgtgac gaagttcaag
  240



cccggcgaca cggtcgcggt gggctgcatg gtggattcct gccggacctg cccgaactgc 
  300



gtggacgccc tggaacagca ctgcgagcac ggccccgtct tcacctacaa cagccccgat 
  360



ccgcacggcg gcggcatgac cttcggtggc tatgccgaga gcatcgtggt cgacgaggcc
  420



ttcgtgctgc ggataccgga cggactggac ctcgcggccg ccgccccgct gttgtgcgcc
  480



gggattacca cctattcgcc cctgcggcac tggaaagtgg gggcgggtca gcgggtcggg 
  540



gtcgtcggtc tgggtggact gggacacatg gcgctcaagt tcgcgcatac cttcggcgcc
  600



gaaacggtgc tgttcacgac gacgccggac aaggcggagg atgcccgtcg gctgggagcg
  660



gacgaggtcg tcgtgtcgag ggatcccgag gccatggcgc ggcaggccgg ccggttcgat
  720



ttcatcctcg acaccgtctc ggcgccccat gacatcgatg cctatctgaa cctgctgagg
  780



cgggacggca cgctgaccct ggtcggcgta cctccgcaag gggtacaggt catgcccttc
  840



agcctgatcg gcgggcgccg gcgactggct ggttcattga tcggcggcat ccgggaaacc
  900



caggagatgc tggatttctg cggcgaacac ggcatcgtct gcgacatcga gctgattccg   
  960



atccaaggaa tcaacgacgc cttcgagcgc atgctcaaaa gcgacgtgaa ataccgtttc
 1020



gtgatcgaca tggcgacgct gaacggggag tcgtccggag ggcgatga
 1068













3-86
Sequences




3-86-1
Sequence Number [ID]
86



3-86-2
Molecular Type
DNA



3-86-3
Length
1647





source 1 . . . 1647



3-86-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Lactococcus lactis




NonEnglishQualifier Value











3-86-5
Residues




atgtacaccg tgggcgacta tctgctggac cggctgcatg aactgggcat cgaggaaatc
   60



ttcggcgtcc ccggcgacta taacctgcag ttcctggacc agatcatcag ccgcaaggac
  120



atgaagtggg tgggcaacgc caacgagctg aacgcctcgt acatggcgga cggctatgcc
  180



cggaccaaga aggccgcggc cttcctgacc accttcggcg tcggcgaact gagcgccgtg
  240



aacggcctgg cgggctcgta cgccgagaac ctgccggtcg tggaaatcgt cggctccccc
  300



accagcaagg tgcagaacga gggcaagttc gtccaccata ccctggccga cggcgacttc
  360



aagcacttca tgaagatgca tgaaccggtg accgcggccc gcaccctgct gaccgccgag
  420



aacgcgaccg tcgaaatcga ccgcgtgctg agcgcgctgc tgaaggagcg gaagccggtc
  480



tatatcaacc tgcccgtcga cgtggcggcc gcgaaggccg agaagccgtc cctgcccctg
  540



aagaaggaaa accccacctc gaacacctcc gaccaggaga tcctgaacaa gatccaggaa
  600



agcctgaaga acgccaagaa gccgatcgtg atcaccggcc acgagatcat ctcgttcggc
  660



ctggaaaaca ccgtcaccca gttcatctcc aagaccaagc tgccgatcac caccctgaac
  720



ttcggcaaga gctcggtgga cgagaccctg ccctcgttcc tgggcatcta caacggcaag
  780



ctgtccgaac cgaacctgaa ggagttcgtg gaaagcgcgg acttcatcct gatgctgggc
  840



gtcaagctga ccgactccag caccggcgcc ttcacccacc atctgaacga gaacaagatg
  900



atctcgctga acatcgacga gggcaagatc ttcaacgaat ccatccagaa cttcgacttc
  960



gaaagcctga tctcgtccct gctggacctg tccggcatcg agtacaaggg caagtatatc
 1020



gacaagaagc aggaagactt cgtcccgagc aacgcgctgc tgtcgcagga ccgcctgtgg
 1080



caggccgtgg agaacctgac ccagagcaac gagaccatcg tcgcggaaca gggcacctcg
 1140



ttcttcggcg ccagctcgat cttcctgaag ccgaagtcgc acttcatcgg ccagcccctg
 1200



tggggctcca tcggctacac cttccccgcc gcgctgggct cgcagatcgc ggacaaggaa
 1260



tcccggcatc tgctgttcat cggcgacggc agcctgcagc tgaccgtgca ggagctgggc
 1320



ctggccatcc gcgaaaagat caacccgatc tgcttcatca tcaacaacga cggctatacc
 1380



gtcgagcggg aaatccacgg cccgaaccag tcgtacaacg acatccccat gtggaactat
 1440



tccaagctgc cggagagctt cggcgccacc gaggaacgcg tcgtgtccaa gatcgtccgg
 1500



accgagaacg agttcgtcag cgtgatgaag gaagcccagg cggaccccaa ccggatgtac
 1560



tggatcgagc tggtgctggc gaaggaagac gccccgaagg tcctgaagaa gatgggcaag
 1620



ctgttcgccg aacagaacaa gagctga
 1647













3-87    
Sequences




3-87-1
Sequence Number [ID]
87



3-87-2
Molecular Type
DNA



3-87-3
Length
1692





source 1 . . . 1692



3-87-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-87-5
Residues




atgtcggaaa tcaccctggg caagtacctg ttcgagcggc tgaagcaggt caacgtcaac
   60



accatcttcg gcctgcccgg cgacttcaac ctgagcctgc tggacaagat ctacgaggtc
  120



gacggcctgc gctgggccgg caacgcgaac gaactgaacg ccgcgtacgc cgcggacggc
  180



tatgcccgga tcaagggcct gtcggtcctg gtgaccacct tcggcgtggg cgagctgtcg
  240



gccctgaacg gcatcgccgg ctcctacgcg gaacacgtcg gcgtgctgca tgtcgtgggc  
  300



gtcccgagca tctcggccca ggcgaagcag ctgctgctgc accataccct gggcaacggc 
  360



gacttcaccg tgttccaccg catgtccgcc aacatcagcg agaccacctc gatgatcacc
  420



gacatcgcca ccgcgccgag cgaaatcgac cgcctgatcc ggaccacctt catcacccag
  480



cggccgtcgt acctgggcct gcccgccaac ctggtcgacc tgaaggtgcc gggcagcctg
  540



ctggagaagc ccatcgacct gtcgctgaag ccgaacgacc ccgaggccga aaaggaagtc
  600



atcgacaccg tgctggaact gatccagaac agcaagaacc tgatcgacct gtccgacgcc
  660



tgcgcgagcc gccacaacgt gaagaaggag acccagaagc tgatcgacct gacccagttc
  720



ccggccttcg tcacccccct gggcaagggc tccatcgacg agcagcatcc gcggtacggc 
  780



ggcgtctatg tgggcaccct gagcaagcag gacgtcaagc aggccgtgga aagcgcggac 
  840



ctgatcctgt cggtgggcgc cctgctgtcc gacttcaaca ccggctcctt cagctactcg
  900



tataagacca agaacgtcgt ggagttccat tcggactacg tcaaggtgaa gaacgcgacc
  960



ttcctgggcg tccagatgaa gttcgccctg cagaacctgc tgaaggtgat cccggacgtc  
 1020



gtgaagggct ataagtccgt cccggtgccc accaagaccc ccgccaacaa gggcgtcccg 
 1080



gcgtcgaccc ccctgaagca ggaatggctg tggaacgagc tgtccaagtt cctgcaggaa
 1140



ggcgacgtga tcatctcgga gaccggcacc tccgcgttcg gcatcaacca gaccatcttc
 1200



ccgaaggacg cctacggcat cagccaggtc ctgtggggct cgatcggctt caccaccggc 
 1260



gccaccctgg gcgccgcgtt cgccgcggag gaaatcgacc cgaacaagcg cgtcatcctg
 1320



ttcatcggcg acggctccct gcagctgacc gtgcaggaaa tcagcaccat gatccggtgg
 1380



ggcctgaagc cctacctgtt cgtgctgaac aacgacggct ataccatcga gaagctgatc 
 1440



cacggcccgc atgcggaata caacgagatc cagacctggg accacctggc cctgctgccc
 1500



gccttcggcg cgaagaagta tgaaaaccat aagatcgcca ccaccggcga gtgggacgcg 
 1560



ctgaccaccg actccgagtt ccagaagaac agcgtcatcc gcctgatcga gctgaagctg
 1620



ccggtgttcg acgcccccga aagcctgatc aagcaggcgc agctgaccgc cgcgaccaac 
 1680



gccaagcagt ga
 1692













3-88
Sequences




3-88-1
Sequence Number [ID]
88



3-88-2
Molecule Type
DNA



3-88-3
Length
1908





source 1 . . . 1908



3-88-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-88-5
Residues




atggcccccg tcaccatcga gaagttcgtc aaccaggaag agcggcatct ggtgtccaac
   60



cggagcgcga ccatcccgtt cggcgagtac atcttcaagc gcctgctgag catcgacacc
  120



aagtcggtgt tcggcgtgcc gggcgacttc aacctgagcc tgctggagta cctgtatagc 
  180



ccctcggtcg aatcggccgg cctgcgctgg gtgggcacct gcaacgaact gaacgccgcg
  240



tacgccgcgg acggctactc ccggtatagc aacaagatcg gctgcctgat caccacctat
  300



ggcgtcggcg aactgtcggc gctgaacggc atcgcgggct ccttcgccga gaacgtgaag
  360



gtcctgcaca tcgtgggcgt cgccaagtcg atcgactccc gcagctcgaa cttctcggac
  420



cggaacctgc accatctggt cccgcagctg catgactcca acttcaaggg ccccaaccac
  480



aaggtgtacc atgacatggt gaaggaccgc gtcgcgtgct ccgtggccta tctggaggac
  540



atcgaaaccg cctgcgacca ggtggacaac gtcatccggg acatctacaa gtatagcaag
  600



ccgggttaca tcttcgtccc cgcggacttc gccgacatgt ccgtgacctg cgacaacctg
  660



gtgaacgtcc cgcgcatcag ccagcaggac tgcatcgtgt acccctccga aaaccagctg
  720



agcgacatca tcaacaagat cacctcgtgg atctactcca gcaagacccc ggccatcctg
  780



ggcgacgtcc tgaccgaccg gtatggcgtg agcaacttcc tgaacaagct gatctgcaag
  840



accggcatct ggaacttctc gaccgtcatg ggcaagtcgg tgatcgacga atccaacccg
  900



acctacatgg gccagtataa cggcaaggaa ggcctgaagc aggtctacga gcacttcgaa
  960



ctgtgcgacc tggtcctgca tttcggcgtg gacatcaacg agatcaacaa cggccactac
 1020



accttcacct ataagccgaa cgcgaagatc atccagttcc atcccaacta catccgcctg
 1080



gtggacaccc ggcagggcaa cgaacagatg ttcaagggca tcaacttcgc cccgatcctg
 1140



aaggagctgt ataagcgcat cgacgtcagc aagctgtcgc tgcagtacga cagcaacgtg
 1200



acccagtata ccaacgagac catgcggctg gaagacccca ccaacggcca gtcgtccatc
 1260



atcacccagg tccacctgca gaagaccatg ccgaagttcc tgaaccccgg cgacgtcgtg
 1320



gtctgcgaga ccggctcctt ccagttcagc gtgcgcgact tcgcgttccc gagccagctg
 1380



aagtacatct cgcagggctt cttcctgtcc atcggcatgg ccctgcccgc cgcgctgggc
 1440



gtcggcatcg cgatgcagga ccactcgaac gcccatatca acggcggcaa cgtgaaggaa
 1500



gactacaagc cgcggctgat cctgttcgaa ggcgacggcg ccgcgcagat gaccatccag
 1560



gagctgtcca ccatcctgaa gtgcaacatc ccgctggaag tcatcatctg gaacaacaac
 1620



ggctacacca tcgagcgcgc catcatgggc cccacccgga gctataacga cgtgatgtcg
 1680



tggaagtgga ccaagctgtt cgaagcgttc ggcgacttcg acggcaagta caccaactcc
 1740



accctgatcc agtgcccgag caagctggcc ctgaagctgg aggaactgaa gaactcgaac 
 1800



aagcgctccg gcatcgagct gctggaagtc aagctgggcg agctggactt ccccgaacag
 1860



ctgaagtgca tggtggaggc cgcggccctg aagcggaaca agaagtga
 1908













3-89
Sequences




3-89-1
Sequence Number [ID]
89



3-89-2
Molecule Type
DNA



3-89-3
Length
1047





source 1 . . . 1047




Features Location/
mol_type = other DNA



3-89-4-1
Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-89-5
Residues




atgagcatcc ccgagaccca gaaggccatc atcttctacg agagcaacgg caagctggaa
   60



cataaggaca tcccggtgcc caagcccaag ccgaacgaac tgctgatcaa cgtgaagtac
  120



agcggcgtct gccacaccga cctgcacgcg tggcatggcg actggccgct gcccaccaag
  180



ctgcccctgg tgggcggcca tgaaggcgcc ggcgtcgtgg tcggcatggg cgagaacgtc
  240



aagggctgga agatcggcga ctacgcgggc atcaagtggc tgaacggcag ctgcatggcc
  300



tgcgagtatt gcgaactggg caacgaatcg aactgcccgc acgcggacct gtccggctac
  360



