Hao et al., “Potent DNA Chain Termination Activity and Selective Inhibition of Human Immunodeficiency Virus Reverse Transcriptase by 2′, 3′-Dideoxyuridine-5′-triphosphate”, Molecular Pharmacology, 1990, 37, 157-163. |
Hao et al., “2′,3′-Dideoxyuridine Triphosphate: A Potent Inhibitor of HIV Reverse Transcriptase”, Proceedings of AACR, 1988, 29, 348. |
Matthes et al., “Inhibition of HIV-Associated Reverse Transcriptase By Sugar-Modified Derivatives of Thymidine 5′-Triphosphate in Comparison to Cellular DNA Polymerases α and β”, Biochem. And Biophys. Res. Commun., 1987, 148 (1), 78-85. |
Rosenberg et al., “Synthesis ofPotential Prodrugs and Metabolites of 9-(S)-(3-Hydroxy-2-Phosphonylmethoxypropyl) Adenine”, Coll. Czechoslovak Chem. Comm., 1987, 52, 2792-2800. |
Pompon et al., “On-line Internal Surface Reversed-Phase Cleaning: The Direct HPLC Analysis of Crude Biological Samples”, Biochem. Pharm., 1992, 43, 1769-1775. |
Rosenberg et al., “Synthesis of Potential Prodrugs and metabolites of 9-(S)-(3-Hydroxy-2-Phosphonylmethoxypropyl)Adenine”, Collection Czechoslovak Chem. Commun., 1987, 52, 2792-2800. |
Hanes et al., “Separation of the Phosphoric Esters on the Filter Paper Chromatogram”, Nature, 1949, 164, 1107-1112. |
Wiesler et al., “Synthesis and Purification of Phosphorodithioate DNA”, Methods in Molecular Biology: Protocols for Nucleotides and Analogs, S. Agrawal (ed.), Humana Press Inc., Totowa, NJ, 1993, 20, 191-206. |
Miles et al., “Dithiols. Part XII. The Alkaline Hydrolysis of Acetylated Hydroxy-thiols: A New Reaction for the Formation of Cyclic Sulphides”, J. Chem. Soc., 1952, 817-826. |
Lefebvre et al., “Mononucleoside Phosphotriester Derivatives with S-Acyl-2-thioethyl Bioreversible Phosphate-Protecting Groups: Intracellular Delivery of 3′-Azido-2′,3′-dideoxythymidine 5′-Monophosphate”, J. Med. Chem., 1995, 38, 3941-3950. |