Biological sample collection

Information

  • Patent Grant
  • 9382577
  • Patent Number
    9,382,577
  • Date Filed
    Thursday, January 31, 2013
    11 years ago
  • Date Issued
    Tuesday, July 5, 2016
    8 years ago
Abstract
Disclosed is a device (10) for collecting a biological sample, the device comprising an elongate handle (40) extending generally along a handle axis, and a sample collecting head (20) removably supported or supportable on the handle, the head being formed from a porous folded planar or sheet material, optionally including a plurality of arms (22-28 FIG. 2) each extending away from the handle axis in a different direction. An ejection handle is provided. Disclosed also is an efficient method for extracting DNA information from the device.
Description
CROSS-REFERENCE TO RELATED APPLICTIONS

This application is a filing under 35 U.S.C. 371 of international application number PCT/EP2013/051950, filed Jan. 31, 2013, published on Aug. 8, 2012 as WO 2013/113842, which claims priority to application number 1201645.7 filed in Great Britain on Jan. 31, 2012.


The present invention relates principally to a swab-like device for collecting biological samples, and a method for obtaining nucleic acid information from such a device when the device holds a biological sample.


It is desirable to collect biological samples for various reasons, such as crime scene investigations, medical analysis, genetic recording and the like. Traditionally, a sterile swab, having the trade name Omni-Swab, has been used for this purpose with reasonable success. The process involves contacting an area where a desired biological sample it located, in order to transfer at least some of the sample from the area, to the swab. However, in some cases it is difficult to make contact with the whole of the area where the area has inaccessible features. Therefore, the inventors have realised that the design of these swabs can be improved to increase the chances of transferring biological material from the area of interest to the swab. For example, during crime scene investigations, it is often necessary to rub the whole of an item to maximise the chances of obtaining a sample. However it is often very difficult to access small orifices, narrow recesses and the like with a conventional swab.


It is known to use a thin substrate such as filter type paper as a sample collector, because it is relatively easy to remove the biological sample from the paper once it is collected. However, the thin paper has been found to be weak in use, particularly where paper is used in an attempt to collect a sample from a small orifice, a narrow recess or the like. Further, once collected on a filter paper substrate, the known process for obtaining DNA or RNA information from the paper is time consuming, and not always successful. The inventor has realised that changes in the chemistry of the collecting portion of the swab can improve the recovery rate of the biological sample, and the speed of analysis of the sample.


Embodiments of the invention address the deficiencies mentioned above.


According to a first aspect the invention provides a device for collecting a biological sample, the device comprising an elongate handle extending generally along a handle axis, and a sample collecting head removably supported or supportable on the handle, the head being formed from a porous substrate formed from folded generally planar or sheet material, for example a paper material.


Thus the head can be used to collect a biological sample more efficiently than a conventional swab.


In an embodiment, said substrate is for example a paper material, and is preferably folded to form arms extending away from said axis.


In an embodiment, the handle is a hollow tube providing a tube wall having an outer handle surface.


In an embodiment, the arms each pass through a respective corresponding slot extending through said wall, said slots running parallel to the axis.


In an embodiment there are 2 to 12 slots in an array, preferably 2, 3, 4, 5, 6, 7 or 8 slots, and more preferably 2, 3, 4 or 6 slots.


In an embodiment, the handle includes a slidable ejector pin held in use within the tube, having a first end which extends beyond the tube at one end of the tube, the other end of said ejector pin being engageable with a portion of the head for ejecting the head from the slots in the tube.


In an embodiment, the substrate or paper is a matrix containing a conjugate base of thiocyanic acid, for example Guanidinuim Thiocyanate and optionally an indicating dye, for example Chlorophenol red.


According to a second aspect the invention provides a method for collecting a biological sample, including the following steps, in any suitable order:

  • a) providing a sample collection device according to the first or second aspect;
  • b) dampening the head of said collection device with sterile liquid;
  • c) attempting to collect a biological sample on the head;
  • d) allowing the head to dry.