acccatgacg gcagcttcca ggagtatgcc accgcggacg ccgtgcaggc cgcgcacatc
  420



ccgcagggca ccgacctggc ggaggtggcc cccatcctgt gcgccggcat caccgtctac
  480



aaggcgctga agagcgccaa cctgcgcgcg ggccattggg ccgcgatctc gggcgccgcc
  540



ggtggcctgg gctccctggc cgtgcagtac gcgaaggcga tgggctaccg cgtcctgggc
  600



atcgacggcg gtccgggcaa ggaagagctg ttcacctccc tgggcggcga agtgttcatc
  660



gacttcacca aggagaagga catcgtcagc gccgtggtca aggcgaccaa cggcggcgcc
  720



cacggcatca tcaacgtgtc ggtctccgaa gccgcgatcg aggcgtcgac ccgctactgc
  780



cgggccaacg gcaccgtggt cctggtgggc ctgcccgcgg gcgccaagtg cagctcggac
  840



gtcttcaacc atgtggtcaa gagcatctcg atcgtgggct cgtatgtcgg caaccgcgcc
  900



gacacccgcg aggccctgga cttcttcgcc cgtggcctgg tcaagtcccc gatcaaggtg
  960



gtcggcctgt ccagcctgcc cgagatctac gaaaagatgg agaagggcca gatcgccggc
 1020



cgctatgtgg tcgacacctc caagtga
 1047













3-90
Sequences




3-90-1
Sequence Number [ID]
90



3-90-2
Molecule Type
DNA



3-90-3
Length
1692





source 1 . . . 1692



3-90-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-90-5
Residues




atgagcgaga tcaccctggg caagtacctg ttcgagcggc tgaagcaggt caacgtcaac
   60



accgtcttcg gcctgcccgg cgacttcaac ctgagcctgc tggacaagat ctacgaggtc
  120



gaaggcatgc gctgggcggg caacgccaac gagctgaacg ccgcgtacgc cgcggacggc
  180



tatgcccgga tcaagggcat gtcgtgcatc atcaccacct tcggcgtggg cgagctgtcc
  240



gccctgaacg gcatcgcggg cagctacgcc gaacacgtcg gcgtgctgca tgtcgtgggc
  300



gtcccgagca tctcggccca ggcgaagcag ctgctgctgc accataccct gggcaacggc
  360



gacttcaccg tgttccaccg catgtccgcg aacatcagcg agaccaccgc catgatcacc
  420



gacatcgcca ccgcgccggc cgaaatcgac cgctgcatcc ggaccaccta cgtcacccag
  480



cggcccgtgt atctgggcct gccggccaac ctggtcgacc tgaacgtgcc cgcgaagctg
  540



ctgcagaccc cgatcgacat gtcgctgaag cccaacgacg ccgagtccga aaaggaagtc
  600



atcgacacca tcctggcgct ggtcaaggac gccaagaacc cggtgatcct ggcggacgcc
  660



tgctgctccc gccacgacgt caaggccgag accaagaagc tgatcgacct gacccagttc
  720



cccgccttcg tgaccccgat gggcaagggc tccatcgacg aacagcatcc gcggtacggc
  780



ggcgtctatg tgggcaccct gagcaagccc gaagtcaagg aagccgtgga aagcgccgac
  840



ctgatcctgt cggtcggcgc cctgctgtcc gacttcaaca ccggctcctt cagctactcg 
  900



tataagacca agaacatcgt ggagttccac agcgaccaca tgaagatccg caacgccacc
  960



ttccccggcg tccagatgaa gttcgtgctg cagaagctgc tgaccaccat cgccgacgcc
 1020



gcgaagggct acaagccggt cgcggtgccc gcccggaccc cggcgaacgc cgcggtcccc
 1080



gcctcgaccc cgctgaagca ggaatggatg tggaaccagc tgggcaactt cctgcaggaa
 1140



ggcgacgtcg tgatcgcgga aaccggcacc tccgccttcg gcatcaacca gaccaccttc
 1200



ccgaacaaca cctacggcat cagccaggtg ctgtggggct cgatcggctt caccaccggc
 1260



gccaccctgg gcgccgcgtt cgccgcggag gaaatcgacc cgaagaagcg cgtcatcctg
 1320



ttcatcggcg acggcagcct gcagctgacc gtgcaggaaa tctcgaccat gatccggtgg
 1380



ggcctgaagc cctacctgtt cgtcctgaac aacgacggct ataccatcga gaagctgatc
 1440



cacggcccga aggcccagta caacgaaatc cagggctggg accatctgtc gctgctgccc
 1500



accttcggcg ccaaggacta tgagacccat cgcgtggcga ccaccggcga atgggacaag
 1560



ctgacccagg acaagtcgtt caacgacaac tccaagatcc ggatgatcga gatcatgctg
 1620



cccgtcttcg acgcgccgca gaacctggtg gaacaggcca agctgaccgc cgcgaccaac
 1680



gcgaagcagt ga
 1692













3-91
Sequences




3-91-1
Sequence Number [ID]
91



3-91-2
Molecule Type
DNA



3-91-3
Length
3147





source 1 . . . 3147



3-91-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-91-5
Residues




atgaagtcgg aatacaccat cggccgctat ctgctggacc gcctgagcga gctgggcatc
   60



cgccacatct tcggcgtccc cggcgactac aacctgtcgt tcctggacta catcatggag
  120



tataagggca tcgactgggt cggcaactgc aacgaactga aacgccgcta cgccgcggac
  180



ggctatgccc gcatcaacgg catcggcgcg atcctgacca ccttcggcgt cggcgagctg
  240



tccgccatca acgccatcgc gggcgcctac gcggaacagg tgccggtcgt gaagatcacc
  300



ggcatcccca ccgccaaggt ccgcgacaac ggcctgtatg tgcaccatac cctgggcgac
  360



ggccgcttcg accacttctt cgagatgttc cgggaagtca ccgtggccga ggcgctgctg
  420



agcgaggaaa acgccgcgca ggaaatcgac cgcgtgctga tctcgtgctg gcgccagaag
  480



cggccggtcc tgatcaacct gcccatcgac gtgtacgaca agccgatcaa caagccgctg
  540



aagcccctgc tggactatac catcagctcg aacaaggaag ccgcgtgcga gttcgtcacc
  600



gagatcgtgc cgatcatcaa ccgcgccaag aagcccgtca tcctggcgga ctacggcgtg
  660



taccggtatc aggtccagca cgtgctgaag aacctggcgg agaagaccgg cttcccggtc
  720



gccaccctgt cgatgggcaa gggcgtgttc aacgaagccc atccgcagtt catcggcgtc
  780



tacaacggcg acgtgtccag cccctatctg cgccagcggg tcgacgaggc cgactgcatc
  840



atctcggtcg gcgtgaagct gaccgactcc accaccggcg gcttctccca cggcttcagc
  900



aagcgcaacg tgatccatat cgacccgttc tccatcaagg ccaagggcaa gaagtacgcg
  960



cccatcacca tgaaggacgc cctgaccgaa ctgacctcga agatcgagca ccggaacttc
 1020



gaagacctgg acatcaagcc gtacaagtcc gacaaccaga agtatttcgc gaaggagaag
 1080



cccatcaccc agaagcgctt cttcgaacgg atcgcccatt tcatcaagga gaaggacgtc
 1140



ctgctggcgg aacagggcac ctgcttcttc ggcgccagca ccatccagct gccgaaggac
 1200



gcgaccttca tcggccagcc cctgtggggc tccatcggct acaccctgcc ggccctgctg
 1260



ggcagccagc tggcggacca gaagcgtcgc aacatcctgc tgatcggcga cggcgccttc
 1320



cagatgaccg cgcaggagat ctcgaccatg ctgcgcctgc agatcaagcc gatcatcttc
 1380



ctgatcaaca acgacggcta caccatcgag cgcgccatcc acggccggga acaggtgtac
 1440



aacaacatcc agatgtggcg gtatcataac gtcccgaagg tgctgggccc caaggaatgc
 1500



agcctgacct tcaaggtcca gtcggagacc gaactggaga aggccctgct ggtcgccgac
 1560



aaggactgcg agcacctgat cttcatcgaa gtcgtgatgg accgctacga caagccggag
 1620



cccctggaac gcctgtccaa gcggttcgcc aaccagaaca acggctatgc gcggatcaac
 1680



ggcatcggcg ccattttaac caccttcggc gtgggcgagc tgatcgcgat caacgcgatc
 1740



gccggcgcct acgcggagca ggtgccggtg gtcaaaatta ccggcatccc caccgcgaag
 1800



gtgcgggaca acggcctgta cgtccatcac accctgggcg acggccggtt cgaccatttc
 1860



ttcgaaatgt tccgggaggt gaccgtcgcc gaggcgctgc tgtcggaaga gaacgcggcc
 1920



caggagatcg accgcgtcct gatcagctgc tggcggcaga agcgccccgt gctgatcaac
 1980



ctgccgatcg acgtctatga caagcccatc aacaagcccc tgaagccgct gctggactac
 2040



accatctcgt ccaacaagga agccgcctgc gagttcgtca ccgaaatcgt ccccatcatc
 2100



aaccgcgcga agaagccggt gatcctggcc gactatggcg tctatcggta tcaggtgcag
 2160



catgtcctga agaacctggc cgaaaagacc ggcttccccg tggccaccct gagcatgggc
 2220



aagggcgtct tcaacgaggc gcacccccag ttcatcggcg tgtataacgg cgacgtgagc
 2280



tcgccgtacc tgcggcagcg cgtggacgaa gccgactgca tcatcagcgt cggcgtcaag
 2340



ctgaccgact cgaccaccgg cggcttctcg cacggcttct cgaagcggaa cgtcatccac
 2400



atcgacccgt tctcgatcaa ggcgaagggc aagaagtatg ccccgatcac catgaaggac
 2460



gcgctgaccg aactgaccag caagatcgaa catcgcaact tcgaggacct ggacatcaag
 2520



ccctacaagt cggacaacca gaagtacttc gccaaggaaa agccgattac tcagaagcgc
 2580



ttcttcgagc gcatcgcgca cttcatcaag gaaaaggacg tcctgctggc cgagcaaggc
 2640



acctgcttct tcggtgcgtc gaccatccag ctgcccaagg acgccacctt catcggccag
 2700



ccgctgtggg gctcgatcgg ctataccctg cccgcgctgc tgggctccca gctggccgat
 2760



caaaaacgtc gcaatatttt actgatcggc gacggcgcgt tccagatgac cgcccaggag
 2820



atcagcacca tgctgcggct gcagatcaag cccattatct tcctgattaa caacgacggc
 2880



tataccatcg aacgggcgat ccacggccgc gagcaggtct ataataatat tcaaatgtgg
 2940



cggtatcata atgtgcccaa ggtcctgggc ccgaaggaat gctcgctgac cttcaaggtg
 3000



cagagcgaaa ccgagctgga aaaggccctg ctggtcgccg ataaggactg cgaacatctg 
 3060



atcttcatcg aggtggtcat ggaccggtat gacaagcccg aacccctgga acggctgagc
 3120



aagcgcttcg cgaaccagaa caactga
 3147













3-92
Sequences




3-92-1
Sequence Number [ID]
92



3-92-2
Molecule Type
DNA



3-92-3
Length
35



3-92-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = JPS00082




NonEnglishQualifier Value






source 1 . . . 35



3-92-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-92-5
Residues




tgcaaggtac actgtcagaa cgcagaagcg gtctg
   35













3-93
Sequences




3-93-1
Sequence Number [ID]
93



3-93-2
Molecule Type
DNA



3-93-3
Length
28



3-93-4-1
Features Location/
misc_feature 1 . . . 28




Qualifiers
note = JPS00031




NonEnglishQualifier Value






source 1 . . . 28



3-93-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-93-5
Residues




ggtttattcc tccttattta atcgatac
   28













3-94
Sequences




3-94-1
Sequence Number [ID]
94



3-94-2
Molecule Type
DNA



3-94-3
Length
34



3-94-4-1
Features Location/
misc_feature 1 . . . 34




Qualifiers
note = JPS00032




NonEnglishQualifier Value






source 1 . . . 34





mol_type = other DNA



3-94-4-2
Features Location/
organism = synthetic construct




Qualifiers





NonEnglishQualifier Value











3-94-5
Residues




aaggaggaat aaaccatggg cacggttgag cctg
   34













3-95
Sequences




3-95-1
Sequence Number [ID]
95



3-95-2
Molecule Type
DNA



3-95-3
Length
33



3-95-4-1
Features Location/
misc_feature 1 . . . 33




Qualifiers
note = GMV257




NonEnglishQualifier Value






source 1 . . . 33



3-95-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-95-5
Residues




cacatcctgt ctagatcagc cctcgccctt gac
   33













3-96
Sequences




3-96-1
Sequence Number [ID]
96



3-96-2
Molecule Type
DNA



3-96-3
Length
58



3-96-4-1
Features Location/
misc_feature 1  . .. 58




Qualifiers
note = JPS00118)




NonEnglishQualifier Value






source 1 . . . 58



3-96-4-2
Features Location/
mol_typ e= other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-96-5
Residues




tctagacagg atgtgtcaca caggaaacca tgtcttatcc
   58













3-97
Sequences




3-97-1
Sequence Number [ID]
97



3-97-2
Molecule Type
DNA



3-97-3
Length
41



3-97-4-1
Features Location/
misc_feature 1 . . . 41




Qualifiers
note = JPS00119




NonEnglishQualifier Value






source 1 . . . 41



3-97-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-97-5
Residues




acagtgtacc ttgcactagt ctgaaaattc tttgtcgtag
   41













3-98
Sequences




3-98-1
Sequence Number [ID]
98



3-98-2
Molecule Type
DNA



3-98-3
Length
70



3-98-4-1
Features Location/
misc_feature 1 . . . 70




Qualifiers
note = ESG00087




NonEnglishQualifier Value






source 1 . . . 70



3-98-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-98-5
Residues




gtgttggttg ctcgctagca ttgtaccaag ggctgagcta gctataaagt cagcgccctg
   60



caccattatg
   70













3-99
Sequences




3-99-1
Sequence Number [ID]
99



3-99-2
Molecule Type
DNA



3-99-3
Length
46



3-99-4-1
Features Location/
misc_feature 1 . . . 46




Qualifiers
note = GMV251




NonEnglishQualifier Value






source 1 . . . 46



3-99-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-99-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg ggcacggttg agcctg
   46













3-100
Sequences




3-100-1
Sequence Number [ID]
100



3-100-2
Molecule Type
DNA



3-100-3
Length
149



3-100-4-1
Features Location/
misc_feature 1 . . . 149




Qualifiers
note = IDT gBlock synthesized rnpB




NonEnglishQualifier Value






source 1 . . . 149



3-100-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-100-5
Residues




gctagcacta gtgatcacgt gcttaagccg gcttatcggt cagtttcacc tgatttacgt
   60



aaaaacccgc ttcggcgggt ttttgctttt ggaggggcag aaagatgaat gactgtccac
  120



gacgctatac ccaaaagaaa accggtacc
  149













3-101
Sequences




3-101-1
Sequence Number [ID]
101



3-101-2
Molecule Type
DNA



3-101-3
Length
35



3-101-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = JPS00161




NonEnglishQualifier Value






source 1 . . . 35



3-101-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-101-5
Residues




gcctgataca gattattgta ggtggaccag ttggt 
   35













3-102
Sequences




3-102-1
Sequence Number [ID]
102



3-102-2
Molecule Type
DNA



3-102-3
Length
34



3-102-4-1
Features Location/
misc_feature 1 . . . 34




Qualifiers
note = JPS00162




NonEnglishQualifier Value






source 1 . . . 34



3-102-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-102-5
Residues




ggtttattcc tccttgattt gtcctactca ggag
   34













3-103
Sequences




3-103-1
Sequence Number [ID]
103



3-103-2
Molecule Type
DNA



3-103-3
Length
34



3-103-4-1
Features Location/
misc_feature 1 . . . 34




Qualifiers
note = JPS00163




NonEnglishQualifier Value






source 1 . . . 34



3-103-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-103-5
Residues




aaggaggaat aaaccgctag cactagtgat cacg
   34













3-104
Sequences




3-104-1
Sequence Number [ID]
104



3-104-2
Molecule Type
DNA



3-104-3
Length
34



3-104-4-1
Features Location/
misc_feature 1 . . . 34




Qualifiers
note = JPS00164




NonEnglishQualifier Value






source 1 . . . 34



3-104-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-104-5
Residues




taatctgtat caggcggtac cggttttctt ttgg
   34













3-105
Sequences




3-105-1
Sequence Number [ID]
105



3-105-2
Molecule Type
DNA



3-105-3
Length
34



3-105-4-1
Features Location/
misc_feature 1 . . . 34




Qualifiers
note = JPS00172




NonEnglishQualifier Value






source 1 . . . 34



3-105-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-105-5
Residues




atcagactaa gccttgtgct taagccggct tatc
   34













3-106
Sequences




3-106-1
Sequence Number [ID]
106



3-106-2
Molecule Type
DNA



3-106-3
Length
51



3-106-4-1
Features Location/
misc_feature 1 . . . 51




Qualifiers
note = JPS00173




NonEnglishQualifier Value






source 1 . . . 51



3-106-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-106-5
Residues




aaggaggaat aaaccgctag cactagtgat cacttgacgg ctagctcagt c
   51













3-107
Sequences




3-107-1
Sequence Number [ID]
107



3-107-2
Molecule Type
DNA



3-107-3
Length
33



3-107-4-1
Features Location/
misc_feature 1 . . . 33




Qualifiers
note = JPS00174




NonEnglishQualifier Value






source 1 . . . 33



3-107-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-107-5
Residues




tgaacaggtc tgacttcagt gctgcgccga ggc
   33













3-108
Sequences




3-108-1
Sequence Number [ID]
108



3-108-2
Molecule Type
DNA



3-108-3
Length
51



3-108-4-1
Features Location/
misc_feature 1 . . . 51




Qualifiers
note = JPS00176




NonEnglishQualifier Value






source 1 . . . 51



3-108-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-108-5
Residues




agtcagacct gttcattaaa gaggagaaaa tgcagattta ctacgacaaa g
   51













3-109
Sequences




3-109-1
Sequence Number [ID]
109



3-109-2
Molecule Type
DNA



3-109-3
Length
34



3-109-4-1
Features Location/
misc_feature 1 . . . 34




Qualifiers
note = JPS00177




NonEnglishQualifier Value






source 1 . . . 34



3-109-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-109-5
Residues




aagtgttggt tgctctcagt tcttgctcgt gtcc
   34













3-110
Sequences




3-110-1
Sequence Number [ID]
110



3-110-2
Molecule Type
DNA



3-110-3
Length
45



3-110-4-1
Features Location/
misc_feature 1 . . . 45




Qualifiers
note = JPS00157




NonEnglishQualifier Value






source 1 . . . 45



3-110-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-110-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg accgacaagc acccc
   45













3-111
Sequences




3-111-1
Sequence Number [ID]
111



3-111-2
Molecule Type
DNA



3-111-3
Length
33



3-111-4-1
Features Location/
misc_feature 1 . . . 33




Qualifiers
note = JPS00178




NonEnglishQualifier Value






source 1 . . . 33



3-111-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-111-5
Residues




aaggcttagt ctgattcaga ggccgtcgtc ggt
   33













3-112
Sequences




3-112-1
Sequence Number [ID]
112



3-112-2
Molecule Type
DNA



3-112-3
Length
430



3-112-4-1
Features Location/
misc_feature 1  . .. 430




Qualifiers
note = IDT gBlock synthesized 





Me-AM1 PmxaF




NonEnglishQualifier Value






source 1 . . . 430



3-112-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-112-5
Residues




atggtgcagg gcgcttcccg cttggtcggg ccgcttcgcg agggcccgtt gacgacaacg
   60



gtgcgatggg tcccggcccc ggtcaagacg atgccaatac gttgcgacac tacgccttgg
  120



cacttttaga attgccttat cgtcctgata agaaatgtcc gaccagctaa agacatcgcg
  180



tccaatcaaa gcctagaaaa tataggcgaa gggacgctaa taagtctttc ataagaccgc
  240



gcaaatctaa aaatatcctt agattcacga tgcggcactt cggatgactt ccgagcgagc    
  300



ctggaacctc agaaaaacgt ctgagagata ccgcgaggcc gaaaggcgag gcggttcagc
  360



gaggagacgc aggatgagca ggtttgtgac atcagtctcg gccttggcgg ctagcgagca
  420



accaacactt
  430













3-113
Sequences




3-113-1
Sequence Number [ID]
113



3-113-2
Molecule Type
DNA



3-113-3
Length
34



3-113-4-1
Features Location/
misc_feature 1 . . . 34




Qualifiers
note = JPS00169




NonEnglishQualifier Value






source 1 . . . 34



3-113-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-113-5
Residues




agcgccctgc accattatgt tccggatctg catc
   34













3-114
Sequences




3-114-1
Sequence Number [ID]
114



3-114-2
Molecule Type
DNA



3-114-3
Length
46



3-114-4-1
Features Location/
misc_feature 1 . . . 46




Qualifiers
note = GMV00251




NonEnglishQualifier Value






source 1 . . . 46



3-114-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-114-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg ggcacggttg agcctg
   46