According to a third aspect the invention provides a method of recovering nucleic acid information from a biological sample collected on a sample collection device, the method comprising the following steps in any suitable order:

  • e) following steps a) to d) above;
  • f) removing the head of the device;
  • g) introducing into a vessel the head, or a portion thereof, together with a rinsing liquid;
  • h) agitating the vessel and its contents;
  • i) removing at least a portion of said rinsing liquid from the vessel and optionally applying centrifugal force to remove further rinse liquid;
  • j) in a chamber, combining elution liquid and the rinsed head or said portion thereof;
  • k) heating the contents of said chamber to approximately 95 degrees Celsius for approximately 30 minutes, and optionally further agitating and/or optionally applying further centrifugal force to said chamber contents; and
  • l) using at least a portion of the elution liquid resulting from step k) in a reaction to amplify nucleic acids therein, for example a polymerase chain reaction (PCR), to thereby obtain said nucleic acid information.





The invention can be put into effect in numerous ways, exemplary embodiments only being described below, with reference to the drawings wherein:



FIG. 1 shows a sample collection device;



FIG. 2 shows an enlarged view of a head portion of the device shown in FIG. 1;



FIG. 3 shows a sectional view of the device shown in FIG. 1; and



FIGS. 4a, 4b, show further views of the device shown in FIG. 1; and



FIGS. 5 and 6 show alternative head arrangements.






FIG. 1 shows a sample collection device 10, comprising a sample collection head 20, a hollow tubular handle 40, and an ejector pin 60. The device is about 150 mm in overall length, with a head about 10 mm across and 20 mm long.


Referring additional to FIG. 2, which shows an enlarged view of the area II in FIG. 1, the head has four arms 22, 24, 26 and 28 each fitting into a respective slot 42, 44, 46, and 48 formed in the tubular handle 40. The arms 22, 24, 26 are formed from a single sheet of sample collection paper, folded into a cross shape with each leg pushed into a respective slot in a manner which allows for removal of the head from the slots. This means that each arm extends away from the handle axis in a different direction—in this case at 90 degrees to each other. The arms have castellations 30 only one of which is reference for each arm. These castellations provide ‘teeth’ about 1.6 mm in width (w) and about 2 mm in height (h), which can penetrate into small apertures and the like for more effective collection of potential biological samples.



FIG. 3 shows a sectional view of the device 10, in the plane III-III shown in FIG. 1. In this view the hollow tubular handle 40 is visible, and the ejector pin 60 is shown also. The pin has a portion 62 which extends beyond the lower end of the handle 40. The opposite end of the ejector pin 60 has a plug 64 which can make contact with the head 20. The portion 62 can be pushed by a user so as to force the plug in the direction of arrow E and thereby to force the head 20 off the handle 40.



FIG. 4a shows an enlarged end view of the device 10. In this view the arms 22-28 can be seen folded, such that they are each formed from a double sheet of paper, but only one cut sheet is needed. This folding stiffens the arms so that the user is able to rub the head more firmly against an area of interest. Four arms are shown in this embodiment, equispaced around the axis of the handle, but other numbers of arms are possible.



FIG. 4b shows a developed (unfolded) view of the head 20 of FIG. 4a, which can be punched from a paper material, then folded along dotted fold lines 32 to form the head shown in FIGS. 2 and 4. The head is pushed into the slots shown in FIG. 2 during assembly.



FIG. 5 shows a head arrangement 20′ which is similar to that shown in FIG. 4, but in FIG. 5, eight arms 22,23,24,25,26,27,28,29 are arranged around the handle axis. A punched and folded construction (not shown) similar to that shown in FIG. 4a can be produced to form the arms shown in FIG. 5.



FIG. 6 shows a further head 20″. In this embodiment the paper material is folded into a triangular shape with a pair of inwardly directed opposed legs 21 and 23 placed together to form a support, stiffened portion which can sit within a single slot 41 in the handle 40, and can be used to eject the head once it has been used. It will be appreciated that the pair of legs 21 and 23 could be folded inwardly at any point of the triangular periphery shown. Further, the triangular shape could be replaced by any polygonal shape or an irregular shape, with generally comparable utility. So square and hexagonal shapes will suffice, although the greater the number of sides, the more difficult it becomes to access narrow features, for example during forensic examination.