3-115
Sequences




3-115-1
Sequence Number [ID]
115



3-115-2
Molecule Type
DNA



3-115-3
Length
32



3-115-4-1
Features Location/
misc_feature 1 . . . 32




Qualifiers
note = (PS00170




NonEnglishQualifier Value






source 1 . . . 32



3-115-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-115-5
Residues




atggtgcagg gcgcttcccg cttggtcggg cc
   32













3-116
Sequences




3-116-1
Sequence Number [ID]
116



3-116-2
Molecule Type
DNA



3-116-3
Length
19



3-116-4-1
Features Location/
misc_feature 1 . . . 19




Qualifiers
note = JPS00171




NonEnglishQualifier Value






source 1 . . . 19



3-116-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-116-5
Residues




aagtgttggt tgctcgcta
   19













3-117
Sequences




3-117-1
Sequence Number [ID]
117



3-117-2
Molecule Type
DNA



3-117-3
Length
68



3-117-4-1
Features Location/
misc_feature 1 . . . 68




Qualifiers
note = JPS00153




NonEnglishQualifier Value






source 1 . . . 68



3-117-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-117-5
Residues




accactcaac gatcagctag cactgtacct aggactgagc tagccgtcaa gtcagcgccc
   60











tgcaccat

   68





3-118
Sequences




3-118-1
Sequence Number [ID]
118



3-118-2
Molecule Type
DNA



3-118-3
Length
48



3-118-4-1
Features Location/
misc_feature 1 . . . 48




Qualifiers
note = JPS00151




NonEnglishQualifier Value






source 1 . . . 48



3-118-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-118-5
Residues




tgatcgttga gtggtttaaa gaggagaaaa tgcgtgaaac gatacctc
   48













3-119
Sequences




3-119-1
Sequence Number [ID]
119



3-119-2
Molecule Type
DNA



3-119-3
Length
33



3-119-4-1
Features Location/
misc_feature 1 . . . 33




Qualifiers
note = JPS00154




NonEnglishQualifier Value






source 1 . . . 33



3-119-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-119-5
Residues




aagtgttggt tgctctcagt gctgcgccga ggc
   33













3-120
Sequences




3-120-1
Sequence Number [ID]
120



3-120-2
Molecule Type
DNA



3-120-3
Length
33



3-120-4-1
Features Location/
misc_feature 1 . . . 33




Qualifiers
note = JPS00183




NonEnglishQualifier Value






source 1 . . . 33



3-120-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-120-5
Residues




tgagctagct ataaagtgat cactagtgct agc
   33













3-121
Sequences




3-121-1
Sequence Number [ID]
121



3-121-2
Molecule Type
DNA



3-121-3
Length
55



3-121-4-1
Features Location/
misc_feature 1 . . . 55




Qualifiers
note = JPS00185




NonEnglishQualifier Value






source 1 . . . 55



3-121-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-121-5
Residues




ttatagctag ctcagccctt ggtacaatgc tagctgatcg ttgagtggtt taaag
   55













3-122
Sequences




3-122-1
Sequence Number [ID]
122



3-122-2
Molecule Type
DNA



3-122-3
Length
35



3-122-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = J23100




NonEnglishQualifier Value






source 1 . . . 35



3-122-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-122-5
Residues




ttgacggcta gctcagtcct aggtacagtg ctagc
   35













3-123
Sequences




3-123-1
Sequence Number [ID]
123



3-123-2
Molecule Type
DNA



3-123-3
Length
35



3-123-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = J23100 hybrid




NonEnglishQualifier Value






source 1 .. 35



3-123-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-123-5
Residues




ttgacggcta gctcagccct tggtacaatg ctagc
   35













3-124
Sequences




3-124-1
Sequence Number [ID]
124



3-124-2
Molecule Type
DNA



3-124-3
Length
35



3-124-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = J23115




NonEnglishQualifier Value






source 1 . . . 35



3-124-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-124-5
Residues




tttatagcta gctcagccct tggtacaatg ctagc
   35













3-125
Sequences




3-125-1
Sequence Number [ID]
125



3-125-2
Molecule Type
DNA



3-125-3
Length
22



3-125-4-1
Features Location/
misc_feature 1 . . . 22




Qualifiers
note = GMV00233




NonEnglishQualifier Value






source 1 . . . 22



3-125-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value












Residues



3-125-5
tgccagctgc attaatgaat cg
   22













3-126
Sequences




3-126-1
Sequence Number [ID]
126



3-126-2
Molecule Type
DNA



3-126-3
Length
45



3-126-4-1
Features Location/
misc_feature 1 . . . 45




Qualifiers
note = GMV00235




NonEnglishQualifier Value






source 1 . . . 45



3-126-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-126-5
Residues




ttaatgcagc tggcagccag cgcttcgtta atacagatgt aggtg
   45













3-127
Sequences




3-127-1
Sequence Number [ID]
127



3-127-2
Molecule Type
DNA



3-127-3
Length
52



3-127-4-1
Features Location/
misc_feature 1 . . . 52




Qualifiers
note = GMV00433




NonEnglishQualifier Value






source 1 . . . 52



3-127-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-127-5
Residues




gatcgttgag tggtgaactt aaagaggaga aaatgggcac ggttgagcct gg
   52













3-128
Sequences




3-128-1
Sequence Number [ID]
128



3-128-2
Molecule Type
DNA



3-128-3
Length
19



3-128-4-1
Features Location/
misc_feature 1 . . . 19




Qualifiers
note = GMV00434




NonEnglishQualifier Value






source 1 . . . 19



3-128-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-128-5
Residues




tgcattcgat tcctgtttg
   19













3-129
Sequences




3-129-1
Sequence Number [ID]
129



3-129-2
Molecule Type
DNA



3-129-3
Length
19



3-129-4-1
Features Location/
misc_feature 1 . . . 19




Qualifiers
note = GMV00435




NonEnglishQualifier Value






source 1 . . . 19



3-129-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-129-5
Residues




caggaatcga atgcaaccg
   19













3-130
Sequences




3-130-1
Sequence Number [ID]
130



3-130-2
Molecule Type
DNA



3-130-3
Length
49



3-130-4-1
Features Location/
misc_feature 1 . . . 49




Qualifiers
note = GMV00436




NonEnglishQualifier Value






source 1 . . . 49



3-130-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-130-5
Residues




gagcaaccaa cactcacaca ggaaaccatg catattacat acgatctgc
   49













3-131
Sequences




3-131-1
Sequence Number [ID]
131



3-131-2
Molecule Type
DNA



3-131-3
Length
39



3-131-4-1
Features Location/
misc_feature 1 . . . 39




Qualifiers
note = GMV00437




NonEnglishQualifier Value






source 1 . . . 39



3-131-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-131-5
Residues




gttcaccact caacgatctt aagcgtcaac gaaaccggt
   39













3-132
Sequences




3-132-1
Sequence Number [ID]
132



3-132-2
Molecule Type
DNA



3-132-3
Length
69



3-132-4-1
Features Location/
misc_feature 1 . .. 69




Qualifiers
note = GMV00438




NonEnglishQualifier Value






source 1 . . . 69



3-132-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-132-5
Residues




tgaacaggtc tgactgctag cattgtacca agggctgagc tagctataaa gatttgtcct
   60



actcaggag
   69













3-133
Sequences




3-133-1
Sequence Number [ID]
133



3-133-2
Molecule Type
DNA



3-133-3
Length
53



3-133-4-1
Features Location/
misc_feature 1 . . . 53




Qualifiers
note = GMV00439




NonEnglishQualifier Value






source 1 . . . 53



3-133-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-133-5
Residues




agtcagacct gttcattaaa gaggagaaaa tgagcggaaa aaccctttac gac
   53













3-134
Sequences




3-134-1
Sequence Number [ID]
134



3-134-2
Molecule Type
DNA



3-134-3
Length
42



3-134-4-1
Features Location/
misc_feature 1 . . . 42




Qualifiers
note = GMV00440




NonEnglishQualifier Value






source 1 . . . 42



3-134-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-134-5
Residues




aaggcttagt ctgattcaga cggcgcgcaa ggcggcgacg at
   42













3-135
Sequences




3-135-1
Sequence Number [ID]
135



3-135-2
Molecule Type
DNA



3-135-3
Length
49



3-135-4-1
Features Location/
misc_feature 1 . . . 49




Qualifiers
note = GMV00441




NonEnglishQualifier Value






source 1 . . . 49



3-135-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-135-5
Residues




atcagactaa gcctttcaca caggaaacca tgcacgacag actgatcat
   49













3-136
Sequences




3-136-1
Sequence Number [ID]
136



3-136-2
Molecule Type
DNA



3-136-3
Length
35



3-136-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = GMV00442




NonEnglishQualifier Value






source 1 . . . 35



3-136-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-136-5
Residues




ggtttattcc tcctttcaca catccccgac ttgcg
   35













3-137
Sequences




3-137-1
Sequence Number [ID]
137



3-137-2
Molecule Type
DNA



3-137-3
Length
49



3-137-4-1
Features Location/
misc_feature 1 . . . 49




Qualifiers
note = ESG00084




NonEnglishQualifier Value






source 1  . . . 49



3-137-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-137-5
Residues




gagacagaac gaagtgtgac cagaacgcag aagcggtctg ataaaacag
   49













3-138
Sequences




3-138-1
Sequence Number [ID]
138



3-138-2
Molecule Type
DNA



3-138-3
Length
70



3-138-4-1
Features Location/
misc_feature 1 . . . 70




Qualifiers
note = ESG00088




NonEnglishQualifier Value






source 1 . . . 70



3-138-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-138-5
Residues




gtgttggttg ctcgctagca ctgtacctag gactgagcta gccgtcaagt cagcgccctg
   60



caccattatg
   70













3-139
Sequences




3-139-1
Sequence Number [ID]
139



3-139-2
Molecule Type
DNA



3-139-3
Length
10705



3-139-4-1
Features Location/
misc_feature 1 . . . 10705




Qualifiers
note = pMZT37




NonEnglishQualifier Value






source 1 . . . 10705



3-139-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-139-5
Residues




tcaccctgtc gggcaatgcc gaggcattct ggcagcagcg ccccctggcc tgtagtggat
   60



tacgtgccgg tctgttccat cctaccaccg gctattcact gccgctggcg gttgccgtgg
  120



ccgaccgcct gagcgcactt gatgtcttta cgtcggcctc aattcaccag gctattaggc
  180



attttgcccg cgagcgctgg cagcagcagc gctttttccg catgctgaat cgcatgctgt
  240



ttttagccgg acccgccgat tcacgctggc gggttatgca gcgtttttat ggtttacctg 
  300



aagatttaat tgcccgtttt tatgcgggaa aactcacgct gaccgatcgg ctacgtattc
  360



tgagcggcaa gccgcctgtt ccggtattag cagcattgca agccattatg acgactcatc
  420



gttaagagac agaacgaagt gtgaccagaa cgcagaagcg gtctgataaa acagaatttg
  480



cctggcggca gtagcgcggt ggtcccacct gaccccatgc cgaactcaga agtgaaacgc
  540



cgtagcgccg atggtagtgt ggggtctccc catgcgagag tagggaactg ccaggcatca
  600



aataaaacga aaggctcagt cgaaagactg ggcctttcgt tttatctgtt ctttgtcggt
  660



gaacgctctc ctgagtagga caaatcttgt aggtggacca gttggtgatt ttgaactttt
  720



gctttgccac ggaacggtct gcgttgtcgg gaagatgcgt gatctgatcc ttcaactcag
  780



caaaagttcg atttattcaa caaagccgcc gtcccgtcaa gtcagcgtaa tgctctgcca
  840



gtgttacaac caattaacca attctgatta gaaaaactca tcgagcatca aatgaaactg
  900



caatttattc atatcaggat tatcaatacc atatttttga aaaagccgtt tctgtaatga
  960



aggagaaaac tcaccgaggc agttccatag gatggcaaga tcctggtatc ggtctgcgat
 1020



tccgactcgt ccaacatcaa tacaacctat taatttcccc tcgtcaaaaa taaggttatc
 1080



aagtgagaaa tcaccatgag tgacgactga atccggtgag aatggcaaaa gcttatgcat
 1140



ttctttccag acttgttcaa caggccagcc attacgctcg tcatcaaaat cactcgcatc
 1200



aaccaaaccg ttattcattc gtgattgcgc ctgagcgaga cgaaatacgc gatcgctgtt
 1260



aaaaggacaa ttacaaacag gaatcgaatg caaccggcgc aggaacactg ccagcgcatc
 1320



aacaatattt tcacctgaat caggatattc ttctaatacc tggaatgctg ttttcccggg
 1380



gatcgcagtg gtgagtaacc atgcatcatc aggagtacgg ataaaatgct tgatggtcgg
 1440



aagaggcata aattccgtca gccagtttag tctgaccatc tcatctgtaa catcattggc
 1500



aacgctacct ttgccatgtt tcagaaacaa ctctggcgca tcgggcttcc catacaatcg
 1560



atagattgtc gcacctgatt gcccgacatt atcgcgagcc catttatacc catataaatc
 1620



agcatccatg ttggaattta atcgcggcct cgagcaagac gtttcccgtt gaatatggct
 1680



cataacaccc cttgtattac tgtttatgta agcagacagt tttattgttc atgatgatat
 1740



atttttatct tgtgcaatgt aacatcagag attttgagac acaacgtggc tttccccccc
 1800



ccccctgcag gtccgacacg gggatggatg gcgttcccga tcatggtcct gcttgcttcg 
 1860



ggtggcatcg gaatgccggc gctgcaagca atgttgtcca ggcaggtgga tgaggaacgt
 1920



caggggcagc tgcaaggctc actggcggcg ctcaccagcc tgacctcgat cgtcggaccc
 1980



ctcctcttca cggcgatcta tgcggcttct ataacaacgt ggaacgggtg ggcatggatt 
 2040



gcaggcgctg ccctctactt gctctgcctg ccggcgctgc gtcgcgggct ttggagcggc
 2100



gcagggcaac gagccgatcg ctgatcgtgg aaacgatagg cctatgccat gcgggtcaag
 2160



gcgacttccg gcaagctata cgcgccctag aattgtcaat tttaatcctc tgtttatcgg
 2220



cagttcgtag agcgcgccgt gcgtcccgag cgatactgag cgaagcaagt gcgtcgagca
 2280



gtgcccgctt gttcctgaaa tgccagtaaa gcgctggctg ctgaaccccc agccggaact
 2340



gaccccacaa ggccctagcg tttgcaatgc accaggtcat cattgaccca ggcgtgttcc
 2400



accaggccgc tgcctcgcaa cgcttcgcag gcttcgccga cctgctcgcg ccacttcttc
 2460



acgcgggtgg aatccgatcc gcacatgagg cggaaggttt ccagcttgag cgggtacggc
 2520



tcccggtgcg agctgaaata gtcgaacatc ctgcgggccg tcggcgacag cttgcggtac
 2580



ttctcccata tgaatttcgt gtagtggtcg ccagcaaaca gcacgacgat ttcctcgtcg
 2640



atcaggacct ggcaacggga cgttttcttg ccacggtcca ggacgcggaa gcggtgcagc
 2700



agcgacaccg attccaggtg cccaacgcgg tcggacgtga agcccatcgc cgtcgcctgt
 2760



aggcgcgaca ggcattcctc ggccttcgtg taataccggc cattgatcga ccagcccagg
 2820



tcctggcaaa gctcgtagaa cgtgaaggtg atcggctcgc cgataggggt gcgcttcgcg
 2880



tactccaaca cctgctgcca caccagttcg tcatcgtcgg cccgcagctc gacgccggtg
 2940



taggtgatct tcacgtcctt gttgacgtgg aaaatgacct tgttttgcag cgcctcgcgc
 3000



gggattttct tgttgcgcgt ggtgaacagg gcagagcggg ccgtgtcgtt tggcatcgct
 3060



cgcatcgtgt ccggccacgg cgcaatatcg aacaaggaaa gctgcatttc cttgatctgc
 3120



tgcttcgtgt gtttcagcaa cgcggcctgc ttggcctcgc tgacctgttt tgccaggtcc
 3180



tcgccggcgg tttttcgctt cttggtcgtc atagttcctc gcgtgtcgat ggtcatcgac
 3240



ttcgccaaac ctgccgcctc ctgttcgaga cgacgcgaac gctccacggc ggccgatggc
 3300



gcgggcaggg cagggggagc cagttgcacg ctgtcgcgct cgatcttggc cgtagcttgc
 3360



tggaccatcg agccgacgga ctggaaggtt tcgcggggcg cacgcatgac ggtgcggctt
 3420



gcgatggttt cggcatcctc ggcggaaaac cccgcgtcga tcagttcttg cctgtatgcc
 3480



ttccggtcaa acgtccgatt cattcaccct ccttgcggga ttgccccgac tcacgccggg
 3540



gcaatgtgcc cttattcctg atttgacccg cctggtgcct tggtgtccag ataatccacc
 3600



ttatcggcaa tgaagtcggt cccgtagacc gtctggccgt ccttctcgta cttggtattc
 3660



cgaatcttgc cctgcacgaa taccagctcc gcgaagtcgc tcttcttgat ggagcgcatg
 3720



gggacgtgct tggcaatcac gcgcaccccc cggccgtttt agcggctaaa aaagtcatgg
 3780



ctctgccctc gggcggacca cgcccatcat gaccttgcca agctcgtcct gcttctcttc
 3840



gatcttcgcc agcagggcga ggatcgtggc atcaccgaac cgcgccgtgc gcgggtcgtc
 3900



ggtgagccag agtttcagca ggccgcccag gcggcccagg tcgccattga tgcgggccag
 3960



ctcgcggacg tgctcatagt ccacgacgcc cgtgattttg tagccctggc cgacggccag
 4020



caggtaggcc tacaggctca tgccggccgc cgccgccttt tcctcaatcg ctcttcgttc
 4080



gtctggaagg cagtacacct tgataggtgg gctgcccttc ctggttggct gcagagcagg
 4140



agccatccgc ttgccctcat ctgttacgcc ggcggtagcc ggccagcctc gcagagcagg
 4200



attcccgttg agcaccgcca ggtgcgaata agggacagtg aagaaggaac acccgctcgc
 4260



gggtgggcct acttcaccta tcctgcccgg ctgacgccgt tggatacacc aaggaaagtc
 4320



tacacgaacc ctttggcaaa atcctgtata tcgtgcgaaa aaggatggat ataccgaaaa
 4380



aatcgctata atgaccccga agcagggtta tgcagcggaa aagatccgtc gaccctttcc
 4440



gacgctcacc gggctggttg ccctcgccgc tgggctggcg gacgttgaca cttgaggggc
 4500



cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata
 4560



cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc
 4620



cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg
 4680



gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt tcccacagat
 4740



gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac
 4800



tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 
 4860



gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt
 4920



ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat
 4980



aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg
 5040



tgccccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc
 5100



tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agccaagctg accacttctg 
 5160



cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg tgagcgtggg
 5220



tctcgcggta tcattgcagc actggggcca gatggtaagc cctcccgtat cgtagttatc
 5280



tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt
 5340



gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt
 5400



gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc
 5460



atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag
 5520



atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa
 5580



aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg
 5640



aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt gtagccgtag 
 5700



ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg
 5760



ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga
 5820



tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc
 5880



ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc
 5940



acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga
 6000



gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt
 6060



cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg
 6120



aaaaacgcca gcaacgcggc ccttttacgg ttcctggcct tttgctggcc tgtcgggttt
 6180



atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga 
 6240



gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg
 6300



gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc
 6360



tggcagccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc
 6420



tgcgatgcag atccggaaca taatggtgca gggcgctgac ttgacggcta gctcagtcct
 6480



aggtacagtg ctagcgagca accaacactt aaagaggaga aaatgtatcc gtttataagg
 6540



acagcccgaa tgacggtctg cgcaaaaaaa cacgttcatc tcactcgcga tgctgcggag
 6600



cagttactgg ctgatattga tcgacgcctt gatcagttat tgcccgtgga gggagaacgg
 6660



gatgttgtgg gtgccgcgat gcgtgaaggt gcgctggcac cgggaaaacg tattcgcccc
 6720



atgttgctgt tgctgaccgc ccgcgatctg ggttgcgctg tcagccatga cggattactg
 6780



gatttggcct gtgcggtgga aatggtccac gcggcttcgc tgatccttga cgatatgccc
 6840



tgcatggacg atgcgaagct gcggcgcgga cgccctacca ttcattctca ttacggagag
 6900



catgtggcaa tactggcggc ggttgccttg ctgagtaaag cctttggcgt aattgccgat 
 6960



gcagatggcc tcacgccgct ggcaaaaaat cgggcggttt ctgaactgtc aaacgccatc
 7020



ggcatgcaag gattggttca gggtcagttc aaggatctgt ctgaagggga taagccgcgc
 7080



agcgctgaag ctattttgat gacgaatcac tttaaaacca gcacgctgtt ttgtgcctcc
 7140



atgcagatgg cctcgattgt tgcgaatgcc tccagcgaag cgcgtgattg cctgcatcgt
 7200



ttttcacttg atcttggtca ggcatttcaa ctgctggacg atttgaccga tggcatgacc
 7260



gacaccggta aggatagcaa tcaggacgcc ggtaaatcga cgctggtcaa tctgttaggc
 7320



cctagggcgg ttgaagaacg tctgagacaa catcttcatc ttgccagtga gcatctctct
 7380



gcggcctgcc aacacgggca cgccactcaa cattttattc aggcctggtt tgacaaaaaa
 7440



ctcgctgccg tcagttaaag gtctctagac aggatgtgtc acacaggaaa ccatgaaacc
 7500



aactacggta attggtgcag gcttcggtgg cctggcactg gcaattcgtc tacaggctgc
 7560



ggggatcccc gtcttactgc ttgaacaacg tgataaaccc ggcggtcggg cttatgtcta
 7620



cgaggatcag gggtttacct ttgatgcagg cccgacggtt atcaccgatc ccagtgccat
 7680



tgaagaactg tttgcactgg caggaaaaca gttaaaagag tatgtcgaac tgctgccggt
 7740



tacgccgttt taccgcctgt gttgggagtc agggaaggtc tttaattacg ataacgatca
 7800



aacccggctc gaagcgcaga ttcagcagtt taatccccgc gatgtcgaag gttatcgtca
 7860



gtttctggac tattcacgcg cggtgtttaa agaaggctat ctgaagctcg gtactgtccc
 7920



ttttttatcg ttcagagaca tgcttcgcgc cgcacctcaa ctggcgaaac tgcaggcatg
 7980



gagaagcgtt tacagtaagg ttgccagtta catcgaagat gaacatctgc gccaggcgtt
 8040



ttctttccac tcgctgttgg tgggcggcaa tcccttcgcc acctcatcca tttatacgtt
 8100



gatacacgcg ctggagcgtg agtggggcgt ctggtttccg cgtggcggca ccggcgcatt 
 8160



agttcagggg atgataaagc tgtttcagga tctgggtggt gaagtcgtgt taaacgccag
 8220



agtcagccat atggaaacga caggaaacaa gattgaagcc gtgcatttag aggacggtcg
 8280



caggttcctg acgcaagccg tcgcgtcaaa tgcagatgtg gttcatacct atcgcgacct
 8340



gttaagccag caccctgccg cggttaagca gtccaacaaa ctgcagacta agcgtatgag 
 8400



taactctctg tttgtgctct attttggttt gaatcaccat catgatcagc tcgcgcatca
 8460



cacggtttgt ttcggcccgc gttaccgcga actgattgac gagattttta atcatgatgg
 8520



cctcgcagaa gacttctcac tttatctgca cgcgccctgt gtcacggatt cgtcactggc
 8580



gcctgaaggt tgcggcagtt actatgtgtt ggcgccggtg ccgcatttag gcaccgcgaa
 8640



cctcgactgg acggttgagg ggccaaaact acgcgaccgt atttttgagt accttgagca 
 8700



gcattacatg cctggcttac ggagtcagct ggtcacgcac cagatgttta cgccgtttga
 8760



ttttcgcgac cagcttaatg cctatcaggg ctcagccttt tctgtggagc ccgttcttac
 8820



ccagagcgcc tggtttcggc cgcataaccg cgataaaacc attactaatc tctacctggt
 8880



cggcgcaggc acgcatcccg gcgcaggcat tcctggcgtc atcggctcgg caaaagcgac
 8940



agcaggtttg atgctggagg atctgattta agtgatcgtt gagtggtgaa cttaaagagg
 9000



agaaaatgaa taatccgtcg ttactcaatc atgcggtcga aacgatggca gttggctcga
 9060



aaagttttgc gacagcctca aagttatttg atgcaaaaac ccggcgcagc gtactgatgc
 9120



tctacgcctg gtgccgccat tgtgacgatg ttattgacga ccagacgctg ggcttccagg
 9180



cccggcagcc tgccttacaa acgcccgaac aacgtctgat gcaacttgag atgaaaacgc
 9240



gccaggccta tgcaggatcg cagatgcacg aaccggcgtt tgcggctttt caggaagtgg
 9300



ctatggctca tgatatcgcc ccggcttacg cgtttgatca tctggaaggc ttcgccatgg
 9360



atgtacgcga agcgcaatac agccaactgg acgatacgct gcgctattgc tatcacgttg
 9420



caggcgttgt cggcttgatg atggcgcaaa tcatgggcgt acgggataac gccacgctgg
 9480



accgcgcctg tgaccttggg ctggcatttc agttgaccaa tattgctcgc gatattgtgg
 9540



acgatgcgca tgcgggccgc tgttatctgc cggcaagctg gctggagcat gaaggtctga
 9600



acaaagagaa ttatgcggca cctgaaaacc gtcaggcgct gagccgtatc gcccgtcgtt
 9660



tggtgcagga agcagaacct tactatttgt ctgccacagc gggcctggct gggttgcccc
 9720



tgcgttcggc ctgggcaatc gctacggcga agcaggttta ccggaaaata ggtgtcaaag
 9780



ttgaacaggc cggtcagcaa gcctgggatc agcggcagtc aacgaccacg cccgaaaaat
 9840



taacgctgct gctggccgcc tctggtcagg cccttacttc ccggatgcgg gctcatcctc 
 9900



cccgccctgc gcatctctgg cagcgcccgc tctaatcacg tagcaagctg acagtttaaa
 9960



gaggagaaaa tgggagcggc tatgcaaccg cattatgatc tgattctcgt gggggctgga
10020



ctcgcgaatg gccttatcgc cctgcgtctt cagcagcagc aacctgatat gcgtattttg
10080



cttatcgacg ccgcacccca ggcgggcggg aatcatacgt ggtcatttca ccacgatgat
10140



ttgactgaga gccaacatcg ttggatagct tcgctggtgg ttcatcactg gcccgactat
10200



caggtacgct ttcccacacg ccgtcgtaag ctgaacagcg gctacttctg tattacttct
10260



cagcgtttcg ctgaggtttt acagcgacag tttggcccgc acttgtggat ggataccgcg
10320



gtcgcagagg ttaatgcgga atctgttcgg ttgaaaaagg gtcaggttat cggtgcccgc
10380



gcggtgattg acgggcgggg ttatgcggca aactcagcac tgagcgtggg cttcccagcg
10440



tttattggcc aggaatggcg attgagccac ccgcatggtt tatcgtctcc cattatcatg
10500 



gatgccacgg tcgatcagca aaatggttat cgcttcgtgt acagcctgcc gctctcgccg
10560



accagattgt taattgaaga cacgcactat atcgataatg cgacattaga tcctgaacgc
10620



gcgcggcaaa atatttgcga ctatgccgcg caacagggtt ggcagcttca gacattgctg
10680



cgtgaagaac agggcgcctt accca
10705













3-140
Sequences




3-140-1
Sequence Number [ID]
140



3-140-2
Molecule Type
DNA



3-140-3
Length
411



3-140-4-1
Features Location/
misc_feature 1 . . . 411




Qualifiers
note = MaFAR-g1




NonEnglishQualifier Value






source 1 . . . 411



3-140-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-140-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg gcgacccagc agcagcagaa cggcgcctcg
   60



gcgagcggcg tcctggaaca gttgcgcggg aagcatgtcc tgataaccgg taccaccggt  
  120



ttccttggca aggtagtcct ggaaaagctg atccgcacag tcccggacat cggcggcatc   
  180



cacctcctga tccggggcaa caagaggcat ccggccgccc gtgaacggtt cttgaacgag
  240



atcgccagca gttcggtctt cgagcgtctg cgccacgacg acaacgaggc cttcgaaacc
  300



ttcctggaag aaagggtgca ctgtataacc ggagaggtca ccgagagtcg tttcggcctt
  360



accccggagc gcttccgcgc gctggcgggt caggtggacg ccttcatcaa t
  411













3-141
Sequences




3-141-1
Sequence Number [ID]
141



3-141-2
Molecule Type
DNA



3-141-3
Length
465



3-141-4-1
Features Location/
misc_feature 1 . . . 465




Qualifiers
note = MaFAR-g2




NonEnglishQualifier Value




3-141-4-2
Features Location/
source 1 . . . 465




Qualifiers
mol_type = other DNA





organism = synthetic construct




NonEnglishQualifier Value











3-141-5
Residues




gacgccttca tcaattcggc cgcctccgtc aacttccgcg aggaactgga caaggcgctg
   60



aagatcaata cgctgtgcct ggagaatgtc gcggcccttg ctgaactcaa cagtgcgatg
  120



gcggtcatcc aggtttcgac ctgctacgtt aacggcaaga atagcgggca gatcaccgaa
  180



tcggtcatca agcccgcggg ggagtccatc ccgcgtagca ccgatgggta ctatgaaatc
  240



gaagaattgg tgcacctgct gcaggacaaa atcagcgatg tgaaggcccg atactccggg
  300



aaggttctgg aaaaaaaatt ggtggaccta ggcatccggg aagccaataa ctacgggtgg
  360



agcgatacat ataccttcac caagtggctg ggcgaacagc tcctcatgaa ggccctgagc
  420



ggcagatcgc tgaccatcgt gcggccgtcg atcatcgagt cggca
  465













3-142
Sequences




3-142-1
Sequence Number [ID]
142



3-142-2
Molecule Type
DNA



3-142-3
Length
374



3-142-4-1
Features Location/
misc_feature 1 . . . 374




Qualifiers
note = MaFAR-g3




NonEnglishQualifier Value






source 1 . . . 374



3-142-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-142-5
Residues




atcatcgagt cggcattgga agagcccagc ccggggtgga ttgaaggcgt caaggtcgcc 
   60



gatgccatca tactggccta cgcgagggag aaggtatcgc tctttcctgg caagcggagc
  120



ggcatcatcg acgtcatccc agtggatctg gtggccaatt cgatcattct gtccctggcg
  180



gaggcgctct ccggttcggg ccagcggcgt atctatcagt gctgcagcgg cggctcgaac
  240



cccatctccc tcgggaagtt catcgactat ctgatggcgg aggcgaagac caactacgcg
  300



gcctacgatc agctgttcta ccgccgcccc accaagccgt tcgtggccgt caaccgcaaa
  360



ctcttcgacg tcgt
  374













3-143
Sequences




3-143-1
Sequence Number [ID]
143



3-143-2
Molecule Type
DNA



3-143-3
Length
376



3-143-4-1
Features Location/
misc_feature 1 . . . 376




Qualifiers
note = MaFAR-g4




NonEnglishQualifier Value






source 1 .. 376



3-143-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-143-5
Residues




actcttcgac gtcgtcgtgg gcggcatgcg ggtcccgctc tcgatcgcgg gcaaagccat
   60



gcgcctggcg ggacaaaacc gcgaactgaa ggtcctgaag aatctggata cgacccggtc
  120



cctggccacc attttcgggt tctacaccgc tccggactac atctttcgca atgacagcct
  180



gatggccctg gcctcgcgca tgggcgagct ggaccgcgtg ttgttccccg ttgacgcccg
  240



tcagatcgac tggcagctgt atctgtgcaa aatccacctc ggcgggctga atcggtacgc 
  300



gctcaaggaa cgtaagctgt actcgctccg ggccgccgac actcgcaaga aggcagcctg
  376



agagacagaa cgaagt














3-144
Sequences




3-144-1
Sequence Number [ID]
144



3-144-2
Molecule Type
DNA



3-144-3
Length
47



3-144-4-1
Features Location/
misc_feature 1 . . . 47




Qualifiers
note = GMV410




NonEnglishQualifier Value






source 1 . . . 47



3-144-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-144-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg cgccccctgc accccat
   47