In use the device is supplied assembled as shown in FIG. 1, in a sterile packaging (not shown), and is removed therefrom immediately prior to use. The head 20 is dampened with sterile water, and the device can be manipulated so that the castellations 30 of the head collect biological samples, for example potential DNA samples, or the like, at a crime scene. The head 20 need not be touched directly by the user. The head can be ejected from the handle into a tamper evident sterile bag once dried.


The recovery of nucleic acid information (for example from DNA), from swabs is known, but the speed and success rate of this operation has been found to be enhanced by the use of the following techniques:


The paper has been treated with Guanidinuim Thiocyanate, by dipping a web of the paper into a solution of Guanidinuim Thiocyanate during manufacture of the paper and then drying the paper web. This treatment has the result that certain steps in known nucleic acid information recovery techniques can be circumvented or shortened in time.


The head of the sample collection device, once brought into contact with the area of interest, and then dried, is treated according to the following steps:

  • 1) Remove device from taper evident bag;
  • 2) Eject head from device into a vessel;
  • 3) Rinse head in 1000 μl of water, pulse vortex (agitate) 3 times for 5 seconds
  • 4) Remove excess water and centrifuge head for 5 seconds;
  • 5) Remove excess water using a pipette or the like;
  • 6) Add 200-500 μl of sterile water to the vessel, heat at 95° C. for 30 minutes; pulse vortex (agitate) 60 times;
  • 7) Further centrifuge vessel for 5 seconds
  • 8) Use 5 to 10 μl of the sterile water (now containing any DNA from the head) in a now PCR reaction.


This process reduces the number of steps needed to prepare a sample for DNA assay, and so reduces the overall time of the process.


Whilst embodiments of the invention have been described above, additions, omissions, modifications, and variants will be apparent to the skilled addressee. For example the handle 40 is shown as a circular cylinder, but other shapes, such a square tube could be employed with equal effect. The head is preferably made from paper. The term “paper” as used herein means a fibrous web, a matrix, a sheet, or planar material. Paper comprises fibres, e.g. cellulose or glass fibres, and optionally other components, such as e.g. particulate fillers, wet strength or dry strength additives, retention agents etc. It can also comprise reagents for preservation of sample components, lysis of cells etc. Suitable paper substrates and similar porous sheet substrates are sold commercially under the brand names FTA®, FTA®Elute, FTA®DMPK, and 903® by GE Healthcare UK Ltd for preservation of nucleic acid samples. However, other materials such as an absorbent foamed polymer could be used also. Castellated teeth 30 are described and illustrated, but other shapes of teeth could be used, for example pointed or rounded teeth. Four arms 22-28 are shown in FIG. 4a and eight arms 22-29 are shown in FIG. 5, however any number of arms could be employed. A brush effect could be achieved with a multiplicity of arms. The arms need not be equispaced as illustrated.

Claims
  • 1. A forensic device for collecting a biological sample, the device comprising: an elongate handle extending substantially along a handle axis, and a rigid sample collecting head attachable to and detachable from the handle, wherein the head is a porous, substantially planar or sheet material folded to form a plurality of arms, each of the plurality of arms extending away from the handle axis in a different direction, wherein the handle is a hollow tube providing a tube wall having an outer handle surface, wherein each of the plurality of arms passes through a respective corresponding slot extending through the tube wall, wherein the handle includes a slidable ejector pin disposed within the handle, wherein a first end of the ejector pin extends beyond a first end of the handle, and wherein a second end of the ejector pin is arranged to engage a portion of the head.
  • 2. The device of claim 1, wherein the tube wall comprises 2 to 12 slots in an array.
  • 3. The device of claim 1, wherein the head is a matrix containing a conjugate base of thiocyanic acid, and wherein said conjugate base of thiocyanic acid recovers nucleic acid information.
  • 4. A method for collecting a biological sample, including the following steps, in any suitable order: a) providing the sample collection device of claim 1; b) dampening the head of said collection device with sterile liquid; c) collecting a biological sample on the head; and d) allowing the head to dry.
  • 5. The device of claim 1, wherein the head is a paper material.
  • 6. The device of claim 1, wherein each slot extends parallel to the axis.
  • 7. The device of claim 3, wherein the conjugate base of thiocyanic acid is Guanidinium Thiocyanate.
  • 8. The device of claim 3, wherein the matrix contains an indicating dye.
  • 9. The device of claim 8, wherein the indicating dye is Chlorophenol red.
  • 10. The device of claim 1, wherein the tube wall comprises 1, 2, 3, 4, 5, 6, 7, or 8 slots in an array.
  • 11. The device of claim 1, wherein the tube wall comprises 1, 2, 3, 4, 5 or 6 slots in an array.
Priority Claims (1)
Number Date Country Kind
1201645.7 Jan 2012 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/051950 1/31/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2013/113842 8/8/2013 WO A
US Referenced Citations (49)
Number Name Date Kind
3343540 Siegel Sep 1967 A
3431909 Krusko Mar 1969 A
3610243 Jones, Sr. Oct 1971 A
3626470 Antonides et al. Dec 1971 A
3628533 Loyer Dec 1971 A
3800781 Zalucki Apr 1974 A
3838681 Dalton Oct 1974 A
4175008 White Nov 1979 A
4448205 Stenkvist May 1984 A
5137030 Darougar Aug 1992 A
5278075 Stone Jan 1994 A
5477863 Grant Dec 1995 A
5746710 Nielsen et al. May 1998 A
5782793 Nielsen et al. Jul 1998 A
5792096 Rentmeester et al. Aug 1998 A
6036658 Leet et al. Mar 2000 A
6059735 Sgro May 2000 A
6206867 Osborn et al. Mar 2001 B1
6258044 Lonky et al. Jul 2001 B1
6612996 Williams Sep 2003 B2
6840911 Sangha Jan 2005 B2
6890324 Jackson et al. May 2005 B1
D516718 Weber et al. Mar 2006 S
7098040 Kaylor et al. Aug 2006 B2
7226436 Gorham et al. Jun 2007 B2
D572362 Edgett et al. Jul 2008 S
7767448 Yong Aug 2010 B2
8323211 Larkin Dec 2012 B2
8475394 Stivers Jul 2013 B1
8630016 Swenson et al. Jan 2014 B2
8696595 Sangha Apr 2014 B2
20020111562 Richards Aug 2002 A1
20030113906 Sangha et al. Jun 2003 A1
20050136479 Lyng et al. Jun 2005 A1
20050256486 Carasso et al. Nov 2005 A1
20050277846 Chou Dec 2005 A1
20090043224 Lundkvist et al. Feb 2009 A1
20090048439 Weisburg et al. Feb 2009 A1
20090098559 Caragine et al. Apr 2009 A1
20090260205 Binner et al. Oct 2009 A1
20100069791 Ernster Mar 2010 A1
20100121219 McCabe et al. May 2010 A1
20100249649 Larkin Sep 2010 A1
20100307266 Ward Dec 2010 A1
20110021950 Daniels Jan 2011 A1
20110172557 Lonky et al. Jul 2011 A1
20130172778 Teschendorf Jul 2013 A1
20130338533 Olsen Dec 2013 A1
20140024069 Figueredo Jan 2014 A1
Foreign Referenced Citations (2)
Number Date Country
2005023426 Mar 2005 WO
WO 2007106552 Sep 2007 WO
Non-Patent Literature Citations (2)
Entry
Chinese Office Action for CN Application No. 201380007390.9 mailed Oct. 10, 2015 (17 pages).
Chinese Search Report for CN Application No. 201380007390.9 mailed Oct. 10, 2015 (5 pages).
Related Publications (1)
Number Date Country
20140370513 A1 Dec 2014 US