3-145
Sequences




3-145-1
Sequence Number [ID]
145



3-145-2
Molecule Type
DNA



3-145-3
Length
47



3-145-4-1
Features Location/
misc_feature 1 . . . 47




Qualifiers
note = GMV411




NonEnglishQualifier Value






source 1 . . . 47



3-145-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-145-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg cgcctgctga ccgccgt
   47













3-146
Sequences




3-146-1
Sequence Number [ID]
146



3-146-2
Molecule Type
DNA



3-146-3
Length
47



3-146-4-1
Features Location/
misc_feature 1 . . . 47




Qualifiers
note = GMV412




NonEnglishQualifier Value






source 1 . . . 47



3-146-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-146-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg tccgtgatgt ccccgac 
   47













3-147
Sequences




3-147-1
Sequence Number [ID]
47



3-147-2
Molecule Type
DNA



3-147-3
Length
47



3-147-4-1
Features Location/
misc_feature 1 . . . 47




Qualifiers
note = GMV413




NonEnglishQualifier Value






source 1 . . . 47



3-147-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-147-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg ccggtcaccg actccat
   47













3-148
Sequences




3-148-1
Sequence Number [ID]
148



3-148-2
Molecule Type
DNA



3-148-3
Length
47



3-148-4-1
Features Location/
misc_feature 1  . .. 47




Qualifiers
note = GMV414




NonEnglishQualifier Value






source 1 . . . 47



3-148-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-148-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg gccccgaccg actccct
   47













3-149
Sequences




3-149-1
Sequence Number [ID]
149



3-149-2
Molecule Type
DNA



3-149-3
Length
47



3-149-4-1
Features Location/
misc_feature 1 . . . 47




Qualifiers
note = GMV415




NonEnglishQualifier Value






source 1 . . . 47



3-149-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-149-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg cccctgccga tgtcccc
   47













3-150
Sequences




3-150-1
Sequence Number [ID]
150



3-150-2
Molecule Type
DNA



3-150-3
Length
35



3-150-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = GMV416




NonEnglishQualifier Value






source 1 . . . 35



3-150-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-150-5
Residues




acttcgttct gtctctcagt tggcggtctt gatgt 
   35













3-151
Sequences




3-151-1
Sequence Number [ID]
151



3-151-2
Molecule Type
DNA



3-151-3
Length
35



3-151-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = 





ACTTCGTTCTGTCTCTCACGGGGCCAGCTTCTTCA




NonEnglishQualifier Value






source 1 . . . 35



3-151-4-2
Features Location/Q
mol_type = other DNA




ualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-151-5
Residues




acttcgttct gtctctcacg gggccagctt cttca
   35













3-152
Sequences




3-152-1
Sequence Number [ID]
152



3-152-2
Molecule Type
DNA



3-152-3
Length
35



3-152-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = GMV418




NonEnglishQualifier Value
source 1 . . . 35



3-152-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-152-5
Residues




acttcgttct gtctctcagg tgccgctcgc ggcca 
   35













3-153
Sequences




3-153-1
Sequence Number [ID]
153



3-153-2
Molecule Type
DNA



3-153-3
Length
35



3-153-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = GMV419




NonEnglishQualifier Value






source 1 . . . 35



3-153-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-153-5
Residues




acttcgttct gtctctcaca gcagggccgc ttcca 
   35





3-154
Sequences











3-154-1
Sequence Number [ID]
154



3-154-2
Molecule Type
DNA



3-154-3
Length
35



3-154-4-1
Features Location/
misc feature 1 . . . 35




Qualifiers
note = GMV420




NonEnglishQualifier Value






source 1 . . . 35



3-154-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-154-5
Residues




acttcgttct gtctctcaca ggccgaccgc ggttt
   35













3-155
Sequences




3-155-1
Sequence Number [ID]
155



3-155-2
Molecule Type
DNA



3-155-3
Length
35



3-155-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = GMV421




NonEnglishQualifier Value






source 1 . . . 35



3-155-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-155-5
Residues




acttcgttct gtctctcaga tgcccaccgc gcgtt
   35













3-156
Sequences




3-156-1
Sequence Number [ID]
156



3-156-2
Molecule Type
DNA



3-156-3
Length
1149





source 1 . . . 1149



3-156-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-156-5
Residues




atgcgggcgc tggcgtattt caagaagggc gacatccatt tcaccaacga catcccccgg
   60



ccggagatcc agaccgacga cgaagtgatc atcgacgtct cctggtgcgg catctgcggc
  120



agcgacctgc acgagtacct ggacggcccc atcttcatgc cgaaggacgg cgaatgccac
  180



aagctgagca acgccgcgct gcccctggcg atgggccatg agatgtcggg catcgtctcc
  240



aaagtgggcc cgaaggtgac caaggtcaaa gtgggcgacc acgtcgtggt cgacgccgcg
  300



agctcgtgcg ccgacctgca ctgctggccc cattccaagt tctataacag caagccgtgc
  360



gacgcctgcc agcgcggctc ggagaacctg tgcacccatg cgggcttcgt cggcctgggc
  420



gtgatcagcg gcggcttcgc cgaacaggtg gtcgtgtcgc agcaccatat catcccggtc
  480



cccaaggaga tccccctgga cgtcgccgcc ctggtcgagc cgctgtcggt cacctggcac
  540



gccgtgaaga tctccggctt caagaagggc tccagcgccc tggtcctggg cgcgggcccc
  600



atcggcctgt gcaccatcct ggtgctgaag ggcatgggcg cgtcgaagat cgtcgtgtcc
  660



gagatcgccg aacgtcgcat cgagatggcg aagaagctgg gcgtcgaagt gttcaacccg
  720



agcaagcacg gccataagtc gatcgagatc ctgcggggcc tgaccaagtc ccacgacggc
  780



ttcgactaca gctatgactg ctcgggcatc caggtcacct tcgaaaccag cctgaaggcc
  840



ctgaccttca agggcaccgc caccaacatc gcggtctggg gcccgaagcc cgtgccgttc
  900



cagccgatgg acgtcaccct gcaggagaag gtgatgaccg gctcgatcgg ctacgtcgtg
  960



gaagacttcg aggaagtcgt gcgcgccatc cataacggcg acatcgcgat ggaggactgc
 1020



aagcagctga tcaccggcaa gcagcggatc gaggacggct gggaaaaggg cttccaggag
 1080



ctgatggacc acaaggaatc caacgtgaag atcctgctga ccccgaacaa ccacggcgaa
 1140



atgaagtga
 1149













3-157
Sequences




3-157-1
Sequence Number [ID]
157



3-157-2
Molecule Type
AA



3-157-3
Length
382





source 1 . . . 382



3-157-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-157-5
Residues




MRALAYFKKG DIHFTNDIPR PEIQTDDEVI IDVSWCGICG SDLHEYLDGP IFMPKDGECH
   60



KLSNAALPLA MGHEMSGIVS KVGPKVTKVK VGDHVVVDAA SSCADLHCWP HSKFYNSKPC
  120



DACQRGSENL CTHAGFVGLG VISGGFAEQV VVSQHHIIPV PKEIPLDVAA LVEPLSVTWH
  180



AVKISGFKKG SSALVLGAGP IGLCTILVLK GMGASKIVVS EIAERRIEMA KKLGVEVFNP 
  240



SKHGHKSIEI LRGLTKSHDG FDYSYDCSGI QVTEFTSKLA LTFKGTATNI AVWGPKPVPF
  300



QPMDVTLQEK VMTGSIGYVV EDFEEVVRAI HNGDIAMEDC KQLITGKQRI EDGWEKGFQE 
  360



LMDHKESNVK ILLTPNNHGE MK
  382













3-158
Sequences




3-158-1
Sequence Number [ID]
158



3-158-2
Molecule Type
DNA



3-158-3
Length
47



3-158-4-1
Features Location/
misc_feature 1 . . . 47




Qualifiers
note = GMV00268




NonEnglishQualifier Value






source 1 . . . 47



3-158-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-158-5
Residues




gagcaaccaa cacttaaaga ggagaaaatg cgggcgctgg cgtattt
   47













3-159
Sequences




3-159-1
Sequence Number [ID]
159



3-159-2
Molecule Type
DNA



3-159-3
Length
35



3-159-4-1
Features Location/
misc_feature 1 . . . 35




Qualifiers
note = GMV00271




NonEnglishQualifier Value






source 1 . . . 35



3-159-4-2
Features Location/
mol_type = other DNA




Qualifiers
organism = synthetic construct




NonEnglishQualifier Value











3-159-5
Residues




acttcgttct gtctctcact tcatttcgcc gtggt
   35













3-160
Sequences




3-160-1
Sequence Number [ID]
160



3-160-2
Molecule Type
DNA



3-160-3
Length
990





source 1  . . . 990



3-160-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Escherichia coli




NonEnglishQualifier Value











3-160-5
Residues




atgcatatta catacgatct gccggttgct attgatgaca ttattgaagc gaaacaacga 
   60



ctggctgggc gaatttataa aacaggcatg cctcgctcca actattttag tgaacgttgc 
  120



aaaggtgaaa tattcctgaa gtttgaaaat atgcagcgta cgggttcatt taaaattcgt
  180



ggcgcattta ataaattaag ttcactgacc gatgcggaaa aacgcaaagg cgtggtggcc
  240



tgttctgcgg gcaaccatgc gcaaggggtt tccctctcct gcgcgatgct gggtatcgac
  300



ggtaaagtgg tgatgccaaa aggtgcgcca aaatccaaag tagcggcaac gtgcgactac
  360 



tccgcagaag tcgttctgca tggtgataac ttcaacgaca ctatcgctaa agtgagcgaa
  420



attgtcgaaa tggaaggccg tatttttatc ccaccttacg atgatccgaa agtgattgct
  480



ggccagggaa cgattggtct ggaaattatg gaagatctct atgatgtcga taacgtgatt
  540



gtgccaattg gtggtggcgg tttaattgct ggtattgcgg tggcaattaa atctattaac
  600



ccgaccattc gtgttattgg cgtacagtct gaaaacgttc acggcatggc ggcttctttc
  660



cactccggag aaataaccac gcaccgaact accggcaccc tggcggatgg ttgtgatgtc
  720



tcccgcccgg gtaatttaac ttacgaaatc gttcgtgaat tagtcgatga catcgtgctg
  780



gtcagcgaag acgaaatcag aaacagtatg attgccttaa ttcagcgcaa taaagtcgtc
  840



accgaaggcg caggcgctct ggcatgtgct gcattattaa gcggtaaatt agaccaatat
  900



attcaaaaca gaaaaaccgt cagtattatt tccggcggca atatcgatct ttctcgcgtc
  960



tctcaaatca ccggtttcgt tgacgcttaa
  990













3-161
Sequences




3-161-1
Sequence Number [ID]
161



3-161-2
Molecule Type
AA



3-161-3
Length
329





source 1  . .. 329



3-161-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Escherichia coli




NonEnglishQualifier Value











3-161-5
Residues




MHITYDLPVA IDDIIEAKQR LAGRIYKTGM PRSNYFSERC KGEIFLKFEN MQRTGSFKIR
   60



GAFNKLSSLT DAEKRKGVVA CSAGNHAQGV SLSCMALGID GKVVMPKGAP KSKVAATCDY
  120



SAEVVLHGDN FNDTIAKVSE IVEMEGRIFI PPYDDPKVIA GQGTIGLEIM EDLYDVDNVI
  180



VPIGGGGLIA GIAVAIKSIN PTIRVIGVQS ENVHGMAASF HSGEITTHRT TGTLADGCDV
  240



SRPGNLTYEI VRELVDDIVL VSEDEIRNSM IALIQRNKVV TEGAGALACA ALLSGKLDQY
  300



IQNRKTVSII SGGNIDLSRV SQITGFVDA
  329













3-162
Sequences




3-162-1
Sequence Number [ID]
162



3-162-2
Molecule Type
AA



3-162-3
Length
590





source 1 . . . 590



3-162-4-1
Features Location/
mol_type = protein




Qualifiers
organism =






Methylosinus trichosporium





NonEnglishQualifier Value











3-162-5
Residues




MARKMTGAEM VVEALKDQGV EIIFGYPGGA VLPIYDALFH QEKVQHILVR HEQGAAHAAE
   60



GYARSSGKVG VLLVTSGPGA ENTITGLTDA LMDSIPVVCI TGQVPTHLIG SDAFGECDTV
  120



GITRHCTKHN YLVKSVDDLP RILHEAFYVA SSGRPGPVVI DIPKDVQFAS GTYTGPRNVH
  180



HKTYQPKLEG DTESIRRAVK MMAAAKRPIF YTGGGVINSG PAASTLLREL VSLTGFPITS
  240



TLMGLGAYPG SGPNWLGMLG MHGTFEANNA MHDCDLMIAV GARFDDRITG RLDAFSPGSK
  300



KIHIDIDRSS INKNVKIDLP IVGDCGHVLE SLVRVWRSEA MHAEKQPLDG WMKTIDHWRE
  360



RKSLAFRNSD KVIKPQYAVQ RLYALTKDRD PYITTEVGQH QMWAAQHYHF DEPNRWMTSG
  420



GLGTMGYGLP AAIGAQLAHP KSLVVDIAGE ASILMNIQEM STAIQYRLPV KVFILNNEYM
  480



GMVRQWQELL HGGRYSHSYS EALPDFVKLA EAFGGKGIRC SDPAELDSAI LEMIDYDGPV
  540



IFDCLVEKNE NCFPMIPSGK AHNDMLLADL GDDAGVELGS IIDEKGKMLV
  590













3-163
Sequences




3-163-1
Sequence Number [ID]
163



3-163-2
Molecule Type
AA



3-163-3
Length
351





source 1 . . . 351



3-163-4-1
Features Location/
mol_type = protein




Qualifiers
organism =




NonEnglishQualifier Value

Methylosinus trichosporium











3-163-5
Residues




MSTKAYAVAS AEALFGPLAI ERRALGPEDV EIDILYCGVC HSDLHTARSE WPGTRYPCVP
   60



GHEIVGRVTA VGAKVTKFSV GDLAAVGDMV DSCRRCLSCD DGLEQYCEHG FTATYNGPIY
  120



GSGENTFGGY SEKIVVDAHF VLAIHHSETQ LAGVAPLLCA GITTWSPLKH WGVGPGKSVG
  180



IVGIGGLGHM GVKLAHALGA HVVAFTTSPS KRDAALALGA DEVVVSTDPA AMAARAGSLD
  240



FILDTVAVAH DLDAYVNLLK RDGALVLVGV PATPHPSPSA GGLIFKRRQV AGSLIGGVKE
  300



TQEMLDECAE RGIVADIETI AMQQIETAYA RMLKNDVKYR FVIDMATKLA A
  351













3-164
Sequences




3-164-1
Sequence Number [ID]
164



3-164-2
Molecule Type
AA



3-164-3
Length
342





source 1 . . . 342



3-164-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-164-5
Residues




MKAWVIDRIG PLDSSRTLLR ATDLPVPEPG PGEILLQVAV CGVCHTEIDE IEGRTAPPRL
   60



PVVPGHQAVG RIAALGSGVA EFALGDRVGV AWIFSACGEC EFCRSGRENL CFAFCATGRD
  120



VDGGYAQYMT VPAAFAFRIP EGFTDAEAAP LLCAGAIGYR SLNLSGLKNG QPLGLTGFGA
  180



SAHLVLMMAR YRFPDSEVYV FARHPEERAF ALQLGAVWAG DTADIAPAPL AAIIDTTPAW
  240



KPVVAALANL APGGRLVVNA IRKAPDDRAC LAELDYARHL WMEREIKSVA NVARSDVAGF
  300



LALAAEMGIR PETEEYPFED ADRALLDLKQ RRIRGAKVLR VT
  342













3-165 
Sequences




3-165-1
Sequence Number [ID]
165



3-165-2
Molecule Type
AA



3-165-3
Length
355





source 1 . . . 355




Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-165-5
Residues




MPTAKAYAAF SADSALAPFV LQRRDPLPQD IRIGILYCGV CHSDLHQARN EWNATTYPCV
   60



PGHEIVGKVL EVGRSVTKFK PGDTVAVGCM VDSCRTCPNC VDALEQHCEH GPVFTYNSPC
  120



PHGGGMTFGG YAESIVVDEA FVLRIPDGLD LAAAAPLLCA GITTYSPLRH WKVGAGQRVG
  180



VVGLGGLGHM ALKFAHTFGA ETVLFTTTPD KAEDARRLGA DEVVVSRDPE AMARQAGRFD 
  240



FILDTVSAPH DIDAYLNLLR RDGTLTLVGV PPQGVQVMPF SLIGGRRRLA GSLIGGIRET
  300



QEMLDFCGEH GIVCDIELIP IQGINDAFER MLKSDVKYRF VIDMATLNGE SSGGR
  355













3-166
Sequences




3-166-1
Sequence Number [ID]
166



3-166-2
Molecule Type
AA



3-166-3
Length
548





source 1 . . . 548



3-166-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Lactococcus lactis




NonEnglishQualifier Value











3-166-5
Residues




MYTVGDYLLD RLHELGIEEI FGVPGDYNLQ FLDQIISRKD MKWVGNANEL NASYMADGYA
   60



RTKKAAAFLT TFGVGELSAV NGLAGSYAEN LPVVEIVGSP TSKVQNEGKF VHHTLADGDF
  120



KHFMKMHEPV TAARTLLTAE NATVEIDRVL SALLKERKPV YINLPVDVAA AKAEKPSLPL
  180



KKENPTSNTS DQEILNKIQE SLKNAKKPIV ITGHEIISFG LENTVTQFIS KTKLPITTLN
  240



FGKSSVDETL PSFLGIYNGK LSEPNLKEFV ESADFILMLG VKLTDSSTGA FTHHLNENKM
  300



ISLNIDEGKI FNESIQNFDF ESLISSLLDL SGIEYKGKYI DKKQEDFVPS NALLSQDRLW
  360



QAVENLTQSN ETIVAEQGTS FFGASSIFLK PKSHFIGQPL WGSIGYTFPA SYNDIPMWNY
  420



SRHLLFIGDG SLQLTVQELG LAIREKINPI CFIINNDGYT VEREIHGPNQ SYNDIPMWNY
  480



SKLPESFGAT EERVVSKIVR TENEFVSVMK EAGADPNRMY WIELVLAKED APKVLKKMGK
  540



LFAEQNKS
  548













3-167
Sequences




3-167-1
Sequence Number [ID]
167



3-167-2
Molecule Type
AA



3-167-3
Length
563





source 1 . . . 563



3-167-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-167-5
Residues




MSEITLGKYL FERLKQVNVN TIFGLPGDFN LSLLDKIYEV DGLRWAGNAN ELNAAYAADG
   60



YARIKGLSVL VTTFGVGELS ALNGIAGSYA EHVGVLHVVG VPSISAGAKQ LLLHHTLGNG
  120



DFTVFHRMSA NISETTSMIT DIATAPSEID RLIRTTFITQ RPSYLGLPAN LVDLKVPGSL 
  180



LEKPIDLSLK PNDPEAEKEV IDTVLELIQN SKNPVILSDA CASRHNVKKE TQKLIKLTQF
  240



PAFVTPLGKG SIDEQHPRYG GVYVGTLSKQ DVLQAVESAD LILSVGALLS DFNTGSFSYS 
  300



YKTKNVVEFH SDYVKVKNAT FLGVQMKFAL QNLLKVIPDV VKGYKSVPVP TKTPANKGVP
  360



ASTPLKQEWL WNELSKFLQE GDVIISETGT SAFGINQTIF PKDAYGISQV LWGSIGFTTG
  420



ATLGAAFAAE EIDPNKRVIL FIGDGSLQLT VQEISTMIRW GLKPYLFVLN NDGYTIEKLI
  480



HGPHAEYNEI QTWDHLALLP AFGAKKYENH KIATTGEWDA LTTDSEFQKN SVIRLIELKL
  540



PVFDAPESLI KQAQLTAATN AKQ
  563













3-168
Sequences




3-168-1
Sequence Number [ID]
168



3-168-2
Molecule Type
AA



3-168-3
Length
635





source 1 . . . 635



3-168-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-168-5
Residues




MAPVTIEKFV NQEERHLVSN RSATIPFGEY IFKRLLSIDT KSVFGVPGDF NLSLLEYLYS
   60



PSVESAGLRW VGTCNELNAA YAADGYSRYS NKIGCLITTY GVGELSALNG IAGSFAENVK
  120



VLHIVGVAKS IDSRSSNFSD RNLHHLVPQL HDSNFKGPNH KVYHDMVKDR VACSVAYLED
  180



IETACDQVDN VIRDIYKYSK PGYIFVPADF ADMSVTCDNL VNVPRISQQD CIVYPSENQL
  240



SDIINKITSW IYSSKTPAIL GDVLTDRYGV SNFLNKLICK TGIWNFSTVM GKSVIDESNP
  300



TYMGQYNGKE GLKQVYEHFE LCDLVLHFGV DINEINNGHY TFTYKPNAKI IQFHPNYIRL
  360



VDTRQGNEQM FKGINFAPIL KELYKRIDVS KLSLQYDSNV TQYTNETMRL EDPTNGQSSI
  420



ITQVHLQKTM PKFLNPGDVV VCETGSFQFS VRDFAFPSQL KYISQGFFLS IGMALPAALG
  480



VGIAMQDHSN AHINGGNVKE DYKPRLILFE GDGAAQMTIQ ELSTILKCNI PLEVIIWNNN
  540



GYTIERAIMG PTRSYNDVMS WKWTKLFEAF GDFDGKYTNS TLIQCPSKLA LKLEELKNSN
  600



KRSGIELLEV KLGELDFPEQ LKCMVEAAAL KRNKK
  635













3-169
Sequences




3-169-1
Sequence Number [ID]
169



3-169-2
Molecule Type
AA



3-169-3
Length
348





source 1 . . . 348



3-169-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-169-5
Residues




MSIPETQKAI IFYESNGKLE HKDIPVPKPK PHELLINVKY SGVCHTDLHA WHGDWPLPTK
   60



LPLVGGHEGA GVVVGMGENV KGWKIGDYAG IKWLNGSCMA CEYCELGNES NCPHADLSGY
  120



THDGSEQEYA TADAVQAAHI PQGTDLAEVA PILCAGITVY KALKSANLRA GHWAAISGAA
  180



GGLGSLAVQY AKAMGYRVLG IDGGPGKEEL FTSLGGEVFI DFTKEKDIVS AVVKATNGGA
  240



HGIINVSVSE AAIEASTRYC RANGTVVLVG LPAGAKCSSD VFNHVVKSIS IVGSYVGNRA
  300



DTREALDEFA RGLVKSPIKV VGLSSLPEIY EKMEKGQIAG RYVVTDSK
  348













3-170
Sequences




3-170-1
Sequence Number [ID]
170



3-170-2
Molecule Type
AA



3-170-3
Length
563





source 1 . . . 563



3-170-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Saccharomyces cerevisiae




NonEnglishQualifier Value











3-170-5
Residues




MSEITLGKYL FERLKQVNVN TVFGLPGDFN LSLLDKIYEV EGMRWAGNAN ELNAAYAADG
   60



YARIKGMSCI ITTFGVGELS ALNGIAGSYA EHVGVLHVVG VPSISAQAKQ LLLHHTLGNG
  120



DFTVFHRMSA NISETTAMIT DIATAPAEID RCIRTTYVTQ RPVYLGLPAN LVDLNVPAKL
  180



LQTPIDMSLK PNDAESEKEV IDTILALVKD AKNPVILADA CCSRHDVKAE TKKLIDLTQF
  240



PAFVTPMGKG SIDEQHPRYG GVYVGTLSKP EVKEAVESAD LILSVGALLS DFNTGSFSYS
  300



YKTKNIVEFH SDHMKIRNAT FPGVQMKFVL QKLLTTIADA AKGYKPVAVP ARTPANAAVP
  360



ASTPLKQEWM WNQLGNFLQE GDVVIAETGT SAFGINQTTF PNNTYGISQV LWGSIGFTTG
  420



ATLGAAFAAE EIDPKKRVIL FIGDGSLQLT VQEISTMIRW GLKPYLFVLN NDGYTIEKLI
  480



HGPKAQYNEI QGWDHLSLLP TFGAKDYETH RVATTGEWDK LTQDKSFNDN SKIRMIEIML
  540



PVFDAPQNLV EQAKLTAATN AKQ
  563













3-171
Sequences




3-171-1
Sequence Number [ID]
171



3-171-2
Molecule Type
AA



3-171-3
Length
1048





source 1 . . . 1048



3-171-4-1
Features Location/
mol_type = protein




Qualifiers
organism = 






Clostridium acetobutylicum





NonEnglishQualifier Value











3-171-5
Residues




MKSEYTIGRY LLDRLSELGI RHIFGVPGDY NLSFLDYIME YKGIDWVGNC NELNAGYAAD
   60



GYARINGIGA ILTTFGVGEL SAINAIAGAY AEQVPVVKIT GIPTAKVRDN GLYVHHTLGD 
  120



GRFDHFFEMF REVTVAEALL SEENAAQEID RVLISCWRQK RRVLINLPID VYDKPINKPL  
  180



KPLLDYTISS NKEAACEFVT EIVPIINRAK KPVILADYGV YRYQVQHVLK NLAEKTGFPV
  240



ATLSMGKGVF NEAHPQFIGV YNGDVSSPYL RQRVDEADCI ISVGVKLTDS TTGGFSHGFS 
  300



KRNVIHIDPF SIKAKGKKYA PITMKDALTE LTSKIEHRNF EDLDIKPYKS DNQKYFAKEK
  360



PITQKRFFER IAHFIKEKDV LLAEQGTCFF GASTIQLPKD ATFIGQPLWG SIGYTLPALL
  420



GSQLADQKRR NILLIGDGAF QMTAQEISTM LRLQIKPIIF LINNDGYTIE RAIHGREQVY
  480



NNIQMWRYHN VPKVLGPKEC SLTFKVQSET ELEKALLVAD KDCEHLIFIE VVMDRYDKPE
  540



PLERLSKRFA NQNNGYARIN GIGAILTTFG VGELSAINAI AGAYAEQVPV VKITGIPTAK
  600



VRDNGLYVHH TLGDGRFDHF FEMFREVTVA EALLSEENAA QEIDRVLISC WRQKRPVLIN
  660



LPIDVYDKPI NKPLKPLLDY TISSNKEAAC EFVTEIVPII NRAKKPVILA DYGVYRVQVQ
  720



HVLKNLAEKT GFPVATLSMG KGVFNEAHPQ FIGVYNGDVS SPYLRQRVDE ADCIISVGVK
  780



LTDSTTGGFS HGFSKRNVIH IDPFSIKAKG KKYAPITMKD ALTELTSKIE HRNFEDLDIK
  840



PYKSDNQKYF AKEKPITQKR FFERIAHFIK EDKVLLAEQG TCFFGASTIQ LPKDATFIGQ
  900



PLWGSIGYTL PALLGSQLAD QKRRNILLIG DGAFQMTAQE ISTMLRLQIK PIIFLINNDG
  960



YTIERAIHGR EQVYNNIQMW RYHNVPKVLG PKECSLTFKV QSETELEKAL IVADKDCEHL
 1020



IFIEVVMDRY DKPEPLERLS KRFANQNN
 1048













3-172
Sequences




3-172-1
Sequence Number [ID]
172



3-172-2
Molecule Type
DNA



3-172-3
Length
645





source 1 . . . 645



3-172-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-172-5
Residues




atggcaagac cattgattca gctcgccctg gacacgctgg acatcccgca gaccctgaag
   60



ctcgcaagcc tcaccgcgcc ctatgtcgat atcttcgaaa tcggcacccc cagcatcaag
  120



cacaacggca tcgccctggt gaaggagttc aaaaaacgct tccccaacaa gctgctcctg
  180



gtcgacctca aaaccatgga cgccggtgaa tacgaagcca cccccttctt cgccgccggc
  240



gccgacatca ccaccgtcct cggcgtcgca ggactggcca ccatcaaggg cgtcatcaac
  300



gccgccaaca agcacaacgc cgaggtccag gtcgacctga tcaacgtccc cgacaaggcc
  360



gcctgcgccc gtgagtccgc caaggccggc gcccagatcg tcggcatcca caccggcctc
  420



gacgcccagg ccgccggcca gacccccttc gccgacctcc aggccatcgc caagctcggc
  480



ctccccgtcc gcatctccgt cgccggcggc atcaaggcct ccaccgccca acaggtcgtc
  540



aaaaccggtg ccaacatcat cgtcgtcgga gccgccatct acggcgccgc ctcccccgcc
  600



gatgccgcgc gcgaaatcta cgaacaggtc gtcgccgctt ccgcc
  645













3-173
Sequences




3-173-1
Sequence Number [ID]
17



3-173-2
Molecule Type
AA



3-173-3
Length
215





source 1 . . . 215



3-173-4
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-173-5
Residues




MARPLIQLAL DTLDIPQTLK LASLTAPYVD IFEIGTPSIK HNGIALVKEF KKRFPNKLLL
   60



VDLKTMDAGE YEATPFFAAG ADITTVLGVA GLATIKGVIN AANKNHAEVQ VDLINVPDKA
  120



ACARESAKAG AQIVGIHTGL DAQAAGQTPF ADLQAIAKLG LPVRISVAGG IKASTAQQVV
  180



KTGANIIVVG AAIYGAASPA DAAREIYEQV VAASA
  215













3-174
Sequences




3-174-1
Sequence Number [ID]
174



3-174-2
Molecule Type
DNA



3-174-3
Length
531





source 1 . . 531



3-174-4-1
Features Location/
mol_type = other DNA




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-174-5
Residues




atgcatcaga aactgatcat agacaaaatc tccggcatcc tcgccgccac cgatgccggc
   60



tatgatgcaa aactgactgc catgctcgac caggcctccc gcatcttcgt cgcgggggcc
  120



ggccggtcgg ggctggtcgc caagttcttc gccatgcgcc tcatgcacgg cggctatgac
  180



gtcttcgtcg tcggcgaaat cgtcaccccc agcatccgca agggcgactt gctgatcgtg
  240



atctccggct ccggtgaaac cgaaaccatg ctcgccttca ccaaaaaagc caaggagcag
  300



ggcgcctcca tcgccctcat ctccacccgc gacagctcct ccctcggcga cctcgccgac
  360



tccgtcttcc gcatcggctc cccagagctc ttcggaaaag tcgtcggcat gcccatgggc
  420



accgtcttcg agctctccac cctcctcttc ctcgaggcca ccatctctca catcatccac
  480



gagaaaggca tccccgaaga agaaatgaga actcgtcacg ccaacctgga a
  531













3-175
Sequences




3-175-1
Sequence Number [ID]
175



3-175-2
Molecule Type
AA



3-175-3
Length
177





source 1 . . 77



3-175-4-1
Features Location/
mol_type = protein




Qualifiers
organism = Methylococcus capsulatus




NonEnglishQualifier Value











3-175-5
Residues




MHQKLIIDKI SGILAATDAG YDAKLTAMLD QASRIFVAGA GRSGLVAKFF AMRLMHGGYD
   60



VFVVGEIVTP SIRKGDLLIV ISGSGETETM LAFTKKAKEQ GASIALISTR DSSSLGDLAD
  120



SVFRIGSPEL FGKVVGMPMG TVFELSTLLF LEATISHIIH EKGIPEEEMR TRHANLE 
  177








Claims
  • 1-90. (canceled)
  • 91. A genetically modified methanotroph comprising a heterologous polynucleotide encoding for an acetolactate synthase (ALS), wherein the acetolactate synthase can catalyze the conversion of pyruvate to acetolactate and comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 2, and wherein said methanotroph is capable of converting formaldehyde to pyruvate through a type I RuMP pathway or a type II serine pathway.
  • 92. The methanotroph of claim 91, wherein the methanotroph further comprises a heterologous polynucleotide encoding a ketoacid decarboxylase (KDC), wherein the ketoacid decarboxylase can catalyze the conversion of ketoisovalerate to isobutryaldehyde.
  • 93. The methanotroph of claim 92, wherein the methanotroph further comprises a a heterologous polynucleotide encoding a ketol-acid reductoisomerase (KARI), a heterologous polynucleotide encoding a dihydroxy-acid dehydratase (DHAD), and a heterologous polynucleotide encoding an alcohol dehydrogenase (ADH); wherein the ketol-acid reductoisomerase can catalyze the conversion of acetolactate to 2,3-dihydroxyisovalerate, wherein the dihydroxy-acid dehydratase can catalyze the conversion of 2,3-dihydroxyisovalerate to ketoisovalerate, and wherein the alcohol dehydrogenase can catalyze the conversion of isobutyraldehyde to isobutanol.
  • 94. The methanotroph of claim 93, wherein the methanotroph further comprises a heterologous polynucleotide encoding an alcohol dehydrogenase (ADH), wherein the ketoacid decarboxylase can catalyze the conversion of isobutyraldehyde to isobutanol.
  • 95. The methanotroph of claim 94, wherein the ketoacid decarboxylase (KDC) comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 8.
  • 96. The methanotroph of claim 91, wherein the methanotroph further comprises a a heterologous polynucleotide encoding a ketol-acid reductoisomerase (KARI), heterologous polynucleotide encoding a dihydroxy-acid dehydratase (DHAD), and a heterologous polynucleotide encoding a ketoacid decarboxylase (KDC); and a heterologous polynucleotide encoding an alcohol dehydrogenase (ADH); wherein the acetolactate synthase can catalyze the conversion of pyruvate to acetolactate and comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 2, wherein the ketol-acid reductoisomerase can catalyze the conversion of acetolactate to 2,3-dihydroxyisovalerate and comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 4, wherein the dihydroxy-acid dehydratase can catalyze the conversion of 2,3-dihydroxyisovalerate to ketoisovalerate and comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 6, wherein the ketoacid decarboxylase can catalyze the conversion of ketoisovalerate to isobutryaldehyde and comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 8, and wherein the alcohol dehydrogenase can catalyze the conversion of isobutyraldehyde to isobutanol and comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 10.
  • 97. The methanotroph of claim 96, wherein the methanotroph further comprises a polynucleotide sequence encoding for the alcohol dehydrogenase (ADH) and a promoter, wherein said promoter can direct the expression of the alcohol dehydrogenase in the methanotroph.
  • 98. The methanotroph of claim 92, wherein the methanotroph further comprises a polynucleotide sequence encoding for the ketoacid decarboxylase (KDC), the alcohol dehydrogenase (ADH), and a promoter, wherein said promoter can direct the expression of the ketoacid decarboxylase and the alcohol dehydrogenase (ADH) in the methanotroph.
  • 99. The methanotroph of claim 93, wherein the methanotroph further comprises a polynucleotide sequence encoding for the acetolactate synthase (ALS), the ketol-acid reductoisomerase (KARI), the dihydroxy-acid dehydratase (DHAD), the ketoacid decarboxylase (KDC), the alcohol dehydrogenase (ADH) and a promoter, wherein said promoter can direct the expression of the acetolactate synthase (ALS), the ketol-acid reductoisomerase (KARI), the dihydroxy-acid dehydratase (DHAD), the ketoacid decarboxylase (KDC), and the alcohol dehydrogenase (ADH) in a methanotroph.
  • 100. The methanotroph of claim 99, wherein said promoter is constitutive.
  • 101. The methanotroph of claim 99, wherein said promoter is inducible.
  • 102. The methanotroph of claim 91, wherein said methanotroph is from the genus Methylobacter, Methylomicrobium, Methylomonas, Methylocaldum, Methylococcus, Methylosoma, Methylosarcina, Methylothermus, Methylohalobius, Methylogaea, Methylovulum, Crenothrix, Clonothrix, Methylosphaera, Methylocapsa, Methylocella, Methylosinus, Methylocystis, or Methyloacidophilum.
  • 103. The methanotroph of claim 91, wherein said methanotroph is from the genus Methylococcus.
  • 104. The methanotroph of claim 91, wherein said methanotroph is from the species Methylococcus capsulatus.
  • 105. The methanotroph of claim 91, wherein said methanotroph is from the strain Methylococcus capsulatus strain Bath.
  • 106. A method of making a multi-carbon compound comprising: (a) contacting a genetically modified methanotroph with a multi-carbon product precursor comprising a heterologous polynucleotide encoding for an acetolactate synthase (ALS), wherein the ALS can catalyze the conversion of pyruvate to acetolactate and comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 2, and wherein said methanotroph is capable of converting formaldehyde to pyruvate through a type I RuMP pathway or a type II serine pathway; and(b) growing said methanotroph in conditions to produce a multi-carbon compound.
  • 107. The method of claim 105 wherein said precursor is methane.
  • 108. The method of claim 106 wherein said multi-carbon compound is isobutanol.
  • 109. The method of claim 106 wherein said multi-carbon product is 1-butanol.
  • 110. A genetically modified methanotroph capable of converting methane to a multi-carbon product comprising a heterologous polynucleotide encoding for an acetolactate synthase (ALS), wherein the ALS has acetolactate synthase can catalyze the conversion of pyruvate to acetolactate and comprises an amino acid sequence having at least 90% sequence homology to SEQ ID NO: 2, wherein said methanotroph is capable of converting formaldehyde to pyruvate through a type I RuMP pathway or a type II serine pathway.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority benefit of U.S. provisional Application No. 61/782,830, filed Mar. 14, 2013, which is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
61782830 Mar 2013 US
Divisions (2)
Number Date Country
Parent 14989859 Jan 2016 US
Child 15192290 US
Parent 14206835 Mar 2014 US
Child 14989859 US
Continuations (3)
Number Date Country
Parent 17103516 Nov 2020 US
Child 18379079 US
Parent 15648920 Jul 2017 US
Child 17103516 US
Parent 15192290 Jun 2016 US
Child 15648920 US